5,6-Dihydroxyindole (BioDeep_00000005874)
Secondary id: BioDeep_00001868356
human metabolite Endogenous
代谢物信息卡片
化学式: C8H7NO2 (149.0477)
中文名称: 5,6-二羟基吲哚
谱图信息:
最多检出来源 Homo sapiens(plant) 11%
分子结构信息
SMILES: C1=CNC2=CC(=C(C=C21)O)O
InChI: InChI=1S/C8H7NO2/c10-7-3-5-1-2-9-6(5)4-8(7)11/h1-4,9-11H
描述信息
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents
D004791 - Enzyme Inhibitors > D065098 - Catechol O-Methyltransferase Inhibitors
5,6-Dihydroxyindole is a substrate for Tyrosinase. [HMDB]
5,6-Dihydroxyindole is a substrate for Tyrosinase.
同义名列表
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:27404
- KEGG: C05578
- PubChem: 114683
- HMDB: HMDB0004058
- Metlin: METLIN7009
- DrugBank: DB01811
- ChEMBL: CHEMBL92636
- MetaCyc: DIHYDROXYINDOLE
- foodb: FDB023293
- chemspider: 102690
- CAS: 25656-67-1
- CAS: 3131-52-0
- PMhub: MS000018779
- PubChem: 7904
- PDB-CCD: 3ID
- 3DMET: B00795
- NIKKAJI: J434.158I
- KNApSAcK: 27404
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
159 个相关的代谢反应过程信息。
Reactome(3)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Melanin biosynthesis:
Dopachrome ⟶ DHI + carbon dioxide
BioCyc(4)
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
5,6-dihydroxyindole + 5,6-dihydroxyindole-2-carboxylate + indole-5,6-quinone + indole-5,6-quinone-2-carboxylate ⟶ melanochrome
- eumelanin biosynthesis:
5,6-dihydroxyindole + A(H2) + O2 ⟶ A + H2O + indole-5,6-quinone
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
WikiPathways(2)
- Dopamine metabolism:
Dopamine ⟶ 3-Methoxytyramine
- Dopamine metabolism:
Dopamine ⟶ 3-Methoxytyramine
Plant Reactome(0)
INOH(0)
PlantCyc(125)
- eumelanin biosynthesis:
5,6-dihydroxyindole-2-carboxylate + A(H2) + O2 ⟶ A + H2O + indole-5,6-quinone-2-carboxylate
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
5,6-dihydroxyindole + A(H2) + O2 ⟶ A + H2O + indole-5,6-quinone
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
5,6-dihydroxyindole + 5,6-dihydroxyindole-2-carboxylate + indole-5,6-quinone + indole-5,6-quinone-2-carboxylate ⟶ melanochrome
- eumelanin biosynthesis:
5,6-dihydroxyindole + A(H2) + O2 ⟶ A + H2O + indole-5,6-quinone
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
5,6-dihydroxyindole + A(H2) + O2 ⟶ A + H2O + indole-5,6-quinone
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
COVID-19 Disease Map(0)
PathBank(25)
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Disulfiram Action Pathway:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Eumelanin Biosynthesis:
L-Dopachrome ⟶ 5,6-Dihydroxyindole-2-carboxylic acid
PharmGKB(0)
3 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xiaohu Yang, Wenchao Yang, Shuang He, He Ye, Shanshan Lei. Danhong formula alleviates endothelial dysfunction and reduces blood pressure in hypertension by regulating MicroRNA 24 - Phosphatidylinositol 3-Kinase-Serine/Threonine Kinase- Endothelial Nitric Oxide Synthase axis.
Journal of ethnopharmacology.
2024 Apr; 323(?):117615. doi:
10.1016/j.jep.2023.117615
. [PMID: 38163560] - Rita Argenziano, Maria Laura Alfieri, Noemi Gallucci, Gerardino D'Errico, Lucia Panzella, Alessandra Napolitano. A Model Eumelanin from 5,6-Dihydroxyindole-2-Carboxybutanamide Combining Remarkable Antioxidant and Photoprotective Properties with a Favourable Solubility Profile for Dermo-Cosmetic Applications.
International journal of molecular sciences.
2023 Feb; 24(4):. doi:
10.3390/ijms24044241
. [PMID: 36835650] - Yang Yang, Meixian Li, Zhiwei Zhu. A novel electrochemical sensor based on carbon nanotubes array for selective detection of dopamine or uric acid.
Talanta.
2019 Aug; 201(?):295-300. doi:
10.1016/j.talanta.2019.03.096
. [PMID: 31122426] - Seonki Hong, Younseon Wang, Sung Young Park, Haeshin Lee. Progressive fuzzy cation-π assembly of biological catecholamines.
Science advances.
2018 09; 4(9):eaat7457. doi:
10.1126/sciadv.aat7457
. [PMID: 30202784] - Kai Wu, Jie Zhang, Qiaoli Zhang, Shoulin Zhu, Qimiao Shao, Kevin D Clark, Yining Liu, Erjun Ling. Plant phenolics are detoxified by prophenoloxidase in the insect gut.
Scientific reports.
