3,3',4'5-Tetrahydroxystilbene (BioDeep_00000000350)

 

Secondary id: BioDeep_00000406165

human metabolite PANOMIX_OTCML-2023 Endogenous Chemicals and Drugs Antitumor activity


代谢物信息卡片


(E)-4-[2-(3,5Dihydroxyphenyl)ethenyl]1,2-benzenediol, 3,3a?4,5a?Tetrahydroxy-trans-stilbene

化学式: C14H12O4 (244.0736)
中文名称: 白皮杉醇
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 13.33%

分子结构信息

SMILES: C1=C(O)C=C(/C=C/C2=CC(O)=C(O)C=C2)C=C1O
InChI: InChI=1S/C14H12O4/c15-11-5-10(6-12(16)8-11)2-1-9-3-4-13(17)14(18)7-9/h1-8,15-18H/b2-1+

描述信息

Piceatannol is a stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. It has a role as a protein kinase inhibitor, a tyrosine kinase inhibitor, an antineoplastic agent, a plant metabolite, a hypoglycemic agent, an apoptosis inducer and a geroprotector. It is a stilbenol, a member of resorcinols, a member of catechols and a polyphenol. It derives from a hydride of a trans-stilbene.
Piceatannol is a natural product found in Vitis amurensis, Smilax bracteata, and other organisms with data available.
Piceatannol is a polyhydroxylated stilbene extract from the seeds of Euphorbia lagascae, which inhibits protein tyrosine kinase Syk and induces apoptosis. (NCI)
Piceatannol is a metabolite found in or produced by Saccharomyces cerevisiae.
See also: Wine grape (part of); Robinia pseudoacacia whole (part of); Tsuga canadensis bark (part of).
3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). [HMDB]
3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908).
A stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5.
C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor
Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].
Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].

同义名列表

70 个代谢物同义名

(E)-4-[2-(3,5Dihydroxyphenyl)ethenyl]1,2-benzenediol, 3,3a?4,5a?Tetrahydroxy-trans-stilbene; (E)-4-[2-(3,5Dihydroxyphenyl)ethenyl]1,2-benzenediol, 3,3,4,5-Tetrahydroxy-trans-stilbene; 4-[2-(3,5-dihydroxyphenyl)-(E)-1-ethenyl]-1,2-benzenediol(Piceatannol); 4-[(E)-2-(3,5-dihydroxyphenyl)vinyl]benzene-1,2-diol(Piceatannol); 1,2-Benzenediol, 4-[2-(3,5-dihydroxyphenyl)ethenyl]-, (E)-; 1,2-Benzenediol, 4-(2-(3,5-dihydroxyphenyl)ethenyl)-, (E)-; 4-[2-(3,5-dihydroxyphenyl)-(E)-1-ethenyl]-1,2-benzenediol; 1,2-BENZENEDIOL, 4-((1E)-2-(3,5-DIHYDROXYPHENYL)ETHENYL)-; 1,2-Benzenediol, 4-[(1E)-2-(3,5-dihydroxyphenyl)ethenyl]-; 1,2-Benzenediol, 4-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]-; 4-[(1E)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,2-diol; 4-[(1E)-2-(3,5-Dihydroxyphenyl)ethenyl]-1,2-benzenediol; 4-((1E)-2-(3,5-dihydroxyphenyl)ethenyl)benzene-1,2-diol; 5-[(E)-2-(3,4-dihydroxyphenyl)ethenyl]benzene-1,3-diol; 4-((E)-2-(3,5-DIHYDROXYPHENYL)ETHENYL)BENZENE-1,2-DIOL; 4-[(E)-2-(3,5-DIHYDROXYPHENYL)ETHENYL]BENZENE-1,2-DIOL; 4-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,2-diol; (E)-4-[2-(3,5-Dihydroxyphenyl)ethenyl]1,2-benzenediol; 4-((E)-2-(3,5-DIHYDROXYPHENYL)VINYL)-1,2-BENZENEDIOL; 4-[(E)-2-(3,5-dihydroxyphenyl)vinyl]benzene-1,2-diol; 1,2-Benzenediol, 4-(2-(3,5-dihydroxyphenyl)ethenyl)-; 4-((E)-2-(3,5-dihydroxyphenyl)vinyl)benzene-1,2-diol; 5-[(E)-2-(3,4-Dihydroxyphenyl)vinyl]benzene-1,3-diol; 1, 4-[2-(3,5-dihydroxyphenyl)ethenyl]-, (E)-; (E)-4-(3,5-dihydroxystyryl)benzene-1,2-diol; 4-(3,5-dihydroxystyryl)benzene-1,2-diol; trans-3,3’,4,5’-Tetrahydroxystilbene; F13BE9BB-B7D7-4D40-B31A-C15B953E033D; 3,5,3,4-tetrahydroxy-trans-stilbene; 3,3,4,5-Tetrahydroxy-trans-stilbene; 3,4,3,5-tetrahydroxy-trans-stilbene; trans-3,3,4,5-tetrahydroxystilbene; trans-3,3,4,5-Tetrahydroxystilbene; 3,5,3,4-tetrahydroxy-stilbene; Astringenin;trans-Piceatannol; 3,3,4,5-tetrahydroxy stilbene; 3,4,3,5-tetrahydroxystillbene; 3,3,4,5-tetrahydroxystilbene; 3,3,4,5-STILBENETETROL, (E)-; (E)-3,3’,4,5’-Stilbenetetrol; 3,5,3,4-tetrahydroxystilbene; CDRPUGZCRXZLFL-OWOJBTEDSA-N; 3,3,45-Tetrahydroxystilbene; (E)-3,3,4,5-Stilbenetetrol; demethyl isorhapontigenin; 3,3,4,5-Stilbenetetrol; 3-Hydroxyresveratol; 3-hydroxyresveratol; Piceatannol, powder; PICEATANNOL [INCI]; trans-Piceatannol; BiomolKI2_000031; UNII-6KS3LS0D4F; (E)-Piceatannol; MEGxp0_000245; Lopac0_000915; Astringinine; Tox21_500915; SMP2_000263; Piceatannol; IDI1_002155; astringinin; Astringenin; piceatanol; 6KS3LS0D4F; BMK1-C11; C14H12O4; J61.264B; RSVL-1; Piceatannol



