Methanol (BioDeep_00000004385)
Secondary id: BioDeep_00000405473, BioDeep_00000863198
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
代谢物信息卡片
化学式: CH4O (32.0262)
中文名称: 甲醇
谱图信息:
最多检出来源 Homo sapiens(lipidsearch) 50%
分子结构信息
SMILES: CO
InChI: InChI=1S/CH4O/c1-2/h2H,1H3
描述信息
Methanol, also known as columbian spirit or CH3OH, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). The target of methanol in the eye is the retina, specifically the optic disk and optic nerve. Toxicity is due to the metabolic products of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase. Methanol exists in all living organisms, ranging from bacteria to humans. Methanol is an alcoholic tasting compound. Outside of the human body, Methanol is found, on average, in the highest concentration within cow milk and sweet oranges. Methanol has also been detected, but not quantified in several different foods, such as prairie turnips, mountain yams, mentha (mint), watermelons, and pasta. Methanol is responsible for accidental, suicidal, and epidemic poisonings, resulting in death or permanent sequelae. Methanol is a potentially toxic compound. Visual disturbances develop between 18h to 48h after ingestion and range from mild photophobia and blurred vision to markedly reduced visual acuity and complete blindness. Methanol is metabolized to formaldehyde by alcohol dehydrogenase, then from that to formate by formaldehyde dehydrogenase, and then to carbon dioxide by limited H4 folate. It is the simplest alcohol, and is a light, volatile, colourless, flammable, poisonous liquid with a distinctive odor that is somewhat milder and sweeter than ethanol.
Present in various wines and spirits. It is used as a solvent for the preparation of modified hop extracts and spice oleoresins
D012997 - Solvents
同义名列表
30 个代谢物同义名
Methanol-water mixture; Monohydroxymethane; Alcool methylique; Methoxide, sodium; Columbian spirits; Metylowy alkohol; Pyroxylic spirit; Methyl hydroxide; Columbian spirit; Sodium methoxide; Alcohol, methyl; Colonial spirit; Alcool metilico; Spirit OF wood; Hydroxymethane; Methyl alcohol; Alcohol, wood; Methylalkohol; pyro Alcohol; Wood naphtha; Wood alcohol; Wood spirit; Carbinol; Methylol; Metanolo; methanol; CH3OH; MeOH; Methanol; Methanol
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:15734
- ChEBI: CHEBI:17790
- KEGG: C00132
- KEGGdrug: D02309
- PubChem: 887
- HMDB: HMDB0001875
- ChEMBL: CHEMBL14688
- Wikipedia: Methanol
- MeSH: Methanol
- MetaCyc: METOH
- KNApSAcK: C00050480
- foodb: FDB008124
- chemspider: 864
- CAS: 170082-17-4
- CAS: 67-56-1
- PMhub: MS000016805
- PubChem: 3432
- PDB-CCD: MOH
- 3DMET: B01170
- NIKKAJI: J2.364G
- RefMet: Methanol
- KNApSAcK: 17790
分类词条
相关代谢途径
Reactome(12)
- Metabolism
- Biological oxidations
- Phase I - Functionalization of compounds
- Amino acid and derivative metabolism
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism
- Cell Cycle
- Cell Cycle, Mitotic
- Selenoamino acid metabolism
- Metabolism of ingested SeMet, Sec, MeSec into H2Se
- Phenylalanine and tyrosine catabolism
- Phenylalanine and tyrosine metabolism
- Phenylalanine metabolism
BioCyc(24)
- superpathway of chorismate metabolism
- bacteriochlorophyll e biosynthesis
- bacteriochlorophyll c biosynthesis
- bacteriochlorophyll d biosynthesis
- methanol oxidation to carbon dioxide
- methanol oxidation to formaldehyde I
- methanol oxidation to formaldehyde IV
- methanol oxidation to formaldehyde III
- methanol oxidation to formaldehyde II
- methanol and methylamine oxidation to formaldehyde
- superpathway of C1 compounds oxidation to CO2
- aflatoxins B1 and G1 biosynthesis
- nitrite-dependent anaerobic methane oxidation
- methane oxidation to methanol II
- methane oxidation to methanol I
- propane degradation I
- aflatoxins B2 and G2 biosynthesis
- methyl indole-3-acetate interconversion
- methylgallate degradation
- pectin degradation I
- ubiquinol-8 biosynthesis (prokaryotic)
- superpathway of ubiquinol-8 biosynthesis (prokaryotic)
- butachlor degradation
- ajmaline and sarpagine biosynthesis
PlantCyc(3)
代谢反应
942 个相关的代谢反应过程信息。
Reactome(171)
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
ATP + CCNA:p-T160-CDK2:E2F1/E2F3 ⟶ ADP + CCNA:p-T160-CDK2:p-E2F1/p-E2F3
- G2/M Transition:
ATP + CCNA:p-T14-CDK1 ⟶ ADP + CCNA:p-T14,T161-CDK1
- Cyclin A/B1/B2 associated events during G2/M transition:
ATP + CCNA:p-T14-CDK1 ⟶ ADP + CCNA:p-T14,T161-CDK1
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
ATP + OPTN:RAB8A:GTP ⟶ ADP + Q3ZC32 + RAB8A:GTP
- G2/M Transition:
ATP + OPTN:RAB8A:GTP ⟶ ADP + Q3ZC32 + RAB8A:GTP
- Cyclin A/B1/B2 associated events during G2/M transition:
CCNA:p-T14,Y15,T161-CDK1 + H2O ⟶ CCNA:p-T161-CDK1 + Pi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
H2O + MeL-PP2A ⟶ PP2A + methanol
- G2/M Transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cyclin A/B1/B2 associated events during G2/M transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
H2O + MeL-PP2A ⟶ PP2A + methanol
- G2/M Transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cyclin A/B1/B2 associated events during G2/M transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
H2O + MeL-PP2A ⟶ PP2A + methanol
- G2/M Transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cyclin A/B1/B2 associated events during G2/M transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
H2O + MeL-PP2A ⟶ PP2A + methanol
- G2/M Transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cyclin A/B1/B2 associated events during G2/M transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cell Cycle:
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
- Cell Cycle, Mitotic:
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
- Mitotic G2-G2/M phases:
H2O + MeL-PP2A ⟶ PP2A + methanol
- G2/M Transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cyclin A/B1/B2 associated events during G2/M transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Selenoamino acid metabolism:
H2O + SeMet ⟶ 2OBUTA + MeSeH + ammonia
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
H2O + SeMet ⟶ 2OBUTA + MeSeH + ammonia
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
H2O + MeL-PP2A ⟶ PP2A + methanol
- G2/M Transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cyclin A/B1/B2 associated events during G2/M transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
H2O + MeL-PP2A ⟶ PP2A + methanol
- G2/M Transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cyclin A/B1/B2 associated events during G2/M transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cell Cycle:
ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
- Cell Cycle, Mitotic:
ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
- Mitotic G2-G2/M phases:
ATP + CCNA:p-T160-CDK2:E2F1/E2F3 ⟶ ADP + CCNA:p-T160-CDK2:p-E2F1/p-E2F3
- G2/M Transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cyclin A/B1/B2 associated events during G2/M transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
H2O + MeL-PP2A ⟶ PP2A + methanol
- G2/M Transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cyclin A/B1/B2 associated events during G2/M transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
H2O + MeL-PP2A ⟶ PP2A + methanol
- G2/M Transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cyclin A/B1/B2 associated events during G2/M transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
