Subcellular Location: endoplasmic reticulum

Found 500 associated metabolites.

1180 associated genes. A1CF, ABCA4, ABCA7, ABCA8, ABCB6, ABCC12, ABI1, ACAT1, ACAT2, ACER1, ACO1, ACSBG1, ACSL1, ACSL3, ACSL4, ACSL5, ACSL6, ADAMTS9, ADIPOQ, ADPGK, AGA, AGMO, AGPAT1, AGPAT2, AGPAT3, AGPAT4, AGPAT5, AGR2, AGR3, AHCY, AHCYL1, AHCYL2, AHSA1, AIFM3, AIMP1, ALB, ALDH3A1, ALG1, ALG10, ALG10B, ALG12, ALG13, ALG1L2, ALG2, ALG3, ALKBH1, ALOX5AP, AMBP, AMBRA1, AMFR, ANGEL1, ANK3, ANKLE2, ANKRD13C, ANO7, ANO9, ANP32A, AOC3, APBB1, APBB2, APEX1, APH1A, APH1B, APOC1, APOD, APOE, APP, AQP11, AQP5, ARB2A, ARCN1, ARHGAP5, ARL6IP1, ARMC10, ARSA, ARSG, ARSI, ASB11, ASPH, ATF6, ATG2A, ATG4B, ATL1, ATL2, ATL3, ATP10A, ATP10B, ATP10D, ATP11A, ATP11B, ATP11C, ATP1A1, ATP1A2, ATP1A3, ATP2A2, ATP2A3, ATP2C1, ATP2C2, ATP7A, ATP8A1, ATP8B1, ATR, AUP1, AVPR2, B2M, B3GALNT2, B3GALT5, BACE1, BACE2, BAK1, BAX, BCAP31, BCL2, BCL2L1, BCL2L10, BDKRB1, BECN1, BET1, BFAR, BNIP1, BNIP3, BNIP3L, BOK, BRSK2, C18orf32, C19orf12, C3orf52, CALCRL, CALR, CALR3, CALU, CAMLG, CANX, CAPN2, CASP12, CASP4, CASQ1, CAST, CATSPER3, CAV1, CAV3, CAVIN1, CBLN3, CCDC115, CCDC134, CCDC3, CCDC47, CCDC88A, CCDC88B, CCR10, CD1C, CD1D, CD320, CD3E, CDKAL1, CDNF, CDS1, CDS2, CEMIP, CERKL, CERS1, CERS2, CERS3, CERT1, CES1, CES1P1, CES2, CGRRF1, CHERP, CHI3L1, CHP1, CHRNA3, CIB1, CIDEB, CIDEC, CISD2, CKAP4, CLCC1, CLDN14, CLDN8, CLEC18A, CLEC18B, CLEC18C, CLEC2D, CLGN, CLIC1, CLN3, CLN5, CLN6, CLN8, CLSTN3, CLU, CNBP, CNIH4, CNPY2, CNPY3, CNR2, COL4A3, COPG1, COPG2, CPEB4, CPED1, CPQ, CPT1C, CRABP2, CRAT, CREB3, CREB3L1, CREB3L2, CREB3L3, CREB3L4, CREG2, CRELD2, CRTAP, CSH1, CSH2, CST3, CST7, CTSA, CTSF, CTSW, CTSZ, CTTN, CUBN, CWH43, CYB561D2, CYB5R3, CYB5R4, CYBC1, CYP17A1, CYP19A1, CYP2D6, CYP2S1, CYP46A1, DBH, DBI, DDOST, DDRGK1, DEGS1, DERL1, DERL2, DGAT2, DHCR24, DHCR7, DHDDS, DHRS1, DIAPH2, DISP3, DLC1, DLG1, DLG4, DNAJB11, DNAJB12, DNAJB14, DNAJB9, DNAJC1, DNAJC10, DNAJC3, DNASE1L1, DNASE1L3, DNM1L, DOLK, DPM1, DPM3, DSC2, DSC3, DSE, DTNBP1, DUOX1, DUOX2, DUOXA1, DUOXA2, DUS2, EBP, EBPL, ECPAS, EDEM1, EDEM2, EDEM3, EHD4, EI24, EIF2AK3, ELAVL1, ELOVL1, ELOVL2, ELOVL3, ELOVL4, ELOVL5, ELOVL6, ELOVL7, EMC10, EMC2, EMC8, EMD, EMID1, ENTPD5, EPHB1, EPHX3, EPM2AIP1, ERAP1, ERG28, ERGIC1, ERGIC2, ERGIC3, ERLIN1, ERLIN2, ERN1, ERN2, ERO1A, ERO1B, ERP27, ERP29, ESYT1, EXT1, EXT2, EXTL2, EXTL3, F10, FA2H, FAAH, FAF1, FAF2, FAIM2, FAM20A, FAM20C, FATE1, FBXO2, FBXW7, FCRL2, FCRLB, FDFT1, FGA, FGB, FGD5, FGFR3, FGFR4, FIBIN, FKBP10, FKBP11, FKBP14, FKBP2, FKBP7, FKBP8, FKBP9, FKBP9P1, FKTN, FLT3, FMN2, FMO1, FMO3, FMO5, FNDC4, FNDC5, FOS, FTCD, FURIN, FUT10, G6PC3, GABARAPL1, GANAB, GASK1A, GBA1, GBP3, GC, GDI1, GDPD1, GDPD3, GET1, GET3, GGT2P, GHDC, GIGYF2, GIMAP1, GIMAP1-GIMAP5, GIMAP2, GIMAP7, GIMAP8, GJA1, GJC1, GLUD1, GLUL, GLYATL2, GNAZ, GOLT1A, GOLT1B, GPAA1, GPAT3, GPAT4, GPC2, GPER1, GPR37, GPR85, GPX6, GPX7, GRAMD1B, GRIK2, GRIK5, GRIN2A, GRINA, GRN, GSG1, H6PD, HACD1, HACD2, HACD3, HACD4, HACE1, HADHB, HAP1, HAX1, HERPUD1, HHAT, HHATL, HLA-A, HLA-B, HLA-C, HLA-F, HM13, HMGB1, HMGCLL1, HMGCR, HMOX1, HNRNPR, HPS6, HS1BP3, HSD11B2, HSD17B11, HSD17B12, HSD17B13, HSD17B3, HSD17B6, HSD3B1, HSD3B2, HSP90B1, HSPA13, HSPA1A, HSPA1B, HSPA5, HSPBP1, HTN1, HTR1B, HTRA2, HTT, HYAL2, HYAL3, HYOU1, ICMT, IER3IP1, IFIT2, IFNGR2, IGLL1, IKBIP, IL2RG, INPP5K, INSIG1, INSIG2, ITGA5, ITGA8, ITPKB, ITPR1, ITPR2, ITPR3, JAGN1, JMJD8, KCNA1, KCNG3, KCNIP3, KCNIP4, KCNK16, KCNK2, KCNQ1, KCNRG, KCTD17, KDELR1, KDELR2, KDELR3, KDR, KDSR, KEAP1, KIF1C, KIFAP3, KLHL14, KLK6, KRTCAP2, KSR1, KTN1, LACC1, LAMA3, LARS1, LCLAT1, LDAH, LGI1, LINC01547, LMAN1, LNPK, LOXL2, LPCAT1, LPCAT2, LPCAT3, LPCAT4, LPGAT1, LPIN1, LRAT, LRP2, LRP5, LRP6, LRPAP1, LRRC25, LRRC59, LRRK2, LRRTM1, LRTOMT, LSG1, LTC4S, LYNX1, LYPLA1, MAGEA3, MAGT1, MAL, MAMDC2, MAN1A1, MAN1A2, MAN1B1, MAN1C1, MANF, MAP2K1, MAP2K2, MARCHF1, MARCHF2, MARCHF5, MARCHF6, MBOAT2, MBOAT4, MBOAT7, MCFD2, MESD, MEST, METTL9, MGAT4A, MGAT4B, MGAT4D, MGRN1, MGST1, MGST2, MGST3, MIA2, MINAR2, MIP, MLC1, MLEC, MMP27, MOGAT2, MOGS, MOSPD2, MPIG6B, MR1, MRAP, MRAP2, MS4A4A, MSMO1, MSRB3, MTDH, MTMR6, MTMR8, MTMR9, MTTP, MXRA7, MYDGF, MYOC, MYT1, NBAS, NBEAL2, NCEH1, NCK1, NCK2, NCLN, NCSTN, NDFIP1, NDFIP2, NECAB3, NENF, NHLRC1, NKIRAS1, NLRP3, NOTCH1, NOTCH4, NOX4, NOX5, NPC1, NPC2, NPHS2, NPLOC4, NPTX1, NRROS, NRXN1, NSDHL, NSG1, NT5C3A, NTSR1, NUCB2, OAS1, OLFM1, OPRM1, ORMDL1, ORMDL2, ORMDL3, OS9, OSBPL8, OST4, OSTC, P2RY13, P3H1, P3H2, P3H3, P3H4, P4HA1, P4HA2, P4HA3, P4HB, P4HTM, PACS2, PAN2, PANX1, PAPOLB, PARK7, PARP16, PCDHA1, PCDHA2, PCK1, PCSK6, PCSK9, PCYT1A, PCYT1B, PDCD6, PDCL2, PDCL3, PDE2A, PDE3B, PDE9A, PDIA2, PDIA3, PDIA4, PDIA5, PDIA6, PDILT, PDZD2, PEDS1, PEF1, PEMT, PEX16, PEX3, PGAP1, PGRMC1, PGRMC2, PGS1, PHEX, PHTF1, PHTF2, PIEZO1, PIGG, PIGH, PIGL, PIGP, PIGQ, PIGZ, PIK3C2B, PINK1, PIP4K2C, PKD1, PKD2, PKD2L1, PKHD1, PKMYT1, PLA2G2A, PLA2G4A, PLAAT1, PLAAT3, PLCD4, PLD4, PLEKHF2, PLIN1, PLIN2, PLN, PLOD1, PLOD2, PLOD3, PLP2, PLPP2, PLSCR2, PMEL, PNLDC1, PNMT, PNPLA6, PNPLA7, POFUT1, POFUT2, POGLUT1, POMGNT2, POMK, POMP, POMT1, POMT2, POR, PORCN, POU2F1, PPIB, PPP1R15A, PPP1R15B, PRAP1, PRCD, PRDX4, PRG2, PRKACA, PRKCA, PRKCD, PRKCE, PRKCSH, PRKN, PRNP, PROC, PROM1, PROS1, PRSS50, PRSS56, PRXL2B, PSEN1, PSEN2, PSENEN, PSMF1, PSMG1, PTCHD3, PTGIS, PTGS2, PTN, PTP4A1, PTPN1, PTPN2, PUM3, PXDN, PXDNL, PYCARD, RAB1A, RAB32, RAB3GAP1, RAB3GAP2, RAET1G, RAET1L, RAP1GDS1, RASGRF2, RBMX2, RCN1, RCN2, RCN3, RDH14, REEP1, REEP2, REEP4, REEP5, REEP6, RER1, RESP18, RETREG1, RGMA, RHBDD1, RIC3, RINT1, RIPK2, RNF103, RNF115, RNF122, RNF128, RNF13, RNF133, RNF139, RNF148, RNF149, RNF170, RNF183, RNF185, RNF186, RNF19B, RNF5, RNFT1, RPL10, RPL10L, RPL13, RPL18, RPL21, RPL24, RPL27, RPL27A, RPL34, RPL36A, RPL36A-HNRNPH2, RPL36AL, RPL41, RPL5, RPLP0, RPN1, RPN2, RPS23, RPS24, RPS3, RPS3A, RPS6, RPS7, RPS8, RRAS2, RRBP1, RRS1, RSAD2, RSBN1, RTN1, RTN2, RTN3, RTN4, RTN4R, S100A7, SACM1L, SAMD8, SARAF, SAYSD1, SC5D, SCAP, SCAPER, SCARA3, SCD, SCN5A, SCP2, SCYL3, SDF2, SDF2L1, SDF4, SEC16A, SEC22C, SEC23B, SEC23IP, SEC31A, SEC31B, SEC61B, SEC62, SEC63, SEL1L, SELENOK, SELENOM, SELENOS, SELENOT, SEMA3B, SEMA4F, SERAC1, SERP1, SERP2, SERPINA1, SERPINA2, SERPINH1, SET, SEZ6, SEZ6L, SEZ6L2, SGK1, SGMS1, SGPL1, SGPP2, SHH, SHISA2, SHISA5, SIGMAR1, SIL1, SIRT6, SLAMF7, SLC10A7, SLC1A1, SLC22A13, SLC22A5, SLC26A11, SLC26A6, SLC27A1, SLC27A3, SLC27A4, SLC27A5, SLC30A1, SLC30A9, SLC35A2, SLC35B4, SLC35D3, SLC36A1, SLC37A4, SLC39A6, SLC39A7, SMIM14, SMO, SMPD2, SMPD4, SNX10, SOAT1, SOAT2, SORL1, SPAST, SPCS3, SPG11, SPHK2, SPINK5, SPTLC1, SPTSSA, SQLE, SQSTM1, SRD5A3, SREBF1, SREBF2, SRP54, SRP68, SRP72, SRPK1, SRPX, SSR1, SSR2, SSR3, SSR4, STARD4, STAU1, STAU2, STBD1, STC2, STEEP1, STIM1, STIM2, STOM, STS, STT3A, STT3B, STUB1, STX18, STX8, SULF1, SULF2, SULT2B1, SUMF1, SUMF2, SURF4, SV2A, SYNCRIP, SYVN1, TAB1, TAB3, TAFA1, TAP1, TAP2, TAPBP, TAPBPL, TAS2R16, TBC1D20, TBL2, TBXAS1, TCL1A, TECR, TECRL, TENM1, TENM2, TEX2, TEX264, TFG, TFPI, TGM2, THBS1, THBS4, THY1, TICAM2, TIMM50, TLCD3A, TLCD3B, TLCD4, TLR7, TLR9, TM7SF2, TMBIM1, TMBIM6, TMC6, TMC8, TMCC2, TMCC3, TMCO1, TMED1, TMED10, TMED2, TMED3, TMED4, TMED5, TMED6, TMED7, TMED9, TMEM100, TMEM117, TMEM129, TMEM131L, TMEM132A, TMEM151A, TMEM199, TMEM203, TMEM214, TMEM230, TMEM235, TMEM247, TMEM258, TMEM259, TMEM30A, TMEM30B, TMEM33, TMEM35A, TMEM38B, TMEM43, TMEM50A, TMEM50B, TMEM64, TMEM8B, TMEM97, TMEM98, TMF1, TMPRSS3, TMT1A, TMTC1, TMTC2, TMTC3, TMTC4, TMX1, TMX3, TMX4, TOMT, TOR1A, TOR1AIP2, TOR1B, TOR3A, TP53, TPBG, TPD52, TPST2, TRAM1, TRAPPC1, TRAPPC2, TRAPPC2B, TRAPPC2L, TRAPPC3, TRAPPC3L, TRAPPC4, TRAPPC5, TRAPPC6A, TRAPPC6B, TRAPPC9, TRDN, TRIM32, TRIM59, TRPM1, TRPM4, TRPV4, TSN, TSPO, TSPO2, TUNAR, TXNDC12, TXNDC5, TXNRD3, UBA52, UBAC2, UBE2G2, UBE2J2, UBIAD1, UBQLN1, UBQLN4, UBXN1, UBXN10, UBXN2A, UBXN2B, UBXN4, UBXN8, UFL1, UFM1, UFSP2, UGGT1, UGGT2, UGT1A1, UGT1A10, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT2B28, UGT8, ULBP1, ULBP2, UMOD, UNC93B1, UPK1A, USE1, USO1, USP17L1, USP17L10, USP17L11, USP17L12, USP17L13, USP17L15, USP17L17, USP17L18, USP17L19, USP17L2, USP17L20, USP17L21, USP17L22, USP17L23, USP17L24, USP17L3, USP17L30, USP17L4, USP17L5, USP17L7, USP17L8, USP20, USP21, USP25, UTP15, UVRAG, VAC14, VAPA, VAPB, VASH1, VCAM1, VCP, VCPIP1, VEGFA, VHL, VKORC1, VKORC1L1, VMP1, VPREB1, VPREB3, VRK2, VTN, VWF, WASHC5, WDFY4, WFS1, WLS, XBP1, YBX1, YIF1B, YIPF4, YIPF5, YIPF6, YKT6, YTHDC2, YWHAE, ZDHHC1, ZDHHC11, ZDHHC11B, ZDHHC12, ZDHHC13, ZDHHC14, ZDHHC15, ZDHHC18, ZDHHC19, ZDHHC2, ZDHHC20, ZDHHC21, ZDHHC22, ZDHHC23, ZDHHC24, ZDHHC3, ZDHHC4, ZDHHC6, ZDHHC7, ZDHHC9, ZFAND2A, ZFAND2B, ZFYVE1, ZFYVE27, ZNF547, ZNRF4, ZP2, ZW10

