N-hexanoyl-L-Homoserine lactone (BioDeep_00000003948)

   

Chemicals and Drugs Antibiotics


代谢物信息卡片


N-[(3S)-tetrahydro-2-oxo-3-furanyl]-hexanamide

化学式: C10H17NO3 (199.1208)
中文名称: N-己酰基-L-高丝氨酸内酯, N-[(3s)-2-氧代四氢呋喃-3-基]己酰胺
谱图信息: 最多检出来源 Homo sapiens(plant) 33.33%

Reviewed

Last reviewed on 2024-07-01.

Cite this Page

N-hexanoyl-L-Homoserine lactone. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/n-hexanoyl-l-homoserine_lactone (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000003948). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CCCCCC(=O)NC1CCOC1=O
InChI: InChI=1S/C10H17NO3/c1-2-3-4-5-9(12)11-8-6-7-14-10(8)13/h8H,2-7H2,1H3,(H,11,12)

描述信息

N-Hexanoyl-L-homoserine lactone (HHSL) is a type of signaling molecule known as an autoinducer, which plays a significant role in bacterial communication and behavior, particularly in processes governed by quorum sensing (QS). Here are some of its key biological functions:

Quorum Sensing Signaling: HHSL is involved in quorum sensing, a mechanism by which bacteria communicate with each other to coordinate their behavior based on population density. When the concentration of HHSL reaches a certain threshold, it triggers specific responses in the bacterial population.
Regulation of Gene Expression: In many bacteria, HHSL binds to specific transcriptional regulators, leading to the activation or repression of target genes. This regulation can control a variety of biological processes, including bioluminescence, biofilm formation, virulence factor production, and sporulation.
Biofilm Formation: HHSL can influence the formation and maintenance of biofilms, which are complex communities of bacteria encased in a self-produced matrix. Biofilms are often associated with increased resistance to antibiotics and host immune responses.
Virulence and Pathogenicity: In pathogenic bacteria, HHSL can regulate the expression of virulence factors, contributing to the bacteria’s ability to cause disease. By modulating these factors, HHSL can affect the bacteria’s interaction with the host and its ability to evade the immune system.
Symbiotic Interactions: HHSL is not only important in pathogenic bacteria but also in beneficial interactions, such as those found in nitrogen-fixing bacteria or in symbiotic relationships with plants and animals.
Understanding the role of HHSL and other autoinducers in bacterial communication and behavior is crucial for developing new strategies to control bacterial infections and manage biofilm-related issues.

同义名列表

5 个代谢物同义名

N-[(3s)-2-Oxotetrahydrofuran-3-Yl]hexanamide; N-hexanoyl-L-Homoserine lactone; N-[(3S)-tetrahydro-2-oxo-3-furanyl]-hexanamide; N-(2-oxooxolan-3-yl)hexanamide; N-[(3s)-2-Oxotetrahydrofuran-3-Yl]hexanamide



