Subcellular Location: proteasome complex
Found 366 associated metabolites.
60 associated genes.
ADRM1, DNAJB2, ECPAS, HSPB1, PAAF1, PRICKLE1, PSMA1, PSMA2, PSMA3, PSMA4, PSMA5, PSMA6, PSMA7, PSMB1, PSMB10, PSMB2, PSMB3, PSMB4, PSMB5, PSMB6, PSMB7, PSMB8, PSMB9, PSMC1, PSMC2, PSMC3, PSMC4, PSMC5, PSMC6, PSMD1, PSMD10, PSMD11, PSMD12, PSMD13, PSMD14, PSMD2, PSMD3, PSMD4, PSMD5, PSMD6, PSMD7, PSMD8, PSME1, PSME2, PSME3, PSME4, PSMF1, RAD23A, RAD23B, RILP, SEM1, TXNL1, UBE3A, UBE3C, UBQLN1, UBR1, USP14, VCP, ZFAND2A, ZFAND2B
Bufalin
Bufalin is a cardiotonic steroid toxin[1] originally isolated from Chinese toad venom, which is a component of some traditional Chinese medicines.[2][3] Bufalin has in vitro antitumor effects against various malignant cell lines, including hepatocellular[4] and lung carcinoma.[5] However, as with other bufadienolides, its potential use is hampered by its cardiotoxicity.[6] Bufalin is a 14beta-hydroxy steroid that is bufan-20,22-dienolide having hydroxy substituents at the 5beta- and 14beta-positions. It has been isolated from the skin of the toad Bufo bufo. It has a role as an antineoplastic agent, a cardiotonic drug, an anti-inflammatory agent and an animal metabolite. It is a 3beta-hydroxy steroid and a 14beta-hydroxy steroid. It is functionally related to a bufanolide. Bufalin is a natural product found in Cunninghamella blakesleeana, Bufo gargarizans, and other organisms with data available. Bufalin is an active ingredient and one of the glycosides in the traditional Chinese medicine ChanSu; it is also a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans, with potential cardiotonic and antineoplastic activity. Although the mechanism of action of bufalin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and can induce apoptosis in cancer cell lines through the activation of the transcription factor AP-1 via a mitogen activated protein kinase (MAPK) pathway. A 14beta-hydroxy steroid that is bufan-20,22-dienolide having hydroxy substituents at the 5beta- and 14beta-positions. It has been isolated from the skin of the toad Bufo bufo. Bufalin is an active component isolated from Chan Su, acts as a potent Na+/K+-ATPase inhibitor, binds to the subunit α1, α2 and α3, with Kd of 42.5, 45 and 40 nM, respectively[1][2]. Anti-cancer activity[2]. Bufalin is an active component isolated from Chan Su, acts as a potent Na+/K+-ATPase inhibitor, binds to the subunit α1, α2 and α3, with Kd of 42.5, 45 and 40 nM, respectively[1][2]. Anti-cancer activity[2].
Cephaeline
Cephaeline is a pyridoisoquinoline comprising emetam having a hydroxy group at the 6-position and methoxy substituents at the 7-, 10- and 11-positions. It derives from a hydride of an emetan. Cephaeline is a natural product found in Dorstenia psilurus, Pogonopus tubulosus, and other organisms with data available. Cephaeline is an alkaloid compound that belongs to the isoquinoline alkaloid family. It is naturally found in certain plant species, particularly those of the Cephalotaxus genus, which includes trees and shrubs native to East Asia and the Himalayas. Cephaeline is known for its pharmacological properties and has been the subject of various studies for its potential therapeutic applications. Chemically, cephaeline has a complex structure characterized by an isoquinoline core with additional functional groups attached. It is classified as a monoterpenoid indole alkaloid, reflecting its biosynthetic origin from the amino acid tryptophan. The presence of these functional groups contributes to its biological activity and pharmacological effects. In terms of its physical properties, cephaeline is typically a crystalline solid with a defined melting point. It is slightly soluble in water but more soluble in organic solvents, which is common for alkaloids of its class. The exact color and solubility characteristics can vary depending on the presence of impurities or derivatives. Cephaeline has been of interest in the field of pharmacognosy and drug discovery due to its potential therapeutic effects, including anti-cancer, anti-inflammatory, and neuroprotective properties. However, further research is needed to fully understand its mechanisms of action and potential uses in medicine. Annotation level-1 (-)-Cephaeline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=483-17-0 (retrieved 2024-07-12) (CAS RN: 483-17-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Digitoxin
Digitoxin appears as odorless white or pale buff microcrystalline powder. Used as a cardiotonic drug. (EPA, 1998) Digitoxin is a cardenolide glycoside in which the 3beta-hydroxy group of digitoxigenin carries a 2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl trisaccharide chain. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is functionally related to a digitoxigenin. It is a conjugate acid of a digitoxin(1-). A cardiac glycoside sometimes used in place of digoxin. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. (From Martindale, The Extra Pharmacopoeia, 30th ed, p665) Digitoxin is a natural product found in Digitalis obscura, Digitalis parviflora, and other organisms with data available. Digitoxin is a lipid soluble cardiac glycoside that inhibits the plasma membrane sodium potassium ATPase, leading to increased intracellular sodium and calcium levels and decreased intracellular potassium levels. In studies increased intracellular calcium precedes cell death and decreased intracellular potassium increase caspase activation and DNA fragmentation, causing apoptosis and inhibition of cancer cell growth. (NCI) Digitoxin is only found in individuals that have used or taken this drug. It is a cardiac glycoside sometimes used in place of digoxin. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. (From Martindale, The Extra Pharmacopoeia, 30th ed, p665)Digitoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digitoxin also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential. A cardiac glycoside sometimes used in place of DIGOXIN. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. (From Martindale, The Extra Pharmacopoeia, 30th ed, p665) See also: Acetyldigitoxin (is active moiety of). Digitoxin, also known as crystodigin or digitoxoside, belongs to cardenolide glycosides and derivatives class of compounds. Those are compounds containing a carbohydrate glycosidically bound to the cardenolide moiety. Thus, digitoxin is considered to be a sterol lipid molecule. Digitoxin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Digitoxin can be synthesized from digitoxigenin. Digitoxin can also be synthesized into 3-O-acetyldigitoxin. Digitoxin can be found in common bean, which makes digitoxin a potential biomarker for the consumption of this food product. Digitoxin can be found primarily in blood and urine. Digitoxin is a non-carcinogenic (not listed by IARC) potentially toxic compound. Digitoxin is a drug which is used for the treatment and management of congestive cardiac insufficiency, arrhythmias and heart failure. Digitoxin is a cardiac glycoside. It is a phytosteroid and is similar in structure and effects to digoxin (though the effects are longer-lasting). Unlike digoxin (which is eliminated from the body via the kidneys), it is eliminated via the liver, so could be used in patients with poor or erratic kidney function. However, it is now rarely used in current Western medical practice. While several controlled trials have shown digoxin to be effective in a proportion of patients treated for heart failure, the evidence base for digitoxin is not as strong, although it is presumed to be similarly effective . Digitoxin exhibits similar toxic effects to the more-commonly used digoxin, namely: anorexia, nausea, vomiting, diarrhoea, confusion, visual disturbances, and cardiac arrhythmias (DrugBank). Digitoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digitoxin also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential (T3DB). Digitoxin is a cardenolide glycoside in which the 3beta-hydroxy group of digitoxigenin carries a 2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl trisaccharide chain. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It derives from a digitoxigenin. It is a conjugate acid of a digitoxin(1-). Digitoxin appears as odorless white or pale buff microcrystalline powder. It is a cardiac glycoside sometimes used in place of digoxin. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. Digitoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digitoxin also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential. C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor Digitoxin is a potent Na+/K+-ATPase inhibitor with an EC50 value of 0.78 μM. Digitoxin is a potent Na+/K+-ATPase inhibitor with an EC50 value of 0.78 μM.
L-Tyrosine
Tyrosine (Tyr) or L-tyrosine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tyrosine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tyrosine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tyrosine is a non-essential amino acid, meaning the body can synthesize it – usually from phenylalanine. The conversion of phenylalanine to tyrosine is catalyzed by the enzyme phenylalanine hydroxylase, a monooxygenase. This enzyme catalyzes the reaction causing the addition of a hydroxyl group to the end of the 6-carbon aromatic ring of phenylalanine, such that it becomes tyrosine. Tyrosine is found in many high-protein food products such as chicken, turkey, fish, milk, yogurt, cottage cheese, cheese, peanuts, almonds, pumpkin seeds, sesame seeds, soy products, lima beans, avocados and bananas. Tyrosine is one of the few amino acids that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, including thyroid hormones (diiodotyrosine), catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism have been identified, such as hawkinsinuria and tyrosinemia I. The most common feature of these diseases is the increased amount of tyrosine in the blood, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements can help reverse these disease symptoms. Some adults also develop elevated tyrosine in their blood. This typically indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can help aleviate biochemical depression. However, tyrosine may not be good for treating psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-Dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-Dopa (http://www.dcnutrition.com). In addition to its role as a precursor for neurotransmitters, tyrosine plays an important role for the function of many proteins. Within many proteins or enzymes, certain tyrosine residues can be tagged (at the hydroxyl group) with a phosphate group (phosphorylated) by specialized protein kinases. In its phosphorylated form, tyrosine is called phosphotyrosine. Tyrosine phosphorylation is considered to be one of the key steps in signal transduction and regulation of enzymatic activity. Tyrosine (or its precursor phenylalanine) is also needed to synthesize the benzoquinone structure which forms part of coenzyme Q10. L-tyrosine is an optically active form of tyrosine having L-configuration. It has a role as an EC 1.3.1.43 (arogenate dehydrogenase) inhibitor, a nutraceutical, a micronutrient and a fundamental metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tyrosine and a L-alpha-amino acid. It is functionally related to a L-tyrosinal. It is a conjugate base of a L-tyrosinium. It is a conjugate acid of a L-tyrosinate(1-). It is an enantiomer of a D-tyrosine. It is a tautomer of a L-tyrosine zwitterion. Tyrosine is a non-essential amino acid. In animals it is synthesized from [phenylalanine]. It is also the precursor of [epinephrine], thyroid hormones, and melanin. L-Tyrosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). L-Tyrosine is the levorotatory isomer of the aromatic amino acid tyrosine. L-tyrosine is a naturally occurring tyrosine and is synthesized in vivo from L-phenylalanine. It is considered a non-essential amino acid; however, in patients with phenylketonuria who lack phenylalanine hydroxylase and cannot convert phenylalanine into tyrosine, it is considered an essential nutrient. In vivo, tyrosine plays a role in protein synthesis and serves as a precursor for the synthesis of catecholamines, thyroxine, and melanin. Tyrosine is an essential amino acid that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, thyroid, catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism occur. Most common is the increased amount of tyrosine in the blood of premature infants, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements reverse the disease. Some adults also develop elevated tyrosine in their blood. This indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can cure biochemical depression. However, tyrosine may not be good for psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-dopa. A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. Dietary supplement, nutrient. Flavouring ingredient. L-Tyrosine is found in many foods, some of which are blue crab, sweet rowanberry, lemon sole, and alpine sweetvetch. An optically active form of tyrosine having L-configuration. L-Tyrosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=60-18-4 (retrieved 2024-07-01) (CAS RN: 60-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.
Melatonin
Melatonin is a member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. It has a role as a hormone, an anticonvulsant, an immunological adjuvant, a radical scavenger, a central nervous system depressant, a human metabolite, a mouse metabolite and a geroprotector. It is a member of acetamides and a member of tryptamines. It is functionally related to a tryptamine. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and lowering the body temperature. Melatonin is also implicated in the regulation of mood, learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders (ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin is a hormone produced by the pineal gland that has multiple effects including somnolence, and is believed to play a role in regulation of the sleep-wake cycle. Melatonin is available over-the-counter and is reported to have beneficial effects on wellbeing and sleep. Melatonin has not been implicated in causing serum enzyme elevations or clinically apparent liver injury. Melatonin is a natural product found in Mesocricetus auratus, Ophiopogon japonicus, and other organisms with data available. Therapeutic Melatonin is a therapeutic chemically synthesized form of the pineal indole melatonin with antioxidant properties. The pineal synthesis and secretion of melatonin, a serotonin-derived neurohormone, is dependent on beta-adrenergic receptor function. Melatonin is involved in numerous biological functions including circadian rhythm, sleep, the stress response, aging, and immunity. Melatonin is a hormone involved in sleep regulatory activity, and a tryptophan-derived neurotransmitter, which inhibits the synthesis and secretion of other neurotransmitters such as dopamine and GABA. Melatonin is synthesized from serotonin intermediate in the pineal gland and the retina where the enzyme 5-hydroxyindole-O-methyltransferase, that catalyzes the last step of synthesis, is found. This hormone binds to and activates melatonin receptors and is involved in regulating the sleep and wake cycles. In addition, melatonin possesses antioxidative and immunoregulatory properties via regulating other neurotransmitters. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is l... Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and. lowering the body temperature. Melatonin is also implicated in the regulation of mood,learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders(ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits. were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin, also known chemically as N-acetyl-5-methoxytryptamine, is a naturally occurring compound found in animals, plants and microbes. In animals, circulating levels of the hormone melatonin vary in a daily cycle, thereby allowing the entrainment of the circadian rhythms of several biological functions. A member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. Melatonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-31-4 (retrieved 2024-07-01) (CAS RN: 73-31-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5]. Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].
Jujuboside A1
Jujuboside A is a triterpenoid. (2S,3R,4R,5R,6S)-2-[(2S,3R,4S,5S)-4-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-[[(1S,2R,5R,7S,10R,11R,14R,15S,16S,18R,20S)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-enyl)-19,21-dioxahexacyclo[18.2.1.01,14.02,11.05,10.015,20]tricosan-7-yl]oxy]oxan-3-yl]oxy-6-methyloxane-3,4,5-triol is a natural product found in Ziziphus jujuba, Ziziphus lotus, and Ziziphus jujuba var. spinosa with data available. Jujuboside A is found in fruits. Jujuboside A is isolated from seeds of Zizyphus jujuba (Chinese date Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety.
Ginsenoside Ro
Chikusetsusaponin-V is a triterpenoid saponin. It has a role as a metabolite. Ginsenoside Ro is a natural product found in Panax vietnamensis, Bassia indica, and other organisms with data available. See also: Asian Ginseng (part of). Ginsenoside Ro is found in tea. Ginsenoside Ro is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside Ro is found in tea. Ginsenoside Ro (Polysciasaponin P3; Chikusetsusaponin 5; Chikusetsusaponin V) exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155 ?μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS. Ginsenoside Ro (Polysciasaponin P3; Chikusetsusaponin 5; Chikusetsusaponin V) exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155 ?μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS.
Atractylenolide
Atractylenolide I is a natural product found in Solanum lyratum, Atractylodes japonica, and other organisms with data available. Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent. Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent.
Quercetin
Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
Cinobufagin
Cinobufagin is a steroid lactone. It is functionally related to a bufanolide. Cinobufagin is a natural product found in Bufo gargarizans, Phrynoidis asper, and other organisms with data available. Cinobufagin is a bufadienolide compound extracted from the dried venom secreted by the parotid glands of toads and one of the glycosides in the traditional Chinese medicine ChanSu, with potential antineoplastic activity. Although the mechanism of action of cinobufagin is still under investigation, it has been found to suppress cancer cell proliferation and cause apoptosis in cancer cells via a sequence of apoptotic modulators that include mitochondrial Bax and cytosolic chromosome c, and caspases 3, 8, and 9. Possible upstream mediators of cinobufagin-induced apoptosis include Fas and p53. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Annotation level-1 Cinobufagin is an anticancer agent that can be secreted by the Asiatic toad Bufo gargarizans. Cinobufagin induces the cell cycle arrests in the G1 phase or G2/M phase, leading to apoptosis in cancer cells. Cinobufagin inhibits tumor growth in melanoma and glioblastoma multiforme xenograft mouse models[1][2][3]. Cinobufagin is an anticancer agent that can be secreted by the Asiatic toad Bufo gargarizans. Cinobufagin induces the cell cycle arrests in the G1 phase or G2/M phase, leading to apoptosis in cancer cells. Cinobufagin inhibits tumor growth in melanoma and glioblastoma multiforme xenograft mouse models[1][2][3].
Cafestol
Cafestol is an organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). It has a role as a plant metabolite, an apoptosis inducer, a hypoglycemic agent, an angiogenesis inhibitor, an antineoplastic agent, an antioxidant and an anti-inflammatory agent. It is an organic heteropentacyclic compound, a tertiary alcohol, a diterpenoid, a member of furans and a primary alcohol. Cafestol is a natural product found in Coffea arabica, Diplospora dubia, and other organisms with data available. Cafestol is found in arabica coffee. Cafestol is a constituent of coffee bean oil. Cafestol is present in boiled-type coffee beverages. Possesses hypercholesterolaemic activity. Diterpenoid constits. of coffee products are associated with cardiotoxic properties Cafestol is a diterpene molecule present in coffee Cafestol is a diterpene molecule and is a constituent of coffee bean oil. It is found in boiled-type coffee beverages. Possesses hypercholesterolaemic activity. Diterpenoid constitsuents of coffee products are associated with cardiotoxic props. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1].
4-Hydroxybenzyl alcohol
4-hydroxybenzyl alcohol is the cleavage product produced during the biosynthesis of the thiazole moiety of thiamine from tyrosine as part of the thiamine biosynthesis pathway. It is a derivative of benzyl alcohol which is used as a local anesthetic and to reduce pain associated with Lidocaine injection. Also, it is used in the manufacture of other benzyl compounds, as a pharmaceutical aid, and in perfumery and flavoring. Benzyl Alcohol is an aromatic alcohol used in a wide variety of cosmetic formulations as a fragrance component, preservative, solvent, and viscosity-decreasing agent. Benzyl Alcohol is metabolized to Benzoic Acid, which reacts with glycine and excreted as hippuric acid in the human body. Acceptable daily intakes were established by the World Health Organization at 5 mg/kg for Benzyl Alcohol. No adverse effects of benzyl alcohol have been seen in chronic exposure animal studies using rats and mice. Effects of Benzyl Alcohol in chronic exposure animal studies are limited to reduced feed intake and reduced growth. Some differences have been noted in one reproductive toxicity study using mice, but these were limited to lower maternal body weights and decreased mean litter weights. Another study also noted that fetal weight was decreased compared to controls, but a third study showed no differences between control and benzyl alcohol-treated groups. Benzyl Alcohol has been associated with an increased number of resorptions and malformations in hamsters, but there have been no reproductive or developmental toxicity findings in studies using mice and rats. Genotoxicity tests for benzyl alcohol are mostly negative, but there were some assays that were positive. Carcinogenicity studies, however, were negative. Clinical data indicates that benzyl alcohol can produce nonimmunologic contact urticaria and nonimmunologic immediate contact reactions, characterized by the appearance of wheals, erythema, and pruritis. 5\\\\% benzyl alcohol can elicit a reaction. Benzyl Alcohol is not a sensitizer at 10\\\\%. Benzyl Alcohol could be used safely at concentrations up to 5\\\\%, but that manufacturers should consider the nonimmunologic phenomena when using benzyl alcohol in cosmetic formulations designed for infants and children. Additionally, Benzyl Alcohol is considered safe up to 10\\\\% for use in hair dyes. The limited body exposure, the duration of use, and the frequency of use are considered in concluding that the nonimmunologic reactions would not be a concern. Because of the wide variety of product types in which benzyl alcohol may be used, it is likely that inhalation may be a route of exposure. The available safety tests are not considered sufficient to support the safety of benzyl alcohol in formulations where inhalation is a route of exposure. Inhalation toxicity data are needed to complete the safety assessment of benzyl alcohol where inhalation can occur. (PMID: 11766131). P-hydroxybenzyl alcohol is a member of the class of benzyl alcohols that is benzyl alcohol substituted by a hydroxy group at position 4. It has been isolated from Arcangelisia gusanlung. It has a role as a plant metabolite. It is a member of phenols and a member of benzyl alcohols. 4-Hydroxybenzyl alcohol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). 4-Hydroxybenzyl alcohol is a natural product found in Populus laurifolia, Mesua, and other organisms with data available. Constituent of muskmelon (Cucurbita moschata) 4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4]. 4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4].
4-Hydroxycoumarin
4-hydroxycoumarin is a hydroxycoumarin that is coumarin in which the hydrogen at position 4 is replaced by a hydroxy group. It is a conjugate acid of a 4-hydroxycoumarin(1-). 4-Hydroxycoumarin is a natural product found in Vitis vinifera, Ruta graveolens, and Apis cerana with data available. CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins CONFIDENCE standard compound; INTERNAL_ID 2312 4-Hydroxycoumarin, a coumarin derivative, is one of the most versatile heterocyclic scaffolds and is frequently applied in the synthesis of various organic compounds. 4-Hydroxycoumarin possesses both electrophilic and nucleophilic properties. 4-Hydroxycoumarin derivatives are employed as the anticoagulant, antibacterial, antifungal, antiviral, antitumor, antiprotozoal, insecticidal, antimycobacterial, antimutagenic, antioxidant, anti-inflammatory agents, HIV protease inhibitors and tyrosine kinase inhibitors[1]. 4-Hydroxycoumarin, a coumarin derivative, is one of the most versatile heterocyclic scaffolds and is frequently applied in the synthesis of various organic compounds. 4-Hydroxycoumarin possesses both electrophilic and nucleophilic properties. 4-Hydroxycoumarin derivatives are employed as the anticoagulant, antibacterial, antifungal, antiviral, antitumor, antiprotozoal, insecticidal, antimycobacterial, antimutagenic, antioxidant, anti-inflammatory agents, HIV protease inhibitors and tyrosine kinase inhibitors[1].