Orsellinic_acid

6-Methyl-beta-resorcylic acid; Orcinolcarboxylic acid

C8H8O4 (168.0423)


O-orsellinic acid is a dihydroxybenzoic acid that is 2,4-dihydroxybenzoic acid in which the hydrogen at position 6 is replaced by a methyl group. It has a role as a metabolite, a marine metabolite and a fungal metabolite. It is a dihydroxybenzoic acid and a member of resorcinols. It is a conjugate acid of an o-orsellinate. 2,4-Dihydroxy-6-methylbenzoic acid is a natural product found in Nidularia pulvinata, Hypoxylon rubiginosum, and other organisms with data available. A dihydroxybenzoic acid that is 2,4-dihydroxybenzoic acid in which the hydrogen at position 6 is replaced by a methyl group. Orsellinic acid is a compound produced by Lecanoric acid treated with alcohols. Lecanoric acid is a lichen depside isolated from a Parmotrema tinctorum specimen[1].

   

Mitraphylline

SPIRO(3H-INDOLE-3,6(4AH)-(1H)PYRANO(3,4-F)INDOLIZINE)-4-CARBOXYLIC ACID, 1,2,5,5A,7,8,10,10A-OCTAHYDRO-1-METHYL-2-OXO-, METHYL ESTER, (1S,3R,4AS,5AS,10AR)-

C21H24N2O4 (368.1736)


Mitraphylline is a member of indolizines. Mitraphylline is a natural product found in Uncaria tomentosa, Mitragyna parvifolia, and other organisms with data available. See also: Cats Claw (part of); Mitragyna speciosa leaf (part of). Annotation level-1 Mitraphylline is the major pentacyclic oxindolic alkaloid presented in Uncaria tomentosa. Mitraphylline inhibits lipopolysaccharide-mediated activation of primary human neutrophils[1]. Mitraphylline is the major pentacyclic oxindolic alkaloid presented in Uncaria tomentosa. Mitraphylline inhibits lipopolysaccharide-mediated activation of primary human neutrophils[1].