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 AASS, CAT, DNAJB2, DSG1, GPER1, HSD17B10, PGP, STRBP, TBX20
Peripheral membrane protein 2 HSD17B6, MBP
Endoplasmic reticulum membrane 2 DNAJB2, GPER1
Mitochondrion membrane 1 GPER1
Nucleus 9 AASS, CS, DNAJB2, DSG1, GPER1, MBP, RABGAP1L, STRBP, TBX20
cytosol 6 AASS, CAT, DNAJB2, DSG1, GPER1, MBP
dendrite 1 GPER1
mitochondrial membrane 1 GPER1
trans-Golgi network 1 GPER1
nucleoplasm 1 GPER1
Cell membrane 3 DSG1, P2RY4, RHD
Lipid-anchor 1 DNAJB2
Cytoplasmic side 2 DNAJB2, MBP
Cell projection, axon 1 GPER1
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 3 GPER1, P2RY4, RHD
Golgi apparatus membrane 1 GPER1
Synapse 2 ALDH5A1, MBP
cell surface 1 MBP
dendritic shaft 1 GPER1
glutamatergic synapse 1 P2RY4
Golgi apparatus 2 GPER1, RABGAP1L
Golgi membrane 1 GPER1
neuronal cell body 1 MBP
presynaptic membrane 1 GPER1
Lysosome 1 CTBS
plasma membrane 7 DSG1, GPER1, HSD17B10, MBP, MUC5B, P2RY4, RHD
presynaptic active zone 1 GPER1
Membrane 5 CAT, CS, GPER1, RABGAP1L, RHD
apical plasma membrane 2 DSG1, P2RY4
axon 1 GPER1
basolateral plasma membrane 1 P2RY4
extracellular exosome 4 CAT, CS, MBP, MUC5B
Lumenal side 1 HSD17B6
endoplasmic reticulum 2 GPER1, HSD17B6
extracellular space 2 CTBS, MUC5B
perinuclear region of cytoplasm 2 DNAJB2, GPER1
mitochondrion 5 AASS, ALDH5A1, CAT, CS, HSD17B10
protein-containing complex 2 CAT, MBP
intracellular membrane-bounded organelle 5 AASS, CAT, GPER1, HSD17B6, MUC5B
Microsome membrane 1 HSD17B6
postsynaptic density 1 GPER1
Single-pass type I membrane protein 1 DSG1
extracellular region 2 CAT, MBP
cytoplasmic side of plasma membrane 1 DSG1
hippocampal mossy fiber to CA3 synapse 1 GPER1
Mitochondrion matrix 1 CS
mitochondrial matrix 5 AASS, ALDH5A1, CAT, CS, HSD17B10
nuclear membrane 1 DNAJB2
Z disc 1 HRC
cytoplasmic vesicle 1 RABGAP1L
nucleolus 1 GPER1
Early endosome 2 GPER1, RABGAP1L
recycling endosome 1 GPER1
presynaptic active zone membrane 1 P2RY4
focal adhesion 1 CAT
extracellular matrix 1 MUC5B
mitochondrial nucleoid 1 HSD17B10
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 MBP
lateral plasma membrane 1 DSG1
chromatin 1 TBX20
cell periphery 1 MBP
[Isoform 3]: Nucleus 1 MBP
nuclear envelope 1 GPER1
Cornified envelope 1 DSG1
[Isoform 1]: Endoplasmic reticulum membrane 1 DNAJB2
Cytoplasmic vesicle membrane 1 GPER1
Cell projection, dendrite 1 GPER1
myelin sheath 1 MBP
ficolin-1-rich granule lumen 2 CAT, MBP
proteasome complex 1 DNAJB2
secretory granule lumen 1 CAT
Golgi lumen 1 MUC5B
endoplasmic reticulum lumen 1 HRC
axon terminus 1 GPER1
transport vesicle 1 MBP
Sarcoplasmic reticulum membrane 1 HRC
[Isoform 2]: Cytoplasm 1 DNAJB2
Sarcoplasmic reticulum lumen 1 HRC
mitochondrial ribonuclease P complex 1 HSD17B10
ficolin-1-rich granule membrane 1 DSG1
keratin filament 1 GPER1
Cell junction, desmosome 1 DSG1
desmosome 1 DSG1
dendritic spine head 1 GPER1
Cell projection, dendritic spine membrane 1 GPER1
dendritic spine membrane 1 GPER1
manchette 1 STRBP
compact myelin 1 MBP
internode region of axon 1 MBP
catalase complex 1 CAT
inclusion body 1 DNAJB2
[Bone marrow proteoglycan]: Secreted 1 MBP
cytoplasmic side of endoplasmic reticulum membrane 1 DNAJB2
Mitochondrion matrix, mitochondrion nucleoid 1 HSD17B10
tRNA methyltransferase complex 1 HSD17B10
Myelin membrane 1 MBP