Sinapine
Sugar phosphate, also known as sinapoylcholine or sinapine, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Sugar phosphate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sugar phosphate can be found in a number of food items such as common sage, tea leaf willow, broccoli, and sweet bay, which makes sugar phosphate a potential biomarker for the consumption of these food products. Sugar phosphate exists in all living organisms, ranging from bacteria to humans. Sinapine (CAS: 18696-26-9), also known as sinapoylcholine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Sinapine is an extremely weak basic (essentially neutral) compound (based on its pKa). Sinapine has been detected, but not quantified, in garden cress and horseradish. Sinapine is found in brassicas. It is a storage protein isolated from the seeds of Brassica napus (rape). This could make sinapine a potential biomarker for the consumption of these foods. Sinapine is an acylcholine in which the acyl group specified is sinapoyl. It has a role as a photosynthetic electron-transport chain inhibitor, an antioxidant and a plant metabolite. It is functionally related to a trans-sinapic acid. Sinapine is a natural product found in Alliaria petiolata, Isatis quadrialata, and other organisms with data available. IPB_RECORD: 244; CONFIDENCE confident structure Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].
Moupinamide
N-feruloyltyramine is a member of tyramines. It has a role as a metabolite. Moupinamide is a natural product found in Zanthoxylum beecheyanum, Polyalthia suberosa, and other organisms with data available. See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Alkaloid from Piper nigrum. Moupinamide is found in many foods, some of which are nutmeg, amaranth, sapodilla, and orange bell pepper. Moupinamide is found in eggplant. Moupinamide is an alkaloid from Piper nigru CASMI2013 Challenge_1 MS2 data; [MS1] MSJ00001 CASMI2013 Challenge_1 MS1 data; [MS2] MSJ00002 N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1]. N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1].
Azulene
Azulene is a mancude carbobicyclic parent consisting of a cycloheptatriene and cyclopentadiene rings. It has a role as a plant metabolite and a volatile oil component. It is an ortho-fused bicyclic arene, a member of azulenes and a mancude carbobicyclic parent. Azulene is a natural product found in Anthemis cretica, Achillea millefolium, and other organisms with data available. Azulene is one of over 100 different polycyclic aromatic hydrocarbons (PAHs). PAHs are chemicals that are formed during the incomplete burning organic substances, such as fossil fuels. They are usually found as a mixture containing two or more of these compounds. (L10) A mancude carbobicyclic parent consisting of a cycloheptatriene and cyclopentadiene rings. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Same as: D09768 Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].
Mimosine
Mimosine is only found in individuals that have used or taken this drug. It is an antineoplastic alanine-substituted pyridine derivative isolated from Leucena glauca. [PubChem]Mimosine causes inhibition of DNA replication, changes in the progression of the cells in the cell cycle, and apoptosis. Mimosine appears to introduce breaks into DNA. Mimosine is an iron/zinc chelator. Iron depletion induces DNA double-strand breaks in treated cells, and activates a DNA damage response that results in focal phosphorylation of histones. This leads to inhibition of DNA replication and/or DNA elongation. Some studies indicate that mimosine prevents the initiation of DNA replication, whereas other studies indicate that mimosine disrupts elongation of the replication fork by impairing deoxyribonucleotide synthesis by inhibiting the activity of the iron-dependent enzyme ribonucleotide reductase and the transcription of the cytoplasmic serine hydroxymethyltransferase gene (SHMT). Inhibition of serine hydroxymethyltransferase is moderated by a zinc responsive unit located in front of the SHMT gene. L-mimosine is an L-alpha-amino acid that is propionic acid substituted by an amino group at position 2 and a 3-hydroxy-4-oxopyridin-1(4H)-yl group at position 3 (the 2S-stereoisomer). It a non-protein plant amino acid isolated from Mimosa pudica. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a non-proteinogenic L-alpha-amino acid and a member of 4-pyridones. It is functionally related to a propionic acid. It is a conjugate acid of a L-mimosine(1-). It is a tautomer of a L-mimosine zwitterion. Mimosine is an antineoplastic alanine-substituted pyridine derivative isolated from Leucena glauca. 3-Hydroxy-4-oxo-1(4H)-pyridinealanine. An antineoplastic alanine-substituted pyridine derivative isolated from Leucena glauca. An L-alpha-amino acid that is propionic acid substituted by an amino group at position 2 and a 3-hydroxy-4-oxopyridin-1(4H)-yl group at position 3 (the 2S-stereoisomer). It a non-protein plant amino acid isolated from Mimosa pudica. Mimosine, a tyrosine analog , can act as an antioxidant by its potent iron-binding activity[1]. Mimosine is a known chelator of Fe(III)[2]. Mimosine induces apoptosis through metal ion chelation, mitochondrial activation and ROS production in human leukemic cells[3]. Anti-cancer, antiinflammation. Mimosine, a tyrosine analog , can act as an antioxidant by its potent iron-binding activity[1]. Mimosine is a known chelator of Fe(III)[2]. Mimosine induces apoptosis through metal ion chelation, mitochondrial activation and ROS production in human leukemic cells[3]. Anti-cancer, antiinflammation.
Proscillaridin
Proscillaridin is an organic molecular entity. Proscillaridin is a cardiac glycoside that is derived from plants of the genus Scilla and in Drimia maritima (Scilla maritima). Studies suggest the potential cytotoxic and anticancer property of proscillaridin, based on evidence of the drug potently disrupting topoisomerase I and II activity at nanomolar drug concentrations and triggering cell death and blocking cell proliferation of glioblastoma cell lines. Proscillaridin is a natural product found in Drimia indica with data available. A cardiotonic glycoside isolated from Scilla maritima var. alba (Squill). C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AB - Scilla glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors Proscillaridin A is a potent poison of topoisomerase I/II activity with IC50 values of 30 nM and 100 nM, respectively[1]. Proscillaridin A is a potent poison of topoisomerase I/II activity with IC50 values of 30 nM and 100 nM, respectively[1].
Canthin-6-one
Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].
Coclaurine
(S)-coclaurine is the (S)-enantiomer of coclaurine. It is a conjugate base of a (S)-coclaurinium. It is an enantiomer of a (R)-coclaurine. Coclaurine is a natural product found in Delphinium pentagynum, Damburneya salicifolia, and other organisms with data available. Coclaurine, also known as (r,s)-coclaurine or machiline, is a member of the class of compounds known as benzylisoquinolines. Benzylisoquinolines are organic compounds containing an isoquinoline to which a benzyl group is attached. Coclaurine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Coclaurine can be found in custard apple and soursop, which makes coclaurine a potential biomarker for the consumption of these food products. Coclaurine is a nicotinic acetylcholine receptor antagonist which has been isolated from a variety of plant sources including Nelumbo nucifera, Sarcopetalum harveyanum, Ocotea duckei, and others. It belongs to the class of tetrahydroisoquinoline alkaloids. Dimerization of coclaurine leads to the biscoclaurine alkaloids such as cepharanthine .
Ricinoleic acid
Ricinoleic acid is found in corn. Ricinoleic acid occurs in castor oil and other oils e.g. grape and ergot (Claviceps purpurea) Ricinoleic acid (12-hydroxy-9-cis-octadecenoic acid) is an unsaturated omega-9 fatty acid that naturally occurs in mature Castor plant (Ricinus communis L., Euphorbiaceae) seeds or in sclerotium of ergot (Claviceps purpurea Tul., Clavicipitaceae). About 90\\% of the fatty acid content in castor oil is the triglyceride formed from ricinoleic acid. Ricinoleic acid is manufactured for industries by saponification or fractional distillation of hydrolyzed castor oil. The zinc salt is used in personal care products, such as deodorants Ricinoleic acid is a (9Z)-12-hydroxyoctadec-9-enoic acid in which the 12-hydroxy group has R-configuration.. It is a conjugate acid of a ricinoleate. Ricinoleic acid is a natural product found in Cephalocroton cordofanus, Crotalaria retusa, and other organisms with data available. See also: Polyglyceryl-6 polyricinoleate (monomer of); Polyglyceryl-4 polyricinoleate (monomer of); Polyglyceryl-5 polyricinoleate (monomer of) ... View More ... CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5632; ORIGINAL_PRECURSOR_SCAN_NO 5630 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5657; ORIGINAL_PRECURSOR_SCAN_NO 5655 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5730; ORIGINAL_PRECURSOR_SCAN_NO 5728 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5665; ORIGINAL_PRECURSOR_SCAN_NO 5664 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5630; ORIGINAL_PRECURSOR_SCAN_NO 5629 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5665; ORIGINAL_PRECURSOR_SCAN_NO 5662 Occurs in castor oil and other oils e.g. grape and ergot (Claviceps purpurea)
Zerumbone
Zerumbone is a sesquiterpenoid and cyclic ketone that is (1E,4E,8E)-alpha-humulene which is substituted by an oxo group at the carbon atom attached to two double bonds. It is obtained by steam distillation from a type of edible ginger, Zingiber zerumbet Smith, grown particularly in southeast Asia. It has a role as an anti-inflammatory agent, a plant metabolite and a glioma-associated oncogene inhibitor. It is a sesquiterpenoid and a cyclic ketone. It derives from a hydride of an alpha-humulene. Zerumbone is a natural product found in Curcuma amada, Curcuma longa, and other organisms with data available. Zerumbone is found in herbs and spices. Zerumbone is a constituent of the rhizomes of wild ginger (Zingiber zerumbet) Constituent of the rhizomes of wild ginger (Zingiber zerumbet). Zerumbone is found in herbs and spices. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2]. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2].
Erucic acid
Before genetic engineering, plant breeders were aiming to produce a less-bitter-tasting multi-purpose oil from rapeseed that would appeal to a larger market by making it more palatable for cattle and other livestock. While it was possible to breed out much of the pungent-tasting glucosinolates, one of the dominant erucic acid genes would get stripped out of the genome as well, greatly reducing its valuable erucic acid content. Studies on rats show lipodosis problems when fed high quantities of erucic acid, however, so this did not hinder saleability. Later trials showed that rats had the same problems with other vegetable fatty acids, because rats are poor at metabolising some fats. The plant breeding industry later changed "low erucic acid" to be its unique selling proposition over that of its competitors.; Erucic acid is a monounsaturated omega-9 fatty acid found mainly in the Brassica family of plants such as canola, rapeseed, wallflower seed, mustard seed as well as Brussels spouts and broccoli. Some Brassica cultivars can have up to 40 to 50 percent of their oil recovered as erucic acid. Erucic acid is also known as cis-13-docosenoic acid. The trans isomer is known as brassidic acid. Erucic acid occurs in nature only along with bitter-tasting compounds. Erucic acid has many of the same uses as mineral oils but with the advantage that it is more readily bio-degradable. Its high tolerance to temperature makes it suitable for transmission oil. Its ability to polymerize and dry means it can be - and is - used as a binder for oil paints. Increased levels of eicosenoic acid (20:ln9) and erucic acid (22:1n9) have been found in the red blood cell membranes of autistic subjects with developmental regression (PMID: 16581239). Erucic acid is broken down long-chain acyl-coenzyme A (CoA) dehydrogenase, which is produced in the liver. This enzyme breaks this long chain fatty acid into shorter-chain fatty acids. human infants have relatively low amounts of this enzyme and because of this, babies should not be given foods high in erucic acid.; Erucic acid is a monounsaturated omega-9 fatty acid, denoted 22:1 ?-9. It is prevalent in rapeseed, wallflower seed, and mustard seed, making up 40-50\\% of their oils. Erucic acid is also known as cis-13-docosenoic acid and the trans isomer is known as brassidic acid.; The name erucic means: of or pertaining to eruca; which is a genus of flowering plants in the family Brassicaceae. It is also the Latin for coleworth, which today is better known as kale. Erucic acid is produced naturally (together with other fatty acids) across a great range of green plants, but especially so in members of the brassica family. It is highest in some of the rapeseed varieties of brassicas, kale and mustard being some of the highest, followed by Brussels spouts and broccoli. For industrial purposes, a High-Erucic Acid Rapeseed (HEAR) has been developed. These cultivars can yield 40\\% to 60\\% of the total oil recovered as erucic acid. Erucic acid is a 22-carbon, monounsaturated omega-9 fatty acid found mainly in the Brassica family of plants such as canola, rapeseed, wallflower seed, mustard seed as well as Brussels spouts and broccoli. Some Brassica cultivars can have up to 40 to 50 percent of their oil recovered as erucic acid. Erucic acid is also known as cis-13-docosenoic acid. The trans isomer is known as brassidic acid. Erucic acid occurs in nature only along with bitter-tasting compounds. Erucic acid has many of the same uses as mineral oils but with the advantage that it is more readily bio-degradable. Its high tolerance to temperature makes it suitable for transmission oil. Erucic acid’s ability to polymerize and dry means it can be - and is - used as a binder for oil paints. Increased levels of eicosenoic acid (20:Ln9) and erucic acid (22:1N9) have been found in the red blood cell membranes of autistic subjects with developmental regression (PMID: 16581239 ). Erucic acid is broken down long-chain acyl-coenzyme A (CoA) dehydrogenase, which is produced in the liver. This enzyme breaks this long chain fatty acid into shorter-chain fatty acids. Human infants have relatively low amounts of this enzyme and because of this, babies should not be given foods high in erucic acid. Food-grade rapeseed oil (also known as canola oil) is regulated to a maximum of 2\\% erucic acid by weight in the US and 5\\% in the EU, with special regulations for infant food. Canola was bred from rapeseed cultivars of B. napus and B. rapa at the University of Manitoba, Canada. Canola oil is derived from a variety of rapeseed that is low in erucic acid. Erucic acid is a docosenoic acid having a cis- double bond at C-13. It is found particularly in brassicas - it is a major component of mustard and rapeseed oils and is produced by broccoli, Brussels sprouts, kale, and wallflowers. It is a conjugate acid of an erucate. Erucic acid is a natural product found in Dipteryx lacunifera, Myrtus communis, and other organisms with data available. Erucic Acid is a monounsaturated very long-chain fatty acid with a 22-carbon backbone and a single double bond originating from the 9th position from the methyl end, with the double bond in the cis- configuration. See also: Cod Liver Oil (part of). A docosenoic acid having a cis- double bond at C-13. It is found particularly in brassicas - it is a major component of mustard and rapeseed oils and is produced by broccoli, Brussels sprouts, kale, and wallflowers.
Neohesperidoside
Neohesperidoside, also known as 2-O-alpha-L-rhamnopyranosyl-D-glucopyranose or alpha-L-rhap-(1->2)-beta-D-glcp, is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Neohesperidoside is soluble (in water) and a very weakly acidic compound (based on its pKa). Neohesperidoside can be found in lemon, which makes neohesperidoside a potential biomarker for the consumption of this food product. Neohesperidoside is the disaccharide which is present in some flavonoids. It can be found in species of typha, in species of typha angustifolia . Alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose is a disaccharide consisting of alpha-L-rhamnose and beta-D-glucose linked via a 1->2 glycosidic bond. It has a role as a metabolite. 2-O-alpha-L-Rhamnopyranosyl-D-glucopyranose is a natural product found in Trypanosoma brucei with data available.
Neriifolin
Neriifolin is a cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. It has a role as a cardiotonic drug, a toxin and a neuroprotective agent. It is functionally related to a digitoxigenin. Neriifolin is a natural product found in Cerbera manghas, Cerbera odollam, and other organisms with data available. A cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides [Raw Data] CB071_Neriifolin_pos_40eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_10eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_20eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_50eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_30eV_CB000031.txt Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2. Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2.
(R)-Carvone
Carvone, with R and S isomers, also known as carvol or limonen-6-one, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. p-Menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m-menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Carvone is a neutral compound. Carvone is a naturally occurring organic compound found in many essential oils but is most abundant in the oils from caraway seeds (Carum carvi), spearmint (Mentha spicata), and dill (PMID:27427817). Carvone is a volatile terpenoid found in cannabis plants (PMID:6991645 ). Carvone is occasionally found as a component of biological fluids in normal individuals. Both carvones (R, S) are used in the food and flavor industry (http//doi:10.1016/j.foodchem.2005.01.003). R-carvone is also used in air freshening products and in essential oils used in aromatherapy and alternative medicine. Caraway was used for medicinal purposes by the ancient Romans, but carvone was probably not isolated as a pure compound until Varrentrapp obtained it in 1841 (PMID:5556886 , 2477620 ). Carvone may help in the management of diseases (PMID:30374904) and had been considered as an adjuvant for treatment of cancer patients (PMID:30087792) and patients with epilepsy (PMID:31239862). It also has been successfully used as a biopesticide (PMID:30250476). (-)-carvone is a carvone having (R) configuration. It is an enantiomer of a (+)-carvone. (-)-Carvone is a natural product found in Poiretia latifolia, Licaria triandra, and other organisms with data available. See also: Myrrh (part of); Spearmint Oil (part of). Constituent of spearmint (Mentha crispa) costmary, kuromoji and other oils. Flavouring ingredient A carvone having (R) configuration. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2]. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2]. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2]. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2].
Cuminaldehyde
Cuminaldehyde is the biologically active constituent of Cuminum cyminum seed oil. C. cyminum seed-derived materials have an inhibitory effect in vitro against rat lens aldose reductase and alpha-glucosidase. This inhibitory action cuminaldehyde suggest a potential utility as an antidiabetic therapeutic. (PMID:15796577). Cuminaldehyde is a volatile compound representative of cumin aroma present in trace amounts in the blood and milk of ewes fed with cumin seed. (PMID:8738023). The terpenoid cuminaldehyde, undergoes reduction biotransformation in mammals, but not oxidation. (PMID:2815827). Cuminaldehyde is a member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. It has a role as an insecticide, a volatile oil component and a plant metabolite. It derives from a hydride of a cumene. 4-Isopropylbenzaldehyde is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. See also: Paeonia lactiflora root (part of). A member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. Found in many essential oils, including eucalyptus, cumin and cassiaand is also present in grilled or roast beef and cognac. Flavouring agent Cuminaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=122-03-2 (retrieved 2024-07-11) (CAS RN: 122-03-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].
Diflufenican
CONFIDENCE standard compound; INTERNAL_ID 594; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5369; ORIGINAL_PRECURSOR_SCAN_NO 5368 CONFIDENCE standard compound; INTERNAL_ID 594; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5367; ORIGINAL_PRECURSOR_SCAN_NO 5365 CONFIDENCE standard compound; INTERNAL_ID 594; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5374; ORIGINAL_PRECURSOR_SCAN_NO 5371 CONFIDENCE standard compound; INTERNAL_ID 594; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5368; ORIGINAL_PRECURSOR_SCAN_NO 5365 CONFIDENCE standard compound; INTERNAL_ID 594; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5376; ORIGINAL_PRECURSOR_SCAN_NO 5375 CONFIDENCE standard compound; INTERNAL_ID 594; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5337; ORIGINAL_PRECURSOR_SCAN_NO 5333 CONFIDENCE standard compound; INTERNAL_ID 4010 CONFIDENCE standard compound; INTERNAL_ID 2315 CONFIDENCE standard compound; INTERNAL_ID 8384
2'-Deoxycytidine-5'-monophosphoric acid
Deoxycytidine monophosphate (dCMP), also known as deoxycytidylic acid or deoxycytidylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide, and one of the four monomers that make up DNA. In a DNA double helix, it will base pair with deoxyguanosine monophosphate. dCMP belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. Deficiency of the enzyme deoxycytidine kinase (EC2.7.1.74) is associated with resistance to antiviral and anticancer chemotherapeutic agents, whereas increased enzyme activity is associated with increased activation of these compounds to cytotoxic nucleoside triphosphate derivatives. dCMP exists in all living species, ranging from bacteria to humans. Within humans, dCMP participates in a number of enzymatic reactions. In particular, dCMP can be converted to dCDP by the enzyme UMP-CMP kinase 2. In addition, dCMP can be converted into deoxycytidine, which is catalyzed by the enzyme cytosolic purine 5-nucleotidase. In humans, dCMP is involved in the metabolic disorder called ump synthase deficiency (orotic aciduria). Outside of the human body, dCMP has been detected, but not quantified in several different foods, such as turnips, garlics, agaves, garden onions, and italian sweet red peppers. dCMP is a deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2-,3- or 5- positions. Deoxycytidine (dihydrogen phosphate). A deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2-,3- or 5- positions. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite.
Carnosine
Carnosine, which is also known as beta-alanyl-L-histidine) is a dipeptide consisting of the amino acids beta-alanine and histidine. It is found exclusively in animal tissues and is naturally produced in the body by the liver. Carnosine has a pKa value of 6.83, making it a good buffer for the pH range of animal muscles. Since beta-alanine is a non-proteogenic amino acid and is not incorporated into proteins, carnosine can be stored at relatively high concentrations (millimolar) in muscles, with concentrations as high as 17–25 mmol/kg (dry muscle). Carnosine is also highly concentrated in brain tissues. Carnosine has been shown to scavenge reactive oxygen species (ROS) as well as alpha-beta unsaturated aldehydes formed from peroxidation of fatty acids during oxidative stress. The antioxidant mechanism of carnosine is attributed to its chelating effect against divalent metal ions, superoxide dismutase (SOD)-like activity, as well as its ROS and free radicals scavenging ability (PMID: 16406688). Carnosine also buffers muscle cells, and acts as a neurotransmitter in the brain. Carnosine has the potential to suppress many of the biochemical changes that accompany ageing (e.g. protein oxidation, glycation, AGE formation, and cross-linking) and associated pathologies (PMID: 16804013). Some autistic patients take carnosine as a dietary supplement and attribute an improvement in their condition to it. Supplemental carnosine may increase corticosterone levels. This may explain the "hyperactivity" seen in autistic subjects at higher doses. A positive association between muscle tissue carnosine concentration and exercise performance has been found. β-Alanine supplementation is thought increase exercise performance by promoting carnosine production in muscle. Exercise has conversely been found to increase muscle carnosine concentrations, and muscle carnosine content is higher in athletes engaging in anaerobic exercise. Carnosine is also a biomarker for the consumption of meat. Elevated levels of urinary and plasma carnosine are associated with carnosinuria (also known as carnosinemia), which is an inborn error of metabolism. caused by a deficiency of the enzyme carnosinase. Carnosinas cleaves carnosine into its constituent amino acids: β-Alanine and histidine. Carnonsinemia results in an excess of carnosine in the urine, cerebrospinal fluid, blood, and nervous tissue. A variety of neurological symptoms have been associated with carnosinemia. They include: hypotonia, developmental delay, mental retardation, degeneration of axons, sensory neuropathy, tremors, demyelinization, gray matter anomalies, myoclonic seizures, and loss of purkinje fibers. [Spectral] Carnosine (exact mass = 226.10659) and L-Lysine (exact mass = 146.10553) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Carnosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=305-84-0 (retrieved 2024-07-02) (CAS RN: 305-84-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging. L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging. L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging.
