Thiamine pyrophosphate (BioDeep_00000003366)
Secondary id: BioDeep_00001868647
natural product human metabolite Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: [C12H19N4O7P2S]+ (425.045)
中文名称: 焦磷酸硫胺, 硫胺素焦磷酸
谱图信息:
最多检出来源 Homo sapiens(lipidsearch) 42.29%
分子结构信息
SMILES: Cc(n2)nc(N)c(c2)C[n+1](c1)c(C)c(CCOP(O)(=O)OP(O)(O)=O)s1
InChI: InChI=1S/C12H18N4O7P2S/c1-8-11(3-4-22-25(20,21)23-24(17,18)19)26-7-16(8)6-10-5-14-9(2)15-12(10)13/h5,7H,3-4,6H2,1-2H3,(H4-,13,14,15,17,18,19,20,21)/p+1
描述信息
Thiamine pyrophosphate is the active form of thiamine, and it serves as a cofactor for several enzymes involved primarily in carbohydrate catabolism. The enzymes are important in the biosynthesis of a number of cell constituents, including neurotransmitters, and for the production of reducing equivalents used in oxidant stress defenses and in biosyntheses and for synthesis of pentoses used as nucleic acid precursors. The chemical structure of TPP is that of an aromatic methylaminopyrimidine ring, linked via a methylene bridge to a methylthiazolium ring with a pyrophosphate group attached to a hydroxyethyl side chain. In non-enzymatic model studies it has been demonstrated that the thiazolium ring can catalyse reactions which are similar to those of TPP-dependent enzymes but several orders of magnitude slower. Using infrared and NMR spectrophotometry it has been shown that the dissociation of the proton from C2 of the thiazolium ring is necessary for catalysis; the abstraction of the proton leads to the formation of a carbanion (ylid) with the potential for a nucleophilic attack on the carbonyl group of the substrate. In all TPP-dependent enzymes the abstraction of the proton from the C2 atom is the first step in catalysis, which is followed by a nucleophilic attack of this carbanion on the substrate. Subsequent cleavage of a C-C bond releases the first product with formation of a second carbanion (2-greek small letter alpha-carbanion or enamine). The formation of this 2-greek small letter alpha-carbanion is the second feature of TPP catalysis common to all TPP-dependent enzymes. Depending on the enzyme and the substrate(s), the reaction intermediates and products differ. Methyl-branched fatty acids, as phytanic acid, undergo peroxisomal beta-oxidation in which they are shortened by 1 carbon atom. This process includes four steps: activation, 2-hydroxylation, thiamine pyrophosphate dependent cleavage and aldehyde dehydrogenation. In the third step, 2-hydroxy-3-methylacyl-CoA is cleaved in the peroxisomal matrix by 2-hydroxyphytanoyl-CoA lyase (2-HPCL), which uses thiamine pyrophosphate (TPP) as cofactor. The thiamine pyrophosphate dependence of the third step is unique in peroxisomal mammalian enzymology. Human pathology due to a deficient alpha-oxidation is mostly linked to mutations in the gene coding for the second enzyme of the sequence, phytanoyl-CoA hydroxylase (EC 1.14.11.18). (PMID: 12694175, 11899071, 9924800) [HMDB]
Thiamine pyrophosphate (CAS: 154-87-0) is the active form of thiamine, and it serves as a cofactor for several enzymes involved primarily in carbohydrate catabolism. These enzymes are important in the biosynthesis of several cell constituents, including neurotransmitters, and for the production of reducing equivalents used in oxidant stress defences. The enzymes are also important for the synthesis of pentoses used as nucleic acid precursors. The chemical structure of TPP is that of an aromatic methylaminopyrimidine ring, linked via a methylene bridge to a methylthiazolium ring with a pyrophosphate group attached to a hydroxyethyl side chain. In non-enzymatic model studies, it has been demonstrated that the thiazolium ring can catalyze reactions that are similar to those of TPP-dependent enzymes but several orders of magnitude slower. Using infrared and NMR spectrophotometry it has been shown that the dissociation of the proton from C2 of the thiazolium ring is necessary for catalysis; the abstraction of the proton leads to the formation of a carbanion with the potential for a nucleophilic attack on the carbonyl group of the substrate. In all TPP-dependent enzymes, the abstraction of the proton from the C2 atom is the first step in catalysis, which is followed by a nucleophilic attack of this carbanion on the substrate. Subsequent cleavage of a C-C bond releases the first product with the formation of a second carbanion (enamine). This formation is the second feature of TPP catalysis common to all TPP-dependent enzymes. Depending on the enzyme and the substrate(s), the reaction intermediates and products differ. Methyl-branched fatty acids, as phytanic acid, undergo peroxisomal beta-oxidation in which they are shortened by 1 carbon atom. This process includes four steps: activation, 2-hydroxylation, thiamine pyrophosphate-dependent cleavage, and aldehyde dehydrogenation. In the third step, 2-hydroxy-3-methylacyl-CoA is cleaved in the peroxisomal matrix by 2-hydroxyphytanoyl-CoA lyase (2-HPCL), which uses thiamine pyrophosphate (TPP) as a cofactor. The thiamine pyrophosphate dependence of the third step is unique in peroxisomal mammalian enzymology. Human pathology due to a deficient alpha-oxidation is mostly linked to mutations in the gene coding for the second enzyme of the sequence, phytanoyl-CoA hydroxylase (EC 1.14.11.18) (PMID:12694175, 11899071, 9924800).