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

83 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 ARG1, BCL2, CAT, CCND1, MAPK14, MTOR, NFE2L2, NFKB1, NOS2, NOS3, PIK3CA, PTGS2, STAT3, SYK, TNK1
Peripheral membrane protein 3 MTOR, PTGS2, TNK1
Endoplasmic reticulum membrane 4 BCL2, HMOX1, MTOR, PTGS2
Nucleus 13 ARG1, BCL2, CCND1, HMOX1, MAPK14, MPO, MTOR, NFE2L2, NFKB1, NOS2, NOS3, STAT3, SYK
cytosol 14 ARG1, BCL2, CAT, CCND1, HMOX1, MAPK14, MTOR, NFE2L2, NFKB1, NOS2, NOS3, PIK3CA, STAT3, SYK
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
centrosome 2 CCND1, NFE2L2
nucleoplasm 10 CCND1, HMOX1, MAPK14, MPO, MTOR, NFE2L2, NFKB1, NOS2, NOS3, STAT3
RNA polymerase II transcription regulator complex 2 NFE2L2, STAT3
Cell membrane 2 SYK, TNF
Cytoplasmic side 2 HMOX1, MTOR
lamellipodium 1 PIK3CA
Cytoplasmic granule 1 ARG1
Golgi apparatus membrane 1 MTOR
cell surface 1 TNF
glutamatergic synapse 1 MAPK14
Golgi apparatus 2 NFE2L2, NOS3
Golgi membrane 3 INS, MTOR, NOS3
lysosomal membrane 2 GAA, MTOR
neuronal cell body 1 TNF
Cytoplasm, cytosol 3 NFE2L2, NOS2, SYK
Lysosome 3 GAA, MPO, MTOR
plasma membrane 9 GAA, NFE2L2, NOS2, NOS3, PIK3CA, STAT3, SYK, TNF, TNK1
Membrane 6 BCL2, CAT, GAA, HMOX1, MTOR, TNK1
caveola 2 NOS3, PTGS2
extracellular exosome 3 CAT, GAA, MPO
Lysosome membrane 2 GAA, MTOR
endoplasmic reticulum 3 BCL2, HMOX1, PTGS2
extracellular space 5 ARG1, HMOX1, INS, MPO, TNF
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 4 HMOX1, NOS2, NOS3, PIK3CA
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, CAT, MAPK14, NFKB1
protein-containing complex 4 BCL2, CAT, PTGS2, SYK
intracellular membrane-bounded organelle 3 CAT, GAA, MPO
Microsome membrane 2 MTOR, PTGS2
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 2 GAA, INS
extracellular region 8 ARG1, CAT, GAA, INS, MAPK14, MPO, NFKB1, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
mitochondrial matrix 1 CAT
transcription regulator complex 2 NFKB1, STAT3
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, CCND1
external side of plasma membrane 1 TNF
Cytoplasm, P-body 2 NOS2, NOS3
P-body 2 NOS2, NOS3
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cytoplasm, perinuclear region 1 NOS2
Membrane raft 1 TNF
pore complex 1 BCL2
focal adhesion 1 CAT
Peroxisome 2 CAT, NOS2
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, NOS2
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
secretory granule 1 MPO
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
chromatin 3 NFE2L2, NFKB1, STAT3
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
cytoskeleton 1 NOS3
spindle pole 1 MAPK14
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
endosome lumen 1 INS
tertiary granule membrane 1 GAA
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 1 NOS3
myelin sheath 1 BCL2
azurophil granule 1 MPO
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 4 CAT, INS, MAPK14, NFKB1
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 INS, PTGS2
transcription repressor complex 1 CCND1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
specific granule lumen 2 ARG1, NFKB1
endocytic vesicle membrane 1 NOS3
transport vesicle 1 INS
azurophil granule membrane 1 GAA
azurophil granule lumen 2 ARG1, MPO
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Single-pass type IV membrane protein 1 HMOX1
phagocytic vesicle lumen 1 MPO
protein-DNA complex 1 NFE2L2
ficolin-1-rich granule membrane 1 GAA
early phagosome 1 SYK
Cytoplasmic vesicle, phagosome 1 MTOR
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 1 SYK
cortical cytoskeleton 1 NOS2
catalase complex 1 CAT
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CCND1
B cell receptor complex 1 SYK
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 1 NFKB1
NF-kappaB p50/p65 complex 1 NFKB1
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Pouya Goleij, Pantea Majma Sanaye, Mehregan Babamohamadi, Mohammad Amin Khazeei Tabari, Roshanak Amirian, Aryan Rezaee, Hamed Mirzaei, Alan Prem Kumar, Gautam Sethi, Sarvin Sadreddini, Philippe Jeandet, Haroon Khan. Phytostilbenes in lymphoma: Focuses on the mechanistic and clinical prospects of resveratrol, pterostilbene, piceatannol, and pinosylvin. Leukemia research. 2024 03; 138(?):107464. doi: 10.1016/j.leukres.2024.107464. [PMID: 38422882]
  • Min Zhu, En-Qing Lu, Yong-Xia Fang, Guo-Wei Liu, Yu-Jie Cheng, Ke Huang, E Xu, Yi-Yu Zhang, Xiao-Jing Wang. Piceatannol Alleviates Deoxynivalenol-Induced Damage in Intestinal Epithelial Cells via Inhibition of the NF-κB Pathway. Molecules (Basel, Switzerland). 2024 Feb; 29(4):. doi: 10.3390/molecules29040855. [PMID: 38398607]
  • Mengmei Zhu, Tianhao Zhao, Binshan Zha, Guiyang Zhang, Weiwei Qian, Xinya Wang, Qiuju Zhao, Shuo Chen, Zeping Hu, Liuyi Dong. Piceatannol protects against myocardial ischemia/reperfusion injury by inhibiting ferroptosis via Nrf-2 signaling-mediated iron metabolism. Biochemical and biophysical research communications. 2024 Jan; 700(?):149598. doi: 10.1016/j.bbrc.2024.149598. [PMID: 38308910]