H2O + MeL-PP2A ⟶ PP2A + methanol
- G2/M Transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Cyclin A/B1/B2 associated events during G2/M transition:
H2O + MeL-PP2A ⟶ PP2A + methanol
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
ATP + OPTN:RAB8A:GTP ⟶ ADP + Homologues of p-S177-OPTN + RAB8A:GTP
- G2/M Transition:
ATP + OPTN:RAB8A:GTP ⟶ ADP + Homologues of p-S177-OPTN + RAB8A:GTP
- Cyclin A/B1/B2 associated events during G2/M transition:
CCNA:p-T14,Y15,T161-CDK1 + H2O ⟶ CCNA:p-T161-CDK1 + Pi
- Cell Cycle:
ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
- Cell Cycle, Mitotic:
ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
- Mitotic G2-G2/M phases:
ATP + CCNA:p-T14-CDK1 ⟶ ADP + CCNA:p-T14,T161-CDK1
- G2/M Transition:
ATP + CCNA:p-T14-CDK1 ⟶ ADP + CCNA:p-T14,T161-CDK1
- Cyclin A/B1/B2 associated events during G2/M transition:
ATP + CCNA:p-T14-CDK1 ⟶ ADP + CCNA:p-T14,T161-CDK1
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic G2-G2/M phases:
ATP + OPTN:RAB8A:GTP ⟶ A0A6I8RVQ7 + ADP + RAB8A:GTP
- G2/M Transition:
ATP + OPTN:RAB8A:GTP ⟶ A0A6I8RVQ7 + ADP + RAB8A:GTP
- Cyclin A/B1/B2 associated events during G2/M transition:
CCNA:p-T14,Y15,T161-CDK1 + H2O ⟶ CCNA:p-T161-CDK1 + Pi
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
BioCyc(57)
- propane degradation I:
NAD+ + propan-2-ol ⟶ H+ + NADH + acetone
- bacteriochlorophyll e biosynthesis:
(31R)-8-ethyl-12-methylbacteriochlorophyllide d ⟶ 8-ethyl-12-methyl-3-vinylbacteriochlorophyllide d + H2O
- bacteriochlorophyll c biosynthesis:
(31R)-8-ethyl-12-methylbacteriochlorophyllide d ⟶ 8-ethyl-12-methyl-3-vinylbacteriochlorophyllide d + H2O
- bacteriochlorophyll d biosynthesis:
(31R)-8-ethyl-12-methylbacteriochlorophyllide d ⟶ 8-ethyl-12-methyl-3-vinylbacteriochlorophyllide d + H2O
- methanol oxidation to carbon dioxide:
MeOH + NAD+ ⟶ H+ + NADH + formaldehyde
- (-)-4'-demethyl-epipodophyllotoxin biosynthesis:
(-)-deoxypodophyllotoxin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (-)-4'-demethyl-deoxypodophyllotoxin + H2O + MeOH + an oxidized [NADPH-hemoprotein reductase]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methanol oxidation to formaldehyde I:
MeOH + an oxidized cytochrome cL ⟶ H+ + a reduced cytochrome cL + formaldehyde
- methanol oxidation to formaldehyde IV:
MeOH + O2 ⟶ formaldehyde + hydrogen peroxide
- methanol oxidation to formaldehyde III:
A + MeOH ⟶ A(H2) + formaldehyde
- methanol oxidation to formaldehyde II:
MeOH + NAD+ ⟶ H+ + NADH + formaldehyde
- methanol and methylamine oxidation to formaldehyde:
MeOH + an oxidized cytochrome cL ⟶ H+ + a reduced cytochrome cL + formaldehyde
- superpathway of C1 compounds oxidation to CO2:
MeOH + an oxidized cytochrome cL ⟶ H+ + a reduced cytochrome cL + formaldehyde
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- aflatoxins B1 and G1 biosynthesis:
8-O-methylsterigmatocystin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + MeOH + aflatoxin B1 + an oxidized [NADPH-hemoprotein reductase]
- nitrite-dependent anaerobic methane oxidation:
H+ + NAD(P)H + O2 + methane ⟶ H2O + MeOH + NAD(P)+
- aflatoxins B2 and G2 biosynthesis:
8-O-methyldihydrosterigmatocystin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + MeOH + aflatoxin B2 + an oxidized [NADPH-hemoprotein reductase]
- methylgallate degradation:
3-O-methylgallate + O2 ⟶ 2-pyrone-4,6-dicarboxylate + H+ + MeOH
- chlorophyll a degradation I:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- pectin degradation II:
H2O + a methyl-esterified homogalacturonan ⟶ H+ + MeOH + a homogalacturonan
- syringate degradation:
4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate + H2O ⟶ (1Z,3Z)-4-hydroxybuta-1,3-diene-1,2,4-tricarboxylate + H+ + MeOH
- daunorubicin biosynthesis:
ε-rhodomycinone + dTDP-L-daunosamine ⟶ H+ + dTDP + rhodomycinone D
- pectin degradation I:
H2O + a methyl-esterified homogalacturonan ⟶ H+ + MeOH + a homogalacturonan
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methane oxidation to methanol II:
O2 + an electron-transfer quinol + methane ⟶ H2O + MeOH + an electron-transfer quinone
- methane oxidation to methanol I:
H+ + NAD(P)H + O2 + methane ⟶ H2O + MeOH + NAD(P)+
- 2,4-dinitroanisole degradation:
2,4-dinitroanisole + H2O ⟶ 2,4-dinitrophenol + H+ + MeOH
- butachlor degradation:
2,6-diethylaniline ⟶ aniline
- ajmaline and sarpagine biosynthesis:
H2O + polyneuridine aldehyde ⟶ 16-epivellosimine + CO2 + MeOH
- diphthamide biosynthesis:
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ H+ + MeOH + indole-3-acetate
- chlorophyll a degradation I:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- homogalacturonan degradation:
H2O + methyl-esterified homogalacturonan ⟶ MeOH + a homogalacturonan
- 26,27-dehydrozymosterol metabolism:
26,27-dehydrozymosterol + H+ + MeOH + SAM ⟶ 26-hydroxy-27-methyl-zymosterol + SAH + methyl
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ MeOH + indole-3-acetate
- methylgallate degradation:
H+ + oxaloacetate ⟶ CO2 + pyruvate
- superpathway of C1 compounds oxidation to CO2:
S-formylglutathione + H2O ⟶ H+ + formate + glutathione
- methanol oxidation to formaldehyde I:
an oxidized cytochrome cL + methanol ⟶ H+ + a reduced cytochrome cL + formaldehyde
- methanol and methylamine oxidation to formaldehyde:
an oxidized cytochrome cL + methanol ⟶ H+ + a reduced cytochrome cL + formaldehyde
- methane oxidation to methanol I:
H+ + NAD(P)H + O2 + methane ⟶ H2O + NAD(P)+ + methanol
- methanol oxidation to formaldehyde I:
hydrogen peroxide ⟶ H2O + O2
- aflatoxins B1 and G1 biosynthesis:
8-O-methylsterigmatocystin + H+ + NADPH + O2 ⟶ CO2 + H2O + NADP+ + aflatoxin B1 + methanol
- homogalacturonan degradation:
H2O + methyl-esterified homogalacturonan ⟶ a homogalacturonan + methanol
- aflatoxins B2 and G2 biosynthesis:
H+ + NADPH + O2 + dihydro-O-methylsterigmatocystin ⟶ CO2 + H2O + NADP+ + aflatoxin B2 + methanol
- methanol oxidation to formaldehyde II:
NAD+ + methanol ⟶ H+ + NADH + formaldehyde
- methanol and methylamine oxidation to formaldehyde:
H2O + an oxidized amicyanin + methylamine ⟶ a reduced amicyanin + ammonia + formaldehyde
- superpathway of C1 compounds oxidation to CO2:
H2O + an oxidized amicyanin + methylamine ⟶ a reduced amicyanin + ammonia + formaldehyde
- methane oxidation to methanol I:
H+ + NAD(P)H + O2 + methane ⟶ H2O + NAD(P)+ + methanol
- sitosterol biosynthesis:
26,27-dehydrozymosterol + methanol ⟶ 24-alkyl sterol 2
- homogalacturonan degradation:
H2O + methyl-esterified homogalacturonan ⟶ a homogalacturonan + methanol
- pectin degradation III:
H2O + a pectin ⟶ a pectate + methanol
- homogalacturonan degradation:
H2O + methyl-esterified homogalacturonan ⟶ a homogalacturonan + methanol
- pectin degradation II:
H2O + a pectin ⟶ a pectate + methanol
- methanol oxidation to carbon dioxide:
H2O + NAD+ + formaldehyde ⟶ H+ + NADH + formate
- methanol oxidation to formaldehyde II:
NAD+ + methanol ⟶ H+ + NADH + formaldehyde
- pectin degradation III:
H2O + a pectin ⟶ a pectate + methanol
- pectin degradation II:
H2O + a pectin ⟶ a pectate + methanol
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(708)
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- 26,27-dehydrozymosterol metabolism:
26,27-dehydrozymosterol + H+ + MeOH + SAM ⟶ 24-alkyl sterol 2 + SAH + methyl
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- ajmaline and sarpagine biosynthesis:
3-α(S)-strictosidine + H2O ⟶ D-glucopyranose + strictosidine aglycone
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methanol oxidation to formaldehyde III:
A + MeOH ⟶ A(H2) + formaldehyde
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- ajmaline and sarpagine biosynthesis:
3-α(S)-strictosidine + H2O ⟶ D-glucopyranose + strictosidine aglycone
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- 26,27-dehydrozymosterol metabolism:
26,27-dehydrozymosterol + H+ + MeOH + SAM ⟶ 26-hydroxy-27-methyl-zymosterol + SAH + methyl
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- 26,27-dehydrozymosterol metabolism:
26,27-dehydrozymosterol + H+ + MeOH + SAM ⟶ 24-alkyl sterol 2 + SAH + methyl
- ajmaline and sarpagine biosynthesis:
H2O + polyneuridine aldehyde ⟶ 16-epivellosimine + CO2 + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- (-)-4'-demethyl-epipodophyllotoxin biosynthesis:
(-)-deoxypodophyllotoxin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (-)-4'-demethyl-deoxypodophyllotoxin + H2O + MeOH + an oxidized [NADPH-hemoprotein reductase]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- 26,27-dehydrozymosterol metabolism:
26,27-dehydrozymosterol + H+ + MeOH + SAM ⟶ 26-hydroxy-27-methyl-zymosterol + SAH + methyl
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- superpathway of methylsalicylate metabolism:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- superpathway of methylsalicylate metabolism:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- superpathway of methylsalicylate metabolism:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- superpathway of methylsalicylate metabolism:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + H+ + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- diphthamide biosynthesis II (eukaryotes):
H2O + a diphthine methyl ester-[translation elongation factor 2] ⟶ H+ + MeOH + a diphthine-[translation elongation factor 2]
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- methyl indole-3-acetate interconversion:
H2O + methyl (indol-3-yl)acetate ⟶ (indol-3-yl)acetate + MeOH
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methyl indole-3-acetate interconversion:
(indol-3-yl)acetate + SAM ⟶ SAH + methyl (indol-3-yl)acetate
- methyl indole-3-acetate interconversion:
(indol-3-yl)acetate + SAM ⟶ SAH + methyl (indol-3-yl)acetate
- chlorophyll a degradation I:
H+ + chlorophyllide a ⟶ Mg2+ + pheophorbide a
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
COVID-19 Disease Map(0)
PathBank(6)
- Biotin Metabolism:
Dethiobiotin + Hydrogen Ion + S-Adenosylmethionine + a sulfurated [sulfur carrier] ⟶ 5'-Deoxyadenosine + Biotin + L-Methionine
- Chlorophyll a Degradation I:
Hydrogen Ion + Water + pheophorbide a ⟶ Carbon dioxide + Methanol + Pyrophaeophorbide a
- Indole Alkaloid Biosynthesis:
17-O-Acetylnorajmaline + Water ⟶ Acetic acid + Norajmaline
- Juvenile Hormone Synthesis:
Juvenile Hormone III + Water ⟶ Juvenile Hormone III Acid + Methanol
- Terpenoid Backbone Biosynthesis:
Farnesylcysteine + Oxygen + Water ⟶ 2-trans,6-trans-Farnesal + Hydrogen peroxide + L-Cysteine
- Biotin Metabolism:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + diphosphate
PharmGKB(0)
20 个相关的物种来源信息
- 4679 - Allium cepa: 10.3891/ACTA.CHEM.SCAND.15-1280
- 991028 - Biflustra perfragilis: 10.1016/0305-1978(92)90046-G
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 13443 - Coffea arabica: 10.1021/JF60160A010
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 3750 - Malus domestica: 10.1002/FOOD.19810250610
- 283210 - Malus pumila: 10.1002/FOOD.19810250610
- 1268194 - Origanum minutiflorum: 10.1080/10412905.1991.9697982
- 1132404 - Origanum sipyleum: 10.1080/10412905.1992.9698035
- 35935 - Parthenium argentatum: 10.1021/JF00064A020
- 2364191 - Parthenium confertum: 10.1021/JF00064A020
- 183063 - Parthenium hysterophorus: 10.1021/JF00064A020
- 1680480 - Parthenium incanum: 10.1021/JF00064A020
- 4043 - Petroselinum crispum: 10.1016/S0031-9422(00)80682-2
- 1194133 - Thymus longicaulis: 10.1080/10412905.1994.9698359
- 1132412 - Thymus zygioides: 10.1080/10412905.1996.9701028
- 945837 - Vaccinium ashei: 10.1111/J.1365-2621.1985.TB13419.X
- 69266 - Vaccinium corymbosum: 10.1111/J.1365-2621.1985.TB13419.X
- 1493660 - Vaccinium virgatum: 10.1111/J.1365-2621.1985.TB13419.X
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Shedrach C Kanu, Fidelis E Ejezie, Chioma S Ejezie, Chinedum O Eleazu. Effect of methanol extract of Plectranthus esculentus N.E.Br tuber and its fractions on indices of benign prostatic hyperplasia in Wistar rats.
Journal of ethnopharmacology.
2024 Sep; 331(?):118301. doi:
10.1016/j.jep.2024.118301
. [PMID: 38735419] - Maibam Beebina Chanu, Wahengbam Kabita Chanu, Brajakishor Singh Chingakham. 'GC-MS profiling, sub-acute toxicity study and total phenolic and flavonoid content analysis of methanolic leaf extract of Schima wallichii (D.C.) Korth-a traditional antidiabetic medicinal plant'.
Journal of ethnopharmacology.
2024 Aug; 330(?):118111. doi:
10.1016/j.jep.2024.118111
. [PMID: 38653394] - Chandan Das, Goutam Ghosh, Goutam Rath, Debajyoti Das, Biswakanth Kar, Deepak Pradhan, Vineet Kumar Rai, Tushar Kanti Rajwar, Jitu Halder, Priyanka Dash. Chemometric profiling and anti-arthritic activity of aerial parts of Glinus oppositifolius (L.) Aug. DC.
Journal of ethnopharmacology.
2024 Jun; 328(?):117991. doi:
10.1016/j.jep.2024.117991
. [PMID: 38460574] - Felix Krengel, Patricia Dennis Rodríguez-Tovar, René de Jesús Cárdenas-Vázquez, Rubén San Miguel-Chávez, Fidel Ocampo-Bautista, Patricia Guevara-Fefer. Inhibitory effects of methanolic extracts from the stem barks of ten Mexican Bursera Jacq. ex L. species on the activity of α-amylase and acetylcholinesterase from Tenebrio molitor.
Natural product research.
2024 Jun; 38(11):1977-1981. doi:
10.1080/14786419.2023.2230630
. [PMID: 37395504] - M Mesud Hurkul, Ahmet Cetinkaya, Seyda Yayla, S Irem Kaya, Fatma Budak, Kenan Can Tok, Mehmet Gumustas, Lokman Uzun, Sibel A Ozkan. Highly selective and sensitive molecularly imprinted sensors for the electrochemical assay of quercetin in methanol extracts of Rubus sanctus and Fragaria vesca.
Talanta.
2024 Jun; 273(?):125883. doi:
10.1016/j.talanta.2024.125883
. [PMID: 38521023] - Samaneh Rahamouz-Haghighi, Ali Sharafi. Antiproliferative assay of suma or Brazilian ginseng (Hebanthe eriantha) methanolic extract on HCT116 and 4T1 cancer cell lines, in vitro toxicity on Artemia salina larvae, and antibacterial activity.
Natural product research.
2024 Jun; 38(11):1850-1854. doi:
10.1080/14786419.2023.2225688
. [PMID: 37337697] - Ahmed M E Shipa, Khaled A Kahilo, Samir A Elshazly, Ehab S Taher, Nasr E Nasr, Badriyah S Alotaibi, Essam A Almadaly, Mona Assas, Walied Abdo, Tarek K Abouzed, Abdulati Elsanusi Salem, Damla Kirci, Hesham R El-Seedi, Mohamed S Refaey, Nermin I Rizk, Mustafa Shukry, Doaa A Dorghamm. Protective effect of Petroselinum crispum methanolic extract against acrylamide-induced reproductive toxicity in male rats through NF-ĸB, kinesin, steroidogenesis pathways.
Reproductive toxicology (Elmsford, N.Y.).
2024 Jun; 126(?):108586. doi:
10.1016/j.reprotox.2024.108586
. [PMID: 38614435] - Federico Gabriel Galassi, Maria Ines Picollo, Paola González-Audino. Cuticular extracts induce aggregation in head lice.
Medical and veterinary entomology.