D018977 - Micronutrients > D014815 - Vitamins
KEIO_ID C077
同义名列表
19 个代谢物同义名
3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy(phosphonooxy)phosphoryl]oxy}ethyl)-4-methyl-1,3-thiazol-3-ium; Thiamine pyrophosphoric acid; Thiamin pyrophosphoric acid; Thiamine diphosphoric acid; Thiamin diphosphoric acid; Pyrophosphate, thiamine; Thaimine pyrophosphate; Thiamine pyrophosphate; Thiamine-pyrophosphate; thiamin pyrophosphate; Thiamine diphosphate; Thiamin diphosphate; Cocarboxylase; Thiamine-ppi; Thiamin-ppi; Berolase; THPP; tpp; Thiamine pyrophosphate
数据库引用编号
37 个数据库交叉引用编号
- ChEBI: CHEBI:9532
- KEGG: C00068
- PubChem: 1132
- HMDB: HMDB0001372
- ChEMBL: CHEMBL1236376
- Wikipedia: Thiamine pyrophosphate
- MeSH: Thiamine Pyrophosphate
- MetaCyc: THIAMINE-PYROPHOSPHATE
- KNApSAcK: C00019627
- foodb: FDB022584
- chemspider: 1100
- CAS: 12318-71-7
- CAS: 136-08-3
- CAS: 136-09-4
- MoNA: PS035203
- MoNA: KO000473
- MoNA: KO000475
- MoNA: KO002585
- MoNA: PS035202
- MoNA: KO000474
- MoNA: PS035204
- MoNA: KO000472
- MoNA: KO002584
- MoNA: KO000471
- MoNA: PS035206
- MoNA: PS035201
- MoNA: KO002586
- MoNA: KO002583
- MoNA: PS035205
- MoNA: KO002582
- PubChem: 3368
- PDB-CCD: TDP
- PDB-CCD: TPP
- 3DMET: B01146
- NIKKAJI: J184.400H
- NIKKAJI: J232.214E
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-302
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
76 个相关的代谢反应过程信息。
Reactome(12)
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(4)
- Pyruvate metabolism ( Pyruvate metabolism ):
ATP + Acetic acid + CoA ⟶ AMP + Acetyl-CoA + Pyrophosphate
- Pyruvic acid + Enzyme N6-(lipoyl)lysine = [dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine + CO2 ( Pyruvate metabolism ):
Pyruvic acid + TPP ⟶ 2-(Hydroxyethyl)-thiamine diphosphate + CO2
- Citrate cycle ( Citrate cycle ):
H2O + cis-Aconitic acid ⟶ Isocitric acid
- 2-oxoglutarate + [dihydrolipoyllysine-residue succinyltransferase] lipoyllysine = [dihydrolipoyllysine-residue succinyltransferase] S-succinyldihydrolipoyllysine + CO2 ( Citrate cycle ):
2-Oxo-glutaric acid + TPP ⟶ 3-Carboxy-1-hydroxypropyl-ThPP + CO2
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(60)
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isobutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Pyruvate Metabolism:
2-Isopropylmalic acid + Coenzyme A ⟶ -Ketoisovaleric acid + Acetyl-CoA + Water
- Valine, Leucine, and Isoleucine Degradation:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- beta-Ketothiolase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Propionic Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Maple Syrup Urine Disease:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type III:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonic Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type IV:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Thiamine Metabolism:
Adenosine triphosphate + Thiamine ⟶ Adenosine monophosphate + Thiamine pyrophosphate
- Thiamin Diphosphate Biosynthesis:
L-Glutamine + Phosphoribosyl pyrophosphate + Water ⟶ 5-Phosphoribosylamine + L-Glutamic acid + Pyrophosphate
- Vitamin B1/Thiamine Metabolism:
Adenosine triphosphate + Thiamine ⟶ Adenosine monophosphate + Hydrogen Ion + Thiamine pyrophosphate
- Thiamine Metabolism:
Adenosine triphosphate + Thiamine ⟶ Adenosine monophosphate + Thiamine pyrophosphate
- Thiamine Metabolism:
Adenosine triphosphate + Thiamine ⟶ Adenosine monophosphate + Thiamine pyrophosphate
- Thiamine Metabolism:
Adenosine triphosphate + Thiamine ⟶ Adenosine monophosphate + Thiamine pyrophosphate
- Thiamin Diphosphate Biosynthesis:
L-Glutamine + Phosphoribosyl pyrophosphate + Water ⟶ 5-Phosphoribosylamine + L-Glutamic acid + Pyrophosphate
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yehong Li, Mengze Zhou, Huanqiu Li, Chen Dai, Li Yin, Chunxiao Liu, Yuxin Li, Enming Zhang, Xinli Dong, Hui Ji, Qinghua Hu. Macrophage P2Y6 receptor deletion attenuates atherosclerosis by limiting foam cell formation through phospholipase Cβ/store-operated calcium entry/calreticulin/scavenger receptor A pathways.
European heart journal.
2024 Jan; 45(4):268-283. doi:
10.1093/eurheartj/ehad796
. [PMID: 38036416] - Yi-Hsin Chung, Ting-Chieh Chen, Wen-Ju Yang, Soon-Ziet Chen, Jia-Ming Chang, Wei-Yu Hsieh, Ming-Hsiun Hsieh. Ectopic expression of a bacterial thiamin monophosphate kinase enhances vitamin B1 biosynthesis in plants.
The Plant journal : for cell and molecular biology.
2023 Nov; ?(?):. doi:
10.1111/tpj.16563
. [PMID: 37996996] - Marcel Llavero-Pasquina, Katrin Geisler, Andre Holzer, Payam Mehrshahi, Gonzalo I Mendoza-Ochoa, Shelby A Newsad, Matthew P Davey, Alison G Smith. Thiamine metabolism genes in diatoms are not regulated by thiamine despite the presence of predicted riboswitches.
The New phytologist.
2022 09; 235(5):1853-1867. doi:
10.1111/nph.18296
. [PMID: 35653609] - Wei-Yu Hsieh, Hsin-Mei Wang, Yi-Hsin Chung, Kim-Teng Lee, Hong-Sheng Liao, Ming-Hsiun Hsieh. THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis.
The Plant journal : for cell and molecular biology.
2022 09; 111(5):1383-1396. doi:
10.1111/tpj.15895
. [PMID: 35791282] - Donogh Maguire, Alana Burns, Dinesh Talwar, Anthony Catchpole, Fiona Stefanowicz, David P Ross, Peter Galloway, Alastair Ireland, Gordon Robson, Michael Adamson, Lesley Orr, Joanna-Lee Kerr, Xenofon Roussis, Eoghan Colgan, Ewan Forrest, David Young, Donald C McMillan. Randomised trial of intravenous thiamine and/or magnesium sulphate administration on erythrocyte transketolase activity, lactate concentrations and alcohol withdrawal scores.
Scientific reports.
2022 04; 12(1):6941. doi:
10.1038/s41598-022-10970-x
. [PMID: 35484175] - Donogh Maguire, Anthony Catchpole, Owen Sheerins, Dinesh Talwar, Alana Burns, Mark Blyth, Andrew Shaw, Bryn Jones, Colin Drury, Johann Harten, Innes Smith, Donald C McMillan. The relation between acute changes in the systemic inflammatory response and circulating thiamine and magnesium concentrations after elective knee arthroplasty.