   

Uncarine

SPIRO(3H-INDOLE-3,6(4AH)-(1H)PYRANO(3,4-F)INDOLIZINE)-4-CARBOXYLIC ACID, 1,2,5,5A,7,8,10,10A-OCTAHYDRO-1-METHYL-2-OXO-, METHYL ESTER, (1S,3S,4AS,5AS,10AS)-

C21H24N2O4 (368.1736)


Uncarine E is a member of indolizines. Isopteropodine is a natural product found in Uncaria lanosa, Uncaria tomentosa, and other organisms with data available. See also: Cats Claw (part of). Isopteropodine is heteroyohimbine-type oxindole alkaloid components of Uncaria tomentosa (Willd.) DC. Isopteropodine acts as positive modulators of muscarinic M1 and 5-HT2 receptors[1]. Isopteropodine is heteroyohimbine-type oxindole alkaloid components of Uncaria tomentosa (Willd.) DC. Isopteropodine acts as positive modulators of muscarinic M1 and 5-HT2 receptors[1]. Isopteropodine is heteroyohimbine-type oxindole alkaloid components of Uncaria tomentosa (Willd.) DC. Isopteropodine acts as positive modulators of muscarinic M1 and 5-HT2 receptors[1].

   

1-Kestose

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C18H32O16 (504.169)


1-kestose, also known as 1f-beta-D-fructosylsucrose or [beta-D-fru-(2->1)]2-alpha-D-glup, is a member of the class of compounds known as oligosaccharides. Oligosaccharides are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. 1-kestose is soluble (in water) and a very weakly acidic compound (based on its pKa). 1-kestose can be found in a number of food items such as german camomile, nance, amaranth, and european plum, which makes 1-kestose a potential biomarker for the consumption of these food products. 1-kestose can be found primarily in prostate Tissue, as well as in human prostate tissue. Moreover, 1-kestose is found to be associated with prostate cancer. 1-kestose is a trisaccharide found in vegetables consisting of beta-D-fructofuranose having beta-D-fructofuranosyl and alpha-D-glucopyranosyl residues attached at the 1- and 2-positions respectively. 1-Kestose is a natural product found in Taraxacum lapponicum, Arctium umbrosum, and other organisms with data available. 1-Kestose is a fructooligosaccharide. An oligosaccharide is a saccharide polymer containing a small number (typically three to six) of component sugars, also known as simple sugars. They are generally found either O- or N-linked to compatible amino acid side chains in proteins or to lipid moieties. A trisaccharide found in vegetables consisting of beta-D-fructofuranose having beta-D-fructofuranosyl and alpha-D-glucopyranosyl residues attached at the 1- and 2-positions respectively. 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as Bifidobacteria. 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as Bifidobacteria.

   

ParishinB

3-hydroxy-5-oxo-5-[[4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]methoxy]-3-[[4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]methoxycarbonyl]pentanoic acid

C32H40O19 (728.2164)


Parishin B is a glycoside. Parishin B is a natural product found in Artemisia absinthium with data available. Parishin B, a parishin derivative isolated from Gastrodia elata, may have antioxidant property[1]. Parishin B, a parishin derivative isolated from Gastrodia elata, may have antioxidant property[1].

   

Hemigossypol

1-Naphthalenecarboxaldehyde, 2,3,8-trihydroxy-6-methyl-4-(1-methylethyl)-

C15H16O4 (260.1049)


Hemigossypol is a sesquiterpenoid. Hemigossypol is a natural product found in Sida rhombifolia, Hibiscus trionum, and other organisms with data available.

   

D-Malic acid

(2R)-2-HYDROXYBUTANEDIOIC ACID; 2-HYDROXY-SUCCINIC ACID

C4H6O5 (134.0215)


(R)-malic acid is an optically active form of malic acid having (R)-configuration. It is a conjugate acid of a (R)-malate(2-). It is an enantiomer of a (S)-malic acid. (R)-Malate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). D-malate is a natural product found in Vaccinium macrocarpon, Pogostemon cablin, and other organisms with data available. D-Malic acid is found in herbs and spices. This enantiomer of rare occurrence; reported from fruits and leaves of Hibiscus sabdariffa (roselle) although there are many more isolations of malic acid with no opt. rotn. given and some may be of the R-for An optically active form of malic acid having (R)-configuration. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. D-(+)-Malic acid (D-Malic acid), an active enantiomer of Malic acid, is a competitive inhibitor of L(--)malic acid transport[1]. D-(+)-Malic acid (D-Malic acid), an active enantiomer of Malic acid, is a competitive inhibitor of L(--)malic acid transport[1].

   

cellohexose

beta-D-gluco-hexopyranosyl-(1->4)-beta-D-gluco-hexopyranosyl-(1->4)-beta-D-gluco-hexopyranosyl-(1->4)-beta-D-gluco-hexopyranosyl-(1->4)-beta-D-gluco-hexopyranosyl-(1->4)-beta-D-gluco-hexopyranose

C36H62O31 (990.3275)


Beta-D-cellohexaose is a D-cellohexaose in which the carbon bearing the anomeric hydroxy group has beta configuration.

   

Melezitose

(2R,3R,4S,5S,6R)-2-[(2S,3S,4R,5R)-4-hydroxy-2,5-bis(hydroxymethyl)-2-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-tetrahydrofuran-3-yl]oxy-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C18H32O16 (504.169)


Melezitose, also spelled melicitose, is a nonreducing trisaccharide sugar that is produced by many plant sap eating insects, including aphids such as Cinara pilicornis by an enzyme reaction. This is beneficial to the insects, as it reduces the stress of osmosis by reducing their own water potential. The melezitose is part of the honeydew which acts as an attractant for ants and also as a food for bees. This is useful to the lice as they have a symbiotic relationship with ants. Melezitose can be partially hydrolyzed to glucose and turanose the latter of which is an isomer of sucrose (Wikipedia). Melezitose is a trisaccharide produced by insects such as aphids. It has a role as an animal metabolite. Melezitose is a natural product found in Pogostemon cablin, Arabidopsis thaliana, and Drosophila melanogaster with data available. A trisaccharide produced by insects such as aphids. Constituent of honey Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 231 D-(+)-Melezitose can be used to identify clinical isolates of indole-positive and indole-negative Klebsiella spp.

   

DUB OM HTO

(Z)-9-octadecenoic acid, methyl ester;methyl (Z)-9-octadecenoate;methyl cis-9-octadecenoate;methyl-cis-oleate

C19H36O2 (296.2715)


Oleic acid methyl ester is a clear to amber liquid. Insoluble in water. (NTP, 1992) Methyl oleate is a fatty acid methyl ester resulting from the formal condensation of the carboxy group of oleic acid with methanol. It is functionally related to an oleic acid. Methyl oleate is a natural product found in Anchietea pyrifolia, Lepidium meyenii, and other organisms with data available. Methyl oleate is a fatty acid methyl ester (FAME). Methyl oleate substantially improves the antioxidation ability but markedly impaired the antiwear capacity of zinc dialkyldithiophosphate (ZDDP)[1]. Methyl oleate is a fatty acid methyl ester (FAME). Methyl oleate substantially improves the antioxidation ability but markedly impaired the antiwear capacity of zinc dialkyldithiophosphate (ZDDP)[1].