2024 Jun; 38(2):227-233. doi:
10.1111/mve.12711
. [PMID: 38429866] - Martha N Ofokansi, Eze C Nwoye, Chinenye J Ugwah-Oguejiofor, Festus B C Okoye, Peter A Akah. Evaluation of the antimalarial and CD4+ T-cell modulatory effects of leaf methanol extract of Phyllanthus muellerianus (Kuntze) Exell (Phyllanthaceae) in Plasmodium berghei-infected mice.
Journal of ethnopharmacology.
2024 May; 326(?):117936. doi:
10.1016/j.jep.2024.117936
. [PMID: 38382655] - József Pánczél, Vilmos Kertesz, Matthias Schiell. Improved lipid analysis using a 2D-LC-MS system with a novel injection procedure.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2024 May; 1239(?):124129. doi:
10.1016/j.jchromb.2024.124129
. [PMID: 38640792] - Tabassum Yousaf, Fatima Saleem, Sahar Andleeb, Muhammad Ali, Muhammad Farhan Ul Haque. Methylotrophic bacteria from rice paddy soils: mineral-nitrogen-utilizing isolates richness in bulk soil and rhizosphere.
World journal of microbiology & biotechnology.
2024 May; 40(6):188. doi:
10.1007/s11274-024-04000-3
. [PMID: 38702590] - Kassahun Misgana Worku, Dawit Araya, Habtie Tesfa, Eshetie Melese Birru, Asrat Hailu, Mulugeta Aemero. In vitro antileishmanial activities of hydro-methanolic crude extracts and solvent fractions of Clematis simensis fresen leaf, and Euphorbia abyssinica latex.
Medicine.
2024 May; 103(18):e38039. doi:
10.1097/md.0000000000038039
. [PMID: 38701291] - Behnam Mahdavi, Sanaz Ebrahimi, Gholam Ali Farzi, Behrooz Maleki, Majid Mohammadhosseini. Ephedra intermedia Schrenk & C. A. Mey Methanol Extract: Nanoencapsulation by Mini-Emulsion Polymerization and its Release Trend under Simulated Conditions of the Human Body.
Chemistry & biodiversity.
2024 May; 21(5):e202400033. doi:
10.1002/cbdv.202400033
. [PMID: 38488267] - ". Expression of Concern: Investigation of antibacterial, antifungal, antibiofilm, antioxidant and anticancer properties of methanol extracts of Salvia marashica İlçim, Celep & Doğan and Salvia caespitosa Montbret & Aucher ex Benth plants with medicinal importance.
Chemosphere.
2024 05; 356(?):141989. doi:
10.1016/j.chemosphere.2024.141989
. [PMID: 38685632] - P Kavya, M Gayathri. Phytochemical Profiling and Assessment of Antidiabetic Activity of Curcuma Angustifolia Rhizome Methanolic Extract: An In Vitro and In Silico Analysis.
Chemistry & biodiversity.
2024 May; 21(5):e202301788. doi:
10.1002/cbdv.202301788
. [PMID: 38484132] - Huma Bashir, Sehrish Sadia, Zeb Saddiqe, Mubashrah Munir, Xiaohang Bai, Meiyu Jia, Khawaja Shafique Ahmad. Application of microscopy and spectroscopy in investigating anti-cancer potential of Achyranthes aspera L. leaves.
Microscopy research and technique.
2024 May; 87(5):1031-1043. doi:
10.1002/jemt.24495
. [PMID: 38205658] - Sylwia Wnorowska, Agnieszka Grzegorczyk, Jacek Kurzepa, Filippo Maggi, Maciej Strzemski. Fractionation of Carlina acaulis L. Root Methanolic Extract as a Promising Path towards New Formulations against Bacillus cereus and Methicillin-Resistant Staphylococcus aureus.
Molecules (Basel, Switzerland).
2024 Apr; 29(9):. doi:
10.3390/molecules29091939
. [PMID: 38731430] - John M Macharia, Daniel O Pande, Afshin Zand, Ferenc Budán, Zsolt Káposztás, Orsolya Kövesdi, Tímea Varjas, Bence L Raposa. In Vitro Inhibition of Colorectal Cancer Gene Targets by Withania somnifera L. Methanolic Extracts: A Focus on Specific Genome Regulation.
Nutrients.
2024 Apr; 16(8):. doi:
10.3390/nu16081140
. [PMID: 38674831] - Thamaraiselvi Kanagaraj, Velu Manikandan, Sivarasan Ganesan, Mohammed F Albeshr, R Mythili, Kwang Soup Song, Huang-Mu Lo. Employing Piper longum extract for eco-friendly fabrication of PtPd alloy nanoclusters: advancing electrolytic performance of formic acid and methanol oxidation.
Environmental geochemistry and health.
2024 Apr; 46(5):172. doi:
10.1007/s10653-024-01953-0
. [PMID: 38592578] - Shabana Kusar, Zeb Saddiqe, Muhammad Hassham Hassan Bin Asad, Faiza Ali, Fatima Kirmani. Phytochemical characterization and phospholipase A2 inhibitory effect of Vitex negundo L. root extracts.
Journal of ethnopharmacology.
2024 Apr; 323(?):117671. doi:
10.1016/j.jep.2023.117671
. [PMID: 38163555] - Wangui Clement Mwangi, Walyambillah Waudo, Madivoli Edwin Shigwenya, Joyline Gichuki. Phytochemical characterization, antimicrobial and antioxidant activities of Terminalia catappa methanol and aqueous extracts.
BMC complementary medicine and therapies.
2024 Apr; 24(1):137. doi:
10.1186/s12906-024-04449-7
. [PMID: 38566161] - Milena Terzic, Shaimaa Fayez, Nouran M Fahmy, Omayma A Eldahshan, Abdullahi Ibrahim Uba, Sathish Kumar M Ponniya, Selami Selvi, Nilofar, Ismail Koyuncu, Özgür Yüksekdağ, Gokhan Zengin. Chemical characterization of three different extracts obtained from Chelidonium majus L. (Greater celandine) with insights into their in vitro, in silico and network pharmacological properties.
Fitoterapia.
2024 Apr; 174(?):105835. doi:
10.1016/j.fitote.2024.105835
. [PMID: 38301936] - Anhar Raadani, Abdennacer Boulila, Islem Yangui, Mohamed Boussaid, Chokri Messaoud, Imen Ben Elhadj Ali. Variation in Phenolic Content, Antioxidant Activity and Alpha-amylase and Acetylcholinesterase Inhibitory Capacities of Different Extracts from Tunisian Satureja barceloi (Willk) L.
Chemistry & biodiversity.
2024 Apr; 21(4):e202302109. doi:
10.1002/cbdv.202302109
. [PMID: 38379209] - M A Hossain, A U Ahmed, M M S Shahabuddin, K E Zannat, S M M Tanzim, A Afrin, S Nahar, M Aktar, R N Shimu, S Sultana, M Afrin, S Jahan. Antibacterial Activities of Methanolic Seeds Extract of Black pepper (Piper nigrum L.) against Gram Positive Staphylococcus aureus & Gram-Negative Escherichia coli.
Mymensingh medical journal : MMJ.
2024 Apr; 33(2):350-355. doi:
"
. [PMID: 38557509] - Mounia Latif, Ismail Elkoraichi, Othman El Faqer, Hicham Wahnou, El Mostafa Mtairag, Mounia Oudghiri, Samira Rais. Phytochemical analysis and immunomodulatory activities in vitro and in vivo of Aframomum melegueta K Schum seed extracts.
Inflammopharmacology.
2024 Apr; 32(2):1621-1631. doi:
10.1007/s10787-023-01422-7
. [PMID: 38319475] - Mofida E M Makhlof, Mostafa M El-Sheekh, Abeer I M El-Sayed. In vitro antibiofilm, antibacterial, antioxidant, and antitumor activities of the brown alga Padina pavonica biomass extract.
International journal of environmental health research.
2024 Apr; 34(4):1861-1878. doi:
10.1080/09603123.2023.2165045
. [PMID: 36617396] - Mohini Salunke, Balaji Wakure, Pravin Wakte. High-resolution liquid chromatography mass spectrometry (HR-LCMS) and 1H NMR analysis of methanol extracts from marine seaweed Gracilaria edulis.
Natural product research.
2024 Apr; 38(8):1441-1444. doi:
10.1080/14786419.2022.2146906
. [PMID: 36395098] - Amir Delavar, Fatemeh Rahimi Anbarkeh, Raheleh Baradaran, Zohreh Arab, Seyed Hamidreza Rastegar Moghaddam, Mahmoud Hosseini, Mohammad Reza Nikravesh, Shahin Saeidi Nejat, Mehdi Jalali. The protective effect of methanolic extract of Verbascum cheiranthifolium and Biebersteinia multifida DC on hippocampus damage induced by diazinon in male Wistar rats: An experimental study.
