Chemical Formula: CHN

Chemical Formula CHN

Found 5 metabolite its formula value is CHN

Hydrogen cyanide

Acid, hydrocyanic

CHN (27.010898599999997)


Hydrogen cyanide (with the historical common name of Prussic acid) is a chemical compound with chemical formula HCN. It is a colorless, extremely poisonous liquid that boils slightly above room temperature at 26 °C (79 °F). Hydrogen cyanide is a linear molecule, with a triple bond between carbon and nitrogen. A minor tautomer of HCN is HNC, hydrogen isocyanide. Hydrogen cyanide is weakly acidic with a pKa of 9.2. It partly ionizes in water solution to give the cyanide anion, CN. (Wikipedia) D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents

   

Cyanide

methylidyneazanidyl

CHN (27.010898599999997)


The cyanide ion consists of a carbon triple bonded to a nitrogen. It readily reacts with hydrogen to form hydrogen cyanide gas, which has a faint almond-like smell. Most people can smell hydrogen cyanide; however, due to an apparent genetic trait, some individuals cannot. Cyanide gas (HCN) can be generated via combustion, including the exhaust of internal combustion engines, tobacco smoke, and especially some plastics derived from acrylonitrile (because of the latter effect, house fires can result in poisonings of the inhabitants). Cyanides are also produced by certain bacteria, fungi, and algae and are found in a number of foods and plants. Small amounts of cyanide can be found in apple seeds, mangoes and bitter almonds. Hydrocyanic acid (a solution of hydrogen cyanide in water) is present in freshly distilled bitter almond oil (2-4\\%) prior to its removal by precipitation as calcium ferrocyanide to give food quality oil. Hydrogen cyanide and most cyanide salts readily dissolve in water (or other biofluids) and exists in solution as the cyanide ion. Cyanide ions bind to the iron atom of the enzyme cytochrome c oxidase (also known as aa3) in the fourth complex in the mitochondrial membrane in the mitochondria of cells. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted, meaning that the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected. Because of its respiratory chain toxicity cyanide has been used as a poison many times throughout history. Its most infamous application was the use of hydrogen cyanide by the Nazi regime in Germany for mass murder in some gas chambers during the Holocaust. Hydrogen cyanide (with the historical common name of Prussic acid) is a colorless and highly volatile liquid that boils slightly above room temperature at 26 °C (78.8 °F). Hydrogen cyanide is weakly acidic and partly ionizes in solution to give the cyanide anion, CN-. The salts of hydrogen cyanide are known as cyanides. HCN is a highly valuable precursor to many chemical compounds ranging from polymers to pharmaceuticals. Hydrogen cyanide is a linear molecule, with a triple bond between carbon and nitrogen. It is a weak acid with a pKa of 9.2. A minor tautomer of HCN is HNC, hydrogen isocyanide. A cyanide is a chemical compound that contains the cyano group, -CN, which consists of a carbon atom triple-bonded to a nitrogen atom. Cyanides most commonly refer to salts of the anion CN-. Most cyanides are highly toxic. Cyanides are produced by certain bacteria, fungi, and algae and are found in a number of plants. Cyanides are found, although in small amounts, in certain seeds and stones, e.g., those of apple, mango, peach, and bitter almonds. In plants, cyanides are usually bound to sugar molecules in the form of cyanogenic glycosides and defend the plant against herbivores. Cassava roots (also called manioc), an important potato-like food grown in tropical countries (and the base from which tapioca is made), also contain cyanogenic glycosides.

   
   

Cyclon

Hydrocyanic acid, aqueous solutions or Hydrogen cyanide, aqueous solutions with not > 20\\% hydrogen cyanide [UN1613] [Poison]

CHN (27.010898599999997)


D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents

   

Hydrogen cyanide

Hydrogen cyanide

CHN (27.010898599999997)


A one-carbon compound consisting of a methine group triple bonded to a nitrogen atom D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents Hydrogen cyanide, also known as hydrocyanic acid or cyanide, is a member of the class of compounds known as nitriles. Nitriles are compounds having the structure RC#N; thus C-substituted derivatives of hydrocyanic acid, HC#N. Hydrogen cyanide is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Hydrogen cyanide can be found in a number of food items such as kiwi, java plum, yellow wax bean, and mamey sapote, which makes hydrogen cyanide a potential biomarker for the consumption of these food products. Hydrogen cyanide exists in all living organisms, ranging from bacteria to humans. Hydrogen cyanide is a non-carcinogenic (not listed by IARC) potentially toxic compound. Hydrogen cyanide (HCN), sometimes called prussic acid, is a chemical compound with the chemical formula HCN. It is a colorless, extremely poisonous and inflammable liquid that boils slightly above room temperature, at 25.6 °C (78.1 °F). HCN is produced on an industrial scale and is a highly valuable precursor to many chemical compounds ranging from polymers to pharmaceuticals . Antidotes to cyanide poisoning include hydroxocobalamin and sodium nitrite, which release the cyanide from the cytochrome system, and rhodanase, which is an enzyme occurring naturally in mammals that combines serum cyanide with thiosulfate, producing comparatively harmless thiocyanate. Oxygen therapy can also be administered (L97) (T3DB).