  • Manami Inoue, Yuki Nakagawa, Miku Azuma, Haruka Akahane, Ryusei Chimori, Yasunari Mano, Ryoko Takasawa. The PKM2 inhibitor shikonin enhances piceatannol-induced apoptosis of glyoxalase I-dependent cancer cells. Genes to cells : devoted to molecular & cellular mechanisms. 2023 Nov; ?(?):. doi: 10.1111/gtc.13084. [PMID: 37963646]
  • Lianghao Huang, Jinyu Wang, Xiaoyao Ma, Lishan Sun, Cui Hao, Wei Wang. Inhibition of influenza a virus infection by natural stilbene piceatannol targeting virus hemagglutinin. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Aug; 120(?):155058. doi: 10.1016/j.phymed.2023.155058. [PMID: 37690231]
  • Tarek Khamis, Abd Al-Aziz Abas Diab, Mansour H Zahra, Samih Ebrahim El-Dahmy, Basant Ahmed Abd Al-Hameed, Adel Abdelkhalek, Mahmoud A Said, Hussein Abdellatif, Liana Mihaela Fericean, Ioan Banatean-Dunea, Ahmed Hamed Arisha, Mai S Attia. The Antiproliferative Activity of Adiantum pedatum Extract and/or Piceatannol in Phenylhydrazine-Induced Colon Cancer in Male Albino Rats: The miR-145 Expression of the PI-3K/Akt/p53 and Oct4/Sox2/Nanog Pathways. Molecules (Basel, Switzerland). 2023 Jul; 28(14):. doi: 10.3390/molecules28145543. [PMID: 37513415]
  • Ahmed Rakib, Mousumi Mandal, Anaum Showkat, Sonia Kiran, Soumi Mazumdar, Bhupesh Singla, Aman Bajwa, Santosh Kumar, Frank Park, Udai P Singh. Piceatannol induces regulatory T cells and modulates the inflammatory response and adipogenesis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 May; 161(?):114514. doi: 10.1016/j.biopha.2023.114514. [PMID: 36921534]
  • Xu Yang, Yanlin Wu, Menglian Zhang, Lingyu Zhang, Tianhao Zhao, Weiwei Qian, Mengmei Zhu, Xinya Wang, Qiannuo Zhang, Jiaqiang Sun, Liuyi Dong. Piceatannol protects against age-related hearing loss by inhibiting cellular pyroptosis and inflammation through regulated Caspase11-GSDMD pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Apr; 163(?):114704. doi: 10.1016/j.biopha.2023.114704. [PMID: 37100013]
  • Nadjet Mostefa, Noureddine Djebli, Pham Ngoc Khanh, Nguyen Xuan Ha, Hoang Thi Ngoc Anh, Vu Thi Ha, Tran Thu Huong, Dang Viet Anh, Nguyen Manh Cuong. Anti-Alzheimer's Activity of Polyphenolic Stilbene-Rich Acetone Fraction of the Oil-Removed Seeds of Passiflora edulis: in Vivo and in Silico Studies. Chemistry & biodiversity. 2023 Apr; ?(?):e202201051. doi: 10.1002/cbdv.202201051. [PMID: 37032441]
  • Polina D Zlodeeva, Egor V Shekunov, Olga S Ostroumova, Svetlana S Efimova. The Degree of Hydroxylation of Phenolic Rings Determines the Ability of Flavonoids and Stilbenes to Inhibit Calcium-Mediated Membrane Fusion. Nutrients. 2023 Feb; 15(5):. doi: 10.3390/nu15051121. [PMID: 36904120]
  • Yue Wang, Qing Liu, Qiuyue Lv, Kailin Yang, Xinyan Wu, Yaping Zheng, Peigen Xiao, Baoping Jiang, Chunnian He. Investigating the chemical profile of Rheum lhasaense and its main ingredient of piceatannol-3'-O-β-D-glucopyranoside on ameliorating cognitive impairment. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Feb; 160(?):114394. doi: 10.1016/j.biopha.2023.114394. [PMID: 36774724]
  • İlknur Çınar Ayan, Ebru Güçlü, Hasibe Vural, Hatice Gül Dursun. Piceatannol induces apoptotic cell death through activation of caspase-dependent pathway and upregulation of ROS-mediated mitochondrial dysfunction in pancreatic cancer cells. Molecular biology reports. 2022 Dec; 49(12):11947-11957. doi: 10.1007/s11033-022-08006-8. [PMID: 36260179]
  • Jung Yeon Kwon, Jonathan Kershaw, Chih-Yu Chen, Susan M Komanetsky, Yuyan Zhu, Xiaoxuan Guo, Phillip R Myer, Bruce Applegate, Kee-Hong Kim. Piceatannol antagonizes lipolysis by promoting autophagy-lysosome-dependent degradation of lipolytic protein clusters in adipocytes. The Journal of nutritional biochemistry. 2022 07; 105(?):108998. doi: 10.1016/j.jnutbio.2022.108998. [PMID: 35346829]
  • Flávia A R Dos Santos, Jadriane A Xavier, Felipe C da Silva, J P Jose Merlin, Marília O F Goulart, H P Vasantha Rupasinghe. Antidiabetic, Antiglycation, and Antioxidant Activities of Ethanolic Seed Extract of Passiflora edulis and Piceatannol In Vitro. Molecules (Basel, Switzerland). 2022 Jun; 27(13):. doi: 10.3390/molecules27134064. [PMID: 35807309]
  • Tingting Liu, Min Liu, He Liu, Yongfang Ren, Yanna Zhao, Hui Yan, Qingpeng Wang, Ning Zhang, Zhuang Ding, Zhengping Wang. Co-encapsulation of (-)-epigallocatechin-3-gallate and piceatannol/oxyresveratrol in β-lactoglobulin: effect of ligand-protein binding on the antioxidant activity, stability, solubility and cytotoxicity. Food & function. 2021 Aug; 12(16):7126-7144. doi: 10.1039/d1fo00481f. [PMID: 34180492]
  • Yuanyuan Huang, Jianlin Lu, Li Zhan, Ming Wang, Ronghua Shi, Xiao Yuan, Xinjiao Gao, Xing Liu, Jianye Zang, Wei Liu, Xuebiao Yao. Resveratrol-induced Sirt1 phosphorylation by LKB1 mediates mitochondrial metabolism. The Journal of biological chemistry. 2021 08; 297(2):100929. doi: 10.1016/j.jbc.2021.100929. [PMID: 34216621]
  • Lingpeng Xie, Yuting Wu, Chuying Zhou, Zhangbin Tan, Honglin Xu, Guanghong Chen, Hongmei Chen, Guiqiong Huang, Huijie Fan, Lei Gao, Bin Liu, Yingchun Zhou. Piceatannol protects against sepsis-induced myocardial dysfunction via direct inhibition of JAK2. International immunopharmacology. 2021 Jul; 96(?):107639. doi: 10.1016/j.intimp.2021.107639. [PMID: 34162128]