   

CleomiscosinA

9H-pyrano[2,3-f]-1,4-benzodioxin-9-one, 2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-, (2R,3R)-

C20H18O8 (386.1002)


Cleomiscosin A is an organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. It has a role as a metabolite and an anti-inflammatory agent. It is a delta-lactone, an aromatic ether, an organic heterotricyclic compound, a member of phenols and a primary alcohol. Cleomiscosin A is a natural product found in Hibiscus syriacus, Artemisia minor, and other organisms with data available. An organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2]. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2].

   

Trispherine

(2S,3S,9S,10S)-9-hydroxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.02,10.03,7.015,19]icosa-1(20),7,13,15(19)-tetraen-12-one

C17H17NO5 (315.1107)


Hippeastrine is an indole alkaloid isolated from the Amaryllidaceae family and has been shown to exhibit cytotoxic activity. It has a role as an antineoplastic agent and a metabolite. It is an indole alkaloid, a delta-lactone, a secondary alcohol and an organic heteropentacyclic compound. Hippeastrine is a natural product found in Pancratium trianthum, Pancratium canariense, and other organisms with data available.

   

Platycodin A

Olean-12-en-28-oic acid, 3-(beta-D-glucopyranosyloxy)-2,16,23,24-tetrahydroxy-, O-D-apio-beta-D-furanosyl-(1-->3)-O-beta-D-xylopyranosyl-(1-->4)-O-2-O-acetyl-6-deoxy-alpha-L-mannopyranosyl-(1-->2)-alpha-L-arabinopyranosyl ester, (2beta,3beta,16alpha)-

C59H94O29 (1266.588)


2O-acetylplatycodin D is a triterpenoid saponin. It has a role as a metabolite. 2O-acetylplatycodin D is a natural product found in Platycodon grandiflorus with data available. A natural product found in Platycodon grandiflorum.

   

bruceosideA

methyl (1R,2S,3R,6R,8S,9S,13S,14R,15R,16S,17S)-15,16-dihydroxy-9,13-dimethyl-3-(3-methylbut-2-enoyloxy)-4,10-dioxo-11-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-5,18-dioxapentacyclo[12.5.0.01,6.02,17.08,13]nonadec-11-ene-17-carboxylate

C32H42O16 (682.2473)


Bruceoside A is a triterpenoid saponin. Bruceoside A is a natural product found in Brucea javanica with data available.

   

Piceid (cis-)

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-(Hexadecanoyloxy)-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl hexadecanoic acid

C72H116O4 (1044.8873)


Physalien is a xanthophyll. Physalien is a natural product found in Lycium chinense and Alkekengi officinarum var. franchetii with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Isoteolin

4H-Dibenzo(de,g)quinolinediol, 5,6,6a,7-tetrahydro-2,9(or 2,10)-dimethoxy-6-methyl-, (S)-

C19H21NO4 (327.1471)


Isoboldine is an aporphine alkaloid. (+)-Isoboldine is a natural product found in Fumaria capreolata, Thalictrum foetidum, and other organisms with data available. See also: Peumus boldus leaf (part of).

   

Tiglic acid

alpha,beta-dimethyl acrylic acid; 2-Methyl-2-butenoic acid; (E)-2-methyl-Crotonic acid

C5H8O2 (100.0524)


Tiglic acid is a monocarboxylic unsaturated organic acid. It is found in croton oil and in several other natural products. It has also been isolated from the defensive secretion of certain beetles. Tiglic acid, also known as tiglate or tiglinsaeure, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Tiglic acid has a double bond between the second and third carbons of the chain. Tiglic acid and angelic acid form a pair of cis-trans isomers. Tiglic acid is a volatile and crystallizable substance with a sweet, warm, spicy odour. It is used in making perfumes and flavoring agents. The salts and esters of tiglic acid are called tiglates. Tiglic acid is a 2-methylbut-2-enoic acid having its double bond in trans-configuration. It has a role as a plant metabolite. It is functionally related to a crotonic acid. Tiglic acid is a natural product found in Aloe africana, Azadirachta indica, and other organisms with data available. See also: Arctium lappa Root (part of); Petasites hybridus root (part of). A branched-chain fatty acid consisting of 2-butenoic acid having a methyl group at position 2. Flavouring ingredient KEIO_ID T016 Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1]. Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1].

   

Chloridazon

Chloridazon

C10H8ClN3O (221.0356)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 88 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6944; ORIGINAL_PRECURSOR_SCAN_NO 6942 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3286; ORIGINAL_PRECURSOR_SCAN_NO 3284 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3282; ORIGINAL_PRECURSOR_SCAN_NO 3279 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3278; ORIGINAL_PRECURSOR_SCAN_NO 3275 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6929; ORIGINAL_PRECURSOR_SCAN_NO 6925 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6942; ORIGINAL_PRECURSOR_SCAN_NO 6938 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6890; ORIGINAL_PRECURSOR_SCAN_NO 6885 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3352; ORIGINAL_PRECURSOR_SCAN_NO 3350 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3282; ORIGINAL_PRECURSOR_SCAN_NO 3278 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6929; ORIGINAL_PRECURSOR_SCAN_NO 6927 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6909; ORIGINAL_PRECURSOR_SCAN_NO 6907 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3278; ORIGINAL_PRECURSOR_SCAN_NO 3276 CONFIDENCE standard compound; INTERNAL_ID 3300 CONFIDENCE standard compound; INTERNAL_ID 4018 CONFIDENCE standard compound; INTERNAL_ID 2317 CONFIDENCE standard compound; INTERNAL_ID 8402

   

propachlor

propachlor

C11H14ClNO (211.0764)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 708 CONFIDENCE standard compound; INTERNAL_ID 3622 CONFIDENCE standard compound; INTERNAL_ID 8397

   

propaquizafop

2-(Propan-2-ylideneamino)oxyethyl 2-[4-(6-chloroquinoxalin-2-yl)oxyphenoxy]propanoate

C22H22ClN3O5 (443.1248)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 122 Propaquizafop is a phenoxyisopropionic acid herbicide and an acetyl-coA carboxylase inhibitor[1][2].