Aconitate [cis or trans]
cis-Aconitic acid is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. The enzyme aconitase (aconitate hydratase; EC 4.2.1.3) catalyses the stereo-specific isomerization of citrate to isocitrate via cis-aconitate in the tricarboxylic acid cycle. Present in apple fruits, maple syrup and passion fruit juice cis-Aconitic acid, also known as (Z)-aconitic acid, plays several important biological roles: Intermediate in the Citric Acid Cycle: cis-Aconitic acid is an intermediate in the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle or citric acid cycle. It is formed from citrate by the enzyme aconitase and is rapidly converted into isocitrate, another key intermediate in the cycle. The TCA cycle is central to cellular respiration, generating energy-rich molecules like NADH and FADH2. Regulation of Aconitase Activity: The conversion of citrate to cis-aconitate and then to isocitrate by aconitase is an important regulatory step in the TCA cycle. This conversion helps in maintaining the balance of the cycle and is influenced by factors like the energy status of the cell. Role in Cholesterol Synthesis: cis-Aconitic acid is also involved in the synthesis of cholesterol. It serves as a precursor for the synthesis of mevalonate, a key intermediate in the cholesterol biosynthesis pathway. Potential Involvement in Disease: Altered metabolism or accumulation of cis-aconitic acid has been associated with certain diseases, including neurodegenerative disorders and cancer. Its role in these conditions is an area of ongoing research. Plant Growth and Development: In plants, cis-aconitic acid has been found to play a role in growth and development, including seed germination and leaf senescence. In summary, cis-aconitic acid is a crucial intermediate in the TCA cycle, impacting energy production and various metabolic pathways in cells. Its role extends to cholesterol synthesis and potentially to various disease processes, highlighting its importance in cellular metabolism and physiology. cis-Aconitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=585-84-2 (retrieved 2024-07-01) (CAS RN: 585-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
5,6-Dihydrothymine
Dihydrothymine (CAS: 696-04-8) is an intermediate breakdown product of thymine. Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine into 5,6-dihydrothymine; then dihydropyrimidinase hydrolyzes 5,6-dihydrothymine into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. When present at abnormally high levels, dihydrothymine can be toxic, although the mechanism of toxicity is not clear. In particular, patients with dihydropyrimidinase deficiency exhibit highly increased concentrations of 5,6-dihydrouracil and 5,6-dihydrothymine; and moderately increased concentrations of uracil and thymine can be detected in urine. Dihydropyrimidinase deficiency is a disorder that can cause neurological and gastrointestinal problems in some affected individuals. The most common neurological abnormalities that occur are intellectual disability, seizures, weak muscle tone (hypotonia), abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include the backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].
N,N-Dimethylaniline
N,N-Dimethylaniline, also known as dimethylaminobenzene or dimethylphenylamine, belongs to the class of organic compounds known as dialkylarylamines. These are aliphatic aromatic amines in which the amino group is linked to two aliphatic chains and one aromatic group. N,N-dimethylaniline is a tertiary amine that is aniline in which the amino hydrogens are replaced by two methyl groups. It is a tertiary amine and a dimethylaniline. N,N-dimethylaniline appears as a yellow to brown colored oily liquid with a fishlike odor. It is less dense than water and insoluble in water. Its flash point is 150 °F, and is toxic by ingestion, inhalation, and skin absorption. N,N-Dimethylaniline was used to make dyes and as a solvent. Outside of the human body, N,N-Dimethylaniline has been detected, but not quantified in several different foods, such as common mushrooms, strawberries, feijoa, limes, and black-eyed pea. the structural formula shown is also known as N,N-dimethylaniline -- Wikipedia; Dimethylaniline (C8H11N) is an organic chemical compound which is a substituted derivative of aniline. It consists of a benzene ring and a substituted amino group, making it a tertiary aromatic amine. -- Wikipedia; N,N-Dimethylaniline (DMA) is an organic chemical compound, a substituted derivative of aniline. It consists of a tertiary amine, featuring dimethylamino group attached to a phenyl group. This oily liquid is colourless when pure, but commercial samples are often yellow. N,N-Dimethylaniline is found in many foods, some of which are fennel, rose hip, black elderberry, and maitake. KEIO_ID D032
N-Acetylleucine
N-Acetyl-L-leucine or N-Acetylleucine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylleucine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylleucine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-lecuine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylleucine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free leucine can also occur. In particular, N-Acetylleucine can be biosynthesized from L-leucine and acetyl-CoA by the enzyme leucine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylleucine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylmethionine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylleucine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyl-L-leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1188-21-2 (retrieved 2024-07-02) (CAS RN: 1188-21-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). N-Acetyl-L-leucine is an endogenous metabolite.
Parathion
Parathion is a highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors A highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. [HMDB] C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Thymine
Thymine, also known as 5-methyluracil, belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Thymine was first isolated in 1893 by Albrecht Kossel and Albert Neumann from calves thymus glands, hence its name. Thymine is one of the 4 nuelcoebases found in DNA and is essential to all life. Thymine exists in all living species, ranging from bacteria to plants to humans. Thymine combined with deoxyribose creates the nucleoside deoxythymidine (also called thymidine) which when phosphorylated to dTDP can be incorporated into DNA via DNA polymerases. Thymidine can be phosphorylated with up to three phosphoric acid groups, producing dTMP (deoxythymidine monophosphate) dTDP and/or dTTP. In RNA thymine is replaced with uracil in most cases. In DNA, thymine binds to adenine via two hydrogen bonds to assist in stabilizing the nucleic acid structures. Within humans, thymine participates in a number of enzymatic reactions. In particular, thymine and deoxyribose 1-phosphate can be biosynthesized from thymidine through its interaction with the enzyme thymidine phosphorylase. In addition, thymine can be converted into dihydrothymine; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. One of the pyrimidine bases of living matter. Derivation: Hydrolysis of deoxyribonucleic acid, from methylcyanoacetylurea by catalytic reduction. Use: Biochemical research. (Hawleys Condensed Chemical Dictionary) Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus KEIO_ID T015 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.
Levetiracetam
Levetiracetam is an anticonvulsant medication used to treat epilepsy. Levetiracetam may selectively prevent hypersynchronization of epileptiform burst firing and propagation of seizure activity. Levetiracetam binds to the synaptic vesicle protein SV2A, which is thought to be involved in the regulation of vesicle exocytosis. Although the molecular significance of levetiracetam binding to synaptic vesicle protein SV2A is not understood, levetiracetam and related analogs showed a rank order of affinity for SV2A which correlated with the potency of their antiseizure activity in audiogenic seizure-prone mice. C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C26170 - Protective Agent > C1509 - Neuroprotective Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 2564
4-(Dimethylamino)azobenzene
4-(Dimethylamino)azobenzene is formerly used as a food dye, use discontinued.Methyl yellow, or C.I. 11020, is a chemical compound which may be used as a pH indicator. In aqueous solution at low pH, methyl yellow appears red. Between pH 2.9 and 4.0, methyl yellow undergoes a transition, to become yellow above pH 4.0. As "butter yellow" the agent had been used as a food additive before its toxicity was recognized (Opie EL). (Wikipedia Formerly used as a food dye, use discontinued D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents
2'-Deoxyuridine 5'-monophosphate disodium salt
Deoxyuridine monophosphate (dUMP), also known as deoxyuridylic acid or deoxyuridylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide. It belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. dUMP exists in all living species, ranging from bacteria to humans. Within humans, dUMP participates in a number of enzymatic reactions. In particular, dUMP can be biosynthesized from dCMP through its interaction with the enzyme deoxycytidylate deaminase. In addition, dUMP can be biosynthesized from deoxyuridine; which is mediated by the enzyme thymidine kinase, cytosolic. In humans, dUMP is involved in pyrimidine metabolism. A pyrimidine 2-deoxyribonucleoside 5-monophosphate having uracil as the nucleobase. Outside of the human body, dUMP has been detected, but not quantified in several different foods, such as breadnut tree seeds, sea-buckthornberries, sour cherries, black walnuts, and common oregano. dUMP is formed by the reduction of ribonucleotides to deoxyribonucleotides by ribonucleoside diphosphate reductase [EC 1.17.4.1]. dUMP by the action of by thymidylate synthetase [EC 2.1.1.45] produces dTMP (5,10-Methylene-5,6,7,8-tetrahydrofolate is a cofactor for the reaction). The nuclear form of uracil-DNA glycosylase (UNG2), that its major role is to remove misincorporated dUMP residues (cells deficient in removal of misincorporated dUMP accumulate uracil residues). (PMID 11554311) [HMDB]. dUMP is found in many foods, some of which are ginger, evergreen huckleberry, vanilla, and common walnut. dUMP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=964-26-1 (retrieved 2024-07-15) (CAS RN: 964-26-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Diethylphosphate
Diethylphosphate is product of metabolism and of environmental degradation of Chlorpyrifos (CPF; a commonly used diethylphosphorothionate organophosphorus (OP) insecticide) and are routinely measured in urine as biomarkers of exposure. (PMID: 17590257). [HMDB] Diethylphosphate is product of metabolism and of environmental degradation of Chlorpyrifos (CPF; a commonly used diethylphosphorothionate organophosphorus (OP) insecticide) and are routinely measured in urine as biomarkers of exposure. (PMID: 17590257). KEIO_ID D141 Diethylphosphate (DEP) is product of metabolism and of environmental degradation of a commonly used insecticide Chlorpyrifos.
disulfiram
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AA - Sulfur containing products N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BB - Drugs used in alcohol dependence C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2160 - Proteasome Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D065086 - Acetaldehyde Dehydrogenase Inhibitors D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C1744 - Multidrug Resistance Modulator C471 - Enzyme Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Disulfiram (Tetraethylthiuram disulfide) is a specific inhibitor of?aldehyde-dehydrogenase (ALDH1), used for the treatment of chronic alcoholism by producing an acute sensitivity to alcohol. Disulfiram inhibits gasdermin D (GSDMD) pore formation in liposomes and inflammasome-mediated pyroptosis and IL-1β secretion in human and mouse cells. Disulfiram, a copper ion carrier,?with?Cu2+ increases intracellular ROS levels and induces cuproptosis[1][2][3][4][5][6].
1-Hydroxypyrene
1-Hydroxypyrene is a metabolite of the noncarcinogen pyrene found in urine that is always a component of PAH mixtures. 1-hydroxypyrene is an accepted biomarker of carcinogenic Polycyclic aromatic hydrocarbons (PAH) dose(PMID: 15159317). PAH are a diverse group of environmental carcinogens formed during the incomplete combustion of organic matter. PAHs are believed to play an important role as causes of human cancer, particularly in certain occupational settings and in cigarette smokers. (PMID: 15247141) [HMDB] 1-Hydroxypyrene is a metabolite of the noncarcinogen pyrene found in urine that is always a component of PAH mixtures. 1-Hydroxypyrene is an accepted biomarker of carcinogenic polycyclic aromatic hydrocarbons (PAHs) dose (PMID: 15159317). PAHs are a diverse group of environmental carcinogens formed during the incomplete combustion of organic matter. PAHs are believed to play an important role as causes of human cancer, particularly in certain occupational settings and in cigarette smokers (PMID: 15247141). CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5366; ORIGINAL_PRECURSOR_SCAN_NO 5365 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5365; ORIGINAL_PRECURSOR_SCAN_NO 5363 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5373; ORIGINAL_PRECURSOR_SCAN_NO 5371 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5353; ORIGINAL_PRECURSOR_SCAN_NO 5351 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5367; ORIGINAL_PRECURSOR_SCAN_NO 5365 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5334; ORIGINAL_PRECURSOR_SCAN_NO 5333 CONFIDENCE standard compound; INTERNAL_ID 44 D009676 - Noxae > D009153 - Mutagens 1-Hydroxypyrene, a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs), is analyzed in urine samples. 1-Hydroxypyrene is the major biomarker of exposure to pyrenes[1].
Dibutyl succinate
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents
Thiodiacetic acid
Thiodiacetic acid belongs to the family of Thiodiacetic Acid Derivatives. These are compounds containing a thiodiacetic acid group (or esters/salts thereof) which is made up of two 2-sulfanylacetic (OC(=O)CS) acid moieties sharing their sulfur atom.
Disopyramide
A class I anti-arrhythmic agent (one that interferes directly with the depolarization of the cardiac membrane and thus serves as a membrane-stabilizing agent) with a depressant action on the heart similar to that of guanidine. It also possesses some anticholinergic and local anesthetic properties. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
Quinine
Quinine is a cinchona alkaloid that is cinchonidine in which the hydrogen at the 6-position of the quinoline ring is substituted by methoxy. It has a role as an antimalarial, a muscle relaxant and a non-narcotic analgesic. It is a conjugate base of a quinine(1+). It derives from a hydride of an (8S)-cinchonan. An alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood. Quinine is an Antimalarial. Quinine is a natural cinchona alkaloid that has been used for centuries in the prevention and therapy of malaria. Quinine is also used for idiopathic muscle cramps. Quinine therapy has been associated with rare instances of hypersensitivity reactions which can be accompanied by hepatitis and mild jaundice. Quinine is a natural product found in Cinchona calisaya, Cinchona officinalis, and other organisms with data available. Quinine is a quinidine alkaloid isolated from the bark of the cinchona tree. Quinine has many mechanisms of action, including reduction of oxygen intake and carbohydrate metabolism; disruption of DNA replication and transcription via DNA intercalation; and reduction of the excitability of muscle fibers via alteration of calcium distribution. This agent also inhibits the drug efflux pump P-glycoprotein which is overexpressed in multi-drug resistant tumors and may improve the efficacy of some antineoplastic agents. (NCI04) Quinine is an alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood. An alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood. See also: Quinine Sulfate (active moiety of); Quinine salicylate (active moiety of); Quinine arsenite (active moiety of) ... View More ... Quinine is an alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood. [PubChem]. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BC - Methanolquinolines A cinchona alkaloid that is cinchonidine in which the hydrogen at the 6-position of the quinoline ring is substituted by methoxy. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D000700 - Analgesics It is used in tonics and bitter drinks [Raw Data] CB141_Quinine_pos_10eV_CB000051.txt [Raw Data] CB141_Quinine_pos_20eV_CB000051.txt [Raw Data] CB141_Quinine_pos_40eV_CB000051.txt [Raw Data] CB141_Quinine_pos_50eV_CB000051.txt [Raw Data] CB141_Quinine_pos_30eV_CB000051.txt Quinine is an alkaloid derived from the bark of the cinchona tree, acts as an anti-malaria agent. Quinine is a potassium channel inhibitor that inhibits WT mouse Slo3 (KCa5.1) channel currents evoked by voltage pulses to +100?mV with an IC50 of 169 μM[1][2]. Quinine is an alkaloid derived from the bark of the cinchona tree, acts as an anti-malaria agent. Quinine is a potassium channel inhibitor that inhibits WT mouse Slo3 (KCa5.1) channel currents evoked by voltage pulses to +100?mV with an IC50 of 169 μM[1][2].
Phalloidine
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Netilmicin
Netilmicin is a semisynthetic 1-N-ethyl derivative of sisomycin, an aminoglycoside antibiotic with action similar to gentamicin, but less ear and kidney toxicity. [PubChem] Netilmicin inhibits protein synthesis in susceptible organisms by binding to the bacterial 30S ribosomal subunit and interfering with mRNA binding and the acceptor tRNA site. The bactericidal effect of netilmiicin is not fully understood. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic
Uracil
Uracil, also known as U, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Uracil is a common naturally occurring pyrimidine found in RNA. It base pairs with adenine and is replaced by thymine in DNA. Uracil is one of the four nucleobases in RNA that are represented by the letters A, G, C and U. Methylation of uracil produces thymine. The name "uracil" was coined in 1885 by the German chemist Robert Behrend, who was attempting to synthesize derivatives of uric acid. Originally discovered in 1900, uracil was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. Uracil exists in all living species, ranging from bacteria to plants to humans. Uracils use in the body is to help carry out the synthesis of many enzymes necessary for cell function through bonding with riboses and phosphates. Uracil serves as an allosteric regulator and a coenzyme for many important biochemical reactions. Uracil (via the nucleoside uridine) can be phosphorylated by various kinases to produce UMP, UDP and UTP. UDP and UTP regulate carbamoyl phosphate synthetase II (CPSase II) activity in animals. Uracil is also involved in the biosynthesis of polysaccharides and in the transport of sugars containing aldehydes. Within humans, uracil participates in a number of enzymatic reactions. In particular, uracil and ribose 1-phosphate can be biosynthesized from uridine; which is mediated by the enzyme uridine phosphorylase 2. In addition, uracil can be converted into dihydrouracil through the action of the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. Uracil is rarely found in DNA, and this may have been an evolutionary change to increase genetic stability. This is because cytosine can deaminate spontaneously to produce uracil through hydrolytic deamination. Therefore, if there were an organism that used uracil in its DNA, the deamination of cytosine (which undergoes base pairing with guanine) would lead to formation of uracil (which would base pair with adenine) during DNA synthesis. Uracil can be used for drug delivery and as a pharmaceutical. When elemental fluorine reacts with uracil, it produces 5-fluorouracil. 5-Fluorouracil is an anticancer drug (antimetabolite) that mimics uracil during the nucleic acid (i.e. RNA) synthesis and transcription process. Because 5-fluorouracil is similar in shape to, but does not undergo the same chemistry as, uracil, the drug inhibits RNA replication enzymes, thereby blocking RNA synthesis and stopping the growth of cancerous cells. Uracil is a common and naturally occurring pyrimidine derivative. Originally discovered in 1900, it was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. It is a planar, unsaturated compound that has the ability to absorb light. Uracil. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=66-22-8 (retrieved 2024-07-01) (CAS RN: 66-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.
m-chlorophenylpiperazine (m-CPP)
m-chlorophenylpiperazine (m-CPP) is a metabolite of trazodone. Trazodone (also sold under the brand names Desyrel, Oleptro, Beneficat, Deprax, Desirel, Molipaxin, Thombran, Trazorel, Trialodine, Trittico, and Mesyrel) is an antidepressant of the serotonin antagonist and reuptake inhibitor (SARI) class. It is a phenylpiperazine compound. Trazodone also has anxiolytic and hypnotic effects. Trazodone has considerably fewer prominent anticholinergic and sexual side effects than most of the tricyclic antidepressants (TCAs). (Wikipedia) D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1300 EAWAG_UCHEM_ID 2818; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 2818
Cephapirin
Cephapirin is an injectable, first-generation cephalosporin antibiotic that has a wide spectrum of activity against gram-positive and gram-negative organisms. The bactericidal activity of cephapirin results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Cephapirin is more resistant to beta-lactamases than the penicillins, and therefore is effective against staphylococci, with the exception of methicillin-resistant staphylococci. Cephapirin is FDA approved for use in food-producing animals, especially dairy cattle. Cephapirin is used for the treatment of mastitis in cows. Production for use in humans has been discontinued in the United States. It is marketed under the trade name Cefadyl. Active against gram-positive and -negative bacteria (vet. use). FDA approved for use in food producing animals, especies dairy cattle. It is used for the treatment of mastitis in cows J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Microcystin LR
CONFIDENCE standard compound; UCHEM_ID 2992; NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) D009676 - Noxae > D002273 - Carcinogens > D052998 - Microcystins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins CONFIDENCE standard compound; EAWAG_UCHEM_ID 2992 D004791 - Enzyme Inhibitors
4-Nitroaniline
CONFIDENCE standard compound; INTERNAL_ID 1340; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2935; ORIGINAL_PRECURSOR_SCAN_NO 2934 CONFIDENCE standard compound; INTERNAL_ID 1340; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2902; ORIGINAL_PRECURSOR_SCAN_NO 2900 CONFIDENCE standard compound; INTERNAL_ID 1340; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2938; ORIGINAL_PRECURSOR_SCAN_NO 2937 CONFIDENCE standard compound; INTERNAL_ID 1340; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2922; ORIGINAL_PRECURSOR_SCAN_NO 2921 CONFIDENCE standard compound; INTERNAL_ID 1340; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2945; ORIGINAL_PRECURSOR_SCAN_NO 2944 CONFIDENCE standard compound; INTERNAL_ID 1340; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2892; ORIGINAL_PRECURSOR_SCAN_NO 2890 KEIO_ID N012
2-Biphenylol
2-Biphenylol is found in lemon. It is an antifungal agent and preservative. 2-Biphenylol is used for post-harvest control of storage disease in apples, citrus fruit, stone fruit, tomatoes, cucumber and peppers through the use of impregnated wrapping materials or by direct application in a wax. 2-Biphenylol is used in food seasonings. Inhibitory to a wider range of moulds than Biphenyl
Aniline Yellow
D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8954; ORIGINAL_PRECURSOR_SCAN_NO 8952 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8961; ORIGINAL_PRECURSOR_SCAN_NO 8959 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8978; ORIGINAL_PRECURSOR_SCAN_NO 8977 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8974; ORIGINAL_PRECURSOR_SCAN_NO 8972 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8989; ORIGINAL_PRECURSOR_SCAN_NO 8988 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8997; ORIGINAL_PRECURSOR_SCAN_NO 8995 CONFIDENCE standard compound; INTERNAL_ID 2428 CONFIDENCE standard compound; INTERNAL_ID 8113 CONFIDENCE standard compound; INTERNAL_ID 4141
Mirtazapine
Mirtazapine is an antidepressant introduced by Organon International in 1996 used for the treatment of moderate to severe depression. Mirtazapine has a tetracyclic chemical structure and is classified as a noradrenergic and specific serotonergic antidepressant (NaSSA). It is the only tetracyclic antidepressant that has been approved by the Food and Drug Administration to treat depression. [Wikipedia] D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3622 CONFIDENCE standard compound; INTERNAL_ID 1551 (R)-Mirtazapine ((R)-Org3770) is a R(?)-enantiomer of Mirtazapine with antinociceptive properties in an animal model of acute thermal nociception. (R)-Mirtazapine is a 5-HT3 receptor antagonist. (R)-Mirtazapine is mainly metabolized by CYP3A4[1]. Mirtazapine (Org3770) is a potent and orally active noradrenergic and specific serotonergic antidepressant (NaSSA) agent. Mirtazapine is also a 5-HT2, 5-HT3, histamine H1 receptor and α2-adrenoceptor antagonist with pKi values of 8.05, 8.1, 9.3 and 6.95, respectively[1][2].