  • Lingfeng Wang, Ying Guo, Jiayi Ye, Zeyue Pan, Peihao Hu, Xiaoming Zhong, Fengmei Qiu, Danni Zhang, Zhen Huang. Protective Effect of Piceatannol Against Cerebral Ischaemia-Reperfusion Injury Via Regulating Nrf2/HO-1 Pathway In Vivo and Vitro. Neurochemical research. 2021 Jul; 46(7):1869-1880. doi: 10.1007/s11064-021-03328-8. [PMID: 34031841]
  • Mardi M Algandaby, Majid M Al-Sawahli. Augmentation of anti-proliferative, pro-apoptotic and oxidant profiles induced by piceatannol in human breast carcinoma MCF-7 cells using zein nanostructures. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Jun; 138(?):111409. doi: 10.1016/j.biopha.2021.111409. [PMID: 33684694]
  • Wanlapa Nuankaew, Armad Heemman, Chatchai Wattanapiromsakul, Ji Heon Shim, Na Woo Kim, Tamanna Yasmin, Seo Yule Jeong, Youn Hee Nam, Bin Na Hong, Sukanya Dej-Adisai, Tong Ho Kang. Anti-insulin resistance effect of constituents from Senna siamea on zebrafish model, its molecular docking, and structure-activity relationships. Journal of natural medicines. 2021 Jun; 75(3):520-531. doi: 10.1007/s11418-021-01490-5. [PMID: 33620670]
  • Minjun Xu, Kaili Hu, Yipu Liu, Yukun Huang, Shanshan Liu, Yu Chen, Dayuan Wang, Songlei Zhou, Qian Zhang, Ni Mei, Huiping Lu, Fengan Li, Xiaoling Gao, Jun Chen. Systemic metastasis-targeted nanotherapeutic reinforces tumor surgical resection and chemotherapy. Nature communications. 2021 05; 12(1):3187. doi: 10.1038/s41467-021-23466-5. [PMID: 34045459]
  • Yue Zheng, Xian-Wen Yang, Dominique Schols, Mattia Mori, Bruno Botta, Andy Chevigné, Martin Mulinge, André Steinmetz, Jean-Claude Schmit, Carole Seguin-Devaux. Active Components from Cassia abbreviata Prevent HIV-1 Entry by Distinct Mechanisms of Action. International journal of molecular sciences. 2021 May; 22(9):. doi: 10.3390/ijms22095052. [PMID: 34068829]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Enas Mahmoud Moustafa, Engy Refaat Rashed, Rasha Refaat Rashed, Nesreen Nabil Omar. Piceatannol promotes hepatic and renal AMPK/SIRT1/PGC-1α mitochondrial pathway in rats exposed to reserpine or gamma-radiation. International journal of immunopathology and pharmacology. 2021 Jan; 35(?):20587384211016194. doi: 10.1177/20587384211016194. [PMID: 33985371]
  • Hyo-Jin Kim, Jangho Lee, Min-Yu Chung, Seungpyo Hong, Jae Ho Park, Seung-Hyun Lee, Sahng Wook Park, Hyo-Kyoung Choi, Jin-Taek Hwang. Piceatannol reduces resistance to statins in hypercholesterolemia by reducing PCSK9 expression through p300 acetyltransferase inhibition. Pharmacological research. 2020 11; 161(?):105205. doi: 10.1016/j.phrs.2020.105205. [PMID: 32998069]
  • Zhongyuan Mu, Hongling Zhang, Peng Lei. Piceatannol inhibits pyroptosis and suppresses oxLDL-induced lipid storage in macrophages by regulating miR-200a/Nrf2/GSDMD axis. Bioscience reports. 2020 09; 40(9):. doi: 10.1042/bsr20201366. [PMID: 32886103]
  • Luce M Mattio, Giorgia Catinella, Andrea Pinto, Sabrina Dallavalle. Natural and nature-inspired stilbenoids as antiviral agents. European journal of medicinal chemistry. 2020 Sep; 202(?):112541. doi: 10.1016/j.ejmech.2020.112541. [PMID: 32652408]
  • Minzhuo Liu, Fen Tang, Qi Liu, Jianbo Xiao, Hui Cao, Xiaoqing Chen. Inhibition of resveratrol glucosides (REs) on advanced glycation endproducts (AGEs) formation: inhibitory mechanism and structure-activity relationship. Natural product research. 2020 Sep; 34(17):2490-2494. doi: 10.1080/14786419.2018.1538224. [PMID: 30582367]
  • Tripti Khare, Sushesh Srivatsa Palakurthi, Brijesh M Shah, Srinath Palakurthi, Sharad Khare. Natural Product-Based Nanomedicine in Treatment of Inflammatory Bowel Disease. International journal of molecular sciences. 2020 May; 21(11):. doi: 10.3390/ijms21113956. [PMID: 32486445]
  • Xi Xu, Mengshu Zhao, Qianqian Han, Huijie Wang, Hongmei Zhang, Yanqing Wang. Effects of piceatannol on the structure and activities of bovine serum albumin: A multi-spectral and molecular modeling studies. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2020 Mar; 228(?):117706. doi: 10.1016/j.saa.2019.117706. [PMID: 31753657]
  • Zheng-Hong Pan, De-Sheng Ning, Yu-Xia Fu, Dian-Peng Li, Zhi-Qi Zou, Yun-Chang Xie, Ling-Ling Yu, Lian-Chun Li. Preparative Isolation of Piceatannol Derivatives from Passion Fruit (Passiflora edulis) Seeds by High-Speed Countercurrent Chromatography Combined with High-Performance Liquid Chromatography and Screening for α-Glucosidase Inhibitory Activities. Journal of agricultural and food chemistry. 2020 Feb; 68(6):1555-1562. doi: 10.1021/acs.jafc.9b04871. [PMID: 31986026]
  • Yang Cao, Wanli Smith, Liang Yan, Lingbo Kong. Overview of Cellular Mechanisms and Signaling Pathways of Piceatannol. Current stem cell research & therapy. 2020; 15(1):4-10. doi: 10.2174/1574888x14666190402100054. [PMID: 30947674]
  • Sumalee Panthong, Arunporn Itharat, Suchada Naknarin, Pranporn Kuropakornpong, Buncha Ooraikul, Intouch Sakpakdeejaroen. Bactericidal Effect and Anti-Inflammatory Activity of Cassia garettiana Heartwood Extract. TheScientificWorldJournal. 2020; 2020(?):1653180. doi: 10.1155/2020/1653180. [PMID: 32765193]