文献列表

  • Jingjing Zhang, Jiayi Wang, Tao Feng, Rui Du, Xiaorong Tian, Yan Wang, Xiao-Hua Zhang. Heterologous Expression of the Marine-Derived Quorum Quenching Enzyme MomL Can Expand the Antibacterial Spectrum of Bacillus brevis. Marine drugs. 2019 Feb; 17(2):. doi: 10.3390/md17020128. [PMID: 30795579]
  • Olena V Moshynets, Lidia M Babenko, Sergiy P Rogalsky, Olga S Iungin, Jessica Foster, Iryna V Kosakivska, Geert Potters, Andrew J Spiers. Priming winter wheat seeds with the bacterial quorum sensing signal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield. PloS one. 2019; 14(2):e0209460. doi: 10.1371/journal.pone.0209460. [PMID: 30802259]
  • Johannes Arp, Sebastian Götze, Ruchira Mukherji, Derek J Mattern, María García-Altares, Martin Klapper, Debra A Brock, Axel A Brakhage, Joan E Strassmann, David C Queller, Bettina Bardl, Karsten Willing, Gundela Peschel, Pierre Stallforth. Synergistic activity of cosecreted natural products from amoebae-associated bacteria. Proceedings of the National Academy of Sciences of the United States of America. 2018 04; 115(15):3758-3763. doi: 10.1073/pnas.1721790115. [PMID: 29592954]
  • Tomohiro Morohoshi, Wen-Zhao Wang, Tomonori Suto, Yuki Saito, Satoshi Ito, Nobutaka Someya, Tsukasa Ikeda. Phenazine antibiotic production and antifungal activity are regulated by multiple quorum-sensing systems in Pseudomonas chlororaphis subsp. aurantiaca StFRB508. Journal of bioscience and bioengineering. 2013 Nov; 116(5):580-4. doi: 10.1016/j.jbiosc.2013.04.022. [PMID: 23727350]
  • Yuichiro Kawakita, Fumiko Taguchi, Yoshishige Inagaki, Kazuhiro Toyoda, Tomonori Shiraishi, Yuki Ichinose. Characterization of each aefR and mexT mutant in Pseudomonas syringae pv. tabaci 6605. Molecular genetics and genomics : MGG. 2012 Jun; 287(6):473-84. doi: 10.1007/s00438-012-0693-9. [PMID: 22552803]
  • Makiko Tsuji, Kumio Yokoigawa. Attachment of Escherichia coli O157:H7 to abiotic surfaces of cooking utensils. Journal of food science. 2012 Apr; 77(4):M194-9. doi: 10.1111/j.1750-3841.2012.02654.x. [PMID: 22515247]
  • Ali E McClean, Breck A Duerkop, E Peter Greenberg, Daniel A Kluepfel. AHL signals induce rubrifacine production in a bruI mutant of Brenneria rubrifaciens. Phytopathology. 2012 Feb; 102(2):195-203. doi: 10.1094/phyto-04-11-0111. [PMID: 22236075]
  • Yee Meng Chong, Wai Fong Yin, Chia Yong Ho, Mohamad Rais Mustafa, A Hamid A Hadi, Khalijah Awang, Putri Narrima, Chong-Lek Koh, David R Appleton, Kok-Gan Chan. Malabaricone C from Myristica cinnamomea exhibits anti-quorum sensing activity. Journal of natural products. 2011 Oct; 74(10):2261-4. doi: 10.1021/np100872k. [PMID: 21910441]
  • Samina Mehnaz, Deeba Noreen Baig, Farrukh Jamil, Brian Weselowski, George Lazarovits. Characterization of a phenazine and hexanoyl homoserine lactone producing Pseudomonas aurantiaca strain PB-St2, isolated from sugarcane stem. Journal of microbiology and biotechnology. 2009 Dec; 19(12):1688-94. doi: 10.4014/jmb.0904.04022. [PMID: 20075638]
  • Ilona Klein, Uta von Rad, Jörg Durner. Homoserine lactones: do plants really listen to bacterial talk?. Plant signaling & behavior. 2009 Jan; 4(1):50-1. doi: 10.4161/psb.4.1.7300. [PMID: 19704707]
  • Uta von Rad, Ilona Klein, Petre I Dobrev, Jana Kottova, Eva Zazimalova, Agnes Fekete, Anton Hartmann, Philippe Schmitt-Kopplin, Jörg Durner. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta. 2008 Dec; 229(1):73-85. doi: 10.1007/s00425-008-0811-4. [PMID: 18766372]
  • Laura Chalupowicz, Shulamit Manulis-Sasson, Maxim Itkin, Ayelet Sacher, Guido Sessa, Isaac Barash. Quorum-sensing system affects gall development incited by Pantoea agglomerans pv. gypsophilae. Molecular plant-microbe interactions : MPMI. 2008 Aug; 21(8):1094-105. doi: 10.1094/mpmi-21-8-1094. [PMID: 18616406]
  • J H Choo, Y Rukayadi, J-K Hwang. Inhibition of bacterial quorum sensing by vanilla extract. Letters in applied microbiology. 2006 Jun; 42(6):637-41. doi: 10.1111/j.1472-765x.2006.01928.x. [PMID: 16706905]
  • Armando M Pomini, Gilson P Manfio, Welington L Araújo, Anita J Marsaioli. Acyl-homoserine lactones from Erwinia psidii R. IBSBF 435T, a guava phytopathogen (Psidium guajava L.). Journal of agricultural and food chemistry. 2005 Aug; 53(16):6262-5. doi: 10.1021/jf050586e. [PMID: 16076103]
  • Laurie Delalande, Denis Faure, Aurélie Raffoux, Stéphane Uroz, Cathy D'Angelo-Picard, Miena Elasri, Aurélien Carlier, Romain Berruyer, Annik Petit, Paul Williams, Yves Dessaux. N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS microbiology ecology. 2005 Mar; 52(1):13-20. doi: 10.1016/j.femsec.2004.10.005. [PMID: 16329888]
  • Stéphane Uroz, Cathy D'Angelo-Picard, Aurélien Carlier, Miena Elasri, Carine Sicot, Annik Petit, Phil Oger, Denis Faure, Yves Dessaux. Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology (Reading, England). 2003 Aug; 149(Pt 8):1981-1989. doi: 10.1099/mic.0.26375-0. [PMID: 12904538]
  • W Nasser, M L Bouillant, G Salmond, S Reverchon. Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Molecular microbiology. 1998 Sep; 29(6):1391-405. doi: 10.1046/j.1365-2958.1998.01022.x. [PMID: 9781877]
  • D W Wood, F Gong, M M Daykin, P Williams, L S Pierson. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. Journal of bacteriology. 1997 Dec; 179(24):7663-70. doi: 10.1128/jb.179.24.7663-7670.1997. [PMID: 9401023]
  • M S Conway, D J Davies. Cell populations in a renal lesion produced by local injection of xenogeneic spleen cells in cyclophosphamide-treated rats. The Australian journal of experimental biology and medical science. 1975 Aug; 53(4):337-42. doi: 10.1038/icb.1975.38. [PMID: 7220]