Nodularin
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3252
Vigabatrin
Vigabatrin is only found in individuals that have used or taken this drug. It is an analogue of gamma-aminobutyric acid. It is an irreversible inhibitor of 4-aminobutyrate transaminase, the enzyme responsible for the catabolism of gamma-aminobutyric acid. (From Martindale The Extra Pharmacopoeia, 31st ed)It is believed that vigabatrin increases brain concentrations of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter in the CNS, by irreversibly inhibiting enzymes that catabolize GABA (gamma-aminobutyric acid transaminase GABA-T) or block the reuptake of GABA into glia and nerve endings. Vigabatrin may also work by suppressing repetitive neuronal firing through inhibition of voltage-sensitive sodium channels. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3626 D004791 - Enzyme Inhibitors Vigabatrin (γ-Vinyl-GABA), an inhibitory neurotransmitter GABA vinyl-derivative, is an orally active and irreversible GABA transaminase inhibitor. Vigabatrin is an antiepileptic agent, which acts by increasing GABA levels in the brain by inhibiting the catabolism of GABA by GABA transaminase[1][2][3].
Zonisamide
Zonisamide is a sulfonamide anticonvulsant approved for use as an adjunctive therapy in adults with partial-onset seizures. Zonisamide may be a carbonic anhydrase inhibitor although this is not one of the primary mechanisms of action. Zonisamide may act by blocking repetitive firing of voltage-gated sodium channels leading to a reduction of T-type calcium channel currents, or by binding allosterically to GABA receptors. This latter action may inhibit the uptake of the inhibitory neurotransmitter GABA while enhancing the uptake of the excitatory neurotransmitter glutamate. C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3132 D049990 - Membrane Transport Modulators
Xanthohumol
Xanthohumol is a member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 4, 2 and 4, a methoxy group at position 6 and a prenyl group at position 3. Isolated from Humulus lupulus, it induces apoptosis in human malignant glioblastoma cells. It has a role as a metabolite, an apoptosis inducer, an antineoplastic agent, an antiviral agent, an EC 2.3.1.20 (diacylglycerol O-acyltransferase) inhibitor and an anti-HIV-1 agent. It is a member of chalcones, a polyphenol and an aromatic ether. It is a conjugate acid of a xanthohumol(1-). Xanthohumol is under investigation in clinical trial NCT01367431 (Xanthohumol and Metabolic Syndrome). Xanthohumol is a natural product found in Humulus lupulus and Capsicum annuum with data available. Xanthohumol is a prenylated flavonoid derived from the female flowers of the hops plant (Humulus lupulus L), with potential chemopreventive and antineoplastic activities. Upon administration, xanthohumol scavenges reactive oxygen species (ROS), thereby preventing DNA damage due to oxidative stress. In addition, xanthohumol is able to increase the expression of phase II cytoprotective enzymes, thereby inactivating carcinogens. This agent exerts anti-inflammatory activity, through the inhibition of inflammation-inducing enzymes, inhibits DNA synthesis, and induces apoptosis of susceptible cancer cells. Xanthohumol also decreases the expression of C-X-C chemokine receptor 4 (CXCR4), thereby preventing cancer cell invasion. A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 4, 2 and 4, a methoxy group at position 6 and a prenyl group at position 3. Isolated from Humulus lupulus, it induces apoptosis in human malignant glioblastoma cells. C308 - Immunotherapeutic Agent > C63817 - Chemokine Receptor Antagonist > C107589 - CXCR4 Inhibitor Xanthohumol is found in alcoholic beverages. Xanthohumol is isolated from Humulus lupulus (hops Isolated from Humulus lupulus (hops). Xanthohumol is found in beer and alcoholic beverages. D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D006133 - Growth Substances > D006131 - Growth Inhibitors C1892 - Chemopreventive Agent [Raw Data] CBA95_Xanthohumol_pos_50eV.txt [Raw Data] CBA95_Xanthohumol_neg_40eV.txt [Raw Data] CBA95_Xanthohumol_neg_20eV.txt [Raw Data] CBA95_Xanthohumol_neg_30eV.txt [Raw Data] CBA95_Xanthohumol_neg_50eV.txt [Raw Data] CBA95_Xanthohumol_pos_30eV.txt [Raw Data] CBA95_Xanthohumol_pos_10eV.txt [Raw Data] CBA95_Xanthohumol_neg_10eV.txt [Raw Data] CBA95_Xanthohumol_pos_20eV.txt [Raw Data] CBA95_Xanthohumol_pos_40eV.txt Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV). Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV). Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV).
Glucoraphanin
Glucoraphanin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, glucoraphanin has been detected, but not quantified in, several different foods, such as radish, common cabbages, Brassicas, Chinese cabbages, and cabbages. This could make glucoraphanin a potential biomarker for the consumption of these foods. Isolated from radish (Raphanus sativus) and Brassica species seeds or tops. Glucoraphanin is found in many foods, some of which are broccoli, white cabbage, cauliflower, and chinese cabbage. Acquisition and generation of the data is financially supported in part by CREST/JST. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects.
Glucosamine 6-phosphate
Glucosamine 6-phosphate (CAS: 3616-42-0) is normally produced in endothelial cells via de novo glucosamine synthesis by the enzyme fructose-6-phosphate amidotransferase and the modulation of this pathway by hyperglycemia and glutamine. Glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals.It is a member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. As glucosamine inhibits endothelial nitric oxide synthesis it has important implications for impaired endothelium-dependent relaxation and vascular dysfunction in diabetes mellitus (PMID:11270676, 11842094). Glucosamine 6-phosphate is normally produced in endothelial cells via the de novo glucosamine synthesis by the enzyme fructose-6-phosphate amidotransferase and the modulation of this pathway by hyperglycemia and glutamine. glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals. A member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. As glucosamine inhibits endothelial nitric oxide synthesis it has important implications for impaired endothelium-dependent relaxation and vascular dysfunction in diabetes mellitus. (PMID 11270676, 11842094) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G021; [MS2] KO008968 KEIO_ID G021
Pemoline
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
Paliperidone
Paliperidone is the primary active metabolite of the older antipsychotic risperidone. While its specific mechanism of action is unknown, it is believed that paliperidone and risperidone act via similar if not the same pathways. It has been proposed that the drugs therapeutic activity in schizophrenia is mediated through a combination of central dopamine Type 2 (D2) and serotonin Type 2 (5HT2A) receptor antagonism. Paliperidone is also active as an antagonist at alpha 1 and alpha 2 adrenergic receptors and H1 histaminergic receptors, which may explain some of the other effects of the drug. Paliperidone was approved by the FDA for treatment of schizophrenia on December 20, 2006. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics Paliperidone (9-Hydroxyrisperidone), the major active metabolite of Risperidone, is a dopamine D2 antagonist and 5-HT2A antagonist. Paliperidone is also active as an antagonist at α1 and α2 adrenergic receptors and H1-histaminergic receptors. Paliperidone, a antipsychotic agent, shows efficacy against schizophrenia[1]. Paliperidone (9-Hydroxyrisperidone), the major active metabolite of Risperidone, is a dopamine D2 antagonist and 5-HT2A antagonist. Paliperidone is also active as an antagonist at α1 and α2 adrenergic receptors and H1-histaminergic receptors. Paliperidone, a antipsychotic agent, shows efficacy against schizophrenia[1].
Crustecdysone
20-hydroxyecdysone is an ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. It has a role as a plant metabolite and an animal metabolite. It is a 20-hydroxy steroid, an ecdysteroid, a 14alpha-hydroxy steroid, a 3beta-sterol, a 2beta-hydroxy steroid, a 22-hydroxy steroid, a 25-hydroxy steroid and a phytoecdysteroid. It is functionally related to an ecdysone. 20-Hydroxyecdysone is a natural product found in Asparagus filicinus, Trichobilharzia ocellata, and other organisms with data available. A steroid hormone that regulates the processes of MOLTING or ecdysis in insects. Ecdysterone is the 20-hydroxylated ECDYSONE. Crustecdysone is found in crustaceans. Crustecdysone is isolated from the marine crayfish Jasus lalandei in low yield (2 mg/ton D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones An ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].
Pyrene
Pyrene is a polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings, resulting in a flat aromatic system. The chemical formula is C16H10. This colourless solid is the smallest peri-fused PAH (one where the rings are fused through more than one face). Pyrene forms during incomplete combustion of organic compounds. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
Dihomolinoleate (20:2n6)
Eicosadienoic acid is an omega-6 fatty acid found in human milk (PMID: 15256803). Omega-6 fatty acids are a family of unsaturated fatty acids which have in common a carbon-carbon double bond in the n−6 position; that is, the sixth bond from the end of the fatty acid. The biological effects of the omega−6 fatty acids are largely mediated by their conversion to n-6 eicosanoids that bind to diverse receptors found in every tissue of the body. Eicosadienoic acid has been identified in the human placenta (PMID: 32033212). Isolated from lipids of Ginkgo biloba (ginkgo) Eicosadienoic acid is a rare, naturally occurring n-6 polyunsaturated fatty acid found mainly in animal tissues[1][2]. Eicosadienoic acid is a rare, naturally occurring n-6 polyunsaturated fatty acid found mainly in animal tissues[1][2].
Diethanolamine
Diethanolamine, often abbreviated as DEA, is an organic chemical compound which is both a secondary amine and a dialcohol. A dialcohol has two hydroxyl groups in its molecule. Like other amines, diethanolamine acts as a weak base. Diethanolamine is widely used in the preparation of diethanolamides and diethanolamine salts of long-chain fatty acids that are formulated into soaps and surfactants used in liquid laundry and dishwashing detergents, cosmetics, shampoos, and hair conditioners. Diethanolamine is also used in textile processing, in industrial gas purification to remove acid gases, as an anticorrosion agent in metalworking fluids, and in preparations of agricultural chemicals. Aqueous diethanolamine solutions are used as solvents for numerous drugs that are administered intravenously. [HMDB] Diethanolamine, often abbreviated as DEA, is an organic chemical compound which is both a secondary amine and a dialcohol. A dialcohol has two hydroxyl groups in its molecule. Like other amines, diethanolamine acts as a weak base. Diethanolamine is widely used in the preparation of diethanolamides and diethanolamine salts of long-chain fatty acids that are formulated into soaps and surfactants used in liquid laundry and dishwashing detergents, cosmetics, shampoos, and hair conditioners. Diethanolamine is also used in textile processing, in industrial gas purification to remove acid gases, as an anticorrosion agent in metalworking fluids, and in preparations of agricultural chemicals. Aqueous diethanolamine solutions are used as solvents for numerous drugs that are administered intravenously.
Imidacloprid
Imidacloprid is an insecticide Imidacloprid is a neonicotinoid, which is a class of neuro-active insecticides modeled after nicotine. Imidacloprid is a patented chemical, Imidacloprid is manufactured by Bayer Cropscience (part of Bayer AG) and sold under trade names Kohinor, Admire, Advantage, Gaucho, Merit, Confidor, Hachikusan, Premise, Prothor, and Winner. It is marketed as pest control, seed treatment, an insecticide spray, termite control, flea control, and a systemic insecticide. CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6493; ORIGINAL_PRECURSOR_SCAN_NO 6491 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6445; ORIGINAL_PRECURSOR_SCAN_NO 6444 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3049; ORIGINAL_PRECURSOR_SCAN_NO 3048 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3058; ORIGINAL_PRECURSOR_SCAN_NO 3055 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6460; ORIGINAL_PRECURSOR_SCAN_NO 6459 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6485; ORIGINAL_PRECURSOR_SCAN_NO 6481 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3058; ORIGINAL_PRECURSOR_SCAN_NO 3056 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6489; ORIGINAL_PRECURSOR_SCAN_NO 6486 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3125; ORIGINAL_PRECURSOR_SCAN_NO 3122 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3059; ORIGINAL_PRECURSOR_SCAN_NO 3056 D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2709 CONFIDENCE standard compound; INTERNAL_ID 3036 CONFIDENCE standard compound; INTERNAL_ID 2322 CONFIDENCE standard compound; INTERNAL_ID 8394 D016573 - Agrochemicals Insecticide
Emtricitabine
Emtricitabine is only found in individuals that have used or taken this drug. It is a nucleoside reverse transcriptase inhibitor (NRTI) for the treatment of human immunodeficiency virus type 1 (HIV-1) infection in adults. Emtricitabine works by inhibiting reverse transcriptase (RT), an enzyme that allows the virus to multiply by copying HIV RNA into new viral DNA. The drug competes with the reverse transcriptases natural substrate deoxycytidine 5-triphosphate and also becomes incorporated into viral DNA. This is a result of emtricitabine being a synthetic nucleoside analogue of cytidine. It is phosphorylated by cellular enzymes to form emtricitabine 5-triphosphate which competes with the natural substrate deoxycytidine 5-triphosphate and becomes incorporated into nascent viral DNA, resulting in early chain termination. By inhibiting HIV-1 reverse transcriptase, emtricitabine can help to lower the amount of HIV (viral load) in a patients body and can indirectly increase the number of immune system cells (T cells or CD4+ T-cells). Both of these changes are associated with healthier immune systems and a decreased likelihood of serious illness. Emtricitabine is always used in conjunction with other HIV medicine to treat people with HIV infection. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3106 Same as: D01199
Diethylnitrosamine
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3452 D009676 - Noxae > D000477 - Alkylating Agents N-Nitrosodiethylamine (Diethylnitrosamine) is a potent hepatocarcinogenic dialkylnitrosoamine. N-Nitrosodiethylamine is mainly present in tobacco smoke, water, cheddar cheese, cured, fried meals and many alcoholic beverages. N-Nitrosodiethylamine is responsible for the changes in the nuclear enzymes associated with DNA repair/replication. N-Nitrosodiethylamine results in various tumors in all animal species. The main target organs are the nasal cavity, trachea, lung, esophagus and liver.
Pyridine
Pyridine is a clear liquid with an odor that is sour, putrid, and fish-like. It is a relatively simple heterocyclic aromatic organic compound that is structurally related to benzene, with one CH group in the six-membered ring replaced by a nitrogen atom. Pyridine is obtained from crude coal tar or is synthesized from acetaldehyde, formaldehyde and ammonia. Pyridine is often used as a denaturant for antifreeze mixtures, for ethyl alcohol, for fungicides, and as a dyeing aid for textiles. It is a harmful substance if inhaled, ingested or absorbed through the skin. In particular, it is known to reduce male fertility and is considered carcinogenic. Common symptoms of acute exposure to pyridine include: headache, coughing, asthmatic breathing, laryngitis, nausea and vomiting. -- Wikipedia. Flavouring ingredient. Pyridine is found in many foods, some of which are kohlrabi, red bell pepper, green bell pepper, and papaya. CONFIDENCE standard compound; INTERNAL_ID 8135 KEIO_ID P041
Pyrrole
Pyrrole is found in corn. Pyrrole is a flavouring ingredient Pyrrole has very low basicity compared to conventional amines and some other aromatic compounds like pyridine. This decreased basicity is attributed to the delocalization of the lone pair of electrons of the nitrogen atom in the aromatic ring. Pyrrole is a very weak base with a pKaH of about 4. Protonation results in loss of aromaticity, and is, therefore, unfavorable. Pyrrole is a heterocyclic aromatic organic compound, a five-membered ring with the formula C4H4NH. Substituted derivatives are also called pyrroles. For example, C4H4NCH3 is N-methylpyrrole. Porphobilinogen is a trisubstituted pyrrole, which is the biosynthetic precursor to many natural products. The starting materials in the Piloty-Robinson pyrrole synthesis are 2 equivalents of an aldehyde and hydrazine. The product is a pyrrole with specific substituents in the 3 and 4 positions. The aldehyde reacts with the diamine to an intermediate di-imine (R C=N N=C R), which, with added hydrochloric acid, gives ring-closure and loss of ammonia to the pyrrole CONFIDENCE standard compound; INTERNAL_ID 8155 Flavouring ingredient
Morpholine
Morpholine is a permitted (FDA) in edible coatings for fruit and vegetables. Morpholine is a food contaminant arising from its use as a boiler water additive Morpholine is a common additive, in ppm concentrations, for pH adjustment in both fossil fuel and nuclear power plant steam systems. Morpholine is used because its volatility is about the same as water, so once it is added to the water, its concentration becomes distributed rather evenly in both the water and steam phases. Its pH adjusting qualities then become distributed throughout the steam plant to provide corrosion protection. Morpholine is often used in conjunction with low concentrations of hydrazine or ammonia to provide a comprehensive all-volatile treatment chemistry for corrosion protection for the steam systems of such plants. Morpholine decomposes reasonably slowly in the absence of oxygen even at the high temperatures and pressures in these steam systems. Morpholine is an organic chemical compound having the chemical formula O(CH2CH2)2NH. This heterocycle, pictured at right, features both amine and ether functional groups. Because of the amine, morpholine is a base; its conjugate acid is called morpholinium. For example, when morpholine is neutralized by hydrochloric acid, one obtains the salt morpholinium chloride. Morpholine is widely used in organic synthesis. For example, it is a building block in the preparation of the antibiotic linezolid and the anticancer agent gefitinib (Iressa) Permitted (FDA) in edible coatings for fruit and vegetables. Food contaminant arising from its use as a boiler water additive CONFIDENCE standard compound; INTERNAL_ID 8365
2-Hydroxypyridine
This colourless crystalline solid is used in peptide synthesis. It is well known to form hydrogen bonded structures somewhat related to the base-pairing mechanism found in RNA and DNA. It is also a classic case of a molecule that exists as tautomers. Some publications only focus one of the two possible patterns, and neglect the influence of the other. For example, to calculation of the energy difference of the two tautomers in a non-polar solution will lead to a wrong result if a large quantity of the substance is on the side of the dimer in an equilibrium. The direct tautomerisation is not energetically favoured, but a dimerisation followed by a double proton transfer and dissociation of the dimer is a self catalytic path from one tautomer to the other. Protic solvents also mediate the proton transfer during the tautomerisation. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H021 α-Pyridone is an endogenous metabolite.
4-Hydroxyquinoline
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE standard compound; INTERNAL_ID 2492 KEIO_ID H139
Fluorene
Fluorene, also known as diphenylenemethane or 9h-fluorene, is a member of the class of compounds known as fluorenes. Fluorenes are compounds containing a fluorene moiety, which consists of two benzene rings connected through either a cyclopentane, cyclopentene, or cyclopenta-1,3-diene. Fluorene is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Fluorene can be found in corn, which makes fluorene a potential biomarker for the consumption of this food product. Fluorene is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. Fluorene , or 9H-fluorene, is a polycyclic aromatic hydrocarbon. It forms white crystals that exhibit a characteristic, aromatic odor similar to that of naphthalene. It is combustible. It has a violet fluorescence, hence its name. For commercial purposes it is obtained from coal tar. It is insoluble in water and soluble in many organic solvents . PAHs are carcinogens and have been associated with the increased risk of skin, respiratory tract, bladder, stomach, and kidney cancers. They may also cause reproductive effects and depress the immune system (L10) (T3DB). D009676 - Noxae > D002273 - Carcinogens
O-Phosphotyrosine
O-Phosphotyrosine is a phosphorylated amino acid that occurs in a number of proteins. Tyrosine phosphorylation and dephosphorylation plays a role in cellular signal transduction and possibly in cell growth control and carcinogenesis. Small amounts of free phosphotyrosine can be found in urine (PMID: 7693088). Levels of this amino acid appear to be elevated in mammalian urine during liver regeneration (PMID: 7516161). Phosphotyrosine is also able to induce platelet aggregation in vitro and it has been suggested that free phosphotyrosine in blood could be meaningful for in vivo platelet activation (PMID: 1282059). [HMDB] O-Phosphotyrosine is a phosphorylated amino acid that occurs in a number of proteins. Tyrosine phosphorylation and dephosphorylation plays a role in cellular signal transduction and possibly in cell growth control and carcinogenesis. Small amounts of free phosphotyrosine can be found in urine (PMID: 7693088). Levels of this amino acid appear to be elevated in mammalian urine during liver regeneration (PMID: 7516161). Phosphotyrosine is also able to induce platelet aggregation in vitro and it has been suggested that free phosphotyrosine in blood could be meaningful for in vivo platelet activation (PMID: 1282059).
Topotecan
Topotecan is only found in individuals that have used or taken this drug. It is an antineoplastic agent used to treat ovarian cancer. It works by inhibiting DNA topoisomerases, type I. [PubChem]Topotecan has the same mechanism of action as irinotecan and is believed to exert its cytotoxic effects during the S-phase of DNA synthesis. Topoisomerase I relieves torsional strain in DNA by inducing reversible single strand breaks. Topotecan binds to the topoisomerase I-DNA complex and prevents religation of these single strand breaks. This ternary complex interferes with the moving replication fork, which leads to the induction of replication arrest and lethal double-stranded breaks in DNA. As mammalian cells cannot efficiently repair these double strand breaks, the formation of this ternary complex eventually leads to apoptosis (programmed cell death).Topotecan mimics a DNA base pair and binds at the site of DNA cleavage by intercalating between the upstream (−1) and downstream (+1) base pairs. Intercalation displaces the downstream DNA, thus preventing religation of the cleaved strand. By specifically binding to the enzyme–substrate complex, Topotecan acts as an uncompetitive inhibitor. Topotecan is a pyranoindolizinoquinoline used as an antineoplastic agent. It is a derivative of camptothecin and works by binding to the topoisomerase I-DNA complex and preventing religation of these 328 single strand breaks. It has a role as an EC 5.99.1.2 (DNA topoisomerase) inhibitor and an antineoplastic agent. An antineoplastic agent used to treat ovarian cancer. It works by inhibiting DNA topoisomerases, type I. Topotecan is a Topoisomerase Inhibitor. The mechanism of action of topotecan is as a Topoisomerase Inhibitor. Topotecan is a semisynthetic derivative of camptothecin, a cytotoxic, quinoline-based alkaloid extracted from the Asian tree Camptotheca acuminata. Topotecan inhibits topoisomerase I activity by stabilizing the topoisomerase I-DNA covalent complexes during S phase of cell cycle, thereby inhibiting religation of topoisomerase I-mediated single-strand DNA breaks and producing potentially lethal double-strand DNA breaks when encountered by the DNA replication machinery. An antineoplastic agent used to treat ovarian cancer. It works by inhibiting DNA TOPOISOMERASES, TYPE I. See also: Topotecan Hydrochloride (active moiety of). L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CE - Topoisomerase 1 (top1) inhibitors C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C1748 - Topoisomerase Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors Same as: D08618 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Vaccenic acid
Vaccenic acid is a naturally occurring trans fatty acid. It is the predominant kind of trans-fatty acid found in human milk, in the fat of ruminants, and in dairy products such as milk, butter, and yogurt. Trans fat in human milk may depend on trans fat content in food. Its IUPAC name is (11E)-11-octadecenoic acid, and its lipid shorthand name is 18:1 trans-11. The name was derived from the Latin vacca (cow). Vaccenic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Vaccenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Occurs in small proportions in ruminant fats (e.g., butter) via biohydrogenation of dietary polyene acids. Vaccenic acid is found in many foods, some of which are almond, romaine lettuce, butter, and pak choy. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.