Scientific reports.
2021 05; 11(1):11271. doi:
10.1038/s41598-021-90591-y
. [PMID: 34050237] - Mugagga Kalyesubula, Ramgopal Mopuri, Jimmy Asiku, Alexander Rosov, Sara Yosefi, Nir Edery, Samuel Bocobza, Uzi Moallem, Hay Dvir. High-dose vitamin B1 therapy prevents the development of experimental fatty liver driven by overnutrition.
Disease models & mechanisms.
2021 03; 14(3):. doi:
10.1242/dmm.048355
. [PMID: 33608323] - Osatohanmwen J Enogieru, Megan L Koleske, Bianca Vora, Huy Ngo, Sook Wah Yee, Derrick Chatad, Marina Sirota, Kathleen M Giacomini. The Effects of Genetic Mutations and Drugs on the Activity of the Thiamine Transporter, SLC19A2.
The AAPS journal.
2021 03; 23(2):35. doi:
10.1208/s12248-021-00562-4
. [PMID: 33649974] - Payam Mehrshahi, Ginnie Trinh D T Nguyen, Aleix Gorchs Rovira, Andrew Sayer, Marcel Llavero-Pasquina, Michelle Lim Huei Sin, Elliot J Medcalf, Gonzalo I Mendoza-Ochoa, Mark A Scaife, Alison G Smith. Development of Novel Riboswitches for Synthetic Biology in the Green Alga Chlamydomonas.
ACS synthetic biology.
2020 06; 9(6):1406-1417. doi:
10.1021/acssynbio.0c00082
. [PMID: 32496044] - Zeenat B Noordally, Celso Trichtinger, Ivan Dalvit, Manuel Hofmann, Céline Roux, Nicola Zamboni, Lucille Pourcel, Elisabet Gas-Pascual, Alexandra Gisler, Teresa B Fitzpatrick. The coenzyme thiamine diphosphate displays a daily rhythm in the Arabidopsis nucleus.
Communications biology.
2020 05; 3(1):209. doi:
10.1038/s42003-020-0927-z
. [PMID: 32372067] - Heidi M Blank, Ophelia Papoulas, Nairita Maitra, Riddhiman Garge, Brian K Kennedy, Birgit Schilling, Edward M Marcotte, Michael Polymenis. Abundances of transcripts, proteins, and metabolites in the cell cycle of budding yeast reveal coordinate control of lipid metabolism.
Molecular biology of the cell.
2020 05; 31(10):1069-1084. doi:
10.1091/mbc.e19-12-0708
. [PMID: 32129706] - Jaya Joshi, Jacob S Folz, Jesse F Gregory, Donald R McCarty, Oliver Fiehn, Andrew D Hanson. Rethinking the PDH Bypass and GABA Shunt as Thiamin-Deficiency Workarounds.
Plant physiology.
2019 10; 181(2):389-393. doi:
10.1104/pp.19.00857
. [PMID: 31409697] - Kyly C Whitfield, Hou Kroeun, Tim Green, Frank T Wieringa, Mam Borath, Prak Sophonneary, Jeffrey R Measelle, Dare Baldwin, Lisa N Yelland, Shalem Leemaqz, Kathleen Chan, Jelisa Gallant. Thiamine dose response in human milk with supplementation among lactating women in Cambodia: study protocol for a double-blind, four-parallel arm randomised controlled trial.
BMJ open.
2019 07; 9(7):e029255. doi:
10.1136/bmjopen-2019-029255
. [PMID: 31292183] - Turgay Ucak, Yucel Karakurt, Gamze Tasli, Ferda Keskin Cimen, Erel Icel, Nezahat Kurt, Ibrahim Ahiskali, Halis Süleyman. The effects of thiamine pyrophosphate on ethanol induced optic nerve damage.
BMC pharmacology & toxicology.
2019 07; 20(1):40. doi:
10.1186/s40360-019-0319-5
. [PMID: 31277705] - Laise Rosado-Souza, Sebastian Proost, Michael Moulin, Susan Bergmann, Samuel E Bocobza, Asaph Aharoni, Teresa B Fitzpatrick, Marek Mutwil, Alisdair R Fernie, Toshihiro Obata. Appropriate Thiamin Pyrophosphate Levels Are Required for Acclimation to Changes in Photoperiod.
Plant physiology.
2019 05; 180(1):185-197. doi:
10.1104/pp.18.01346
. [PMID: 30837347] - Magdalena Jankowska, Monika Lichodziejewska-Niemierko, Sylwia Małgorzewicz, Bolesław Rutkowski. Biologically active form of vitamin B1 in human peritoneal effluent.
Advances in clinical and experimental medicine : official organ Wroclaw Medical University.
2017 Dec; 26(9):1405-1410. doi:
10.17219/acem/68722
. [PMID: 29442462] - Wei-Yu Hsieh, Jo-Chien Liao, Hsin-Tzu Wang, Tzu-Huan Hung, Ching-Chih Tseng, Tsui-Yun Chung, Ming-Hsiun Hsieh. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway.
The Plant journal : for cell and molecular biology.
2017 Jul; 91(1):145-157. doi:
10.1111/tpj.13552
. [PMID: 28346710] - Adrian McCann, Øivind Midttun, Kyly C Whitfield, Hou Kroeun, Mam Borath, Prak Sophonneary, Per Magne Ueland, Timothy J Green. Comparable Performance Characteristics of Plasma Thiamine and Erythrocyte Thiamine Diphosphate in Response to Thiamine Fortification in Rural Cambodian Women.
Nutrients.
2017 Jun; 9(7):. doi:
10.3390/nu9070676
. [PMID: 28661435] - Mirko Paulikat, Cindy Wechsler, Kai Tittmann, Ricardo A Mata. Theoretical Studies of the Electronic Absorption Spectra of Thiamin Diphosphate in Pyruvate Decarboxylase.
Biochemistry.
2017 04; 56(13):1854-1864. doi:
10.1021/acs.biochem.6b00984
. [PMID: 28296385] - Magdalena Jankowska, Paweł Rudnicki-Velasquez, Hanna Storoniak, Przemysław Rutkowski, Bolesław Rutkowski, Karol Krzymiński, Alicja Dębska-Ślizień. Thiamine Diphosphate Status and Dialysis-Related Losses in End-Stage Kidney Disease Patients Treated with Hemodialysis.
Blood purification.