2015 Nov; 5(?):16823. doi:
10.1038/srep16823
. [PMID: 26592948] - Takeo Iwata, Hisaaki Taniguchi, Masamichi Kuwajima, Takako Taniguchi, Yuko Okuda, Akiko Sukeno, Kyoko Ishimoto, Noriko Mizusawa, Katsuhiko Yoshimoto. The action of D-dopachrome tautomerase as an adipokine in adipocyte lipid metabolism.
PloS one.
2012; 7(3):e33402. doi:
10.1371/journal.pone.0033402
. [PMID: 22428043] - Swee Keong Yeap, Abdul Rahman Omar, Abdul Manaf Ali, Wan Yong Ho, Boon Kee Beh, Noorjahan Banu Alitheen. Immunomodulatory Effect of Rhaphidophora korthalsii on Natural Killer Cell Cytotoxicity.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):786487. doi:
10.1155/2012/786487
. [PMID: 21941589] - Picheng Zhao, Zhiqiang Lu, Michael R Strand, Haobo Jiang. Antiviral, anti-parasitic, and cytotoxic effects of 5,6-dihydroxyindole (DHI), a reactive compound generated by phenoloxidase during insect immune response.
Insect biochemistry and molecular biology.
2011 Sep; 41(9):645-52. doi:
10.1016/j.ibmb.2011.04.006
. [PMID: 21554953] - Picheng Zhao, Jiajing Li, Yang Wang, Haobo Jiang. Broad-spectrum antimicrobial activity of the reactive compounds generated in vitro by Manduca sexta phenoloxidase.
Insect biochemistry and molecular biology.
2007 Sep; 37(9):952-9. doi:
10.1016/j.ibmb.2007.05.001
. [PMID: 17681234] - Junwei Di, Shuping Bi. Aluminum facilitation of the iron-mediated oxidation of DOPA to melanin.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2004 Apr; 20(4):629-34. doi:
10.2116/analsci.20.629
. [PMID: 15116959] - X Zhang, C Erb, J Flammer, W M Nau. Absolute rate constants for the quenching of reactive excited states by melanin and related 5,6-dihydroxyindole metabolites: implications for their antioxidant activity.
Photochemistry and photobiology.
2000 May; 71(5):524-33. doi:
10.1562/0031-8655(2000)071<0524:arcftq>2.0.co;2
. [PMID: 10818782] - A Cherqui, B Duvic, C Reibel, M Brehélin. Cooperation of dopachrome conversion factor with phenoloxidase in the eumelanin pathway in haemolymph of Locusta migratoria (Insecta).
Insect biochemistry and molecular biology.
1998 Nov; 28(11):839-48. doi:
10.1016/s0965-1748(98)00076-9
. [PMID: 9818385] - S Memoli, A Napolitano, M d'Ischia, G Misuraca, A Palumbo, G Prota. Diffusible melanin-related metabolites are potent inhibitors of lipid peroxidation.
Biochimica et biophysica acta.
1997 May; 1346(1):61-8. doi:
10.1016/s0005-2760(97)00018-0
. [PMID: 9187303] - S Schmitz, P D Thomas, T M Allen, M J Poznansky, K Jimbow. Dual role of melanins and melanin precursors as photoprotective and phototoxic agents: inhibition of ultraviolet radiation-induced lipid peroxidation.
Photochemistry and photobiology.
1995 Jun; 61(6):650-5. doi:
10.1111/j.1751-1097.1995.tb09883.x
. [PMID: 7568412] - G Odh, A Hindemith, A M Rosengren, E Rosengren, H Rorsman. Isolation of a new tautomerase monitored by the conversion of D-dopachrome to 5,6-dihydroxyindole.
Biochemical and biophysical research communications.
1993 Dec; 197(2):619-24. doi:
10.1006/bbrc.1993.2524
. [PMID: 8267597] - A Napolitano, A Palumbo, G Misuraca, G Prota. Inhibitory effect of melanin precursors on arachidonic acid peroxidation.
Biochimica et biophysica acta.
1993 Jun; 1168(2):175-80. doi:
10.1016/0005-2760(93)90122-p
. [PMID: 8504152] - G Prota. The role of peroxidase in melanogenesis revisited.
Pigment cell research.
1992; Suppl 2(?):25-31. doi:
10.1111/j.1600-0749.1990.tb00344.x
. [PMID: 1329073] - S Ito, K Wakamatsu, S Inoue, K Fujita. Correlation between urinary melanin-related metabolites and tumour weight in melanoma-bearing mice.
Acta dermato-venereologica.
1989; 69(5):380-4. doi:
. [PMID: 2572100]
- K Wakamatsu, S Ito. Preparation of eumelanin-related metabolites 5,6-dihydroxyindole, 5,6-dihydroxyindole-2-carboxylic acid, and their O-methyl derivatives.
Analytical biochemistry.
1988 May; 170(2):335-40. doi:
10.1016/0003-2697(88)90639-2
. [PMID: 3394933] - K W Cho, R L Malvin. Renin inactivation during in vitro experiments.
The American journal of physiology.
1979 May; 236(5):F501-4. doi:
10.1152/ajprenal.1979.236.5.f501
. [PMID: 443387]