ANTHRACENE
Anthracene, also known as anthrazen or anthracene, sodium salt, ion (1-), is a member of the class of compounds known as anthracenes. Anthracenes are organic compounds containing a system of three linearly fused benzene rings. Anthracene can be found in sorrel, which makes anthracene a potential biomarker for the consumption of this food product. Anthracene is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the production of the red dye alizarin and other dyes. Anthracene is colorless but exhibits a blue (400-500 nm peak) fluorescence under ultraviolet radiation . PAHs are carcinogens and have been associated with the increased risk of skin, respiratory tract, bladder, stomach, and kidney cancers. They may also cause reproductive effects and depress the immune system (L10) (T3DB).
Naphthalene
Naphthalene, also known as naftaleno or albocarbon, belongs to the class of organic compounds known as naphthalenes. Naphthalenes are compounds containing a naphthalene moiety, which consists of two fused benzene rings. Naphthalene is possibly neutral. Naphthalene is a dry, pungent, and tar tasting compound. Naphthalene is found, on average, in the highest concentration within a few different foods, such as black walnuts, corns, and cloves. Naphthalene has also been detected, but not quantified, in several different foods, such as green bell peppers, orange bell peppers, rices, yellow bell peppers, and red bell peppers. This could make naphthalene a potential biomarker for the consumption of these foods. Naphthalene was once the primary ingredient in mothballs, though its use has largely been replaced in favor of alternatives such as 1,4-dichlorobenzene. Naphthalene is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Inhalation of naphthalene vapor has been associated with headaches, nausea, vomiting and dizziness. Naphthalene is the most abundant single component of coal tar so most of it is now industrially derived from coal tar. Aside from coal tar, trace amounts of naphthalene are produced by magnolias and some species of deer, as well as the Formosan subterranean termite, possibly produced by the termite as a repellant against "ants, poisonous fungi and nematode worms."[23] Some strains of the endophytic fungus Muscodor albus produce naphthalene among a range of volatile organic compounds, while Muscodor vitigenus produces naphthalene almost exclusively (PMID:12427963). Found in many essential oils
(S)-2-Azetidinecarboxylic acid
Azetidine-2-carboxylic acid is an azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. It has a role as a plant metabolite and a teratogenic agent. It is an azetidinecarboxylic acid and an amino acid. A proline analog that acts as a stoichiometric replacement of proline. It causes the production of abnormal proteins with impaired biological activity. (S)-2-Azetidinecarboxylic acid is found in common beet. (S)-2-Azetidinecarboxylic acid is present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the US Present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the USA. (S)-2-Azetidinecarboxylic acid is found in red beetroot and common beet. An azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. KEIO_ID A219 Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.
Streptomycin
Streptomycin is an aminoglycoside antibiotic produced by the soil actinomycete Streptomyces griseus. It acts by binding to the 30S ribosomal subunit of susceptible organisms and disrupting the initiation and elongation steps in protein synthesis. It is bactericidal due to effects that are not fully understood. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials > J01GA - Streptomycins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID S031
Ethylamine
Ethylamine, also known as 1-aminoethane or ethanamine, belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing an primary aliphatic amine group. Ethylamine exists in all living organisms, ranging from bacteria to humans. Ethylamine is an ammonia and fishy tasting compound. Ethylamine can be found found in a few different foods, such as barley, apples, and corns and in a lower concentration in white cabbages, wild carrots, and cabbages. Ethylamine has also been detected, but not quantified, in several different foods, such as black elderberries, common grapes, french plantains, soy beans, and spinachs. Ethylamine is a uremic toxin. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. Ethylamine is component of normal human urine it has been suggested that this short aliphatic chain may play a significant role in the central nervous system disturbances observe during hepatic and renal disease especially when the blood brain barrier is compromised. Found in foods and drinks KEIO_ID E025
delta-Tocotrienol
delta-Tocotrienol, also known as 8-methyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, delta-tocotrienol is considered to be a quinone lipid molecule. delta-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. delta-Tocotrienol is found in American cranberry and palm oil. It is a nutriceutical with anticancer properties and a positive influence on the blood lipid profile. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. d-Tocotrienol is found in many foods, some of which are fennel, caraway, coconut, and lichee. Acquisition and generation of the data is financially supported in part by CREST/JST.
Hydroquinidine
Same as: D08048 C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.751 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.749 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.745 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.742 Hydroquinidine (Dihydroquinidine) is a derivative of Quinidine (an antiarrhythmic agent). Hydroquinidine prolongs the QT interval and has antiarrhythmic efficacy[1][2][3]. Hydroquinidine (Dihydroquinidine) is a derivative of Quinidine (an antiarrhythmic agent). Hydroquinidine prolongs the QT interval and has antiarrhythmic efficacy[1][2][3].
Anisomycin
An antibiotic isolated from various Streptomyces species. It interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic relative retention time with respect to 9-anthracene Carboxylic Acid is 0.392 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.387 Anisomycin is a potent protein synthesis inhibitor which interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system[1]. Anisomycin is a JNK activator, which increases phospho-JNK[2][3]. Anisomycin is a bacterial antibiotic[4].
Violaxanthin
Violaxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Thus, violaxanthin is considered to be an isoprenoid lipid molecule. Violaxanthin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Violaxanthin is an orange-coloured pigment that is found in brown algae and various plants (e.g. pansies). It is biosynthesized from the epoxidation of zeaxanthin. Violaxanthin is a food additive that is only approved for use in Australia and New Zealand (INS: 161e) (PMID: 29890662). 3 (violaxanthin, zeaxanthin and antheraxanthin) participate in series of photo-induced interconversions known as violaxanthin cycle; Xanthophyll; a carotene epoxide that is precursor to capsanthin; cleavage of 9-cis-epoxycarotenoids (violaxanthin) to xanthoxin, catalyzed by 9-cis-epoxycarotenoid dioxygenase, is the key regulatory step of abscisic acid biosynthesis; one of 3 xanthophylls involved in evolution of plastids of green plants (oxygen evolution). (all-E)-Violaxanthin is found in many foods, some of which are orange bell pepper, passion fruit, pepper (c. annuum), and italian sweet red pepper. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Isokadsuranin
D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents Schisandrin B (γ-Schisandrin) is a biphenylcyclooctadiene derivative isolated from Schisandra chinensis and has been shown to have antioxidant effects on the liver and heart of rodents. Schisandrin B (γ-Schisandrin) is a biphenylcyclooctadiene derivative isolated from Schisandra chinensis and has been shown to have antioxidant effects on the liver and heart of rodents.
Toyomycin
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D002865 - Chromomycins D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes Same as: D02062
alpha-Bixin
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Principal colouring matter of Bixa orellana (annatto) seeds [DFC] Principal colouring matter of Bixa orellana (annatto) seeds. Bixin (BX), isolated from the seeds of Bixa orellana, is a carotenoid, possessing anti-inflammatory, anti-tumor and anti-oxidant activities. Bixin treatment ameliorated cardiac dysfunction through inhibiting fibrosis, inflammation and reactive oxygen species (ROS) generation[1].
N-hexanoyl-L-Homoserine lactone
N-Hexanoyl-L-homoserine lactone (HHSL) is a type of signaling molecule known as an autoinducer, which plays a significant role in bacterial communication and behavior, particularly in processes governed by quorum sensing (QS). Here are some of its key biological functions: Quorum Sensing Signaling: HHSL is involved in quorum sensing, a mechanism by which bacteria communicate with each other to coordinate their behavior based on population density. When the concentration of HHSL reaches a certain threshold, it triggers specific responses in the bacterial population. Regulation of Gene Expression: In many bacteria, HHSL binds to specific transcriptional regulators, leading to the activation or repression of target genes. This regulation can control a variety of biological processes, including bioluminescence, biofilm formation, virulence factor production, and sporulation. Biofilm Formation: HHSL can influence the formation and maintenance of biofilms, which are complex communities of bacteria encased in a self-produced matrix. Biofilms are often associated with increased resistance to antibiotics and host immune responses. Virulence and Pathogenicity: In pathogenic bacteria, HHSL can regulate the expression of virulence factors, contributing to the bacteria’s ability to cause disease. By modulating these factors, HHSL can affect the bacteria’s interaction with the host and its ability to evade the immune system. Symbiotic Interactions: HHSL is not only important in pathogenic bacteria but also in beneficial interactions, such as those found in nitrogen-fixing bacteria or in symbiotic relationships with plants and animals. Understanding the role of HHSL and other autoinducers in bacterial communication and behavior is crucial for developing new strategies to control bacterial infections and manage biofilm-related issues.
PG(16:0/18:1(9Z))
PG(16:0/18:1(9Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(16:0/18:1(9Z)) is a phosphatidylglycerol. Phosphatidylglycerols consist of a glycerol 3-phosphate backbone esterified to either saturated or unsaturated fatty acids on carbons 1 and 2. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PG(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. In E. coli glycerophospholipid metabolism, phosphatidylglycerol is formed from phosphatidic acid (1,2-diacyl-sn-glycerol 3-phosphate) by a sequence of enzymatic reactions that proceeds via two intermediates, cytidine diphosphate diacylglycerol (CDP-diacylglycerol) and phosphatidylglycerophosphate (PGP, a phosphorylated phosphatidylglycerol). Phosphatidylglycerols, along with CDP-diacylglycerol, also serve as precursor molecules for the synthesis of cardiolipin, a phospholipid found in membranes.
Benzaldehyde
Benzaldehyde is occasionally found as a volatile component of urine. Benzaldehyde is an aromatic aldehyde used in cosmetics as a denaturant, a flavoring agent, and as a fragrance. Currently used in only seven cosmetic products, its highest reported concentration of use was 0.5\\\% in perfumes. Benzaldehyde is a generally regarded as safe (GRAS) food additive in the United States and is accepted as a flavoring substance in the European Union. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde. Benzaldehyde is absorbed through skin and by the lungs, distributes to all well-perfused organs, but does not accumulate in any specific tissue type. After being metabolized to benzoic acid, conjugates are formed with glycine or glucuronic acid, and excreted in the urine. Several studies have suggested that Benzaldehyde can have carcinostatic or antitumor properties. Overall, at the concentrations used in cosmetics, Benzaldehyde was not considered a carcinogenic risk to humans. Although there are limited irritation and sensitization data available for Benzaldehyde, the available dermal irritation and sensitization data and ultraviolet (UV) absorption and phototoxicity data demonstrating no adverse reactions to Benzoic Acid support the safety of Benzaldehyde as currently used in cosmetic products. (PMID:16835129, Int J Toxicol. 2006;25 Suppl 1:11-27.). Benzaldehyde, a volatile organic compound, is naturally present in a variety of plants, particularly in certain fruits, nuts, and flowers. It plays a significant role in the aromatic profiles of these plants. For instance, benzaldehyde is a primary component of bitter almond oil, which was one of its earliest known natural sources. Besides bitter almonds, it is also found in fruits like cherries, peaches, and plums, as well as in flowers such as jasmine. In the food industry, benzaldehyde is occasionally used as a food additive to impart specific flavors. This prevalence in plants highlights that benzaldehyde is not only an industrial chemical but also a naturally occurring compound in the plant kingdom. Its presence in these natural sources underscores its significance in both nature and industry. Found in plants, especies in almond kernelsand is) also present in strawberry jam, leek, crispbread, cheese, black tea and several essential oils. Parent and derivs. (e.g. glyceryl acetal) are used as flavourings
Pyruvaldehyde
Methylglyoxal, also known as 2-ketopropionaldehyde or 2-oxopropanal, is a member of the class of compounds known as alpha ketoaldehydes. Alpha ketoaldehydes are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Methylglyoxal is soluble (in water) and an extremely weak acidic compound (based on its pKa). Methylglyoxal can be found in a number of food items such as shiitake, yellow zucchini, roman camomile, and carob, which makes methylglyoxal a potential biomarker for the consumption of these food products. Methylglyoxal can be found primarily in blood and urine, as well as throughout most human tissues. Methylglyoxal exists in all living species, ranging from bacteria to humans. In humans, methylglyoxal is involved in few metabolic pathways, which include glycine and serine metabolism, pyruvaldehyde degradation, pyruvate metabolism, and spermidine and spermine biosynthesis. Methylglyoxal is also involved in several metabolic disorders, some of which include hyperglycinemia, non-ketotic, pyruvate kinase deficiency, non ketotic hyperglycinemia, and pyruvate decarboxylase E1 component deficiency (PDHE1 deficiency). Moreover, methylglyoxal is found to be associated with diabetes mellitus type 2. Methylglyoxal, also called pyruvaldehyde or 2-oxopropanal, is the organic compound with the formula CH3C(O)CHO. Gaseous methylglyoxal has two carbonyl groups, an aldehyde and a ketone but in the presence of water, it exists as hydrates and oligomers. It is a reduced derivative of pyruvic acid . Pyruvaldehyde is an organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals.
Heptadecane
Heptadecane, also known as CH3-[CH2]15-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Heptadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an organic compound, an alkane hydrocarbon with the chemical formula C17H36. The most compact and branched isomer would be tetra-tert-butylmethane, but its existence is believed to be impossible due to steric hindrance. The name may refer to any of 24894 theoretically possible structural isomers, or to a mixture thereof. Heptadecane is an alkane tasting compound. heptadecane has been detected, but not quantified, in several different foods, such as lemon balms, coconuts, orange bell peppers, allspices, and pepper (c. annuum). This could make heptadecane a potential biomarker for the consumption of these foods. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. Indeed, it is believed to be the smallest "impossible" alkane. Heptadecane, also known as ch3-[ch2]15-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an alkane tasting compound and can be found in a number of food items such as papaya, orange bell pepper, pepper (spice), and red bell pepper, which makes heptadecane a potential biomarker for the consumption of these food products. Heptadecane can be found primarily in saliva. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes .
Heptanal
Heptanal, also known as enanthal or N-heptaldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, heptanal is considered to be a fatty aldehyde lipid molecule. It is a colourless liquid with a strong fruity odor, which is used as precursor to components in perfumes and lubricants. Heptanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heptanal exists in all eukaryotes, ranging from yeast to humans. Heptanal is an aldehydic, citrus, and fat tasting compound. heptanal is found, on average, in the highest concentration in a few different foods, such as corns, tea, and sweet oranges and in a lower concentration in lemons, wild carrots, and carrots. heptanal has also been detected, but not quantified, in several different foods, such as horned melons, common beets, dills, red bell peppers, and malus (crab apple). This could make heptanal a potential biomarker for the consumption of these foods. The formation of heptanal in the fractional distillation of castor oil was already described in 1878. The large-scale production is based on the pyrolytic cleavage of ricinoleic acid ester (Arkema method) and on the hydroformylation of 1-hexene with rhodium 2-ethylhexanoate as a catalyst upon addition of some 2-ethylhexanoic acid (Oxea method):Heptanal naturally occurs in the essential oils of ylang-ylang (Cananga odorata), clary sage (Salvia sclarea), lemon (Citrus x limon), bitter orange (Citrus x aurantium), rose (Rosa) and hyacinth (Hyacinthus). Heptanal is a potentially toxic compound. Heptanal has been found to be associated with several diseases such as ulcerative colitis, crohns disease, uremia, and nonalcoholic fatty liver disease; also heptanal has been linked to the inborn metabolic disorders including celiac disease. The compound has a flash point of 39.5 °C. The explosion range is between 1.1\\% by volume as the lower explosion limit (LEL) and 5.2\\% by volume as the upper explosion limit. Heptanal or heptanaldehyde is an alkyl aldehyde. Full hydrogenation provides the branched primary alcohol 2-pentylnonan-1-ol, also accessible from the Guerbet reaction from heptanol. A by-product of the given reaction is the unpleasant rancid smelling (Z)-2-pentyl-2-nonenal. Heptanal forms flammable vapor-air mixtures. Heptanal is a flammable, slightly volatile colorless liquid of pervasive fruity to oily-greasy odor, which is miscible with alcohols and practically insoluble in water. Heptanal reacts with benzaldehyde in a Knoevenagel reaction under basic catalysis with high yield and selectivity (> 90\\%) to alpha-pentylcinnamaldehyde (also called jasmine aldehyde because of the typical jasmine odor), which is mostly used in many fragrances as a cis/trans isomer mixture. Found in essential oils of ylang-ylang, clary sage, California orange, bitter orange and others. Flavouring agent
(-)-trans-Carveol
Carveol is a natural terpenoid alcohol that is a constituent of spearmint oil. It has an odor and flavor that resemble those of spearmint and caraway. Consequently, it is used as a fragrance in cosmetics and as a flavor additive in the food industry. Constituent of Valencia orange essence oil. Flavouring ingredient Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.
2-Heptanone
2-Heptanone, also known as butylacetone or heptan-2-one, belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, 2-heptanone is considered to be an oxygenated hydrocarbon lipid molecule. 2-Heptanone is a ketone with the molecular formula C7H14O. 2-Heptanone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2-Heptanone exists in all living species, ranging from bacteria to humans. 2-Heptanone is a sweet, cinnamon, and coconut tasting compound. 2-Heptanone is found, on average, in the highest concentration within a few different foods, such as corns, cow milk, and peppermints. 2-Heptanone has also been detected, but not quantified in several different foods, such as tarragons, blackberries, tortilla chips, ceylon cinnamons, and evergreen blackberries. 2-Heptanone is one of the metabolites of n-heptane found in the urine of employees exposed to heptane in shoe and tire factories. 2-Heptanone, with regard to humans, has been found to be associated with several diseases such as ulcerative colitis, nonalcoholic fatty liver disease, crohns disease, and hepatic encephalopathy; 2-heptanone has also been linked to the inborn metabolic disorder celiac disease. It is a colorless to white liquid with a banana-like, fruity odor. Present in apple, morello cherry, feijoa fruit, grapes, quince, clove bud, cheeses, wines, black tea, raw shrimp, Ceylon cinnamon, rancid coconut oil and other foodstuffsand is also a minor constituent of plant oils. Flavour ingredient
m-Cresol
m-Cresol is an isomer of p-cresol and o-cresol. Cresols are organic compounds which are methylphenols. They are a widely occurring natural and manufactured group of aromatic organic compounds which are categorized as phenols (sometimes called phenolics). Depending on the temperature, cresols can be solid or liquid because they have melting points not far from room temperature. Like other types of phenols, they are slowly oxidized by long exposure to air and the impurities often give cresols a yellowish to brownish red tint. Cresols have an odor characteristic to that of other simple phenols, reminiscent to some of a "medicine" smell. Cresol solutions are used as household cleaners and disinfectants, perhaps most famously under the trade name Lysol. In the past, cresol solutions have been used as antiseptics in surgery, but they have been largely displaced in this role by less toxic compounds. Lysol was also advertised as a disinfecting vaginal douche in mid-twentieth century America. Cresols are found in many foods and in wood and tobacco smoke, crude oil, coal tar, and in brown mixtures such as creosote and cresylic acids, which are wood preservatives. Small organisms in soil and water produce cresols when they break down materials in the environment. Most exposures to cresols are at very low levels that are not harmful. When cresols are breathed, ingested, or applied to the skin at very high levels, they can be very harmful. Effects observed in people include irritation and burning of skin, eyes, mouth, and throat; abdominal pain and vomiting; heart damage; anemia; liver and kidney damage; facial paralysis; coma; and death. Breathing high levels of cresols for a short time results in irritation of the nose and throat. Aside from these effects, very little is known about the effects of breathing cresols, for example, at lower levels over longer times. Ingesting high levels results in kidney problems, mouth and throat burns, abdominal pain, vomiting, and effects on the blood and nervous system. Skin contact with high levels of cresols can burn the skin and damage the kidneys, liver, blood, brain, and lungs. m-Cresol is a microbial metabolite that can be found in Lysinibacillus. Flavouring ingredient. 3-Methylphenol is found in asparagus, tea, and arabica coffee.
Ethyl octanoate
Ethyl octanoate is a fatty acid ethyl ester resulting from the formal condensation of octanoic acid with ethanol. It has a role as a metabolite. It is a fatty acid ethyl ester and an octanoate ester. Ethyl octanoate is found in alcoholic beverages. Ethyl octanoate is used in many fruit flavourings. Ethyl octanoate is a constituent of plant oils. Also present in Swiss cheese, Camembert cheese, wheat bread, port wine, plum brandy, sparkling wine, apple, apricot, banana, cherry, orange, grapefruit, plum and other fruits. It is used in many fruit flavourings. Constituent of plant oilsand is) also present in Swiss cheese, Camembert cheese, wheat bread, port wine, plum brandy, sparkling wine, apple, apricot, banana, cherry, orange, grapefruit, plum and other fruits. Ethyl octanoate is found in many foods, some of which are milk and milk products, guava, cereals and cereal products, and pepper (c. frutescens).