2017; 44(4):294-300. doi:
10.1159/000480651
. [PMID: 29080898] - Manaki Mimura, Rémi Zallot, Thomas D Niehaus, Ghulam Hasnain, Satinder K Gidda, Thuy N D Nguyen, Erin M Anderson, Robert T Mullen, Greg Brown, Alexander F Yakunin, Valérie de Crécy-Lagard, Jesse F Gregory, Donald R McCarty, Andrew D Hanson. Arabidopsis TH2 Encodes the Orphan Enzyme Thiamin Monophosphate Phosphatase.
The Plant cell.
2016 10; 28(10):2683-2696. doi:
10.1105/tpc.16.00600
. [PMID: 27677881] - Fang Zhang, Jinit Masania, Attia Anwar, Mingzhan Xue, Daniel Zehnder, Hemali Kanji, Naila Rabbani, Paul J Thornalley. The uremic toxin oxythiamine causes functional thiamine deficiency in end-stage renal disease by inhibiting transketolase activity.
Kidney international.
2016 08; 90(2):396-403. doi:
10.1016/j.kint.2016.03.010
. [PMID: 27198804] - Vendula Bartáková, Anna Pleskačová, Katarína Kuricová, Lukáš Pácal, Veronika Dvořáková, Jana Bělobrádková, Marie Tomandlová, Josef Tomandl, Kateřina Kaňková. Dysfunctional protection against advanced glycation due to thiamine metabolism abnormalities in gestational diabetes.
Glycoconjugate journal.
2016 08; 33(4):591-8. doi:
10.1007/s10719-016-9688-9
. [PMID: 27287225] - Padmanabhan Srinivasan, Edwin C Thrower, Fred S Gorelick, Hamid M Said. Inhibition of pancreatic acinar mitochondrial thiamin pyrophosphate uptake by the cigarette smoke component 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.
American journal of physiology. Gastrointestinal and liver physiology.
2016 05; 310(10):G874-83. doi:
10.1152/ajpgi.00461.2015
. [PMID: 26999808] - Ghulam Hasnain, Sanja Roje, Na Sa, Rémi Zallot, Michael J Ziemak, Valérie de Crécy-Lagard, Jesse F Gregory, Andrew D Hanson. Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis.
The Biochemical journal.
2016 Jan; 473(2):157-66. doi:
10.1042/bj20150805
. [PMID: 26537753] - Daniela Hampel, Setareh Shahab-Ferdows, Linda S Adair, Margaret E Bentley, Valerie L Flax, Denise J Jamieson, Sascha R Ellington, Gerald Tegha, Charles S Chasela, Debbie Kamwendo, Lindsay H Allen. Thiamin and Riboflavin in Human Milk: Effects of Lipid-Based Nutrient Supplementation and Stage of Lactation on Vitamer Secretion and Contributions to Total Vitamin Content.
PloS one.
2016; 11(2):e0149479. doi:
10.1371/journal.pone.0149479
. [PMID: 26886782] - Sondés Guedich, Barbara Puffer-Enders, Mireille Baltzinger, Guillaume Hoffmann, Cyrielle Da Veiga, Fabrice Jossinet, Stéphane Thore, Guillaume Bec, Eric Ennifar, Dominique Burnouf, Philippe Dumas. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches.
RNA biology.
2016; 13(4):373-90. doi:
10.1080/15476286.2016.1142040
. [PMID: 26932506] - Aparajita Banerjee, Alyssa L Preiser, Thomas D Sharkey. Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity.
PloS one.
2016; 11(8):e0161534. doi:
10.1371/journal.pone.0161534
. [PMID: 27548482] - Jingwen Lu, Xiaoli Pan, Guoqiang Fei, Changpeng Wang, Lei Zhao, Shaoming Sang, Huimin Liu, Meng Liu, Hui Wang, Zhiliang Wang, Chunjiu Zhong. Correlation of thiamine metabolite levels with cognitive function in the non-demented elderly.
Neuroscience bulletin.
2015 Dec; 31(6):676-84. doi:
10.1007/s12264-015-1563-3
. [PMID: 26519048] - Marcus I Gibson, Edward J Brignole, Elizabeth Pierce, Mehmet Can, Stephen W Ragsdale, Catherine L Drennan. The Structure of an Oxalate Oxidoreductase Provides Insight into Microbial 2-Oxoacid Metabolism.
Biochemistry.
2015 Jul; 54(26):4112-20. doi:
10.1021/acs.biochem.5b00521
. [PMID: 26061898] - Mahdi Khozaei, Stuart Fisk, Tracy Lawson, Yves Gibon, Ronan Sulpice, Mark Stitt, Stephane C Lefebvre, Christine A Raines. Overexpression of plastid transketolase in tobacco results in a thiamine auxotrophic phenotype.
The Plant cell.
2015 Feb; 27(2):432-47. doi:
10.1105/tpc.114.131011
. [PMID: 25670766] - Sunita Yadav, D Swati, Hariharan Chandrasekharan. Thiamine pyrophosphate riboswitch in some representative plant species: a bioinformatics study.
Journal of computational biology : a journal of computational molecular cell biology.
2015 Jan; 22(1):1-9. doi:
10.1089/cmb.2014.0169
. [PMID: 25243980] - Amber Cathie Gomersall, Huy Anh Phan, Sylvana Iacuone, Song Feng Li, Roger W Parish. The Mycoplasma hyorhinis p37 Protein Rapidly Induces Genes in Fibroblasts Associated with Inflammation and Cancer.
PloS one.
2015; 10(10):e0140753. doi:
10.1371/journal.pone.0140753
. [PMID: 26512722] - Darcy McRose, Jian Guo, Adam Monier, Sebastian Sudek, Susanne Wilken, Shuangchun Yan, Thomas Mock, John M Archibald, Tadhg P Begley, Adrian Reyes-Prieto, Alexandra Z Worden. Alternatives to vitamin B1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages.
The ISME journal.
2014 Dec; 8(12):2517-29. doi:
10.1038/ismej.2014.146
. [PMID: 25171333] - Paul S Hoffman, Alexandra M Bruce, Igor Olekhnovich, Cirle A Warren, Stacey L Burgess, Raquel Hontecillas, Monica Viladomiu, Josep Bassaganya-Riera, Richard L Guerrant, Timothy L Macdonald. Preclinical studies of amixicile, a systemic therapeutic developed for treatment of Clostridium difficile infections that also shows efficacy against Helicobacter pylori.