  • Min Liu, Tingting Liu, Yabo Shi, Yanna Zhao, Hui Yan, Bin Sun, Qingpeng Wang, Zhengping Wang, Jun Han. Comparative study on the interaction of oxyresveratrol and piceatannol with trypsin and lysozyme: binding ability, activity and stability. Food & function. 2019 Dec; 10(12):8182-8194. doi: 10.1039/c9fo01888c. [PMID: 31696185]
  • Sara A Wahdan, Samar S Azab, Doaa A Elsherbiny, Ebtehal El-Demerdash. Piceatannol protects against cisplatin nephrotoxicity via activation of Nrf2/HO-1 pathway and hindering NF-κB inflammatory cascade. Naunyn-Schmiedeberg's archives of pharmacology. 2019 11; 392(11):1331-1345. doi: 10.1007/s00210-019-01673-8. [PMID: 31197431]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Weixin Wang, Rui Yang, Huan Yao, Yun Wu, Weidong Pan, Ai-Qun Jia. Inhibiting the formation of advanced glycation end-products by three stilbenes and the identification of their adducts. Food chemistry. 2019 Oct; 295(?):10-15. doi: 10.1016/j.foodchem.2019.02.137. [PMID: 31174737]
  • Xiaosheng Tang, Ping Tang, Lei Ma, Liangliang Liu. Screening and Evaluation of Xanthine Oxidase Inhibitors from Gnetum parvifolium in China. Molecules (Basel, Switzerland). 2019 Jul; 24(14):. doi: 10.3390/molecules24142671. [PMID: 31340570]
  • Jorge Rencoret, Duarte Neiva, Gisela Marques, Ana Gutiérrez, Hoon Kim, Jorge Gominho, Helena Pereira, John Ralph, José C Del Río. Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin. Plant physiology. 2019 07; 180(3):1310-1321. doi: 10.1104/pp.19.00344. [PMID: 31023874]
  • Veronika Leláková, Karel Šmejkal, Karolina Jakubczyk, Ondřej Veselý, Přemysl Landa, Jiří Václavík, Pavel Bobáľ, Hana Pížová, Veronika Temml, Theresa Steinacher, Daniela Schuster, Sebastian Granica, Zuzana Hanáková, Jan Hošek. Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food chemistry. 2019 Jul; 285(?):431-440. doi: 10.1016/j.foodchem.2019.01.128. [PMID: 30797367]
  • Volkan Kiliç. Piceatannol Mediated Modulation of Oxidative Stress and Regeneration in the Liver of Endotoxemic Mice. Journal of medicinal food. 2019 Jun; 22(6):594-601. doi: 10.1089/jmf.2018.0201. [PMID: 30874461]
  • Moslem Afzali, Ali Mostafavi, Tayebeh Shamspur. Decoration of graphene oxide with NiO@polypyrrole core-shell nanoparticles for the sensitive and selective electrochemical determination of piceatannol in grape skin and urine samples. Talanta. 2019 May; 196(?):92-99. doi: 10.1016/j.talanta.2018.12.029. [PMID: 30683417]
  • Veronika Jarosova, Ondrej Vesely, Petr Marsik, Jose Diogenes Jaimes, Karel Smejkal, Pavel Kloucek, Jaroslav Havlik. Metabolism of Stilbenoids by Human Faecal Microbiota. Molecules (Basel, Switzerland). 2019 Mar; 24(6):. doi: 10.3390/molecules24061155. [PMID: 30909544]
  • Itay Maoz, Mirko De Rosso, Tatiana Kaplunov, Antonio Dalla Vedova, Noa Sela, Riccardo Flamini, Efraim Lewinsohn, Amnon Lichter. Metabolomic and transcriptomic changes underlying cold and anaerobic stresses after storage of table grapes. Scientific reports. 2019 02; 9(1):2917. doi: 10.1038/s41598-019-39253-8. [PMID: 30814549]
  • Xiaoxue Shi, Lijie Fu. Piceatannol inhibits oxidative stress through modification of Nrf2-signaling pathway in testes and attenuates spermatogenesis and steroidogenesis in rats exposed to cadmium during adulthood. Drug design, development and therapy. 2019; 13(?):2811-2824. doi: 10.2147/dddt.s198444. [PMID: 31496657]
  • Toshiki Furuya, Masahiko Sai, Kuniki Kino. Efficient monooxygenase-catalyzed piceatannol production: Application of cyclodextrins for reducing product inhibition. Journal of bioscience and bioengineering. 2018 Oct; 126(4):478-481. doi: 10.1016/j.jbiosc.2018.04.016. [PMID: 29764766]
  • Kyung Taek Heo, Byeongsan Lee, Sangkeun Son, Jong Seog Ahn, Jae-Hyuk Jang, Young-Soo Hong. Production of Bioactive 3'-Hydroxystilbene Compounds Using the Flavin-Dependent Monooxygenase Sam5. Journal of microbiology and biotechnology. 2018 Jul; 28(7):1105-1111. doi: 10.4014/jmb.1804.04007. [PMID: 30021423]
  • Christian Carpéné, Héctor Pejenaute, Raquel Del Moral, Nathalie Boulet, Elizabeth Hijona, Fernando Andrade, Maria Jesùs Villanueva-Millán, Leixuri Aguirre, José Miguel Arbones-Mainar. The Dietary Antioxidant Piceatannol Inhibits Adipogenesis of Human Adipose Mesenchymal Stem Cells and Limits Glucose Transport and Lipogenic Activities in Adipocytes. International journal of molecular sciences. 2018 Jul; 19(7):. doi: 10.3390/ijms19072081. [PMID: 30018277]
  • Bolanle C Akinwumi, Kimberly-Ann M Bordun, Hope D Anderson. Biological Activities of Stilbenoids. International journal of molecular sciences. 2018 Mar; 19(3):. doi: 10.3390/ijms19030792. [PMID: 29522491]
  • SeonJu Park, Yun Na Kim, Hee Jae Kwak, Eun Ju Jeong, Seung Hyun Kim. Estrogenic activity of constituents from the rhizomes of Rheum undulatum Linné. Bioorganic & medicinal chemistry letters. 2018 02; 28(4):552-557. doi: 10.1016/j.bmcl.2018.01.063. [PMID: 29402747]
  • Hiroko Maruki-Uchida, Minoru Morita, Yoshikazu Yonei, Masahiko Sai. Effect of Passion Fruit Seed Extract Rich in Piceatannol on the Skin of Women: A Randomized, Placebo-Controlled, Double-Blind Trial. Journal of nutritional science and vitaminology. 2018; 64(1):75-80. doi: 10.3177/jnsv.64.75. [PMID: 29491276]