Journal of chemical neuroanatomy.
2024 04; 137(?):102398. doi:
10.1016/j.jchemneu.2024.102398
. [PMID: 38342332] - Soumya Parida, Harveer Singh Pali, Anurag Chaturvedi, Abhishek Sharma, Dhinesh Balasubramanian, Ravikumar Ramegouda, Viet Dung Tran, Van Giao Nguyen, Femilda Josephin Joseph Shobanabai, Edwin Geo Varuvel. Production of biodiesel from waste fish fat through ultrasound-assisted transesterification using petro-diesel as cosolvent and optimization of process parameters using response surface methodology.
Environmental science and pollution research international.
2024 Apr; 31(17):25524-25537. doi:
10.1007/s11356-024-32702-6
. [PMID: 38472585] - Chen-Mu Luo, Li-Fan Ke, Xiang-Yu Huang, Xiao-Yan Zhuang, Ze-Wang Guo, Qiong Xiao, Jun Chen, Fu-Quan Chen, Qiu-Ming Yang, Yi Ru, Hui-Fen Weng, An-Feng Xiao, Yong-Hui Zhang. Efficient biosynthesis of prunin in methanol cosolvent system by an organic solvent-tolerant α-L-rhamnosidase from Spirochaeta thermophila.
Enzyme and microbial technology.
2024 Apr; 175(?):110410. doi:
10.1016/j.enzmictec.2024.110410
. [PMID: 38340378] - Özge Üst, Emine Yalçin, Kültiğin Çavuşoğlu, Burak Özkan. LC-MS/MS, GC-MS and molecular docking analysis for phytochemical fingerprint and bioactivity of Beta vulgaris L.
Scientific reports.
2024 03; 14(1):7491. doi:
10.1038/s41598-024-58338-7
. [PMID: 38553576] - Hye-Youn Kim, Cho-Een Kim, Dool-Ri Oh, Yonguk Kim, Chul-Yung Choi, Jaeyong Kim. Development and Validation of a High-Performance Liquid Chromatography Method to Quantify Marker Compounds in Lysimachia vulgaris var. davurica and Its Effects in Diarrhea-Predominant Irritable Bowel Syndrome.
Molecules (Basel, Switzerland).
2024 Mar; 29(7):. doi:
10.3390/molecules29071489
. [PMID: 38611770] - Iwona Budziak-Wieczorek, Dominika Kaczmarczyk, Klaudia Rząd, Mariusz Gagoś, Andrzej Stepulak, Beata Myśliwa-Kurdziel, Dariusz Karcz, Karolina Starzak, Gotard Burdziński, Monika Srebro-Hooper, Arkadiusz Matwijczuk. Cooperativity of ESPT and Aggregation-Induced Emission Effects-An Experimental and Theoretical Analysis of a 1,3,4-Thiadiazole Derivative.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063352
. [PMID: 38542326] - P Zeebul Trinita Shannan, Susan G Suganya, E Angel Jemima, M Ramesh. In vitro anticancer activity of Hirudinaria manillensis methanolic extract and its validation using in silico molecular docking approach.
Medical oncology (Northwood, London, England).
2024 Mar; 41(4):88. doi:
10.1007/s12032-024-02321-9
. [PMID: 38491315] - Ke Wang, Xueqing Liu, Kevin K Y Hu, Victoria S Haritos. Artificial Methylotrophic Cells via Bottom-Up Integration of a Methanol-Utilizing Pathway.
ACS synthetic biology.
2024 Mar; 13(3):888-900. doi:
10.1021/acssynbio.3c00683
. [PMID: 38359048] - Mohamed M Baz, Nancy M El-Shourbagy, Abeer Mousa Alkhaibari, Hattan S Gattan, Mohammed H Alruhaili, Abdelfattah Selim, Ibrahim Taha Radwan. Larvicidal activity of Acacia nilotica extracts against Culex pipiens and their suggested mode of action by molecular simulation docking.
Scientific reports.
2024 03; 14(1):6248. doi:
10.1038/s41598-024-56690-2
. [PMID: 38486053] - Ezzat E A Osman, Mohamed A Shemis, El-Sayed S Abdel-Hameed, Abdullah E Gouda, Hanem Hassan, Nahla Atef, Samah Mamdouh. Phytoconstituent analysis, anti-inflammatory, antimicrobial and anticancer effects of nano encapsulated Convolvulus arvensis L. extracts.
BMC complementary medicine and therapies.
2024 Mar; 24(1):122. doi:
10.1186/s12906-024-04420-6
. [PMID: 38486187] - Julia Hwei Zhong Moh, Victor Tosin Okomoda, Nurshahieda Mohamad, Khor Waiho, Shaibani Noorbaiduri, Yeong Yik Sung, Hidayah Manan, Hanafiah Fazhan, Hongyu Ma, Muyassar H Abualreesh, Mhd Ikhwanuddin. Morinda citrifolia fruit extract enhances the resistance of Penaeus vannamei to Vibrio parahaemolyticus infection.
Scientific reports.
2024 03; 14(1):5668. doi:
10.1038/s41598-024-56173-4
. [PMID: 38454039] - Muhammad Adil, Faten Zubair Filimban, Ambrin, Atifa Quddoos, Ayaz Ali Sher, Muhammad Naseer. Phytochemical screening, HPLC analysis, antimicrobial and antioxidant effect of Euphorbia parviflora L. (Euphorbiaceae Juss.).
Scientific reports.
2024 03; 14(1):5627. doi:
10.1038/s41598-024-55905-w
. [PMID: 38454096] - Ahmad Nasir Labaran, Zakariyya Uba Zango, Giriraj Tailor, Ahmed Alsadig, Fahad Usman, Muhammad Tukur Mukhtar, Alhassan Muhammad Garba, Raed Alhathlool, Khalid Hassan Ibnaouf, Osamah A Aldaghri. Biosynthesis of copper nanoparticles using Alstonia scholaris leaves and its antimicrobial studies.
Scientific reports.
2024 03; 14(1):5589. doi:
10.1038/s41598-024-56052-y
. [PMID: 38453990] - Uddesh Ramesh Wanjari, Abilash Valsala Gopalakrishnan. Cadmium as a male reproductive toxicant and natural and non-natural ways to tackle it: a review.
Environmental science and pollution research international.
2024 Mar; 31(12):18340-18361. doi:
10.1007/s11356-024-32210-7
. [PMID: 38349491] - Clenilson Martins Rodrigues, Charlyana Carvalho Bento, Carolina Borsoi Moraes, Cecilia Gomes, Rafaella Sayuri Ioshino, Lucio H Freitas-Junior, Cristina de Castro Spadari, Kelly Ishida, Wagner Vilegas, Juliana Cajado Souza Carvalho, Marcelo José Pena Ferreira, Virginia Carbone, Sonia Piacente, Rafaela Molina de Angelo, Kathia Maria Honorio, Miriam Sannomiya. A potential antiviral against COVID-19 obtained from Byrsonima coccolobifolia leaves extract.
Fitoterapia.
2024 Mar; 173(?):105820. doi:
10.1016/j.fitote.2024.105820
. [PMID: 38211642] - Hafiz Amir Nadeem, Muhammad Pervaiz, Anam Ejaz, Zohaib Saeed, Muhammad Imran, Rana Rashad Mahmood Khan, Umer Younas. Comparative phytochemical study of methanolic and ethanolic extracts of Thymus linearis and their antibacterial and antioxidant potential.
Biomedical chromatography : BMC.
2024 Mar; 38(3):e5808. doi:
10.1002/bmc.5808
. [PMID: 38191948] - Parisa Taghvimi, Mohammad Mohsenzadeh Golfazani, Mohammad Mahdi Taghvaei, Habibollah Samizadeh Lahiji. Investigating the effect of drought stress and methanol spraying on the influential genes in the Calvin cycle and photorespiration of rapeseed (Brassica napus).
Functional plant biology : FPB.
2024 03; 51(?):. doi:
10.1071/fp23280
. [PMID: 38467163] - Ahmed M Elshorbagy, Marwa A A Fayed, Amal Sallam, Farid A Badria. Metabolic Profiling, GC-MS, LC-ESI-MS/MS Analysis, Phenolics Isolation and Biological Evaluation of the Aerial Parts Extracts of Felicia abyssinica L.