Sulfate
The sulfate ion is a polyatomic anion with the empirical formula SO42- and a molecular mass of 96.06 daltons; it consists of one central sulfur atom surrounded by four equivalent oxygen atoms in a tetrahedral arrangement. The sulfate ion carries a negative two charge and is the conjugate base of the hydrogen sulfate ion, HSO4-, which is the conjugate base of H2SO4, sulfuric acid. In inorganic chemistry, a sulfate (IUPAC-recommended spelling; also sulphate in British English) is a salt of sulfuric acid. Sulfate aerosols can act as cloud condensation nuclei and this leads to greater numbers of smaller droplets of water. Lots of smaller droplets can diffuse light more efficiently than just a few larger droplets. It is used in food processing as a pH control agent and a flavour modifier
Hydrogen
Hydrogen is a colorless, odorless, nonmetallic, tasteless, highly flammable diatomic gas with the molecular formula H2. With an atomic weight of 1.00794, hydrogen is the lightest element. Besides the common H1 isotope, hydrogen exists as the stable isotope Deuterium and the unstable, radioactive isotope Tritium. Hydrogen is the most abundant of the chemical elements, constituting roughly 75\\% of the universes elemental mass. Hydrogen can form compounds with most elements and is present in water and most organic compounds. It plays a particularly important role in acid-base chemistry, in which many reactions involve the exchange of protons between soluble molecules. Oxidation of hydrogen, in the sense of removing its electron, formally gives H+, containing no electrons and a nucleus which is usually composed of one proton. That is why H+ is often called a proton. This species is central to discussion of acids. Under the Bronsted-Lowry theory, acids are proton donors, while bases are proton acceptors. A bare proton H+ cannot exist in solution because of its strong tendency to attach itself to atoms or molecules with electrons. However, the term proton is used loosely to refer to positively charged or cationic hydrogen, denoted H+. H2 is a product of some types of anaerobic metabolism and is produced by several microorganisms, usually via reactions catalyzed by iron- or nickel-containing enzymes called hydrogenases. These enzymes catalyze the reversible redox reaction between H2 and its component two protons and two electrons. Creation of hydrogen gas occurs in the transfer of reducing equivalents produced during pyruvate fermentation to water. Hydrogen has been found to be a metabolite of Citrobacter, Cyanobacteria, Enterobacter, Halobacterium and Rhodobacteraceae (PMID: 28042989; PMID: 16371161) (https://www.insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol51B_1985_2_Art16.pdf) (https://www.researchgate.net/publication/222428793_High_Hydrogen_Yield_from_a_Two-step_Process_of_Dark-_and_Photo-fermentation_of_Sucrose) (Tao, Y; Chen, Y; Wu, Y; He, Y; Zhou, Z (2007). "High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose". International Journal of Hydrogen Energy. 32 (2): 200-206). It is used as a packaging gas [DFC]
Formamide
Formamide, also known as methanamide or ameisensaeureamid, belongs to the class of organic compounds known as carboximidic acids. These are organic acids with the general formula RC(=N)-OH (R=H, organic group). Formamide, in its pure state, has been used as an alternative solvent for the electrostatic self-assembly of polymer nanofilms. Formamide exists in all living organisms, ranging from bacteria to humans. Formamide has been detected, but not quantified in several different foods, such as hyssops, rose hips, asian pears, brassicas, and green bell peppers. It has been used as a softener for paper and fiber. Inhalation of large amounts of formamide vapor may require medical attention. In the past, formamide was produced by treating formic acid with ammonia, which produces ammonium formate, which in turn yields formamide upon heating:HCOOH + NH3 → HCOO−NH+4HCOO−NH+4 → HCONH2 + H2O. Formamide is also generated by aminolysis of ethyl formate: HCOOCH2CH3 + NH3 → HCONH2 + CH3CH2OH. The current industrial process for the manufacture of formamide involves either the carbonylation of ammonia: CO + NH3 → HCONH2. An alternative two-stage process involves the ammonolysis of methyl formate, which is formed from carbon monoxide and methanol: CO + CH3OH → HCOOCH3HCO2CH3 + NH3 → HCONH2 + CH3OH. Formamide is used in the industrial production of hydrogen cyanide. Formamide has been shown to exhibit hematoxicity in animals and is considered hazardous by prolonged exposure through inhalation, oral intake and dermal absorption. Formamide is a metabolite used for biological monitoring of workers exposed to N-N-dimethylformamide (DMF).(PMID 7622279).
Dihydrolipoamide
Dihydrolipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG ID C00579). It is converted to lipoamide via the enzyme dihydrolipoamide dehydrogenase [EC:1.8.1.4]. Dihydrolipoamide is also a substrate of enzyme Acyltransferases [EC 2.3.1.-]. (KEGG) [HMDB]. Dihydrolipoamide is found in many foods, some of which are enokitake, mugwort, welsh onion, and tea. Dihydrolipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG ID C00579). It is converted to lipoamide via the enzyme dihydrolipoamide dehydrogenase [EC:1.8.1.4]. Dihydrolipoamide is also a substrate of enzyme Acyltransferases [EC 2.3.1.-]. (KEGG).
CYCLOHEXANOL
Cyclohexanol, also known as hexahydrophenol or hexalin, is a member of the class of compounds known as cyclohexanols. Cyclohexanols are compounds containing an alcohol group attached to a cyclohexane ring. Cyclohexanol is soluble (in water) and an extremely weak acidic compound (based on its pKa). Cyclohexanol is a camphor, menthol, and phenol tasting compound found in garden tomato (variety), okra, and sweet basil, which makes cyclohexanol a potential biomarker for the consumption of these food products. Cyclohexanol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cyclohexanol is the organic compound with the formula (CH2)5CHOH. The molecule is related to cyclohexane ring by replacement of one hydrogen atom by a hydroxyl group. This compound exists as a deliquescent colorless solid with a camphor-like odor, which, when very pure, melts near room temperature. Billions of kilograms are produced annually, mainly as a precursor to nylon .
Leukotriene A4
Leukotriene A4 (LTA4) is the first metabolite in the series of reactions leading to the synthesis of all leukotrienes. 5-Lipoxygenase (5-LO) catalyzes the two-step conversion of arachidonic acid to LTA4.The first step consists of the oxidation of arachidonic acid to the unstable intermediate 5-hydroperoxyeicosatetraenoic acid (5-HPETE), and the second step is the dehydration of 5-HPETE to form LTA4. Leukotriene A4, an unstable epoxide, is hydrolyzed to leukotriene B4 or conjugated with glutathione to yield leukotriene C4 and its metabolites, leukotriene D4 and leukotriene E4. The leukotrienes participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. Recent studies also suggest a neuroendocrine role for leukotriene C4 in luteinizing hormone secretion. (PMID: 10591081, 2820055). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Leukotriene A4 (LTA4) is the first metabolite in the series of reactions leading to the synthesis of all leukotrienes. 5-Lipoxygenase (5-LO) catalyzes the two-step conversion of arachidonic acid to LTA4.The first step consists of the oxidation of arachidonic acid to the unstable intermediate 5-hydroperoxyeicosatetraenoic acid (5-HPETE), and the second step is the dehydration of 5-HPETE to form LTA4. Leukotriene A4, an unstable epoxide, is hydrolyzed to leukotriene B4 or conjugated with glutathione to yield leukotriene C4 and its metabolites, leukotriene D4 and leukotriene E4. The leukotrienes participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. Recent studies also suggest a neuroendocrine role for leukotriene C4 in luteinizing hormone secretion. (PMID: 10591081, 2820055)
3-Dehydroquinic acid
3-Dehydroquinic acid belongs to the class of organic compounds known as alpha-hydroxy acids and derivatives. These are organic compounds containing a carboxylic acid substituted with a hydroxyl group on the adjacent carbon. 3-Dehydroquinic acid is an extremely weak basic (essentially neutral) compound (based on its pKa). In most organisms, 3-dehydroquinic acid is synthesized from D-erythrose-4-phosphate in two steps. However, archaea genomes contain no orthologs for the genes that encode these first two steps. Instead, archaeabacteria appear to utilize an alternative pathway in which 3-dehydroquinic acid is synthesized from 6-deoxy-5-ketofructose-1-phosphate and L-aspartate-semialdehyde. These two compounds are first condensed to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate, which cyclizes to 3-dehydroquinic acid. From 3-dehydroquinic acid and on to chorismate, the archaeal pathway appears to be identical to the bacterial pathway. In most organisms, 3-dehydroquinate is synthesized from D-erythrose-4-phosphate in two steps . However, the genomes of the archaea contain no orthologs for the genes that encode these first two steps. Instead, archaeabacteria appear to utilize an alternative pathway in which 3-dehydroquinate is synthesized from 6-deoxy-5-ketofructose-1-phosphate and L-aspartate-semialdehyde . These two compounds are first condensed to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate , which cyclizes to 3-dehydroquinate . From 3-dehydroquinate and on to chorismate , the archaeal pathway appears to be identical to the bacterial pathway [HMDB]. 3-Dehydroquinate is found in many foods, some of which are allium (onion), cashew nut, american cranberry, and common wheat.
Homocitric acid
Homocitric acid (CAS: 3562-74-1) is a normal urinary organic acid (PMID: 14708889). Homocitric acid is a citric acid analogue found as a minor metabolite in urine samples from patients with propionic acidaemia. Homocitric acid is formed by citrate synthase due to propionyl-CoA carboxylase deficiency (by the citrate synthase condensation reaction of alpha-ketoglutarate with acetyl coenzyme A and propionyl coenzyme A) (PMID: 7850997). Homocitric acid has been identified in the human placenta (PMID: 32033212). Homocitric acid is a normal urinary organic acid. (PMID: 14708889)
Hydrogen cyanide
Hydrogen cyanide (with the historical common name of Prussic acid) is a chemical compound with chemical formula HCN. It is a colorless, extremely poisonous liquid that boils slightly above room temperature at 26 °C (79 °F). Hydrogen cyanide is a linear molecule, with a triple bond between carbon and nitrogen. A minor tautomer of HCN is HNC, hydrogen isocyanide. Hydrogen cyanide is weakly acidic with a pKa of 9.2. It partly ionizes in water solution to give the cyanide anion, CN. (Wikipedia) D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents
FADH
Fadh2, also known as 1,5-dihydro-fad or dihydroflavine-adenine dinucleotide, is a member of the class of compounds known as flavin nucleotides. Flavin nucleotides are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. Fadh2 is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Fadh2 can be found in a number of food items such as soft-necked garlic, fruits, winter squash, and black cabbage, which makes fadh2 a potential biomarker for the consumption of these food products. Fadh2 exists in all living species, ranging from bacteria to humans. In humans, fadh2 is involved in several metabolic pathways, some of which include the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, citric acid cycle, and congenital lactic acidosis. Fadh2 is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria, the oncogenic action of l-2-hydroxyglutarate in hydroxygluaricaciduria, and pyruvate dehydrogenase deficiency (E2). FADH is the reduced form of flavin adenine dinucleotide (FAD). FAD is synthesized from riboflavin and two molecules of ATP. Riboflavin is phosphorylated by ATP to give riboflavin 5-phosphate (FMN). FAD is then formed from FMN by the transfer of an AMP moiety from a second molecule of ATP. FADH is generated in each round of fatty acid oxidation, and the fatty acyl chain is shortened by two carbon atoms as a result of these reactions; because oxidation is on the beta carbon, this series of reactions is called the beta-oxidation pathway. In the citric acid cycle, FADH is involved in the harvesting of high-energy electrons from carbon fuels; the citric acid cycle itself neither generates a large amount of ATP nor includes oxygen as a reactant. Instead, the citric acid cycle removes electrons from acetyl CoA and uses these electrons to form FADH.
Anisole
Anisole is a flavouring agent Anisole is a precursor to perfumes, insect pheromones, and pharmaceuticals. For example, synthetic anethole is prepared from anisole. Anisole undergoes electrophilic aromatic substitution reaction more quickly than does benzene, which in turn reacts more quickly than nitrobenzene. The methoxy group is an ortho/para directing group, which means that electrophilic substitution preferentially occurs at these three sites. The enhanced nucleophilicity of anisole vs benzene reflects the influence of the methoxy group, which renders the ring more electron-rich. The methoxy group strongly affects the pi cloud of the ring, moreso than the inductive effect of the electronegative oxygen. Flavouring agent
Benzene
Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms, benzene is classed as a hydrocarbon. Benzene, also known as benzol or [6]annulene, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. Benzene is a natural constituent of crude oil and is one of the elementary petrochemicals. Due to the cyclic continuous pi bonds between the carbon atoms, benzene is classed as an aromatic hydrocarbon. It is sometimes abbreviated PhH. Benzene is a colorless and highly flammable liquid with a sweet smell, and is partially responsible for the aroma around petrol (gasoline) stations. It is used primarily as a precursor to the manufacture of chemicals with more complex structure, such as ethylbenzene and cumene, of which billions of kilograms are produced annually. Although a major industrial chemical, benzene finds limited use in consumer items because of its toxicity. Benzene is formally rated as a carcinogen (by IARC 1) and is also a potentially toxic compound. Benzene has been found to be associated with several diseases such as autism and pervasive developmental disorder not otherwise specified. It is used in processing of modified hop extract
Queuine
Queuine is a highly modified derivative of guanine found in the first position of the anticodon of the transfer RNAs for asp, asn, his and tyr. The original transcripts of these tRNAs contain guanine in this position. All organisms with the exception of yeast and mycoplasma contain queuine. Bacteria synthesize queuine but it cannot be synthesized by higher mammals. Significant amounts of free queuine are present in common plant and animal food products. (PMID 9016755) [HMDB] Queuine is a highly modified derivative of guanine found in the first position of the anticodon of the transfer RNAs for asp, asn, his and tyr. The original transcripts of these tRNAs contain guanine in this position. All organisms with the exception of yeast and mycoplasma contain queuine. Bacteria synthesize queuine but it cannot be synthesized by higher mammals. Significant amounts of free queuine are present in common plant and animal food products. (PMID 9016755).
Acetylene
Polyacetylene is also known as ethyne or ethin. Polyacetylene can be found in german camomile and roman camomile, which makes polyacetylene a potential biomarker for the consumption of these food products. Polyacetylene (IUPAC name: polyethyne) usually refers to an organic polymer with the repeating unit (C2H2)n. The name refers to its conceptual construction from polymerization of acetylene to give a chain with repeating olefin groups. This compound is conceptually important as the discovery of polyacetylene and its high conductivity upon doping helped to launch the field of organic conductive polymers. The high electrical conductivity discovered by Hideki Shirakawa, Alan Heeger, and Alan MacDiarmid for this polymer led to intense interest in the use of organic compounds in microelectronics (organic semiconductors). This discovery was recognized by the Nobel Prize in Chemistry in 2000. Early work in the field of polyacetylene research was aimed at using doped polymers as easily processable and lightweight "plastic metals". Despite the promise of this polymer in the field of conductive polymers, many of its properties such as instability to air and difficulty with processing have led to avoidance in commercial applications .
Hygromycin B
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Hygromycin B is an aminoglycoside antibiotic active against prokaryotic and eukaryotic cells.
2-Nitrophenol
CONFIDENCE standard compound; INTERNAL_ID 1124; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3496; ORIGINAL_PRECURSOR_SCAN_NO 3495 ORIGINAL_PRECURSOR_SCAN_NO 3493; CONFIDENCE standard compound; INTERNAL_ID 1124; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3494 CONFIDENCE standard compound; INTERNAL_ID 1124; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3485; ORIGINAL_PRECURSOR_SCAN_NO 3484 CONFIDENCE standard compound; INTERNAL_ID 1124; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3492; ORIGINAL_PRECURSOR_SCAN_NO 3491 DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3492; CONFIDENCE standard compound; INTERNAL_ID 1124; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; ORIGINAL_PRECURSOR_SCAN_NO 3491 CONFIDENCE standard compound; INTERNAL_ID 1124; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3463; ORIGINAL_PRECURSOR_SCAN_NO 3462 CONFIDENCE standard compound; INTERNAL_ID 1124; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3494; ORIGINAL_PRECURSOR_SCAN_NO 3493
Trypanothione disulfide
This compound belongs to the family of Cyclic Peptides. These are compounds containing a cyclic moiety bearing a peptide backbone
N-Acetyl-9-O-acetylneuraminic acid
N-Acetyl-9-O-acetylneuraminic acid (alternatively 9-O-acetyl-N-acetylneuraminic acid) is an O acetylated sialic acid identified in human colon by using high-pressure liquid chromatography and gas-liquid chromatography/mass spectrometry (PMID 3623000). It also has been suggested that 9-O-acetyl-N-acetylneuraminic acid is an essential component of the cell surface receptor of influenza C virus (PMID 3700379). 9-O-acetyl-N-acetylneuraminic acid is an O acetylated sialic acid identified in human colon by using high-pressure liquid chromatography and gas-liquid chromatography/mass spectrometry. (PMID 3623000) It also has been suggested that 9-O-acetyl-N-acetylneuraminic acid is an essential component of the cell surface receptor of influenza C virus. (PMID 3700379) [HMDB]
Buthionine sulfoximine
Buthionine Sulfoximine is a synthetic amino acid. Buthionine sulfoximine irreversibly inhibits gamma-glutamylcysteine synthase, thereby depleting cells of glutathione, a metabolite that plays a critical role in protecting cells against oxidative stress, and resulting in free radical-induced apoptosis. Elevated glutathione levels are associated with tumor cell resistance to alkylating agents and platinum compounds. By depleting cells of glutathione, this agent may enhance the in vitro and in vivo cytotoxicities of various chemotherapeutic agents in drug-resistant tumors. Buthionine sulfoximine may also exhibit antiangiogenesis activity. (NCI04) D020011 - Protective Agents > D011837 - Radiation-Protective Agents D009676 - Noxae > D000963 - Antimetabolites D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Buthionine sulfoximine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5072-26-4 (retrieved 2024-09-04) (CAS RN: 5072-26-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
5,6-Dihydroxyindole
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D004791 - Enzyme Inhibitors > D065098 - Catechol O-Methyltransferase Inhibitors 5,6-Dihydroxyindole is a substrate for Tyrosinase. [HMDB] 5,6-Dihydroxyindole is a substrate for Tyrosinase.
Indole-5,6-quinone
Indole-5,6-quinone is involved in the tyrosine metabolism pathway. More specifically, indole-5,6-quinone is an intermediate in the production of melanin. Indole-5,6-quinone is produced from 5,6-dihydroxyindole by tyrosinase [EC:1.14.18.1]. [HMDB] Indole-5,6-quinone is involved in the tyrosine metabolism pathway. More specifically, indole-5,6-quinone is an intermediate in the production of melanin. Indole-5,6-quinone is produced from 5,6-dihydroxyindole by tyrosinase [EC:1.14.18.1].
Selenocystine
Selenocystine, also known as 3,3-diselenodialanine, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxyl group (alpha carbon). More specifically, selenocystine is a diselenide consisting of two selenoamino acids that are attached together at their selenium atoms. This particular selenoamino acid is selenocysteine, the selenium analogue to cysteine (selenium being the element directly beneath sulphur in the periodic table); likewise, selenocystine is the selenium analogue to cystine. Since each constituent amino acid has a stereocentre, there are three different stereoisomers of selenocystine: D-selenocystine, L-selenocystine, and meso-selenocystine, the first two of which are optically active. Like other amino acids, L-selenocystine is the most common form within organisms; however, the D- and meso- forms have also been found (PMID: 30920149). Selenocystine is a solid that is moderately soluble in water. Due to the reactivity of selenocysteine, it is rarely encountered; rather, cells store selenium in the less reactive oxidized form of selenocystine or in a methylated form, such as selenomethionine (DOI: 10.1007/978-3-319-92405-2_3). When cells are grown in the absence of selenium, translation of selenoproteins terminates at the UGA codon, resulting in a truncated, non-functional enzyme. Unlike other amino acids present in biological proteins, selenocysteine is not coded for directly in the genetic code. Rather, the tRNA-bound seryl residue is converted to a selenocysteine residue by the pyridoxal phosphate-containing enzyme selenocysteine synthase (PMID: 17194211). Kurt Franke et al. indicated that there was evidence that selenium was in a form similar to that of cysteine, predating Thressa Stadtman’s discovery of the 21st amino acid by four decades (PMID: 26949981; J. Biol. Chem. 111:643). Selenocysteine may be denoted by the short forms Sec, U, or SeCys (Cys is used for cysteine), whereas selenocystine may be denoted by SeCys2. However, the literature sometimes uses SeCys for selenocystine and may cause confusion. Selenocystine has been found in animals, plants, and bacteria. It is being researched as treatment for cancer and for its antioxidant properties (PMID: 24763048, 24030774). Selenium, in its various forms such as selenocystine, is essential for many species, including humans, yet it is also toxic to all organisms; hence, it has come to be referred to as the “essential poison” (PMID: 26949981; 6679541). Selenocystine is a substrate for glutathione peroxidase 1. [HMDB] D000890 - Anti-Infective Agents > D000998 - Antiviral Agents L-Selenocystine is a diselenide-bridged amino acid. L-Selenocystine is a redox-active selenium compound that has both anti- and pro-oxidant actions. L-Selenocystine induces an unfolded protein response, ER stress, and large cytoplasmic vacuolization in HeLa cells and has cytostatic effects in a range of cancer cell types[1].
2-Propyn-1-al
2-Propyn-1-al is involved in the propanoate metabolism system. It is created from 2-Propyn-1-ol through the action of alcohol dehydrogenase [EC:1.1.99.8]. 2-Propyn-1-al is converted to propynoate by aldehyde dehydrogenase [EC:1.2.1.3]. [HMDB] 2-Propyn-1-al is involved in the propanoate metabolism system. It is created from 2-Propyn-1-ol through the action of alcohol dehydrogenase [EC:1.1.99.8]. 2-Propyn-1-al is converted to propynoate by aldehyde dehydrogenase [EC:1.2.1.3].
Propargyl alcohol
A terminal acetylenic compound that is prop-2-yne substituted by a hydroxy group at position 1.