Antimicrobial agents and chemotherapy.
2014 Aug; 58(8):4703-12. doi:
10.1128/aac.03112-14
. [PMID: 24890599] - Samuel E Bocobza, Asaph Aharoni. Small molecules that interact with RNA: riboswitch-based gene control and its involvement in metabolic regulation in plants and algae.
The Plant journal : for cell and molecular biology.
2014 Aug; 79(4):693-703. doi:
10.1111/tpj.12540
. [PMID: 24773387] - Samuel G Porter, Debra Coats, Philip R Fischer, Kevanna Ou, Elizabeth L Frank, Phivan Sreang, Soksan Saing, Mark D Topazian, Felicity T Enders, Allison K Cabalka. Thiamine deficiency and cardiac dysfunction in Cambodian infants.
The Journal of pediatrics.
2014 Jun; 164(6):1456-61. doi:
10.1016/j.jpeds.2014.01.049
. [PMID: 24607240] - H L Hernández-Montiel, C M Vásquez López, J G González-Loyola, G C Vega-Anaya, M E Villagrán-Herrera, M A Gallegos-Corona, C Saldaña, M Ramos Gómez, P García Horshman, P García Solís, J C Solís-S, M L Robles-Osorio, J Ávila Morales, A Varela-Echavarría, R Paredes Guerrero. Chronic administration of thiamine pyrophosphate decreases age-related histological atrophic testicular changes and improves sexual behavior in male Wistar rats.
Histology and histopathology.
2014 Jun; 29(6):785-95. doi:
10.14670/hh-29.785
. [PMID: 24371036] - Katherine Deigan Warner, Philip Homan, Kevin M Weeks, Alison G Smith, Chris Abell, Adrian R Ferré-D'Amaré. Validating fragment-based drug discovery for biological RNAs: lead fragments bind and remodel the TPP riboswitch specifically.
Chemistry & biology.
2014 May; 21(5):591-5. doi:
10.1016/j.chembiol.2014.03.007
. [PMID: 24768306] - Mehmet Ibrahim Turan, Huseyin Tan, Nihal Cetin, Halis Suleyman, Atilla Cayir. Effects of thiamine and thiamine pyrophosphate on epileptic episode model established with caffeine in rats.
Epilepsy research.
2014 Mar; 108(3):405-10. doi:
10.1016/j.eplepsyres.2013.12.006
. [PMID: 24434003] - Svetlana M Nabokina, Katsuhisa Inoue, Veedamali S Subramanian, Judith E Valle, Hiroaki Yuasa, Hamid M Said. Molecular identification and functional characterization of the human colonic thiamine pyrophosphate transporter.
The Journal of biological chemistry.
2014 Feb; 289(7):4405-16. doi:
10.1074/jbc.m113.528257
. [PMID: 24379411] - M I Turan, A Cayir, N Cetin, H Suleyman, I Siltelioglu Turan, H Tan. An investigation of the effect of thiamine pyrophosphate on cisplatin-induced oxidative stress and DNA damage in rat brain tissue compared with thiamine: thiamine and thiamine pyrophosphate effects on cisplatin neurotoxicity.
Human & experimental toxicology.
2014 Jan; 33(1):14-21. doi:
10.1177/0960327113485251
. [PMID: 23632005] - Aymeric Goyer, Ghulam Hasnain, Océane Frelin, Maria A Ralat, Jesse F Gregory, Andrew D Hanson. A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism.
The Biochemical journal.
2013 Sep; 454(3):533-42. doi:
10.1042/bj20130516
. [PMID: 23834287] - Michael Moulin, Ginnie T D T Nguyen, Mark A Scaife, Alison G Smith, Teresa B Fitzpatrick. Analysis of Chlamydomonas thiamin metabolism in vivo reveals riboswitch plasticity.
Proceedings of the National Academy of Sciences of the United States of America.
2013 Sep; 110(36):14622-7. doi:
10.1073/pnas.1307741110
. [PMID: 23959877] - Debra Coats, Elizabeth L Frank, Joel M Reid, Kevanna Ou, Mary Chea, Mengkheang Khin, Chiva Preou, Felicity T Enders, Philip R Fischer, Mark Topazian. Thiamine pharmacokinetics in Cambodian mothers and their breastfed infants.
The American journal of clinical nutrition.
2013 Sep; 98(3):839-44. doi:
10.3945/ajcn.113.062737
. [PMID: 23864540] - Ismail Demiryilmaz, Ebru Sener, Nihal Cetin, Durdu Altuner, Fatih Akcay, Halis Suleyman. A comparative investigation of biochemical and histopathological effects of thiamine and thiamine pyrophosphate on ischemia-reperfusion induced oxidative damage in rat ovarian tissue.
Archives of pharmacal research.
2013 Sep; 36(9):1133-9. doi:
10.1007/s12272-013-0173-8
. [PMID: 23760618] - Durdu Altuner, Nihal Cetin, Bahadir Suleyman, Zeynep Aslan, Ahmet Hacimuftuoglu, Mine Gulaboglu, Neslihan Isaoglu, Ismail Demiryilmaz, Halis Suleyman. Effect of thiamine pyrophosphate on ischemia-reperfusion induced oxidative damage in rat kidney.
Indian journal of pharmacology.
2013 Jul; 45(4):339-43. doi:
10.4103/0253-7613.115005
. [PMID: 24014907] - Aparajita Banerjee, Yan Wu, Rahul Banerjee, Yue Li, Honggao Yan, Thomas D Sharkey. Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway.
The Journal of biological chemistry.
2013 Jun; 288(23):16926-16936. doi:
10.1074/jbc.m113.464636
. [PMID: 23612965] - E Cetin, S Civelek, G Andican, F Candan Polizzi, V Yumuk, G Burçak. Plasma AGE-peptides and C-peptide in early-stage diabetic nephropathy patients on thiamine and pyridoxine therapy.
Minerva medica.
2013 Feb; 104(1):93-101. doi:
NULL
. [PMID: 23392542] - Mehmet Ibrahim Turan, Isil Siltelioglu Turan, Renad Mammadov, Konca Altınkaynak, Abdullah Kisaoglu. The effect of thiamine and thiamine pyrophosphate on oxidative liver damage induced in rats with cisplatin.
BioMed research international.