Chemistry & biodiversity.
2024 Mar; 21(3):e202301347. doi:
10.1002/cbdv.202301347
. [PMID: 38244212] - Gloria Yareli Gutierrez-Silerio, Pablo Garcia-Solis, Elhadi M Yahia, José David Núñez-Ríos, Francisco Vázquez-Cuevas, Pablo Alan Rodriguez-Salinas, Rolando Mendoza-Zuñiga, Aaron Kuri-García. Cytotoxic and Antitumoral Effects of Methanolic Extracts of Avocado Fruit Mesocarp in Colorectal Cancer Cell Line HT29.
Journal of medicinal food.
2024 Mar; 27(3):211-221. doi:
10.1089/jmf.2023.0112
. [PMID: 38407926] - Meiling Yang, Guozhang Chang, Weiwei Cui, Peng Ni, Qiujie Yi, Laishun Yang, Cuiping Wang. In situ hydrodeoxygenation of heavy bio-oil using a Ce/Fe-based oxygen carrier in methanol-zero valent aluminum media.
Chemosphere.
2024 Mar; 352(?):141338. doi:
10.1016/j.chemosphere.2024.141338
. [PMID: 38331260] - Muhammad Ramiz Uddin, Asif Shahriar, Halima Jahan Mim, Bibi Khadiza Papia, Mohd Faijanur Rob Siddiquee, Ahnaf Bin R Q Khan, Rahatul Islam, Nour Fatema, Anwar Parvez, Goutam Kumar Roy, Sohel Rana. Unveiling Annona Reticulata's Bioactive Arsenal for Enhanced Antibiotic Effects.
Chemistry & biodiversity.
2024 Mar; 21(3):e202301495. doi:
10.1002/cbdv.202301495
. [PMID: 38282427] - Syeda Shaheen Sultana, S Tasqeeruddin, Yahya I Asiri, Ns Murali Krishna, Syeda Nishath Sultana. Antidiabetic and antiulcer activity of methanolic extract of Tradescantia spathacea in rats.
Pakistan journal of pharmaceutical sciences.
2024 Mar; 37(2):315-320. doi:
"
. [PMID: 38767098] - Xuemeng Zhao, Wen Li, Xiliu Li, Zhenhua Jia, Shuishan Song, Qian Zhao. The Effect of Bacterial AHL on the Cyclic Adenosine Monophosphate Content in Plants According to High-Performance Liquid Chromatography.
Molecules (Basel, Switzerland).
2024 Feb; 29(5):. doi:
10.3390/molecules29051074
. [PMID: 38474586] - Mamoon Ur Rasheed, Syed Ali Raza Naqvi, Fahad Al-Asmari, Muhammad Abdul Rahim, Mohamed Fawzy Ramadan. Phytochemicals, Health-Promoting Effects, and Enzyme Inhibition Traits of Phlomis stewartii Extracts.
Molecules (Basel, Switzerland).
2024 Feb; 29(5):. doi:
10.3390/molecules29051049
. [PMID: 38474560] - Laila Naif Al-Harbi, Ghedeir M Alshammari, Ghalia Shamlan, Manal Abdulaziz Binobead, Sahar Abdulaziz AlSedairy, Doha M Al-Nouri, Shaista Arzoo, Mohammed Abdo Yahya. Nephroprotective and Anti-Diabetic Potential of Beta vulgaris L. Root (Beetroot) Methanolic Extract in a Rat Model of Type 2 Diabetes Mellitus.
Medicina (Kaunas, Lithuania).
2024 Feb; 60(3):. doi:
10.3390/medicina60030394
. [PMID: 38541120] - Saba Kiran, Anam Tariq, Shoaib Iqbal, Zubera Naseem, Waqar Siddique, Sobia Jabeen, Rizwan Bashir, Ashfaq Hussain, Moazur Rahman, Fazal-E Habib, Waqar Rauf, Aamir Ali, Yasra Sarwar, Georg Jander, Mazhar Iqbal. Punicalagin, a pomegranate polyphenol sensitizes the activity of antibiotics against three MDR pathogens of the Enterobacteriaceae.
BMC complementary medicine and therapies.
2024 Feb; 24(1):93. doi:
10.1186/s12906-024-04376-7
. [PMID: 38365729] - Hai-Anh Ha, Latifah A Al-Humaid, Majdoleen Aldawsari, Devaraj Bharathi, Jintae Lee. Evaluation of phytochemical, antibacterial, thrombolytic, anti-inflammatory, and cytotoxicity profile of Achyranthes aspera aerial part extracts.
Environmental research.
2024 Feb; 243(?):117802. doi:
10.1016/j.envres.2023.117802
. [PMID: 38043891] - Tan Phat Chau, Mythili Saravanan, Mysoon M Al-Ansari, Nora Dahmash Al-Dahmash, Laya Liz Kuriakose, Raveendran Sindhu. Antimicrobial and biocompatibility nature of methanol extract of Lannea coromandelica bark and edible coating film preparation for fruit preservation.
Environmental research.
2024 Feb; 243(?):117861. doi:
10.1016/j.envres.2023.117861
. [PMID: 38070851] - Alima Abilkassymova, Raushan Kozykeyeva, Jennyfer Andrea Aldana-Mejía, Sebastian John Adams, Ubaidilla Datkhayev, Aknur Turgumbayeva, Kulpan Orynbassarova, Seethapathy G Saroja, Ikhlas A Khan, Samir A Ross. Phytochemical and Micro-Morphological Characterization of Atraphaxis pyrifolia Bunge Growing in the Republic of Kazakhstan.
Molecules (Basel, Switzerland).
2024 Feb; 29(4):. doi:
10.3390/molecules29040833
. [PMID: 38398586] - Mosad A Ghareeb, Hala Sh Mohammed, Tarek Aboushousha, Dina M Lotfy, Maha A M El-Shazly, Mansour Sobeh, Eman F S Taha. Ipomoea carnea mitigates ethanol-induced ulcers in irradiated rats via Nrf2/HO-1 pathway: an in vivo and in silico study.
Scientific reports.
2024 02; 14(1):3469. doi:
10.1038/s41598-024-53336-1
. [PMID: 38342928] - Suhail Anees, Ifrah Manzoor, Kaneez Fatima, Rabia Hamid, Showkat Ahmad Ganie. GC-MS analysis and potential therapeutic efficacy of extracts from Allium humile Kunth in lowering dyslipidemia in wistar rat models.
Journal of ethnopharmacology.
2024 Feb; 320(?):117478. doi:
10.1016/j.jep.2023.117478
. [PMID: 37989424] - Mai M Younis, Iriny M Ayoub, Mina Y George, Nada M Mostafa, Omayma A Eldahshan. In vivo hepatoprotective and nephroprotective effects of Stenocarpus sinuatus leaf extract against ifosfamide-induced toxicity in rats.
Archiv der Pharmazie.
2024 Feb; 357(2):e2300438. doi:
10.1002/ardp.202300438
. [PMID: 37984852] - Hai-Anh Ha, Mohammad K Al-Sadoon, Mythili Saravanan, G K Jhanani. Antibacterial, antidiabetic, acute toxicity, antioxidant, and nephroproductive competence of extracts of Lannea coromandelica fruit through in-vitro and in-vivo animal model investigation.
Environmental research.
2024 Feb; 242(?):117767. doi:
10.1016/j.envres.2023.117767
. [PMID: 38029826] - Faisal K Algethami. GC/MS and LC-MS Analysis and in-vitro Antioxidant Activity of Essential Oil and Crude Methanol Extract from the Leaves of Acacia Gerrardii Benth. Growing in Saudi Arabia.
Chemistry & biodiversity.
2024 Feb; ?(?):e202301847. doi:
10.1002/cbdv.202301847
. [PMID: 38299486] - Tan Phat Chau, Sandhanasamy Devanesan, Rashid Ayub, Karthikeyan Perumal. Identification and characterization of major bioactive compounds from Andrographis paniculata (Burm. f.) extracts showed multi-biomedical applications.
Environmental research.
2024 Feb; 242(?):117763. doi:
10.1016/j.envres.2023.117763
. [PMID: 38029828] - Mohammad Ahmad Wadaan, Almohannad Baabbad, Muhammad Farooq Khan. Assessment of antidiabetic, anti-inflammatory, antioxidant and anticancer activity competence of methonolic extracts of Trianthema ortulacastrum and Andrographis paniculata.
Environmental research.