   

Gentisate aldehyde

2,5-Dihydroxybenzaldehyde polymer

C7H6O3 (138.0317)


Gentisate aldehyde is a substrate of the enzyme aldehyde oxidase 1 [EC:1.2.3.1] in Valine, leucine and isoleucine degradation, Tyrosine metabolism, Tryptophan metabolism, Vitamin B6 metabolism and Nicotinate and nicotinamide metabolism. (KEGG) [HMDB] Gentisate aldehyde is a substrate of the enzyme aldehyde oxidase 1 [EC:1.2.3.1] in Valine, leucine and isoleucine degradation, Tyrosine metabolism, Tryptophan metabolism, Vitamin B6 metabolism and Nicotinate and nicotinamide metabolism. (KEGG). 2,5-Dihydroxybenzaldehyde (Gentisaldehyde) is a naturally occurring antimicrobial that inhibits the growth of Mycobacterium avium subsp. paratuberculosis. 2,5-Dihydroxybenzaldehyde is active against S. aureus strains with a MIC50 of 500 mg/L[1][2].

   

2-hydroxyphenylacetate

ortho-Hydroxyphenylacetic acid

C8H8O3 (152.0473)


ortho-Hydroxyphenylacetic acid, also known as (o-hydroxyphenyl)acetate or 2-hydroxybenzeneacetic acid, is a member of the class of compounds known as 2(hydroxyphenyl)acetic acids. 2(Hydroxyphenyl)acetic acids are phenylacetic acids that carry a hydroxyl group at the 2-position. ortho-Hydroxyphenylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). ortho-Hydroxyphenylacetic acid can be found in a number of food items such as natal plum, lemon verbena, half-highbush blueberry, and parsley, which makes ortho-hydroxyphenylacetic acid a potential biomarker for the consumption of these food products. ortho-Hydroxyphenylacetic acid can be found primarily in blood, feces, and urine. Moreover, ortho-hydroxyphenylacetic acid is found to be associated with phenylketonuria, which is an inborn error of metabolism. ortho-Hydroxyphenylacetic acid is a substrate of the enzyme oxidoreductases (EC 1.14.13.-) in the pathway styrene degradation (KEGG). ortho-Hydroxyphenylacetic acid is also a microbial metabolite. ortho-Hydroxyphenylacetic acid is a substrate of the enzyme oxidoreductases [EC 1.14.13.-] in the pathway styrene degradation. (KEGG) [HMDB]. 2-Hydroxyphenylacetic acid is found in many foods, some of which are rambutan, common oregano, burbot, and wild leek. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 155 INTERNAL_ID 155; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 46 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU).

   

6-Hydroxynicotinic acid

1,6-dihydro-6-oxo-3-Pyridinecarboxylic acid

C6H5NO3 (139.0269)


6-Hydroxynicotinic acid (6-OHNA) is exploited in the use of NMR spectroscopy or gas chromatography--mass spectrometry for the diagnosis of Pseudomonas aeruginosa in urinary tract infection. Among the common bacteria causing urinary infection, only P. aeruginosa produces 6-hydroxynicotinic acid from nicotinic acid. Pseudomonas aeruginosa infection has been reported to be the third leading cause of urinary infection, accounting for 11\\\% of such infections, the first and second being Escherichia coli and Klebsiella pneumonia, respectively. Analyses of the NMR spectra of the bacterial media with variable cell count of P. aeruginosa, shows that the intensity of the signals of the 6-hydroxynicotinic acid increases with increasing number of bacterial cells (PMID:3926801, 15759292). 6-hydroxynicotinic acid can also be found in Achromobacter and Serratia. 6-hydroxynicotinic acid (6-OHNA) is exploited in the use of NMR spectroscopy or gas chromatography--mass spectrometry for the diagnosis of Pseudomonas aeruginosa in urinary tract infection. Among the common bacteria causing urinary infection, only P. aeruginosa produces 6-hydroxynicotinic acid from nicotinic acid. Pseudomonas aeruginosa infection has been reported to be the third leading cause of urinary infection, accounting for 11\\\% of such infections, the first and second being Escherichia coli and Klebsiella pneumonia, respectively. Analyses of the NMR spectra of the bacterial media with variable cell count of P. aeruginosa, shows that the intensity of the signals of the 6-hydroxynicotinic acid increases with increasing number of bacterial cells. (PMID: 3926801, 15759292) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H015 6-Hydroxynicotinic acid is an endogenous metabolite.

   

N-Acetylhistamine

N-(2-(1H-Imidazol-4-yl)ethyl)acetamide (acd/name 4.0)

C7H11N3O (153.0902)


N-Acetylhistamine is a 4-(beta-Acetylaminoethyl)imidazole that is an intermediate in Histidine metabolism. It is generated from Histamine via the enzyme Transferases (EC 2.3.1.-). Histamine is an amine derived by enzymatic decarboxylation of histidine. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Isolated from leaves of Spinacia oleracea (spinach). N-Acetylhistamine is found in green vegetables and spinach. KEIO_ID A093 N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.

   

N8-Acetylspermidine

N-[4-[(3-Aminopropyl)amino]butyl]-acetamide

C9H21N3O (187.1685)


N8-Acetylspermidine is a polyamine. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. Acetylation on the terminal nitrogen adjacent to the 4-carbon chain produces N8-acetylspermidine. This reaction is catalyzed by spermidine N8-acetyltransferase and does not result in the conversion of spermidine to putrescine but, instead, the product undergoes deacetylation. This acetyltransferase appears to be associated with chromatin in the cell nucleus and has been reported to be the same as (or related to) the enzyme(s) responsible for histone acetylation. N8-Acetylspermidine does not accumulate in tissues but rather appears to be rapidly deacetylated back to spermidine by a relatively specific cytosolic deacetylase, N8-acetylspermidine deacetylase. The function of this N8-acetylation/deacetylation pathway in cellular processes is not understood clearly, but several observations have suggested a role in cell growth and differentiation. (PMID: 12093478) [HMDB] N8-Acetylspermidine is a polyamine. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. Acetylation on the terminal nitrogen adjacent to the 4-carbon chain produces N8-acetylspermidine. This reaction is catalyzed by spermidine N8-acetyltransferase and does not result in the conversion of spermidine to putrescine. Instead, the product undergoes deacetylation. This acetyltransferase appears to be associated with chromatin in the cell nucleus and has been reported to be the same as (or related to) the enzyme(s) responsible for histone acetylation. N8-Acetylspermidine does not accumulate in tissues but rather appears to be rapidly deacetylated back to spermidine by a relatively specific cytosolic deacetylase, N8-acetylspermidine deacetylase. The function of this N8-acetylation/deacetylation pathway in cellular processes is not understood clearly, but several observations have suggested a role in cell growth and differentiation (PMID: 12093478). KEIO_ID A112