2013; 2013(?):783809. doi:
10.1155/2013/783809
. [PMID: 23841092] - Samuel E Bocobza, Sergey Malitsky, Wagner L Araújo, Adriano Nunes-Nesi, Sagit Meir, Michal Shapira, Alisdair R Fernie, Asaph Aharoni. Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis.
The Plant cell.
2013 Jan; 25(1):288-307. doi:
10.1105/tpc.112.106385
. [PMID: 23341335] - Robert van Lis, Carole Baffert, Yohann Couté, Wolfgang Nitschke, Ariane Atteia. Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1.
Plant physiology.
2013 Jan; 161(1):57-71. doi:
10.1104/pp.112.208181
. [PMID: 23154536] - Debra Coats, Kelsey Shelton-Dodge, Kevanna Ou, Vannara Khun, Sommon Seab, Kimsan Sok, Chiva Prou, Silvia Tortorelli, Thomas P Moyer, Lisa E Cooper, Tadhg P Begley, Felicity Enders, Philip R Fischer, Mark Topazian. Thiamine deficiency in Cambodian infants with and without beriberi.
The Journal of pediatrics.
2012 Nov; 161(5):843-7. doi:
10.1016/j.jpeds.2012.05.006
. [PMID: 22703952] - Wolfgang Stuetz, Verena Ilona Carrara, Rose McGready, Sue Jean Lee, Juergen Georg Erhardt, Joern Breuer, Hans Konrad Biesalski, François Henry Nosten. Micronutrient status in lactating mothers before and after introduction of fortified flour: cross-sectional surveys in Maela refugee camp.
European journal of nutrition.
2012 Jun; 51(4):425-34. doi:
10.1007/s00394-011-0226-z
. [PMID: 21786020] - Shuqian Liu, Younsoo Bae, Markos Leggas, Abigail Daily, Saloni Bhatnagar, Sumitra Miriyala, Daret K St Clair, Jeffrey A Moscow. Pharmacologic properties of polyethylene glycol-modified Bacillus thiaminolyticus thiaminase I enzyme.
The Journal of pharmacology and experimental therapeutics.
2012 Jun; 341(3):775-83. doi:
10.1124/jpet.112.191817
. [PMID: 22431205] - Océane Frelin, Gennaro Agrimi, Valentina L Laera, Alessandra Castegna, Lynn G L Richardson, Robert T Mullen, Claudia Lerma-Ortiz, Ferdinando Palmieri, Andrew D Hanson. Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize.
Functional & integrative genomics.
2012 Jun; 12(2):317-26. doi:
10.1007/s10142-012-0273-4
. [PMID: 22426856] - Maria Rapala-Kozik, Natalia Wolak, Marta Kujda, Agnieszka K Banas. The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response.
BMC plant biology.
2012 Jan; 12(?):2. doi:
10.1186/1471-2229-12-2
. [PMID: 22214485] - Anireddy S N Reddy, Mark F Rogers, Dale N Richardson, Michael Hamilton, Asa Ben-Hur. Deciphering the plant splicing code: experimental and computational approaches for predicting alternative splicing and splicing regulatory elements.
Frontiers in plant science.
2012; 3(?):18. doi:
10.3389/fpls.2012.00018
. [PMID: 22645572] - Michael Kube, Jelena Mitrovic, Bojan Duduk, Ralf Rabus, Erich Seemüller. Current view on phytoplasma genomes and encoded metabolism.
TheScientificWorldJournal.
2012; 2012(?):185942. doi:
10.1100/2012/185942
. [PMID: 22550465] - Sławomir Michalak, Tomasz Piorunek, Danuta Lenart-Jankowska, Krystyna Osztynowicz, Wojciech Kozubski. [Anti-heat shock protein 70 (anti - Hsp 70) antibodies in alcohol use disorder patients].
Przeglad lekarski.
2012; 69(10):781-4. doi:
. [PMID: 23421033]
- Stefanie Hüttl, Juliane Fiebig, Steffen Kutter, Gerd Hause, Hauke Lilie, Michael Spinka, Stephan König. Catalytically active filaments - pyruvate decarboxylase from Neurospora crassa. pH-controlled oligomer structure and catalytic function.
The FEBS journal.
2012 Jan; 279(2):275-84. doi:
10.1111/j.1742-4658.2011.08421.x
. [PMID: 22077835] - Won-Mook Lim, Irshad Jameel Baig, Im Joung La, Jung-Do Choi, Dong-Eun Kim, Sung-Kun Kim, Jae-Wook Hyun, Giyoung Kim, Chang-Ho Kang, Young Jin Kim, Moon-Young Yoon. Cloning, characterization and evaluation of potent inhibitors of Shigella sonnei acetohydroxyacid synthase catalytic subunit.
Biochimica et biophysica acta.
2011 Dec; 1814(12):1825-31. doi:
10.1016/j.bbapap.2011.09.007
. [PMID: 22015678] - Mark E Obrenovich, Raymond J Shamberger, Derrick Lonsdale. Altered heavy metals and transketolase found in autistic spectrum disorder.
Biological trace element research.
2011 Dec; 144(1-3):475-86. doi:
10.1007/s12011-011-9146-2
. [PMID: 21755304] - Martina Krautwald, Dale Leech, Stacey Horne, Megan L Steele, Josephine Forbes, Anton Rahmadi, Renate Griffith, Gerald Münch. The advanced glycation end product-lowering agent ALT-711 is a low-affinity inhibitor of thiamine diphosphokinase.
Rejuvenation research.
2011 Aug; 14(4):383-91. doi:
10.1089/rej.2010.1143
. [PMID: 21612515] - Babu Raman, Catherine K McKeown, Miguel Rodriguez, Steven D Brown, Jonathan R Mielenz. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation.
BMC microbiology.
2011 Jun; 11(?):134. doi:
10.1186/1471-2180-11-134
. [PMID: 21672225] - Weina Zhao, Xudong Cheng, Zongan Huang, Huajie Fan, Huilan Wu, Hong-Qing Ling. Tomato LeTHIC is an Fe-requiring HMP-P synthase involved in thiamine synthesis and regulated by multiple factors.
Plant & cell physiology.
2011 Jun; 52(6):967-82. doi:
10.1093/pcp/pcr048
. [PMID: 21511719] - Xuhui Niu, Xiang Liu, Yanfei Zhou, Congwei Niu, Zhen Xi, Xiao-Dong Su. Preliminary X-ray crystallographic studies of the catalytic subunit of Escherichia coli AHAS II with its cofactors.