  • Munehiro Kitada, Yoshio Ogura, Hiroko Maruki-Uchida, Masahiko Sai, Taeko Suzuki, Keizo Kanasaki, Yuna Hara, Hiromi Seto, Yuka Kuroshima, Itaru Monno, Daisuke Koya. The Effect of Piceatannol from Passion Fruit (Passiflora edulis) Seeds on Metabolic Health in Humans. Nutrients. 2017 Oct; 9(10):. doi: 10.3390/nu9101142. [PMID: 29057795]
  • Maotao Du, Zhong Zhang, Tao Gao. Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells. Biological research. 2017 Oct; 50(1):36. doi: 10.1186/s40659-017-0141-8. [PMID: 29041990]
  • Yan Song, Lan Pan, Wenjie Li, Yingying Si, Di Zhou, Chengjian Zheng, Xiaofang Hao, Xinyue Jia, Yuemei Jia, Minghui Shi, Xiaoguang Jia, Ning Li, Yue Hou. Natural neuro-inflammatory inhibitors from Caragana turfanensis. Bioorganic & medicinal chemistry letters. 2017 10; 27(20):4765-4769. doi: 10.1016/j.bmcl.2017.08.047. [PMID: 28911817]
  • Mai Furuhashi, Yukinori Hatasa, Sae Kawamura, Takahiro Shibata, Mitsugu Akagawa, Koji Uchida. Identification of Polyphenol-Specific Innate Epitopes That Originated from a Resveratrol Analogue. Biochemistry. 2017 09; 56(35):4701-4712. doi: 10.1021/acs.biochem.7b00409. [PMID: 28796948]
  • Peiyi Shen, Yiren Yue, Kee-Hong Kim, Yeonhwa Park. Piceatannol Reduces Fat Accumulation in Caenorhabditis elegans. Journal of medicinal food. 2017 Sep; 20(9):887-894. doi: 10.1089/jmf.2016.0179. [PMID: 28514198]
  • José Carlos Del Río, Jorge Rencoret, Ana Gutiérrez, Hoon Kim, John Ralph. Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins. Plant physiology. 2017 Aug; 174(4):2072-2082. doi: 10.1104/pp.17.00362. [PMID: 28588115]
  • Syuhei Nakao, Miyuki Mabuchi, Shenglan Wang, Yoko Kogure, Tadashi Shimizu, Koichi Noguchi, Akito Tanaka, Yi Dai. Synthesis of resveratrol derivatives as new analgesic drugs through desensitization of the TRPA1 receptor. Bioorganic & medicinal chemistry letters. 2017 07; 27(14):3167-3172. doi: 10.1016/j.bmcl.2017.05.025. [PMID: 28576617]
  • Yanfang Li, Puyu Yang, Qimeng Chang, Jing Wang, Jie Liu, Yuan Lv, Thomas T Y Wang, Boyan Gao, Yaqiong Zhang, Liangli Lucy Yu. Inhibitory Effect of Piceatannol on TNF-α-Mediated Inflammation and Insulin Resistance in 3T3-L1 Adipocytes. Journal of agricultural and food chemistry. 2017 Jun; 65(23):4634-4641. doi: 10.1021/acs.jafc.7b01567. [PMID: 28535046]
  • Jonathan Kershaw, Kee-Hong Kim. The Therapeutic Potential of Piceatannol, a Natural Stilbene, in Metabolic Diseases: A Review. Journal of medicinal food. 2017 May; 20(5):427-438. doi: 10.1089/jmf.2017.3916. [PMID: 28387565]
  • Manash P Borgohain, Mangala Lahkar, Sahabuddin Ahmed, Liakat Chowdhury, Saurabh Kumar, Rajat Pant, Abhinav Choubey. Small Molecule Inhibiting Nuclear Factor-kB Ameliorates Oxidative Stress and Suppresses Renal Inflammation in Early Stage of Alloxan-Induced Diabetic Nephropathy in Rat. Basic & clinical pharmacology & toxicology. 2017 May; 120(5):442-449. doi: 10.1111/bcpt.12718. [PMID: 27888584]
  • Diego Hidalgo, Ascensión Martínez-Márquez, Elisabeth Moyano, Roque Bru-Martínez, Purificación Corchete, Javier Palazon. Bioconversion of stilbenes in genetically engineered root and cell cultures of tobacco. Scientific reports. 2017 03; 7(?):45331. doi: 10.1038/srep45331. [PMID: 28345676]
  • Colin C Duke, Van H Tran, Rujee K Duke, Abdallah Abu-Mellal, George T Plunkett, Douglas I King, Kaiser Hamid, Karen L Wilson, Russell L Barrett, Jeremy J Bruhl. A sedge plant as the source of Kangaroo Island propolis rich in prenylated p-coumarate ester and stilbenes. Phytochemistry. 2017 Feb; 134(?):87-97. doi: 10.1016/j.phytochem.2016.11.005. [PMID: 27890584]
  • Leo-Paul Tisserant, Jane Hubert, Michelle Lequart, Nicolas Borie, Nicolas Maurin, Serge Pilard, Philippe Jeandet, Aziz Aziz, Jean-Hugues Renault, Jean-Marc Nuzillard, Christophe Clément, Michèle Boitel-Conti, Eric Courot. 13C NMR and LC-MS Profiling of Stilbenes from Elicited Grapevine Hairy Root Cultures. Journal of natural products. 2016 11; 79(11):2846-2855. doi: 10.1021/acs.jnatprod.6b00608. [PMID: 27933900]
  • K V Kiselev, V P Grigorchuk, Z V Ogneva, A R Suprun, A S Dubrovina. Stilbene biosynthesis in the needles of spruce Picea jezoensis. Phytochemistry. 2016 Nov; 131(?):57-67. doi: 10.1016/j.phytochem.2016.08.011. [PMID: 27576046]
  • Yen-Chen Tung, Yu-Hsuan Lin, Hong-Jhang Chen, Shen-Chieh Chou, An-Chin Cheng, Nagabhushanam Kalyanam, Chi-Tang Ho, Min-Hsiung Pan. Piceatannol Exerts Anti-Obesity Effects in C57BL/6 Mice through Modulating Adipogenic Proteins and Gut Microbiota. Molecules (Basel, Switzerland). 2016 Oct; 21(11):. doi: 10.3390/molecules21111419. [PMID: 27792146]
  • Akira Ishihata, Hiroko Maruki-Uchida, Nozomi Gotoh, Sumika Kanno, Yoshitaka Aso, Satoshi Togashi, Masahiko Sai, Tatsuhiko Ito, Yumi Katano. Vascular- and hepato-protective effects of passion fruit seed extract containing piceatannol in chronic high-fat diet-fed rats. Food & function. 2016 Sep; 7(9):4075-4081. doi: 10.1039/c6fo01067a. [PMID: 27713972]