   

N-Methyltryptamine

[2-(1H-indol-3-yl)ethyl](methyl)amine

C11H14N2 (174.1157)


N-Methyltryptamine (NMT), or monomethyltryptamine, is a tryptamine alkaloid that has been found in the bark, shoots and leaves of numerous plants. (wikipedia). N-Methyltryptamine was detected in urine from all autistic patients with mental retardation and epilepsy and many autistic patients (32/47) with mental retardation (PubMed ID 8747157 ). N-Methyltryptamine (NMT), or monomethyltryptamine, is a tryptamine alkaloid that has been found in the bark, shoots and leaves of numerous plants. (wikipedia)

   

Ancymidol

alpha-Cyclopropyl-4-methoxy-alpha-(pyrimidin-5-yl)benzyl alcohol

C15H16N2O2 (256.1212)


CONFIDENCE standard compound; INTERNAL_ID 526; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8087; ORIGINAL_PRECURSOR_SCAN_NO 8085 CONFIDENCE standard compound; INTERNAL_ID 526; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7994; ORIGINAL_PRECURSOR_SCAN_NO 7992 CONFIDENCE standard compound; INTERNAL_ID 526; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8044; ORIGINAL_PRECURSOR_SCAN_NO 8040 CONFIDENCE standard compound; INTERNAL_ID 526; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8083; ORIGINAL_PRECURSOR_SCAN_NO 8081 CONFIDENCE standard compound; INTERNAL_ID 526; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8034; ORIGINAL_PRECURSOR_SCAN_NO 8033

   

secbumetone

Pesticide4_Secbumeton_C10H19N5O_N-sec-Butyl-N-ethyl-6-methoxy-1,3,5-triazine-2,4-diamine

C10H19N5O (225.159)


CONFIDENCE standard compound; INTERNAL_ID 1181; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7666; ORIGINAL_PRECURSOR_SCAN_NO 7665 CONFIDENCE standard compound; INTERNAL_ID 1181; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7673; ORIGINAL_PRECURSOR_SCAN_NO 7670 CONFIDENCE standard compound; INTERNAL_ID 1181; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7712; ORIGINAL_PRECURSOR_SCAN_NO 7710 CONFIDENCE standard compound; INTERNAL_ID 1181; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7682; ORIGINAL_PRECURSOR_SCAN_NO 7680 CONFIDENCE standard compound; INTERNAL_ID 1181; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7740; ORIGINAL_PRECURSOR_SCAN_NO 7739 CONFIDENCE standard compound; INTERNAL_ID 1181; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7721; ORIGINAL_PRECURSOR_SCAN_NO 7717 CONFIDENCE standard compound; EAWAG_UCHEM_ID 669

   

dGDP

[({[(2R,3S,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O10P2 (427.0294)


dGDP is a derivative of the common nucleic acid GTP, or guanosine triphosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of GTP has been removed, most likely by hydrolysis . [HMDB]. dGDP is found in many foods, some of which are tea, black chokeberry, european plum, and roman camomile. dGDP is a derivative of the common nucleic acid GTP, or guanosine triphosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of GTP has been removed, most likely by hydrolysis (Wikipedia). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2'-Deoxyinosine triphosphate

{[hydroxy({[hydroxy({[(2R,3S,5R)-3-hydroxy-5-(6-oxo-6,9-dihydro-3H-purin-9-yl)oxolan-2-yl]methoxy})phosphoryl]oxy})phosphoryl]oxy}phosphonic acid

C10H15N4O13P3 (491.9848)


2-Deoxyinosine triphosphate (dITP) is a deoxyribonucleotide that may be generated from dATP by slow, non-enzymatic hydrolysis or by reduction of ITP. Normally, the cellular dITP concentration is very low. The inability to demonstrate the synthesis of dITP in cellular preparations has been attributed to the presence in the cytoplasm of an inosine triphosphatase pyrophosphatase (ITPase, EC 3.6.1.19), an enzyme that does not permit accumulation of these nucleotides. dITP can be incorporated into DNA by polymerases. The deoxyribonucleotide dITP behaves as a dGTP analogue and is incorporated opposite cytosine with about 50\\% efficiency. Both isolated nuclei and purified DNA polymerases rapidly incorporated dITP into DNA. In the presence of ATP, dITP is stabilized in extracts of nuclei. dITP exist in all cells and is potentially mutagenic, and the levels of these nucleotides are controlled by ITPase. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell. (PMID: 11278832) [HMDB] 2-Deoxyinosine triphosphate (dITP) is a deoxyribonucleotide that may be generated from dATP by slow, non-enzymatic hydrolysis or by reduction of ITP. Normally, the cellular dITP concentration is very low. The inability to demonstrate the synthesis of dITP in cellular preparations has been attributed to the presence in the cytoplasm of an inosine triphosphatase pyrophosphatase (ITPase, EC 3.6.1.19), an enzyme that does not permit accumulation of these nucleotides. dITP can be incorporated into DNA by polymerases. The deoxyribonucleotide dITP behaves as a dGTP analogue and is incorporated opposite cytosine with about 50\\% efficiency. Both isolated nuclei and purified DNA polymerases rapidly incorporated dITP into DNA. In the presence of ATP, dITP is stabilized in extracts of nuclei. dITP exist in all cells and is potentially mutagenic, and the levels of these nucleotides are controlled by ITPase. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell. (PMID: 11278832). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pimelic acid

1,5-Pentanedicarboxylic acid

C7H12O4 (160.0736)


Pimelic acid, also known as heptanedioic acid is a dicarboxylic acid. Derivatives of pimelic acid are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is one methylene longer than a related dicarboxylic acid, adipic acid, a precursor to many polyesters and polyamides. Pimelic acid is essential for the synthesis of biotin (also called vitamin B7). Biotin is a heterocyclic, S-containing monocarboxylic acid that is made from two precursors, alanine and pimeloyl-CoA. Biotin is important in fatty acid synthesis, branched-chain amino acid catabolism, and gluconeogenesis. Biotin is found in a wide range of foods. Likewise, intestinal bacteria synthesize biotin, which is then absorbed by the host animal. Pimelic acid (which is the precursor for pimeloyl-CoA) is synthesized in many bacteria via a head-to-tail incorporation of acetate units through a modified fatty acid synthetic pathway using O-methyl esters disguised to resemble the canonical intermediates of the fatty acid synthetic pathway (PMID:21435937). Some bacteria and yeast synthesize pimelic acid not by biosynthesis, but via cleavage of longer chain fatty acids (such as linolenic acid) via a cytochrome P450-like enzyme (PMID:28196402, 21435937, 3236079). Pimelic acid is excreted in elevated amounts in the urine of individuals with mitochondrial beta-oxidation disorders and peroxisomal beta oxidation disorders (PMID:1527989) A group of compounds that are derivatives of heptanedioic acid with the general formula R-C7H11O4. KEIO_ID P063 Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.