Acta crystallographica. Section F, Structural biology and crystallization communications.
2011 Jun; 67(Pt 6):659-61. doi:
10.1107/s1744309111008839
. [PMID: 21636904] - HaiFeng Qian, Tao Lu, XiaoFeng Peng, Xiao Han, ZhengWei Fu, WeiPing Liu. Enantioselective phytotoxicity of the herbicide imazethapyr on the response of the antioxidant system and starch metabolism in Arabidopsis thaliana.
PloS one.
2011 May; 6(5):e19451. doi:
10.1371/journal.pone.0019451
. [PMID: 21573119] - Susana Alcázar-Leyva, Noé Alvarado-Vásquez. Could thiamine pyrophosphate be a regulator of the nitric oxide synthesis in the endothelial cell of diabetic patients?.
Medical hypotheses.
2011 May; 76(5):629-31. doi:
10.1016/j.mehy.2011.01.015
. [PMID: 21288652] - Danilo Meyer, Lydia Walter, Geraldine Kolter, Martina Pohl, Michael Müller, Kai Tittmann. Conversion of pyruvate decarboxylase into an enantioselective carboligase with biosynthetic potential.
Journal of the American Chemical Society.
2011 Mar; 133(10):3609-16. doi:
10.1021/ja110236w
. [PMID: 21341803] - Douangdao Soukaloun, Sue J Lee, Karen Chamberlain, Ann M Taylor, Mayfong Mayxay, Kongkham Sisouk, Bandit Soumphonphakdy, Khaysy Latsavong, Kongsin Akkhavong, Douangkham Phommachanh, Vanmaly Sengmeuang, Khonsavanh Luangxay, Theresa McDonagh, Nicholas J White, Paul N Newton. Erythrocyte transketolase activity, markers of cardiac dysfunction and the diagnosis of infantile beriberi.
PLoS neglected tropical diseases.
2011 Feb; 5(2):e971. doi:
10.1371/journal.pntd.0000971
. [PMID: 21364976] - Tripty A Hirani, Alejandro Tovar-Méndez, Ján A Miernyk, Douglas D Randall. Asp295 stabilizes the active-site loop structure of pyruvate dehydrogenase, facilitating phosphorylation of ser292 by pyruvate dehydrogenase-kinase.
Enzyme research.
2011 Jan; 2011(?):939068. doi:
10.4061/2011/939068
. [PMID: 21318135] - Chou Srey, Simon A Haughey, Lisa Connolly, Maria Dolores del Castillo, Jennifer M Ames, Christopher T Elliott. Immunochemical and mass spectrometric analysis of Nε-(carboxymethyl)lysine content of AGE-BSA systems prepared with and without selected antiglycation agents.
Journal of agricultural and food chemistry.
2010 Nov; 58(22):11955-61. doi:
10.1021/jf102543g
. [PMID: 20979353] - Francesco Emanuelli, Juri Battilana, Laura Costantini, Loïc Le Cunff, Jean-Michel Boursiquot, Patrice This, Maria S Grando. A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.).
BMC plant biology.
2010 Nov; 10(?):241. doi:
10.1186/1471-2229-10-241
. [PMID: 21062440] - Natalie M Zahr, Richard Luong, Edith V Sullivan, Adolf Pfefferbaum. Measurement of serum, liver, and brain cytokine induction, thiamine levels, and hepatopathology in rats exposed to a 4-day alcohol binge protocol.
Alcoholism, clinical and experimental research.
2010 Nov; 34(11):1858-70. doi:
10.1111/j.1530-0277.2010.01274.x
. [PMID: 20662804] - Jeremy Grojean, Brian Downes. Riboswitches as hormone receptors: hypothetical cytokinin-binding riboswitches in Arabidopsis thaliana.
Biology direct.
2010 Oct; 5(?):60. doi:
10.1186/1745-6150-5-60
. [PMID: 20961447] - John B Woodward, N Dinuka Abeydeera, Debamita Paul, Kimberly Phillips, Maria Rapala-Kozik, Michael Freeling, Tadhg P Begley, Steven E Ealick, Paula McSteen, Michael J Scanlon. A maize thiamine auxotroph is defective in shoot meristem maintenance.
The Plant cell.
2010 Oct; 22(10):3305-17. doi:
10.1105/tpc.110.077776
. [PMID: 20971897] - Aymeric Goyer. Thiamine in plants: aspects of its metabolism and functions.
Phytochemistry.
2010 Oct; 71(14-15):1615-24. doi:
10.1016/j.phytochem.2010.06.022
. [PMID: 20655074] - Nicole Schupp, August Heidland, Helga Stopper. Genomic damage in endstage renal disease-contribution of uremic toxins.
Toxins.
2010 10; 2(10):2340-58. doi:
10.3390/toxins2102340
. [PMID: 22069557] - Danilo Meyer, Piotr Neumann, Christoph Parthier, Rudolf Friedemann, Natalia Nemeria, Frank Jordan, Kai Tittmann. Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate.
Biochemistry.
2010 Sep; 49(37):8197-212. doi:
10.1021/bi100828r
. [PMID: 20715795] - Qin Yu, Heping Han, Martin M Vila-Aiub, Stephen B Powles. AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth.
Journal of experimental botany.
2010 Sep; 61(14):3925-34. doi:
10.1093/jxb/erq205
. [PMID: 20627897] - Karin Radrich, Yoshimasa Tsuruoka, Paul Dobson, Albert Gevorgyan, Neil Swainston, Gino Baart, Jean-Marc Schwartz. Integration of metabolic databases for the reconstruction of genome-scale metabolic networks.
BMC systems biology.
2010 Aug; 4(?):114. doi:
10.1186/1752-0509-4-114
. [PMID: 20712863] - Veedamali S Subramanian, Sandeep B Subramanya, Hidekazu Tsukamoto, Hamid M Said. Effect of chronic alcohol feeding on physiological and molecular parameters of renal thiamin transport.
American journal of physiology. Renal physiology.
2010 Jul; 299(1):F28-34. doi:
10.1152/ajprenal.00140.2010
. [PMID: 20427470] - B Renee Bozard, Preethi S Ganapathy, Jennifer Duplantier, Barbara Mysona, Yonju Ha, Penny Roon, Robert Smith, I David Goldman, Puttur Prasad, Pamela M Martin, Vadivel Ganapathy, Sylvia B Smith. Molecular and biochemical characterization of folate transport proteins in retinal Müller cells.