Carbapenem-3-carboxylic acid
A carbapenemcarboxylic acid that is the 3-carboxy derivative of 2,3-didehydro-1-carbapenam. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
Cefotetan
Cefotetan is only found in individuals that have used or taken this drug. It is a semisynthetic cephamycin antibiotic that is administered intravenously or intramuscularly. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative microorganisms. [PubChem]The bactericidal action of cefotetan results from inhibition of cell wall synthesis by binding and inhibiting the bacterial penicillin binding proteins which help in the cell wall biosynthesis. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
P-Dichlorobenzene
1,4-Dichlorobenzene (p-DCB, para-dichlorobenzene) is an organic compound with the formula C6H4Cl2. This colorless solid has a strong odor. In terms of its structure, the molecule consists of two chlorine atoms substituted for hydrogen at opposing sites on a benzene ring. p-DCB is used a pesticide and a deodorant, most familiarly in mothballs in which it is a replacement for the more traditional naphthalene. p-DCB is also used as a precursor in the production of the polymer poly(p-phenylene sulfide). D010575 - Pesticides > D007306 - Insecticides D009676 - Noxae > D002273 - Carcinogens D016573 - Agrochemicals
Megestrol
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03A - Hormonal contraceptives for systemic use > G03AC - Progestogens G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DB - Pregnadien derivatives L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AB - Progestogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000970 - Antineoplastic Agents
2,2,2-Trichloroethanol
2,2,2-trichloroethanol belongs to the family of Primary Alcohols. These are compounds comprising the primary alcohol functional group, with the general strucuture RCOH (R=alkyl, aryl). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic 2,2,2-Trichloroethanol, the active form of Chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1]. 2,2,2-Trichloroethanol, the active form of Chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1].
Ethosuximide
Ethosuximide is only found in individuals that have used or taken this drug. It is an anticonvulsant especially useful in the treatment of absence seizures unaccompanied by other types of seizures. [PubChem]Binds to T-type voltage sensitive calcium channels. Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by mibefradil. A particularity of this type of channels is an opening at quite negative potentials and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle. They may also be involved in the modulation of firing patterns of neurons which is important for information processing as well as in cell growth processes. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AD - Succinimide derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
2-((3-Aminopropyl)amino)ethanethiol
D020011 - Protective Agents > D011837 - Radiation-Protective Agents Amifostine thiol (WR-1065) is an active metabolite of the cytoprotector Amifostine (HY-B0639). Amifostine thiol is a cytoprotective agent with radioprotective abilities. Amifostine thiol activates p53 through a JNK-dependent signaling pathway[1][2][3].
Previtamin D3
Previtamin D3 is an intermediate in the production of Vitamin D. [HMDB] Previtamin D3 is an intermediate in the production of Vitamin D.
grams iodine
D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D009676 - Noxae > D007509 - Irritants D004396 - Coloring Agents
Pentadecane
Pentadecane, also known as ch3-[ch2]13-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentadecane is considered to be a hydrocarbon lipid molecule. Pentadecane is an alkane and waxy tasting compound and can be found in a number of food items such as dill, papaya, yellow bell pepper, and pepper (c. annuum), which makes pentadecane a potential biomarker for the consumption of these food products. Pentadecane can be found primarily in saliva. Pentadecane is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pentadecane is an alkane hydrocarbon with the chemical formula C15H32 . Pentadecane belongs to the family of Acyclic Alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2
Withanolide
Withanolides, which are extracted from Withania somnifera, are employed in the treatment of arthritis and are known to be potent inhibitors of angiogenesis, inflammation and oxidative stress. Withanolides can indeed inhibit the activation of NF-κB and NF-κB-regulated gene expression, which could explain their anti-arthritic actions. W. somnifera root powder has suppressive effect on arthritis by reducing amplification and propagation of the inflammatory response, without causing any gastric damage. (PMID: 17475558, 3248848, 17084827).
Davidigenin
A member of the class of dihydrochalcones that is dihydrochalcone substituted by hydroxy groups at positions 4, 2, and 4 respectively.
Diffutin
A flavan glycoside that is (2S)-flavan substituted by a hydroxy group at position 7, methoxy groups at positions 3 and 4 and a beta-D-glucopyranosyloxy group at position 5 respectively.
deoxymannojirimycin
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors
2,3-Dimercapto-1-propanesulfonic acid
D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes
methoxychlor
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Gramicidin S
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Origin: Microbe; SubCategory_DNP: Peptides, Cyclic peptides, Tyrothricins Gramicidin S (Gramicidin soviet) is a cationic cyclic peptide antibiotic. Gramicidin S is active against Gram-negative and Gram-positive bacteria by perturbing integrity of the bacterial membranes. Gramicidin S also inhibits cytochrome bd quinol oxidase[1].
geldanamycin
A 19-membered macrocyle incorporating a benzoquinone ring and a lactam functionality. it is an ansamycin antibiotic and thus shows antimicrobial activity against many gram-positive and some gram-negative bacteria. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents Geldanamycin is a Hsp90 inhibitor with antimicrobial activity against many Gram-positive and some Gram-negative bacteria. Geldanamycin has anti-influenza virus H5N1 activities.
Dexniguldipine
D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000970 - Antineoplastic Agents
MK 571
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
Calpain Inhibitor I
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D007976 - Leupeptins
FA 18:1
trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.
beta-Ionone
Beta-ionone is a colorless to light yellow liquid with an odor of cedar wood. In very dilute alcoholic solution the odor resembles odor of violets. Used in perfumery. Beta-ionone is an ionone that is but-3-en-2-one substituted by a 2,6,6-trimethylcyclohex-1-en-1-yl group at position 4. It has a role as an antioxidant and a fragrance. beta-Ionone is a natural product found in Nepeta nepetella, Vitis rotundifolia, and other organisms with data available. beta-Ionone is a metabolite found in or produced by Saccharomyces cerevisiae. beta-Ionone, also known as (e)-b-ionone or trans-beta-ionone, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Found in many essential oils including oil of Boronia megastigma (brown boronia) and coml. ionone. Flavouring agent An ionone that is but-3-en-2-one substituted by a 2,6,6-trimethylcyclohex-1-en-1-yl group at position 4. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1]. β-Ionone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=79-77-6 (retrieved 2024-11-06) (CAS RN: 79-77-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Isopentyl acetate
Isopentyl acetate, also known as isoamyl acetate or amylacetic ester, belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Isopentyl acetate is an ester formed from isoamyl alcohol and acetic acid. It is a colorless liquid that is only slightly soluble in water, but very soluble in most organic solvents. Isopentyl acetate has a sweet, fruity banana odor and similar sweet, fruity banana taste. Isopentyl acetate is used to confer banana flavor in foods. Isopentyl acetate is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Outside of the human body, Isopentyl acetate is found, on average, in the highest concentration within a few different foods, such as red wines, white wines, and beers. Isopentyl acetate has also been detected, but not quantified in, several different foods, such as blackberries (Rubus), figs (Ficus carica), red teas, bananas (Musa acuminata), and black elderberries (Sambucus nigra). This could make isopentyl acetate a potential biomarker for the consumption of these foods. Isopentyl acetate occurs naturally in the banana plant and it is also produced synthetically. Based on a literature review a significant number of articles have been published on Isopentyl acetate. Pure isopentyl acetate, or mixtures of isopentyl acetate, amyl acetate, and other flavors may be referred to as banana oil. Because of its intense, pleasant odor and its low toxicity, isopentyl acetate is used to test the effectiveness of respirators or gas masks. Isopentyl acetate is released by a honey bees sting where it serves as a pheromone beacon to attract other bees and provoke them to sting. Present in many fruit aromas, especies banana. It is used in banana flavouring
Teprenone
A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D000970 - Antineoplastic Agents Same as: D01827
Potassium nitrate (KNO3)
Preservative for cod roe, cured red meat and poultry products. Potassium nitrate (KNO3) is found in fishes, animal foods, and common sage. D053834 - Explosive Agents Same as: D02051
Levuglandin E2
Levuglandin E2 is a levuglandin generated in the cyclooxygenase (COX) pathway. Levuglandins (LGs) and their stereo and structural isomers are extraordinarily reactive γ-ketoaldehydes that are generated by rearrangements of prostanoid endoperoxide intermediates of polyene cyclooxygenation. Their rapid adduction with biological nucleophiles results, inter alia, in pathological modifications of proteins and DNA. It also complicates their detection. Cyclooxygenase-promoted lipid oxidation is a pivotal step in the biosynthesis of an array of physiologically active metabolites. COX fosters a highly regio and stereoselective cyclooxygenation of arachidonic acid (AA) to deliver a single, enantiomerically pure endoperoxide, PGH2, that is a branch point in the biosynthesis of numerous hormone-like mediators of cellular activities. Spontaneous rearrangements of PGH2 were known to generate prostaglandins (PG) PGD2 and PGE2. (PMID: 15752459) [HMDB] Levuglandin E2 is a levuglandin generated in the cyclooxygenase (COX) pathway. Levuglandins (LGs) and their stereo and structural isomers are extraordinarily reactive γ-ketoaldehydes that are generated by rearrangements of prostanoid endoperoxide intermediates of polyene cyclooxygenation. Their rapid adduction with biological nucleophiles results, inter alia, in pathological modifications of proteins and DNA. It also complicates their detection. Cyclooxygenase-promoted lipid oxidation is a pivotal step in the biosynthesis of an array of physiologically active metabolites. COX fosters a highly regio and stereoselective cyclooxygenation of arachidonic acid (AA) to deliver a single, enantiomerically pure endoperoxide, PGH2, that is a branch point in the biosynthesis of numerous hormone-like mediators of cellular activities. Spontaneous rearrangements of PGH2 were known to generate prostaglandins (PG) PGD2 and PGE2. (PMID: 15752459).
Furan
Furan is a member of the class of compounds known as furans. These are molecules containing a heterocyclic organic group consisting of a five-membered aromatic ring with four carbon atoms and one oxygen. Furan is aromatic because one of the lone pairs of electrons on the oxygen atom is delocalized into the ring, creating a 4n+2 aromatic system similar to benzene. Because of the aromaticity, furan is flat and lacks discrete double bonds. Furan is a colourless, flammable, highly volatile liquid with a boiling point close to room temperature (31 °C). It is soluble in common organic solvents, including alcohol, ether, and acetone, but is insoluble in water. It has a strong ethereal odour. Furan is found in heat-treated (e.g. cooked, roasted, baked, pasteurized, and sterilized) commercial foods and is produced through thermal degradation of natural food constituents (PMID:22641279). It can be found in roasted coffee, instant coffee, and processed baby foods (PMID:22641279). In particular, the highest furan levels can be detected in coffee, with mean values between 42 and 3 660 ng/g for brewed coffee and roasted coffee beans. Furan can also be detected at levels between 0.2 and 3.2 ng/g in infant formula, from 22 to 24 ng/g in baked beans, from 13 to 17 ng/g in meat products, and from 23 to 24 ng/g in soups. In soy sauce, furan is detectable at 27 ng/g (PMID:26483883). Research has indicated that coffee made in espresso makers and, above all, coffee made from capsules, contains more furan than that made in traditional drip coffee makers, although the levels are still within safe health limits. Various pathways have been reported for the formation of furan: (1) thermal degradation and/or thermal rearrangement of carbohydrates in the presence of amino acids, (2) thermal degradation of certain amino acids (aspartic acid, threonine, alpha-alanine, serine, and cysteine), (3) oxidation of ascorbic acid at higher temperatures, and (4) oxidation of polyunsaturated fatty acids and carotenoids (PMID:26483883). Several studies have reported that furan formation occurs to a large extent during the Maillard reaction. The Maillard reaction involves the thermal degradation and rearrangement of carbohydrates (i.e. non-enzymatic browning reactions during food processing and cooking). Reducing hexoses often go through the Maillard reaction in the presence of amino acids and produce reactive intermediates such as 1-deoxy- and 3-deoxyosones, aldotetrose, and 2-deoxy-3-keto-aldotetrose. 2-Deoxy-3-keto-aldotetrose typically goes through retro-aldol cleavage leading to 3-deoxyosone which undergoes alpha-dicarbonyl cleavage, followed by oxidation and decarboxylation to form 2-deoxyaldotetrose, which is a direct precursor of furan. In addition to the formation of furan via carbohydrate degradation, furan can also be formed through thermal degradation of certain amino acids. Specifically, the amino acids that can form acetaldehyde and glycolaldehyde can produce furan by aldol condensation and cyclization (PMID:26483883). Furan is toxic and may be carcinogenic. In particular, furan is a potent hepatotoxin and hepatocarcinogen in rodents, causing hepatocellular adenomas and carcinomas in rats and mice, and high incidences of cholangiocarcinomas in rats at doses ≥ 2 mg/kg (PMID:22641279).
2-Ethoxyethanol
2-Ethoxyethanol is a diluent in colour additive mixtures for marking food. 2-Ethoxyethanol, also known by the trademark Cellosolve or ethyl cellosolve, is a solvent used widely in commercial and industrial applications. It is a clear, colorless, nearly odorless liquid that is miscible with water, ethanol, diethyl ether, acetone, and ethyl acetate. As with other glycol ethers, 2-ethoxyethanol has the useful property of being able to dissolve chemically diverse compounds. It will dissolve oils, resins, grease, waxes, nitrocellulose, and lacquers. This is an ideal property as a multi-purpose cleaner and therefore 2-ethoxyethanol is used in products such as varnish removers and degreasing solutions
Phenol-formaldehyde, cross-linked, tetraethylenepentamine activated
Phenol-formaldehyde, cross-linked, tetraethylenepentamine activated is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
Benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide
Benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide, also known as BPDE or benzo(a)Pyrene diol epoxide, is classified as a member of the Pyrenes. Pyrenes are compounds containing a pyrene moiety, which consists four fused benzene rings, resulting in a flat aromatic system. Benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide is considered to be practically insoluble (in water) and relatively neutral. It is a carcinogenic metabolite of benzo[a]pyrene (BaP) which forms adducts with DNA and proteins and is hydrolysed to BPDE tetrols. It is used as a marker for BaP exposure (a surrogate marker for PAHs). D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
2-[(4-{2-[(4-Cyclohexylbutyl)(cyclohexylcarbamoyl)amino]ethyl}phenyl)sulfanyl]-2-methylpropanoic acid
GW7647 is a potent PPARα agonist, with EC50s of 6 nM, 1.1 μM, and 6.2 μM for human PPARα, PPARγ and PPARδ, respectively.
5-Formyluracil
A pyrimidone resulting from the formal oxidation of the alcoholic hydroxy group of 5-hydroxymethyluracil to the corresponding aldehyde. It is a major one-electron photooxidation product of thymine in oligodeoxynucleotides. D009676 - Noxae > D009153 - Mutagens
Hygromycin B
Hygromycin B is a fda approved antibiotic food additive for swine and poultry Hygromycin B is an antibiotic produced by the bacterium Streptomyces hygroscopicus. It is an aminoglycoside that kills bacteria, fungi and higher eukaryotic cells by inhibiting protein synthesis. In the laboratory it is used for the selection and maintenance of prokaryotic and eukaryotic cells that contain the hygromycin resistance gene. The resistance gene is a kinase that inactivates hygromycin B through phosphorylation. Since the discovery of hygromycin-resistance genes, hygromycin B has become a standard selection antibiotic in gene transfer experiments in many prokaryotic and eukaryotic cells D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents FDA approved antibiotic food additive for swine and poultry Hygromycin B is an aminoglycoside antibiotic active against prokaryotic and eukaryotic cells.
beta-Bixin
beta-Bixin is a constituent of the pigment annatto found in Bixa orellana (achiote). Annatto has been linked with many cases of food-related allergies, and is the only natural food coloring believed to cause as many allergic-type reactions as artificial food coloring. Because it is a natural colorant, companies using annatto may label their products "all natural" or "no artificial colors". Annatto, sometimes called Roucou, is a derivative of the achiote trees of tropical regions of the Americas, used to produce a red food coloring and also as a flavoring. Its scent is described as "slightly peppery with a hint of nutmeg" and flavor as "slightly sweet and peppery". It is a major ingredient in the popular spice blend "Sazn" made by Goya Foods D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Constituent of Bixa orellana (annatto) Beta-Bixin is a diterpenoid. Bixin (BX), isolated from the seeds of Bixa orellana, is a carotenoid, possessing anti-inflammatory, anti-tumor and anti-oxidant activities. Bixin treatment ameliorated cardiac dysfunction through inhibiting fibrosis, inflammation and reactive oxygen species (ROS) generation[1].
Carveol
Carveol is a clear colorless liquid. Insoluble in water. Carveol is a limonene monoterpenoid that is cyclohex-2-en-1-ol substituted by a methyl group at position 2 and a prop-1-en-2-yl group at position 5. It has a role as a volatile oil component and a plant metabolite. Carveol is a natural product found in Echinophora tournefortii, Trachyspermum anethifolium, and other organisms with data available. Present in oil of grapefruit (Citrus paradisi), mandarin (Citrus reticulata), blackcurrant berries, celery, black tea, dill, caraway seeds and lambs lettuce. Flavouring agent. Carveol is found in many foods, some of which are fruits, parsley, tea, and cumin. Carveol is found in caraway. Carveol is present in oil of grapefruit (Citrus paradisi), mandarin (Citrus reticulata), blackcurrant berries, celery, black tea, dill, caraway seeds and lambs lettuce. Carveol is a flavouring agent A limonene monoterpenoid that is cyclohex-2-en-1-ol substituted by a methyl group at position 2 and a prop-1-en-2-yl group at position 5. Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.
Disulfiram
A carbamate derivative used as an alcohol deterrent. It is a relatively nontoxic substance when administered alone, but markedly alters the intermediary metabolism of alcohol. When alcohol is ingested after administration of disulfiram, blood acetaldehyde concentrations are increased, followed by flushing, systemic vasodilation, respiratory difficulties, nausea, hypotension, and other symptoms (acetaldehyde syndrome). It acts by inhibiting aldehyde dehydrogenase. [PubChem] P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AA - Sulfur containing products N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BB - Drugs used in alcohol dependence C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2160 - Proteasome Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D065086 - Acetaldehyde Dehydrogenase Inhibitors D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C1744 - Multidrug Resistance Modulator C471 - Enzyme Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Disulfiram (Tetraethylthiuram disulfide) is a specific inhibitor of?aldehyde-dehydrogenase (ALDH1), used for the treatment of chronic alcoholism by producing an acute sensitivity to alcohol. Disulfiram inhibits gasdermin D (GSDMD) pore formation in liposomes and inflammasome-mediated pyroptosis and IL-1β secretion in human and mouse cells. Disulfiram, a copper ion carrier,?with?Cu2+ increases intracellular ROS levels and induces cuproptosis[1][2][3][4][5][6].
Neohesperidose
Neohesperidose is found in citrus. Neohesperidose occurs in plants as disaccharide component of
3-Nitrobenzanthrone
Indirubin-3'-monoxime
Indirubin-3'-monoxime is a potent GSK-3β inhibitor, and weakly inhibits 5-Lipoxygenase, with IC50s of 22 nM and 7.8-10 μM, respectively; Indirubin-3'-monoxime also shows inhibitory activities against CDK5/p25 and CDK1/cyclin B, with IC50s of 100 and 180 nM.
beta-D-Glucopyranose, 1-thio-, 1-(5-(methylsulfinyl)-N-(sulfooxy)pentanimidate)
5,6-dihydrothymine
Dihydrothymine, also known as 5,6-dihydro-5-methyluracil or 5,6-dihydrothymine, (S)-isomer, is a member of the class of compounds known as hydropyrimidines. Hydropyrimidines are compounds containing a hydrogenated pyrimidine ring (i.e. containing less than the maximum number of double bonds.). Dihydrothymine is soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydrothymine can be found in a number of food items such as hyssop, arrowroot, nopal, and red rice, which makes dihydrothymine a potential biomarker for the consumption of these food products. Dihydrothymine can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human prostate tissue. Dihydrothymine exists in all living organisms, ranging from bacteria to humans. In humans, dihydrothymine is involved in the pyrimidine metabolism. Dihydrothymine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, dihydrothymine is found to be associated with beta-ureidopropionase deficiency and dihydropyrimidinase deficiency. Dihydrothymine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Dihydrothymine is an intermediate in the metabolism of thymine . Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine to 5, 6-dihydrothymine then dihydropyrimidinase hydrolyzes 5, 6-dihydrothymine to N-carbamyl-b-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-b-alanine to beta-alanine. Accumulation of dihydrothymine in the body has been shown to be toxic (T3DB). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].
Tyrosine
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.
Glucoraphanin
A thia-glucosinolic acid that is glucoerucin in which the sulfur atom of the methyl thioether group has been oxidised to the corresponding sulfoxide. Acquisition and generation of the data is financially supported by the Max-Planck-Society Glucoraphanin is under investigation in clinical trial NCT01879878 (Pilot Study Evaluating Broccoli Sprouts in Advanced Pancreatic Cancer [POUDER Trial]). Glucoraphanin is a natural product found in Arabidopsis thaliana, Brassica, and Raphanus sativus with data available. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects.
OXAMIC ACID
A dicarboxylic acid monoamide resulting from the formal condensation of one of the carboxy groups of oxalic acid with ammonia.
Xanthohumol
C308 - Immunotherapeutic Agent > C63817 - Chemokine Receptor Antagonist > C107589 - CXCR4 Inhibitor Acquisition and generation of the data is financially supported by the Max-Planck-Society D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D006133 - Growth Substances > D006131 - Growth Inhibitors C1892 - Chemopreventive Agent IPB_RECORD: 2221; CONFIDENCE confident structure IPB_RECORD: 4121; CONFIDENCE confident structure IPB_RECORD: 4101; CONFIDENCE confident structure Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV). Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV). Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV).
Quercetin
Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
L(-)-Carvone
A p-menthane monoterpenoid that consists of cyclohex-2-enone having methyl and isopropenyl substituents at positions 2 and 5, respectively. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2]. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2]. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2]. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2].