  • E Hijona, L Aguirre, P Pérez-Matute, M J Villanueva-Millán, A Mosqueda-Solis, M Hasnaoui, F Nepveu, J M Senard, L Bujanda, L Aldámiz-Echevarría, M Llarena, F Andrade, P Perio, F Leboulanger, L Hijona, J M Arbones-Mainar, M P Portillo, C Carpéné. Limited beneficial effects of piceatannol supplementation on obesity complications in the obese Zucker rat: gut microbiota, metabolic, endocrine, and cardiac aspects. Journal of physiology and biochemistry. 2016 Sep; 72(3):567-82. doi: 10.1007/s13105-015-0464-2. [PMID: 26792656]
  • Ascensión Martínez-Márquez, Jaime A Morante-Carriel, Karla Ramírez-Estrada, Rosa M Cusidó, Javier Palazon, Roque Bru-Martínez. Production of highly bioactive resveratrol analogues pterostilbene and piceatannol in metabolically engineered grapevine cell cultures. Plant biotechnology journal. 2016 09; 14(9):1813-25. doi: 10.1111/pbi.12539. [PMID: 26947765]
  • Marta Llarena, Fernando Andrade, Mounia Hasnaoui, María P Portillo, Patricia Pérez-Matute, Jose M Arbones-Mainar, Elizabeth Hijona, María Jesús Villanueva-Millán, Leixuri Aguirre, Christian Carpéné, Luis Aldámiz-Echevarría. Potential renoprotective effects of piceatannol in ameliorating the early-stage nephropathy associated with obesity in obese Zucker rats. Journal of physiology and biochemistry. 2016 Sep; 72(3):555-66. doi: 10.1007/s13105-015-0457-1. [PMID: 26660756]
  • Tianhong Yang, Lingling Fang, Agnes M Rimando, Victor Sobolev, Keithanne Mockaitis, Fabricio Medina-Bolivar. A Stilbenoid-Specific Prenyltransferase Utilizes Dimethylallyl Pyrophosphate from the Plastidic Terpenoid Pathway. Plant physiology. 2016 08; 171(4):2483-98. doi: 10.1104/pp.16.00610. [PMID: 27356974]
  • Hamza Temsamani, Stéphanie Krisa, Marion Decossas-Mendoza, Olivier Lambert, Jean-Michel Mérillon, Tristan Richard. Piceatannol and Other Wine Stilbenes: A Pool of Inhibitors against α-Synuclein Aggregation and Cytotoxicity. Nutrients. 2016 Jun; 8(6):. doi: 10.3390/nu8060367. [PMID: 27314384]
  • Hiroyuki Inagaki, Ryouichi Ito, Yuko Setoguchi, Yukihiro Oritani, Tatsuhiko Ito. Administration of Piceatannol Complexed with α-Cyclodextrin Improves Its Absorption in Rats. Journal of agricultural and food chemistry. 2016 May; 64(18):3557-63. doi: 10.1021/acs.jafc.6b00398. [PMID: 27078058]
  • Mohamed Ali Seyed, Ibrahim Jantan, Syed Nasir Abbas Bukhari, Kavitha Vijayaraghavan. A Comprehensive Review on the Chemotherapeutic Potential of Piceatannol for Cancer Treatment, with Mechanistic Insights. Journal of agricultural and food chemistry. 2016 Feb; 64(4):725-37. doi: 10.1021/acs.jafc.5b05993. [PMID: 26758628]
  • Young-Joon Surh, Hye-Kyung Na. Therapeutic Potential and Molecular Targets of Piceatannol in Chronic Diseases. Advances in experimental medicine and biology. 2016 ; 928(?):185-211. doi: 10.1007/978-3-319-41334-1_9. [PMID: 27671818]
  • Sin Young Choi, Zhe Hao Piao, Li Jin, Jung Ha Kim, Gwi Ran Kim, Yuhee Ryu, Ming Quan Lin, Hyung-Seok Kim, Hae Jin Kee, Myung Ho Jeong. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PloS one. 2016; 11(11):e0167340. doi: 10.1371/journal.pone.0167340. [PMID: 27902771]
  • Ioanna Papandreou, Meletios Verras, Betina McNeil, Albert C Koong, Nicholas C Denko. Plant stilbenes induce endoplasmic reticulum stress and their anti-cancer activity can be enhanced by inhibitors of autophagy. Experimental cell research. 2015 Nov; 339(1):147-53. doi: 10.1016/j.yexcr.2015.10.014. [PMID: 26477823]
  • Ji-Yang Sheng, Tong-Tong Chen, Xiao-Juan Tan, Ting Chen, Ai-Qun Jia. The quorum-sensing inhibiting effects of stilbenoids and their potential structure-activity relationship. Bioorganic & medicinal chemistry letters. 2015 Nov; 25(22):5217-20. doi: 10.1016/j.bmcl.2015.09.064. [PMID: 26453007]
  • Qing Jin, Jiufang Yang, Liyan Ma, Jieling Cai, Jingming Li. Comparison of Polyphenol Profile and Inhibitory Activities Against Oxidation and α-Glucosidase in Mulberry (Genus Morus) Cultivars from China. Journal of food science. 2015 Nov; 80(11):C2440-51. doi: 10.1111/1750-3841.13099. [PMID: 26469191]
  • Elizabeth L Cordonier, Riem Adjam, Daniel Camara Teixeira, Simone Onur, Richard Zbasnik, Paul E Read, Frank Döring, Vicki L Schlegel, Janos Zempleni. Resveratrol compounds inhibit human holocarboxylase synthetase and cause a lean phenotype in Drosophila melanogaster. The Journal of nutritional biochemistry. 2015 Nov; 26(11):1379-84. doi: 10.1016/j.jnutbio.2015.07.004. [PMID: 26303405]
  • Sawako Shiratake, Tatsuo Nakahara, Hiroyasu Iwahashi, Takefumi Onodera, Yoshiyuki Mizushina. Rose myrtle (Rhodomyrtus tomentosa) extract and its component, piceatannol, enhance the activity of DNA polymerase and suppress the inflammatory response elicited by UVB‑induced DNA damage in skin cells. Molecular medicine reports. 2015 Oct; 12(4):5857-64. doi: 10.3892/mmr.2015.4156. [PMID: 26239705]
  • Kei Shimoda, Naoji Kubota, Daisuke Uesugi, Hatsuyuki Hamada, Masato Tanigawa, Hiroki Hamada. Synthesis and pharmacological evaluation of glycosides of resveratrol, pterostilbene, and piceatannol. Annals of the New York Academy of Sciences. 2015 Aug; 1348(1):141-9. doi: 10.1111/nyas.12836. [PMID: 26250502]
  • Dong Duan, David Halter, Raymonde Baltenweck, Christine Tisch, Viktoria Tröster, Andreas Kortekamp, Philippe Hugueney, Peter Nick. Genetic diversity of stilbene metabolism in Vitis sylvestris. Journal of experimental botany. 2015 Jun; 66(11):3243-57. doi: 10.1093/jxb/erv137. [PMID: 25873669]