Investigative ophthalmology & visual science.
2010 Jun; 51(6):3226-35. doi:
10.1167/iovs.09-4833
. [PMID: 20053979] - Pitchai Balakumar, Ankur Rohilla, Pawan Krishan, Ponnu Solairaj, Arunachalam Thangathirupathi. The multifaceted therapeutic potential of benfotiamine.
Pharmacological research.
2010 Jun; 61(6):482-8. doi:
10.1016/j.phrs.2010.02.008
. [PMID: 20188835] - José S Casas, M Victoria Castaño, Agustín Sánchez, José Sordo, M Dolores Torres, María D Couce, Angeles Gato, Carmen Alvarez-Lorenzo, M Félix Camiña, Eduardo E Castellano. Interactions of diorganolead(IV) with 3-(2-thienyl)-2-sulfanylpropenoic acid and/or thiamine: chemical and in vitro and in vivo toxicological results.
Inorganic chemistry.
2010 Mar; 49(5):2173-81. doi:
10.1021/ic901961g
. [PMID: 20088549] - Sergio Torres, Hermelinda Salgado-Ceballos, José Luis Torres, Sandra Orozco-Suarez, Araceli Díaz-Ruíz, Angelina Martínez, Mario Rivera-Cruz, Camilo Ríos, Alicia Lara, Carlos Collado, Gabriel Guizar-Sahagún. Early metabolic reactivation versus antioxidant therapy after a traumatic spinal cord injury in adult rats.
Neuropathology : official journal of the Japanese Society of Neuropathology.
2010 Feb; 30(1):36-43. doi:
10.1111/j.1440-1789.2009.01037.x
. [PMID: 19563509] - Maarten Vercruysse, Maarten Fauvart, Lore Cloots, Kristof Engelen, Inge M Thijs, Kathleen Marchal, Jan Michiels. Genome-wide detection of predicted non-coding RNAs in Rhizobium etli expressed during free-living and host-associated growth using a high-resolution tiling array.
BMC genomics.
2010 Jan; 11(?):53. doi:
10.1186/1471-2164-11-53
. [PMID: 20089193] - Iu M Parkhomenko, A A Strokina, S Iu Pilipchuk, S P Stepanenko, L I Chekhovskaia, G V Donchenko. [Existence of two different active sites on thiamine binding protein in plasma membranes of synaptosomes].
Ukrains'kyi biokhimichnyi zhurnal (1999 ).
2010 Jan; 82(1):34-41. doi:
. [PMID: 20684226]
- Theodoros Georgiou, Jacinta L Chuang, R Max Wynn, Goula Stylianidou, Mark Korson, David T Chuang, Anthi Drousiotou. Maple syrup urine disease in Cypriot families: identification of three novel mutations and biochemical characterization of the p.Thr211Met mutation in the E1alpha subunit.
Genetic testing and molecular biomarkers.
2009 Oct; 13(5):657-64. doi:
10.1089/gtmb.2009.0065
. [PMID: 19715473] - S Torres, H Salgado-Ceballos, G Guizar-Sahagún, J L Torres, S Orozco-Suarez, A Diaz-Ruiz, M E Vázquez, C Collado, C Ríos. Deleterious versus neuroprotective effect of metabolic inhibition after traumatic spinal cord injury.
Spinal cord.
2009 Oct; 47(10):745-50. doi:
10.1038/sc.2009.27
. [PMID: 19488053] - Meral Tunc-Ozdemir, Gad Miller, Luhua Song, James Kim, Ahmet Sodek, Shai Koussevitzky, Amarendra Narayan Misra, Ron Mittler, David Shintani. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis.
Plant physiology.
2009 Sep; 151(1):421-32. doi:
10.1104/pp.109.140046
. [PMID: 19641031] - Michel Frédérich, David Delvaux, Tiziana Gigliobianco, Marjorie Gangolf, Georges Dive, Gabriel Mazzucchelli, Benjamin Elias, Edwin De Pauw, Luc Angenot, Pierre Wins, Lucien Bettendorff. Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence.
The FEBS journal.
2009 Jun; 276(12):3256-68. doi:
10.1111/j.1742-4658.2009.07040.x
. [PMID: 19438713] - Maria Rapala-Kozik, Anna Gołda, Marta Kujda. Enzymes that control the thiamine diphosphate pool in plant tissues. Properties of thiamine pyrophosphokinase and thiamine-(di)phosphate phosphatase purified from Zea mays seedlings.
Plant physiology and biochemistry : PPB.
2009 Apr; 47(4):237-42. doi:
10.1016/j.plaphy.2008.12.015
. [PMID: 19167902] - Namsoo Chang, Eunjung Kim, Ki Nam Kim, Hyesook Kim, Seong Yoon Kim, Bum Seok Jeong. Folate nutrition is related to neuropsychological functions in the elderly.
Nutrition research and practice.
2009; 3(1):43-8. doi:
10.4162/nrp.2009.3.1.43
. [PMID: 20016701] - V M Bautista-Hernández, R López-Ascencio, M Del Toro-Equihua, C Vásquez. Effect of thiamine pyrophosphate on levels of serum lactate, maximum oxygen consumption and heart rate in athletes performing aerobic activity.
The Journal of international medical research.
2008 Nov; 36(6):1220-6. doi:
10.1177/147323000803600608
. [PMID: 19094430] - Samuel E Bocobza, Asaph Aharoni. Switching the light on plant riboswitches.
Trends in plant science.
2008 Oct; 13(10):526-33. doi:
10.1016/j.tplants.2008.07.004
. [PMID: 18778966] - Iu M Parkhomenko, S Iu Pilipchuk, A A Sidorova, S P Stepanenko, L I Chekhovskaia, G V Donchenko. [Thiamine metabolism disorders in the rat brain in experimental alcoholism and a possibility of their correction by vitamin E].
Ukrains'kyi biokhimichnyi zhurnal (1999 ).
2008 Jul; 80(4):96-104. doi:
. [PMID: 19140455]
- Marie-Laure Volvert, Sandrine Seyen, Marie Piette, Brigitte Evrard, Marjorie Gangolf, Jean-Christophe Plumier, Lucien Bettendorff. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives.
BMC pharmacology.
2008 Jun; 8(?):10. doi:
10.1186/1471-2210-8-10
. [PMID: 18549472]