2024 Feb; 242(?):117764. doi:
10.1016/j.envres.2023.117764
. [PMID: 38029820] - R Rahman, T Siddique, F A Nipa, S Sultana, P Devi, F Islam, F Nainu, A J Obaidullah, T B Emran, M R Khatun. Bark extract of Chaetocarpus castanocarpus (Roxb.) exhibits potent sedative, anxiolytic, and antidepressant effects through an in vivo approach in Swiss albino mice.
European review for medical and pharmacological sciences.
2024 Feb; 28(3):1202-1212. doi:
10.26355/eurrev_202402_35359
. [PMID: 38375725] - Eliah Kwizera, Eddie M Wampande, Charles D Kato, Pastori Mujinya, Allan Wandera, Fred Bwambale, Jackie Rachael Mpumbya, Robert Siida, Kenneth Ssekatawa. Hepatoprotective effect of methanol fruit extract of Punica granatum L in highly active antiretroviral therapy-induced toxicity in Wistar rats.
Drug and chemical toxicology.
2024 Feb; ?(?):1-9. doi:
10.1080/01480545.2023.2298891
. [PMID: 38303124] - Sultan Pekacar, Burçin Özüpek, Esra Küpeli Akkol, Hakkı Taştan, Halil Ersan, Didem Deliorman Orhan. Identification of bioactive components on antihemorrhoidal activity of Cistus laurifolius L. using RP-HPLC and LC-QTOF-MS.
Journal of ethnopharmacology.
2024 Jan; 319(Pt 1):117122. doi:
10.1016/j.jep.2023.117122
. [PMID: 37660958] - Thien Khanh Tran, Pham Thi Thu Ha, Robert J Henry, Dang Nguyen Thao Nguyen, Phung Thi Tuyen, Nguyen Thanh Liem. Polyphenol Contents, Gas Chromatography-Mass Spectrometry (GC-MS) and Antibacterial Activity of Methanol Extract and Fractions of Sonneratia Caseolaris Fruits from Ben Tre Province in Vietnam.
Journal of microbiology and biotechnology.
2024 Jan; 34(1):94-102. doi:
10.4014/jmb.2304.04019
. [PMID: 38282409] - Sakina Yagi, Musa Denizhan Ulusan, Kouadio Ibrahime Sinan, Giovanni Caprioli, Ahmed M Mustafa, Simone Angeloni, Mihriban Ahıskalı, Gokhan Zengin. HPLC-MS/MS profiles, antioxidant, neuroprotective, antidiabetic and skin protective effects of different extracts of Vicia peregrina L. collected from the eastern region of Turkey.
Chemistry & biodiversity.
2024 Jan; ?(?):e202400040. doi:
10.1002/cbdv.202400040
. [PMID: 38265183] - Mohammed Mansour Quradha, Mehmet Emin Duru, Selcuk Kucukaydin, Alfred Ngenge Tamfu, Mudassar Iqbal, Hamida Bibi, Rasool Khan, Ozgur Ceylan. Comparative assessment of phenolic composition profile and biological activities of green extract and conventional extracts of Salvia sclarea.
Scientific reports.
2024 01; 14(1):1885. doi:
10.1038/s41598-024-51661-z
. [PMID: 38253648] - Sevil Albayrak, Ahmet Aksoy, Mustafa Abdullah Yilmaz, Erman Beyzi. Investigation of Phytochemical, Antioxidant and Antidiabetic Potentials of Scabiosa L. (Caprifoliaceae) Species with Chemometric Methods.
Chemistry & biodiversity.
2024 Jan; ?(?):e202301652. doi:
10.1002/cbdv.202301652
. [PMID: 38240171] - Arivalagan Pugazhendhi, Ashutosh Sharma, Tharifkhan Shan Ahamed, Kesava Priyan Ramasamy, Amal Abdullah A Sabour, Maha A Alshiekheid, Tgl Thuy, Thangavel Mathimani. Sugar cane bagasse hydrolysate (SBH) as a lucrative carbon supplement to upgrade the lipid and fatty acid production in Chlorococcum sp. for biodiesel through an optimized binary solvent system.
Environmental research.
2024 Jan; 241(?):117626. doi:
10.1016/j.envres.2023.117626
. [PMID: 37956754] - Selvaraj Kunjiappan, Lokesh Kumar Ramasamy, Suthendran Kannan, Parasuraman Pavadai, Panneerselvam Theivendren, Ponnusamy Palanisamy. Optimization of ultrasound-aided extraction of bioactive ingredients from Vitis vinifera seeds using RSM and ANFIS modeling with machine learning algorithm.
Scientific reports.
2024 01; 14(1):1219. doi:
10.1038/s41598-023-49839-y
. [PMID: 38216594] - Israel Hurtado Díaz, M Ángeles Ramírez-Cisneros, L Alvarez, Jessica Nayelli Sánchez-Carranza, María Crystal Columba-Palomares, José Antonio Silva Guzmán, Francisco Cruz Sosa, Antonio Bernabé-Antonio. Metabolites Profile of Extracts and Fractions of Erythroxylum mexicanum Kunth by UHPLC-QTOF-MS/MS and its Antibacterial, Cytotoxic and Nitric Oxide Inhibitory Activities.
Chemistry & biodiversity.
2024 Jan; ?(?):e202301474. doi:
10.1002/cbdv.202301474
. [PMID: 38215210] - Ramkumar Katturajan, Priyadharshini Shivaji, Sangeetha Nithiyanandam, Manisha Parthasarathy, Shalini Magesh, Rahul Vashishth, Vidya Radhakrishnan, Sabina Evan Prince. Antioxidant and Antidiabetic Potential of Ormocarpum cochinchinense (Lour.) Merr. Leaf: An Integrated In vitro and In silico Approach.
Chemistry & biodiversity.
2024 Jan; ?(?):e202300960. doi:
10.1002/cbdv.202300960
. [PMID: 38217335] - Vera A Kostikova, Natalia V Petrova, Alexander A Chernonosov, Vladimir V Koval, Evgeniia R Kovaleva, Wei Wang, Andrey S Erst. Chemical Composition of Methanol Extracts from Leaves and Flowers of Anemonopsis macrophylla (Ranunculaceae).
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25020989
. [PMID: 38256067] - Amita Mekarunothai, Markus Bacher, Raveevatoo Buathong, Saraphorn Intarasam, Ngampuk Tayana, Sumet Kongkiatpaiboon, Theppanya Charoenrat, Tiwtawat Napiroon. β-sitosterol isolated from the leaves of Trema orientalis (Cannabaceae) promotes viability and proliferation of BF-2 cells.
PeerJ.
2024; 12(?):e16774. doi:
10.7717/peerj.16774
. [PMID: 38282858] - Khumanthem Deepak Singh, Dipak Chetia, Neelutpal Gogoi, Bhaskarjyoti Gogoi, Mithun Rudrapal. In Vivo and in Silico Based Evaluation of Antidiabetic Potential of an Isolated Flavonoid from Allium hookeri in Type 2 Diabetic Rat Model.
Chemistry & biodiversity.
2024 Jan; 21(1):e202301299. doi:
10.1002/cbdv.202301299
. [PMID: 38047518] - Marijana Kosanić, Nevena Petrovic, Dragana Šeklić, Marko Živanović, Mihajlo Kokanović. Bioactivities and Medicinal Value of the Fruiting Body Extracts of Laetiporus sulphureus and Meripilus giganteus Polypore Mushrooms (Agaricomycetes).
International journal of medicinal mushrooms.
2024; 26(1):17-26. doi:
10.1615/intjmedmushrooms.2023051297
. [PMID: 38305259] - Nurlan Ismailovi, H Tuba Kıyan, A Alper Öztürk. A Novel Phytotherapy Application: Preparation, Characterization, Antioxidant Activities and Determination of Anti-inflammatory Effects by In vivo HET-CAM Assay of Chitosan-based DDSs Containing Endemic Helichrysum pamphylicum P.H. Davis & Kupicha Methanolic Extract.
Current drug delivery.
2024; 21(6):901-916. doi:
10.2174/1567201820666230328122504
. [PMID: 37018530] - Basma Hamdy Amin, Nahed Mohammed Ayyat, Reyad Mohamed El-Sharkawy, Asmaa Mohamed Hafez. Investigation of Antifungal Action of Fractions C17H31NO15 Isolated from Artemisia herba-alba extract versus Isolated Aspergillus niger from Zee maize.
Recent advances in anti-infective drug discovery.