  • Tianhong Yang, Lingling Fang, Cesar Nopo-Olazabal, Jose Condori, Luis Nopo-Olazabal, Carlos Balmaceda, Fabricio Medina-Bolivar. Enhanced Production of Resveratrol, Piceatannol, Arachidin-1, and Arachidin-3 in Hairy Root Cultures of Peanut Co-treated with Methyl Jasmonate and Cyclodextrin. Journal of agricultural and food chemistry. 2015 Apr; 63(15):3942-50. doi: 10.1021/jf5050266. [PMID: 25837778]
  • Hiroko Uchida-Maruki, Hiroyuki Inagaki, Ryouichi Ito, Ikuko Kurita, Masahiko Sai, Tatsuhiko Ito. Piceatannol lowers the blood glucose level in diabetic mice. Biological & pharmaceutical bulletin. 2015; 38(4):629-33. doi: 10.1248/bpb.b15-00009. [PMID: 25832644]
  • Yuanyuan Ma, Agnieszka Kosińska-Cagnazzo, William L Kerr, Ryszard Amarowicz, Ruthann B Swanson, Ronald B Pegg. Separation and characterization of soluble esterified and glycoside-bound phenolic compounds in dry-blanched peanut skins by liquid chromatography-electrospray ionization mass spectrometry. Journal of agricultural and food chemistry. 2014 Nov; 62(47):11488-504. doi: 10.1021/jf503836n. [PMID: 25354220]
  • Shinpei Kawakami, Yosuke Kinoshita, Hiroko Maruki-Uchida, Koji Yanae, Masahiko Sai, Tatsuhiko Ito. Piceatannol and its metabolite, isorhapontigenin, induce SIRT1 expression in THP-1 human monocytic cell line. Nutrients. 2014 Oct; 6(11):4794-804. doi: 10.3390/nu6114794. [PMID: 25360511]
  • Yuheng Lin, Yajun Yan. Biotechnological production of plant-specific hydroxylated phenylpropanoids. Biotechnology and bioengineering. 2014 Sep; 111(9):1895-9. doi: 10.1002/bit.25237. [PMID: 24752627]
  • Lin Hu, Na-Na Chen, Qun Hu, Cui Yang, Qing-Song Yang, Fang-Fang Wang. An unusual piceatannol dimer from Rheum austral D. Don with antioxidant activity. Molecules (Basel, Switzerland). 2014 Aug; 19(8):11453-64. doi: 10.3390/molecules190811453. [PMID: 25093985]
  • Elisabeth Kugelberg. Neutrophils: nanoparticles targeting the bad guys. Nature reviews. Immunology. 2014 Apr; 14(4):214. doi: 10.1038/nri3648. [PMID: 24625844]
  • Yuko Setoguchi, Yukihiro Oritani, Ryouichi Ito, Hiroyuki Inagaki, Hiroko Maruki-Uchida, Takashi Ichiyanagi, Tatsuhiko Ito. Absorption and metabolism of piceatannol in rats. Journal of agricultural and food chemistry. 2014 Mar; 62(12):2541-8. doi: 10.1021/jf404694y. [PMID: 24625210]
  • María Isabel Fernández-Marín, Belén Puertas, Raúl F Guerrero, María Carmen García-Parrilla, Emma Cantos-Villar. Preharvest methyl jasmonate and postharvest UVC treatments: increasing stilbenes in wine. Journal of food science. 2014 Mar; 79(3):C310-7. doi: 10.1111/1750-3841.12368. [PMID: 24498957]
  • Diana C Rueda, Angela Schöffmann, Maria De Mieri, Melanie Raith, Evelyn A Jähne, Steffen Hering, Matthias Hamburger. Identification of dihydrostilbenes in Pholidota chinensis as a new scaffold for GABAA receptor modulators. Bioorganic & medicinal chemistry. 2014 Feb; 22(4):1276-84. doi: 10.1016/j.bmc.2014.01.008. [PMID: 24462176]
  • Yixi Liu, Liva Harinantenaina, Peggy J Brodie, Jessica D Bowman, Maria B Cassera, Carla Slebodnick, Martin W Callmander, Richard Randrianaivo, Etienne Rakotobe, Vincent E Rasamison, Wendy Applequist, Chris Birkinshaw, Gwilym P Lewis, David G I Kingston. Bioactive compounds from Stuhlmannia moavi from the Madagascar dry forest. Bioorganic & medicinal chemistry. 2013 Dec; 21(24):7591-4. doi: 10.1016/j.bmc.2013.10.038. [PMID: 24239390]
  • Carole Lambert, Tristan Richard, Elodie Renouf, Jonathan Bisson, Pierre Waffo-Téguo, Louis Bordenave, Nathalie Ollat, Jean-Michel Mérillon, Stéphanie Cluzet. Comparative analyses of stilbenoids in canes of major Vitis vinifera L. cultivars. Journal of agricultural and food chemistry. 2013 Nov; 61(47):11392-9. doi: 10.1021/jf403716y. [PMID: 24171397]
  • Stephen M Boue, Betty Y Shih, Matthew E Burow, Gillian Eggleston, Sarah Lingle, Yong-Bao Pan, Kim Daigle, Deepak Bhatnagar. Postharvest accumulation of resveratrol and piceatannol in sugarcane with enhanced antioxidant activity. Journal of agricultural and food chemistry. 2013 Sep; 61(35):8412-9. doi: 10.1021/jf4020087. [PMID: 23931742]
  • Steven J Dias, Kun Li, Agnes M Rimando, Swati Dhar, Cassia S Mizuno, Alan D Penman, Anait S Levenson. Trimethoxy-resveratrol and piceatannol administered orally suppress and inhibit tumor formation and growth in prostate cancer xenografts. The Prostate. 2013 Aug; 73(11):1135-46. doi: 10.1002/pros.22657. [PMID: 23657951]
  • Thi Ngoc Ha Lai, Marie-France Herent, Joëlle Quetin-Leclercq, Thi Bich Thuy Nguyen, Hervé Rogez, Yvan Larondelle, Christelle M André. Piceatannol, a potent bioactive stilbene, as major phenolic component in Rhodomyrtus tomentosa. Food chemistry. 2013 Jun; 138(2-3):1421-30. doi: 10.1016/j.foodchem.2012.10.125. [PMID: 23411263]
  • Mohamed A Zaki, Premalatha Balachandran, Shabana Khan, Mei Wang, Rabab Mohammed, Mona H Hetta, David S Pasco, Ilias Muhammad. Cytotoxicity and modulation of cancer-related signaling by (Z)- and (E)-3,4,3',5'-tetramethoxystilbene isolated from Eugenia rigida. Journal of natural products. 2013 Apr; 76(4):679-84. doi: 10.1021/np300893n. [PMID: 23547843]