4-Hydroxycoumarin
4-hydroxycoumarin is a hydroxycoumarin that is coumarin in which the hydrogen at position 4 is replaced by a hydroxy group. It is a conjugate acid of a 4-hydroxycoumarin(1-). 4-Hydroxycoumarin is a natural product found in Vitis vinifera, Ruta graveolens, and Apis cerana with data available. A hydroxycoumarin that is coumarin in which the hydrogen at position 4 is replaced by a hydroxy group. D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins 4-hydroxycoumarin is an important fungal metabolite from the precursor coumarin, and its production leads to further fermentative production of the natural anticoagulant dicoumarol. 4-Hydroxy-2H-1-benzopyran-2-one is found in beer and grape wine. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2338 INTERNAL_ID 2338; CONFIDENCE Reference Standard (Level 1) 4-Hydroxycoumarin, a coumarin derivative, is one of the most versatile heterocyclic scaffolds and is frequently applied in the synthesis of various organic compounds. 4-Hydroxycoumarin possesses both electrophilic and nucleophilic properties. 4-Hydroxycoumarin derivatives are employed as the anticoagulant, antibacterial, antifungal, antiviral, antitumor, antiprotozoal, insecticidal, antimycobacterial, antimutagenic, antioxidant, anti-inflammatory agents, HIV protease inhibitors and tyrosine kinase inhibitors[1]. 4-Hydroxycoumarin, a coumarin derivative, is one of the most versatile heterocyclic scaffolds and is frequently applied in the synthesis of various organic compounds. 4-Hydroxycoumarin possesses both electrophilic and nucleophilic properties. 4-Hydroxycoumarin derivatives are employed as the anticoagulant, antibacterial, antifungal, antiviral, antitumor, antiprotozoal, insecticidal, antimycobacterial, antimutagenic, antioxidant, anti-inflammatory agents, HIV protease inhibitors and tyrosine kinase inhibitors[1].
INDIRUBIN-3-MONOXIME
A member of the class of biindoles that is indirubin in which the keto group at position 3 has undergone condensation with hydroxylamine to form the corresponding oxime. Indirubin-3'-monoxime is a potent GSK-3β inhibitor, and weakly inhibits 5-Lipoxygenase, with IC50s of 22 nM and 7.8-10 μM, respectively; Indirubin-3'-monoxime also shows inhibitory activities against CDK5/p25 and CDK1/cyclin B, with IC50s of 100 and 180 nM.
N-Nitrosodiethylamine
N-nitrosodiethylamine is a clear slightly yellow liquid. Boiling point 175-177 °C. Can reasonably be anticipated to be a carcinogen. Used as a gasoline and lubricant additive and as an antioxidant and stabilizer in plastics. N-nitrosodiethylamine is a nitrosamine that is N-ethylethanamine substituted by a nitroso group at the N-atom. It has a role as a mutagen, a hepatotoxic agent and a carcinogenic agent. N-Nitrosodiethylamine is a synthetic light-sensitive, volatile, clear yellow oil that is soluble in water, lipids, and other organic solvents. It is used as gasoline and lubricant additive, antioxidant, and stabilizer for industry materials. When heated to decomposition, N-nitrosodiethylamine emits toxic fumes of nitrogen oxides. N-Nitrosodiethylamine affects DNA integrity, probably by alkylation, and is used in experimental research to induce liver tumorigenesis. It is considered to be reasonably anticipated to be a human carcinogen. (NCI05) A nitrosamine derivative with alkylating, carcinogenic, and mutagenic properties. D009676 - Noxae > D000477 - Alkylating Agents N-Nitrosodiethylamine (Diethylnitrosamine) is a potent hepatocarcinogenic dialkylnitrosoamine. N-Nitrosodiethylamine is mainly present in tobacco smoke, water, cheddar cheese, cured, fried meals and many alcoholic beverages. N-Nitrosodiethylamine is responsible for the changes in the nuclear enzymes associated with DNA repair/replication. N-Nitrosodiethylamine results in various tumors in all animal species. The main target organs are the nasal cavity, trachea, lung, esophagus and liver.
Paliperidone
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics CONFIDENCE standard compound; INTERNAL_ID 1568 Paliperidone (9-Hydroxyrisperidone), the major active metabolite of Risperidone, is a dopamine D2 antagonist and 5-HT2A antagonist. Paliperidone is also active as an antagonist at α1 and α2 adrenergic receptors and H1-histaminergic receptors. Paliperidone, a antipsychotic agent, shows efficacy against schizophrenia[1]. Paliperidone (9-Hydroxyrisperidone), the major active metabolite of Risperidone, is a dopamine D2 antagonist and 5-HT2A antagonist. Paliperidone is also active as an antagonist at α1 and α2 adrenergic receptors and H1-histaminergic receptors. Paliperidone, a antipsychotic agent, shows efficacy against schizophrenia[1].
Levetiracetam
C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C26170 - Protective Agent > C1509 - Neuroprotective Agent CONFIDENCE standard compound; INTERNAL_ID 1605
Sinapine
Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2601; CONFIDENCE confident structure Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].
Tyrosine
An alpha-amino acid that is phenylalanine bearing a hydroxy substituent at position 4 on the phenyl ring. Annotation level-2 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 56 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 3 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.
mirtazapine
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants Mirtazapine (Org3770) is a potent and orally active noradrenergic and specific serotonergic antidepressant (NaSSA) agent. Mirtazapine is also a 5-HT2, 5-HT3, histamine H1 receptor and α2-adrenoceptor antagonist with pKi values of 8.05, 8.1, 9.3 and 6.95, respectively[1][2].
2,2'-Dihydroxydiethylamine
A member of the class of ethanolamines that is ethanolamine having a N-hydroxyethyl substituent. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ZBCBWPMODOFKDW-UHFFFAOYSA-N_STSL_0222_Diethanolamine_0002fmol_190114_S2_LC02MS02_004; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Diethanolamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=111-42-2 (retrieved 2024-11-05) (CAS RN: 111-42-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
carnosine
A dipeptide that is the N-(beta-alanyl) derivative of L-histidine. C26170 - Protective Agent > C275 - Antioxidant L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging. L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging. L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging.
Uracil
A common and naturally occurring pyrimidine nucleobase in which the pyrimidine ring is substituted with two oxo groups at positions 2 and 4. Found in RNA, it base pairs with adenine and replaces thymine during DNA transcription. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ISAKRJDGNUQOIC_STSL_0177_Uracil_8000fmol_180430_S2_LC02_MS02_198; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.
N-Acetyl-L-leucine
The N-acetyl derivative of L-leucine. N-Acetyl-L-leucine is an endogenous metabolite.
thymine
A pyrimidine nucleobase that is uracil in which the hydrogen at position 5 is replaced by a methyl group. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RWQNBRDOKXIBIV_STSL_0176_Thymine_2000fmol_180506_S2_LC02_MS02_138; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.
δ-Tocotrienol
A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2 and 8 and a farnesyl chain at position 2.
trans-Vaccenic acid
The trans- isomer of vaccenic acid. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.
Violaxanthin
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Cucurbitachrome 1 is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Cucurbitachrome 1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cucurbitachrome 1 can be found in a number of food items such as italian sweet red pepper, herbs and spices, fruits, and red bell pepper, which makes cucurbitachrome 1 a potential biomarker for the consumption of these food products. (all-e)-violaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone (all-e)-violaxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (all-e)-violaxanthin can be found in a number of food items such as orange bell pepper, green bell pepper, passion fruit, and yellow bell pepper, which makes (all-e)-violaxanthin a potential biomarker for the consumption of these food products.
Cafestol
Cafestol is an organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). It has a role as a plant metabolite, an apoptosis inducer, a hypoglycemic agent, an angiogenesis inhibitor, an antineoplastic agent, an antioxidant and an anti-inflammatory agent. It is an organic heteropentacyclic compound, a tertiary alcohol, a diterpenoid, a member of furans and a primary alcohol. Cafestol is a natural product found in Coffea arabica, Diplospora dubia, and other organisms with data available. An organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1].
Dihydrothymine
A pyrimidone obtained by formal addition of hydrogen across the 5,6-position of thymine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].
Selenocystine
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
benzaldehyde
An arenecarbaldehyde that consists of benzene bearing a single formyl substituent; the simplest aromatic aldehyde and parent of the class of benzaldehydes.
Topotecan
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CE - Topoisomerase 1 (top1) inhibitors C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C1748 - Topoisomerase Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
pemoline
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
Crustecdysone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials SubCategory_DNP: : The sterols, Cholestanes Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].
Bixin
A carotenoic acid that is the 6-monomethyl ester of 9-cis-6,6-diapocarotene-6,6-dioic acid. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Bixin (BX), isolated from the seeds of Bixa orellana, is a carotenoid, possessing anti-inflammatory, anti-tumor and anti-oxidant activities. Bixin treatment ameliorated cardiac dysfunction through inhibiting fibrosis, inflammation and reactive oxygen species (ROS) generation[1].
Imidacloprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents D016573 - Agrochemicals
vigabatrin
N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D004791 - Enzyme Inhibitors Vigabatrin (γ-Vinyl-GABA), an inhibitory neurotransmitter GABA vinyl-derivative, is an orally active and irreversible GABA transaminase inhibitor. Vigabatrin is an antiepileptic agent, which acts by increasing GABA levels in the brain by inhibiting the catabolism of GABA by GABA transaminase[1][2][3].
disopyramide
C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
Azulene
One micro litter of the liquid sample was dropped in a 10 mL glass vial. The vial was placed under the DART ion source.; Direct analysis in real time (DART) is a method of atmospheric pressure chemical ionization (APCI). Protons, H+, generated by glow discharge ionization of the He gas in the ionization chamber, DART-SVP (IonSense Inc., MA, USA), were major reactant ions for the chemical ionization of samples.; The interface introducing the product ions to the mass spectrometer was Vapur Interface (AMR. Inc., Tokyo, Japan). The pressure in the interface was 710 Torr (96.3 kPa).; 1 mg of azulene was placed on glass capillary. The capillary was placed in the gas flow that ran from the ion source.; Azulene was purchased from TCI A0634.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].
ethosuximide
N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AD - Succinimide derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
Zerumbone
Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2]. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2].
Leukotriene A4
A leukotriene that is the (5S,6S)-epoxy derivative of (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid.
SFE 10:0
A fatty acid ethyl ester resulting from the formal condensation of octanoic acid with ethanol. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1]. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1].
N-HEPTADECANE
A straight-chain alkane with 17 carbon atoms. It is a component of essential oils from plants like Opuntia littoralis and Annona squamosa.
Pentadecane
A straight-chain alkane with 15 carbon atoms. It is a component of volatile oils isolated from plants species like Scandix balansae.
Withanolide
A withanolide that is 5,6:22,26-diepoxyergosta-2,24-diene-1,26-dione substituted by hydroxy groups at positions 4 and 22 (the 4beta,5beta,6beta,22R stereoisomer). Isolated from Tubocapsicum anomalum and Withania somnifera, it exhibits cytotoxic activity. Withanolides, which are extracted from Withania somnifera, are employed in the treatment of arthritis and are known to be potent inhibitors of angiogenesis, inflammation and oxidative stress. Withanolides can indeed inhibit the activation of NF-κB and NF-κB-regulated gene expression, which could explain their anti-arthritic actions. W. somnifera root powder has suppressive effect on arthritis by reducing amplification and propagation of the inflammatory response, without causing any gastric damage. (PMID: 17475558, 3248848, 17084827) [HMDB]
Withanolide
naphthalene
An aromatic hydrocarbon comprising two fused benzene rings. It occurs in the essential oils of numerous plant species e.g. magnolia.
Dexniguldipine
D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000970 - Antineoplastic Agents C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker C1744 - Multidrug Resistance Modulator C93038 - Cation Channel Blocker
1-Palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol))
UNII:76LB1G2X6V
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
methoxychlor
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
β-Ionone
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1]. β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1].
Emtricitabine
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent Same as: D01199
Atractylenolide I
Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent. Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent.
Quertin
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
azulen
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].
cuminal
Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].
Pirod
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.
LS-871
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1]. β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1].
623-05-2
4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4]. 4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4].
Thymin
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.
Ethanamine
143-25-9
trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.
Ethapon
C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic 2,2,2-Trichloroethanol, the active form of Chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1]. 2,2,2-Trichloroethanol, the active form of Chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1].
beta-D-Glucopyranose, 1-thio-, 1-(5-(methylsulfinyl)-N-(sulfooxy)pentanimidate)
4-methylsulfinylbutyl glucosinolate is a member of the class of compounds known as alkylglucosinolates. Alkylglucosinolates are organic compounds containing a glucosinolate moiety that carries an alkyl chain. 4-methylsulfinylbutyl glucosinolate is soluble (in water) and an extremely strong acidic compound (based on its pKa). 4-methylsulfinylbutyl glucosinolate can be found in a number of food items such as sweet cherry, japanese chestnut, macadamia nut (m. tetraphylla), and oriental wheat, which makes 4-methylsulfinylbutyl glucosinolate a potential biomarker for the consumption of these food products.
Hydrogen cyanide
A one-carbon compound consisting of a methine group triple bonded to a nitrogen atom D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents Hydrogen cyanide, also known as hydrocyanic acid or cyanide, is a member of the class of compounds known as nitriles. Nitriles are compounds having the structure RC#N; thus C-substituted derivatives of hydrocyanic acid, HC#N. Hydrogen cyanide is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Hydrogen cyanide can be found in a number of food items such as kiwi, java plum, yellow wax bean, and mamey sapote, which makes hydrogen cyanide a potential biomarker for the consumption of these food products. Hydrogen cyanide exists in all living organisms, ranging from bacteria to humans. Hydrogen cyanide is a non-carcinogenic (not listed by IARC) potentially toxic compound. Hydrogen cyanide (HCN), sometimes called prussic acid, is a chemical compound with the chemical formula HCN. It is a colorless, extremely poisonous and inflammable liquid that boils slightly above room temperature, at 25.6 °C (78.1 °F). HCN is produced on an industrial scale and is a highly valuable precursor to many chemical compounds ranging from polymers to pharmaceuticals . Antidotes to cyanide poisoning include hydroxocobalamin and sodium nitrite, which release the cyanide from the cytochrome system, and rhodanase, which is an enzyme occurring naturally in mammals that combines serum cyanide with thiosulfate, producing comparatively harmless thiocyanate. Oxygen therapy can also be administered (L97) (T3DB).
Jujuboside
Jujuboside A is a triterpenoid. (2S,3R,4R,5R,6S)-2-[(2S,3R,4S,5S)-4-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-[[(1S,2R,5R,7S,10R,11R,14R,15S,16S,18R,20S)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-enyl)-19,21-dioxahexacyclo[18.2.1.01,14.02,11.05,10.015,20]tricosan-7-yl]oxy]oxan-3-yl]oxy-6-methyloxane-3,4,5-triol is a natural product found in Ziziphus jujuba, Ziziphus lotus, and Ziziphus jujuba var. spinosa with data available. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety.
Saponin V
Chikusetsusaponin-V is a triterpenoid saponin. It has a role as a metabolite. Ginsenoside Ro is a natural product found in Panax vietnamensis, Bassia indica, and other organisms with data available. See also: Asian Ginseng (part of). A natural product found in Panax japonicus var. major. Ginsenoside Ro (Polysciasaponin P3; Chikusetsusaponin 5; Chikusetsusaponin V) exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155 ?μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS. Ginsenoside Ro (Polysciasaponin P3; Chikusetsusaponin 5; Chikusetsusaponin V) exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155 ?μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS.
Sinapine
Sugar phosphate, also known as sinapoylcholine or sinapine, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Sugar phosphate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sugar phosphate can be found in a number of food items such as common sage, tea leaf willow, broccoli, and sweet bay, which makes sugar phosphate a potential biomarker for the consumption of these food products. Sugar phosphate exists in all living organisms, ranging from bacteria to humans. Sinapine (CAS: 18696-26-9), also known as sinapoylcholine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Sinapine is an extremely weak basic (essentially neutral) compound (based on its pKa). Sinapine has been detected, but not quantified, in garden cress and horseradish. Sinapine is found in brassicas. It is a storage protein isolated from the seeds of Brassica napus (rape). This could make sinapine a potential biomarker for the consumption of these foods. Sinapine is an acylcholine in which the acyl group specified is sinapoyl. It has a role as a photosynthetic electron-transport chain inhibitor, an antioxidant and a plant metabolite. It is functionally related to a trans-sinapic acid. Sinapine is a natural product found in Alliaria petiolata, Isatis quadrialata, and other organisms with data available. An acylcholine in which the acyl group specified is sinapoyl. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].
canthinone
Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. An indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].
erumbone
Zerumbone is a sesquiterpenoid and cyclic ketone that is (1E,4E,8E)-alpha-humulene which is substituted by an oxo group at the carbon atom attached to two double bonds. It is obtained by steam distillation from a type of edible ginger, Zingiber zerumbet Smith, grown particularly in southeast Asia. It has a role as an anti-inflammatory agent, a plant metabolite and a glioma-associated oncogene inhibitor. It is a sesquiterpenoid and a cyclic ketone. It derives from a hydride of an alpha-humulene. Zerumbone is a natural product found in Curcuma amada, Curcuma longa, and other organisms with data available. A sesquiterpenoid and cyclic ketone that is (1E,4E,8E)-alpha-humulene which is substituted by an oxo group at the carbon atom attached to two double bonds. It is obtained by steam distillation from a type of edible ginger, Zingiber zerumbet Smith, grown particularly in southeast Asia. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2]. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2].
Neohesperidose
Alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose is a disaccharide consisting of alpha-L-rhamnose and beta-D-glucose linked via a 1->2 glycosidic bond. It has a role as a metabolite. 2-O-alpha-L-Rhamnopyranosyl-D-glucopyranose is a natural product found in Trypanosoma brucei with data available. A disaccharide consisting of alpha-L-rhamnose and beta-D-glucose linked via a 1->2 glycosidic bond.
2-Phenylphenol
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives D009676 - Noxae > D002273 - Carcinogens D000890 - Anti-Infective Agents D016573 - Agrochemicals D004202 - Disinfectants D010575 - Pesticides
1,4-DICHLOROBENZENE
D010575 - Pesticides > D007306 - Insecticides D009676 - Noxae > D002273 - Carcinogens D016573 - Agrochemicals
Cephapirin
A cephalosporin with acetoxymethyl and 2(pyridin-4-ylsulfanyl)acetamido substituents at positions 3 and 7, respectively, of the cephem skeleton. It is used (as its sodium salt) as an antibiotic, being effective against gram-negative and gram-positive organisms. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
HUMAN IL-2
A sulfur oxoacid that consists of two oxo and two hydroxy groups joined covalently to a central sulfur atom.
microcystin-LR
A microcystin consisting of D-alanyl, L-leucyl, (3S)-3-methyl-D-beta-aspartyl,L-arginyl, 2S,3S,4E,6E,8S,9S)-3-amino-4,5,6,7-tetradehydro-9-methoxy-2,6,8-trimethyl-10-phenyldecanoyl, D-gamma-glutamyl, and 2,3-didehydro-N-methylalanyl residues joined into a 25-membered macrocycle. Produced by the cyanobacterium Microcystis aeruginosa, it is the most studied of the microcystins. D009676 - Noxae > D002273 - Carcinogens > D052998 - Microcystins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D004791 - Enzyme Inhibitors
zonisamide
C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators
Methyl Yellow
D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents
2-Chlorobenzoic acid
A monochlorobenzoic acid having the chloro group at the 2-position.
Diethyl phosphate
A dialkyl phosphate having ethyl as the alkyl group. Diethylphosphate (DEP) is product of metabolism and of environmental degradation of a commonly used insecticide Chlorpyrifos.
DIBUTYL SUCCINATE
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents
BUTHIONINE SULFOXIMINE
D020011 - Protective Agents > D011837 - Radiation-Protective Agents D009676 - Noxae > D000963 - Antimetabolites D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors
Cefotetan
A semi-synthetic cephalosporin antibiotic with [(1-methyl-1H-tetrazol-5-yl)sulfanyl]methyl, methoxy and {[4-(2-amino-1-carboxy-2-oxoethylidene)-1,3-dithietan-2-yl]carbonyl}amino groups at the 3, 7alpha, and 7beta positions, respectively, of the cephem skeleton. It is resistant to a wide range of beta-lactamases and is active against a broad spectrum of aerobic and anaerobic Gram-positive and Gram-negative microorganisms. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
5,6-Dihydroxyindole
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D004791 - Enzyme Inhibitors > D065098 - Catechol O-Methyltransferase Inhibitors
Deoxycytidine 5-monophosphate
A pyrimidine 2-deoxyribonucleoside 5-monophosphate having cytosine as the nucleobase. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite.
L-Azetidine-2-carboxylic acid
The (S)-enantiomer of azetidine-2-carboxylic acid. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.
Amifostine thiol
D020011 - Protective Agents > D011837 - Radiation-Protective Agents Amifostine thiol (WR-1065) is an active metabolite of the cytoprotector Amifostine (HY-B0639). Amifostine thiol is a cytoprotective agent with radioprotective abilities. Amifostine thiol activates p53 through a JNK-dependent signaling pathway[1][2][3].
3-Dehydroquinic acid
A 4-oxo monocarboxylic acid derived from quinic acid by oxidation of the hydroxy group at position 3 to the corresponding keto group.
Previtamin D3
A hydroxy seco-steroid which is an intermediate in the production of vitamin D3 in human skin.
2-(6-hydroxy-1,3-benzothiazol-2-yl)-1,3-thiazol-4(5H)-one
3-Chlorophenyl piperazine
A N-arylpiperazine that is piperazine carrying a 3-chlorophenyl substituent at position 1. It is a metabolite of the antidepressant drug trazodone. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists
1-HYDROXYPYRENE
D009676 - Noxae > D009153 - Mutagens 1-Hydroxypyrene, a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs), is analyzed in urine samples. 1-Hydroxypyrene is the major biomarker of exposure to pyrenes[1].
Benzo(a)pyrene diol epoxide
D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
Destomysin
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Hygromycin B is an aminoglycoside antibiotic active against prokaryotic and eukaryotic cells.
(9Z)-12-Hydroxyoctadec-9-enoic acid
A hydroxy fatty acid that is (9Z)-octadec-9-enoic (oleic) acid carrying a hydroxy substituent at position 12.
GW 7647
GW7647 is a potent PPARα agonist, with EC50s of 6 nM, 1.1 μM, and 6.2 μM for human PPARα, PPARγ and PPARδ, respectively.