2024; 19(2):159-172. doi:
10.2174/2772434418666230627141639
. [PMID: 37366361] - Khalid Rezig, Farid Benkaci-Ali, Marie-Laure Foucaunier, Sophie Laurent, Haruna Isiyaku Umar, Omoboyowa Damilola Alex, Samira Tata. HPLC/ESI-MS Characterization of Phenolic Compounds from Cnicus benedictus L. Roots: A Study of Antioxidant, Antibacterial, Anti-Inflammatory, and Anti-Alzheimer's Activity.
Chemistry & biodiversity.
2024 Jan; 21(1):e202300724. doi:
10.1002/cbdv.202300724
. [PMID: 37997548] - Shiyu Wei, Hongyang Wang, Meixi Fan, Xinrui Cai, Junpeng Hu, Ruixin Zhang, Baocai Song, Jing Li. Application of adaptive laboratory evolution to improve the tolerance of Rhodotorula strain to methanol in crude glycerol and development of an effective method for cell lysis.
Biotechnology journal.
2024 Jan; 19(1):e2300483. doi:
10.1002/biot.202300483
. [PMID: 38041508] - L V Laskoski, J M Batista, D M Bandeira, J M Corrêa, J Rosset, L H S M Conceição, F G S Pinto. Investigation of phytochemical composition and bioactivity evaluation of extracts from Myrsine umbellata Mart.
Brazilian journal of biology = Revista brasleira de biologia.
2024; 84(?):e276871. doi:
10.1590/1519-6984.276871
. [PMID: 38451630] - Gülşah Altan, Fatma Budak. [Investigation of the Antibacterial Effect of Taraxacum officinale Extracts Extracted in Different Solvents on Bacteroides fragilis ATCC 25285 Standard Strain by Broth Microdilution Method].
Mikrobiyoloji bulteni.
2024 Jan; 58(1):63-70. doi:
10.5578/mb.20249906
. [PMID: 38263941] - Usama Mohammed Abu El-Ghiet, Abdullah Mohammed Salman Alhuraysi, Tarek Mohamed Yousry Elsheikh, Mohamed Abdel-Monem El-Sakhawy. Oviposition Deterrent Activity of Some Wild Plants for Adult Females of Chrysomya albiceps with Medical and Veterinary Importance.
Pakistan journal of biological sciences : PJBS.
2024 Jan; 27(1):8-17. doi:
10.3923/pjbs.2024.8.17
. [PMID: 38413393] - Hideki Sato, Yoshinori Kawano, Shiho Tanaka, Junko Tsunematsu, Miki Matsunaga, Yoshihiro Miyao, Keiko Nakamuta. [Establishment of Rapid Simultaneous Analysis Method for Plant Toxins by LC-TOF-MS].
Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan.
2024; 65(1):7-14. doi:
10.3358/shokueishi.65.7
. [PMID: 38432899] - Nor Hazwani Mohd Ariffin, Rosnani Hasham, Mohd Amir Asyraf Mohd Hamzah, Chang Seo Park. Skin hydration modulatory activities of Ficus deltoidea extract.
Fitoterapia.
2024 Jan; 172(?):105755. doi:
10.1016/j.fitote.2023.105755
. [PMID: 38000761] - Priya Bisht, Basant Singh, Pardeep Kumar Sharma, Narendra Singh Lotani, Chandra Singh Negi, Indra D Bhatt. Exploring the Antioxidant Potential of Methanolic Extracts of Wild Medicinal and Edible Mushrooms from Darma Valley, Pithoragaph, Kumaun (Himalaya, India).
International journal of medicinal mushrooms.
2024; 26(1):67-78. doi:
10.1615/intjmedmushrooms.2023051350
. [PMID: 38305263] - Durga Uvaraj, Naiyf S Alharbi, Shine Kadaikunnan, Muthu Thiruvengadam, Baskar Venkidasamy. Comprehensive study on the differential extraction and comparison of bioactive health potential of the Broccoli (Brassica oleracea).
International journal of medical sciences.
2024; 21(4):593-600. doi:
10.7150/ijms.92456
. [PMID: 38464834] - Jazia Sriti, Wissem Aidi Wannes, Olfa Bachrouch, Jihed Aouini, Emna Boushih, Ferid Limam, Jouda Mediouni Ben Jemaa. Phenolic constitutents, antioxidant and repellent activities of coriander (Coriandrum sativum L.) fruits using different solvent extracts.
International journal of environmental health research.
2024 Jan; 34(1):225-237. doi:
10.1080/09603123.2022.2143483
. [PMID: 36369804] - Chuan-Yun Xiao, Jian-Ming He, Jiao Huang, Xiao-Min Guo, Ping Yang, Qing Mu. A novel off-line multi-dimensional high-speed countercurrent chromatography strategy for preparative separation of bioactive neolignan isomers from Piper betle. L.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2024 Jan; 1232(?):123965. doi:
10.1016/j.jchromb.2023.123965
. [PMID: 38109812] - He Deng, Yuying Zhang, Kangping Liu, Qiaozhi Mao, Evgenios Agathokleous. Allelopathic effects of Eucalyptus extract and wood vinegar on germination and sprouting of rapeseed (Brassica rapa L.).
Environmental science and pollution research international.
2024 Jan; 31(3):4280-4289. doi:
10.1007/s11356-023-31481-w
. [PMID: 38100025] - Godfrey O Mauti. Extracts of Jamun seeds inhibited the growth of human (Hep-2) cancer cells.
Journal of cancer research and therapeutics.
2024 Jan; 20(1):189-192. doi:
10.4103/jcrt.jcrt_638_22
. [PMID: 38554319] - Mariappan Muthukanagavel, Nayagam Vasanth, Jeyaraj Selvakumaran, Kamaraj Ragavendran, Mathalaimuthu Anthonysamy, Mutheeswaran Subramanian, Savarimuthu Ignacimuthu, Naiyf S Alharbi, Muthu Thiruvengadam, Pathalam Ganesan. Mosquitocidal Susceptibility and Non-Target Effects of Tricholoma equestre Mushroom (Agaricomycetes) on the Immature Stages of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus.
International journal of medicinal mushrooms.
2024; 26(3):41-53. doi:
10.1615/intjmedmushrooms.2024052514
. [PMID: 38505902] - Dmitriy A Karpitskiy, Elena A Bessonova, Andrey Yu Shishov, Liudmila A Kartsova. Selective extraction of plant bioactive compounds with deep eutectic solvents: Iris sibirica L. as example.
Phytochemical analysis : PCA.
2024 Jan; 35(1):53-63. doi:
10.1002/pca.3272
. [PMID: 37545032] - Suhail Anees, Muzaffar Ahmad, Suhail Ashraf, Aashiq Hussain Bhat, Rabia Hamid, Showkat Ahmad Ganie. Bioactive fractions from Allium humile alleviate the risk of high fat diet induced atherosclerosis in albino Wistar rats by inhibiting protein kinase C.
Fitoterapia.
2024 Jan; 172(?):105775. doi:
10.1016/j.fitote.2023.105775
. [PMID: 38097019] - Saka Waidi Adeoye Adeoye, M F Mayowa, F M Akano, A O Sultan. Methanolic Extract of Ricinus Communis ameliorated cardiovascular dysfunction in dichlorvos-exposed rats.
Nigerian journal of physiological sciences : official publication of the Physiological Society of Nigeria.
2023 Dec; 38(2):231-239. doi:
10.54548/njps.v38i2.12
. [PMID: 38696683] - Kristóf Felegyi, Zsófia Garádi, Elżbieta Studzińska-Sroka, Viktor Papp, Imre Boldizsár, András Dancsó, Szabolcs Béni, Przemysław Zalewski, Attila Ványolós. Anticholinesterase and Antityrosinase Secondary Metabolites from the Fungus Xylobolus subpileatus.
Molecules (Basel, Switzerland).
2023 Dec; 29(1):. doi:
10.3390/molecules29010213
. [PMID: 38202796] - Selen İlgün, Gökçe Şeker Karatoprak, Derya Çiçek Polat, Esra Köngül Şafak, Çiğdem Yücel, Ufuk İnce, Hatice Özlem Uvat, Esra Küpeli Akkol. Assessment of Phenolic Composition, Antioxidant Potential, Antimicrobial Properties, and Antidiabetic Activity in Extracts Obtained from Schinus molle L. Leaves and Fruits.
Frontiers in bioscience (Landmark edition).
2023 Dec; 28(12):353. doi:
10.31083/j.fbl2812353
. [PMID: 38179764]