   

MCPB

4-(4-Chloro-2-methylphenoxy)butanoic acid

C11H13ClO3 (228.0553)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2710 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5034; ORIGINAL_PRECURSOR_SCAN_NO 5030 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4996; ORIGINAL_PRECURSOR_SCAN_NO 4991 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5038; ORIGINAL_PRECURSOR_SCAN_NO 5036 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5019; ORIGINAL_PRECURSOR_SCAN_NO 5018 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5021; ORIGINAL_PRECURSOR_SCAN_NO 5016 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5033; ORIGINAL_PRECURSOR_SCAN_NO 5031

   

terbutol

Terbucarb

C17H27NO2 (277.2042)


CONFIDENCE standard compound; INTERNAL_ID 1079; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10877; ORIGINAL_PRECURSOR_SCAN_NO 10876 CONFIDENCE standard compound; INTERNAL_ID 1079; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10902; ORIGINAL_PRECURSOR_SCAN_NO 10901 CONFIDENCE standard compound; INTERNAL_ID 1079; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10932; ORIGINAL_PRECURSOR_SCAN_NO 10927 CONFIDENCE standard compound; INTERNAL_ID 1079; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10957; ORIGINAL_PRECURSOR_SCAN_NO 10956 CONFIDENCE standard compound; INTERNAL_ID 1079; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10982; ORIGINAL_PRECURSOR_SCAN_NO 10981

   

tropinone

8-methyl-8-azabicyclo[3.2.1]octan-3-one

C8H13NO (139.0997)


Tropinone, also known as 3-tropanone, is a member of the class of compounds known as tropane alkaloids. Tropane alkaloids are organic compounds containing the nitrogenous bicyclic alkaloid parent N-Methyl-8-azabicyclo[3.2.1]octane. Tropinone is soluble (in water) and an extremely weak acidic compound (based on its pKa). Tropinone can be found in a number of food items such as walnut, japanese persimmon, komatsuna, and chicory roots, which makes tropinone a potential biomarker for the consumption of these food products. Tropinone is an alkaloid, famously synthesised in 1917 by Robert Robinson as a synthetic precursor to atropine, a scarce commodity during World War I. Tropinone and the alkaloids cocaine and atropine all share the same tropane core structure. Its corresponding conjugate acid at pH 7.3 major species is known as tropiniumone . KEIO_ID T061 Tropinone, an alkaloid, acts as a synthetic intermediate to?Atropine[1].

   

Carbinoxamine

{2-[(4-chloro-phenyl)-pyridin-2-yl-methoxy]-ethyl}-dimethyl-amine

C16H19ClN2O (290.1186)


Carbinoxamine, also known as carbinoxamine maleate or clistin, is a member of the class of compounds known as benzylethers. Benzylethers are aromatic ethers with the general formula ROCR (R = alkyl, aryl; R=benzene). Carbinoxamine is practically insoluble (in water) and a very strong basic compound (based on its pKa). Carbinoxamine can be found in barley and garden onion, which makes carbinoxamine a potential biomarker for the consumption of these food products. Carbinoxamine can be found primarily in blood and urine. In humans, carbinoxamine is involved in the carbinoxamine h1-antihistamine action. Carbinoxamine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Carbinoxamine is a drug which is used for symptomatic relief of seasonal and perennial allergic rhinitis and vasomotor rhinitis, as well as allergic conjunctivitis caused by foods and inhaled allergens. also for the relief of allergic reactions to blood or plasma, and the symptomatic management of mild, uncomplicated allergic skin manifestations of urticaria and angioedema. Carbinoxamine (Clistin, Palgic, Rondec, Rhinopront) is a antihistamine and anticholinergic agent. It was first launched in the United States by the McNeil Corporation under the brand name Clistin. It is now available under the brand name Palgic as 4 mg tablets or 4 mg/5 mL liquid. It is approved by the U.S. Food and Drug Administration (FDA) (specifically at the 4 mg dose/strength) for hay fever (a.k.a. allergic rhinitis, SAR and PAR); vasomotor rhinitis; mild urticaria; angioedema, dermatographism and allergic conjunctivitis. Carbinoxamine is a histamine antagonist, specifically an H1-antagonist. The maleic acid salt of the levorotatory isomer is sold as the prescription drug rotoxamine . Carbinoxamine competes with free histamine for binding at HA-receptor sites. This antagonizes the effects of histamine on HA-receptors, leading to a reduction of the negative symptoms brought on by histamine HA-receptor binding. Carbinoxamines anticholinergic action appears to be due to a central antimuscarinic effect, which also may be responsible for its antiemetic effects, although the exact mechanism is unknown (DrugBank). Carbinoxamine competes with free histamine for binding at HA-receptor sites. This antagonizes the effects of histamine on HA-receptors, leading to a reduction of the negative symptoms brought on by histamine HA-receptor binding. Carbinoxamines anticholinergic action appears to be due to a central antimuscarinic effect, which also may be responsible for its antiemetic effects, although the exact mechanism is unknown (T3DB). Carbinoxamine is a first generation antihistamine that competes with free histamine for binding at HA-receptor sites. This antagonizes the effects of histamine on HA-receptors, leading to a reduction of the negative symptoms brought on by histamine HA-receptor binding. The product label for carbinoxamine as an over the counter cough and cold medicine is being modified to state do not use in children under 4 years of age in order to prevent and reduce misuse, as many unapproved carbinoxamine-containing preparations contained inappropriate labeling, which promoted unapproved uses (including management of congestion, cough, the common cold, and the use in children under 2 years of age), which can potentially cause serious health risks. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist

   

(S)-2-Propylpiperidine

coniine hydrochloride, (+-)-isomer

C8H17N (127.1361)


(S)-2-Propylpiperidine is found in black elderberry. (S)-2-Propylpiperidine is an alkaloid of Amorphophalus rivieri (devils tongue Alkaloid of Amorphophalus rivieri (devils tongue). (S)-2-Propylpiperidine is found in pomegranate and black elderberry.

   

Thiobencarb

N,N-diethyl{[(4-chlorophenyl)methyl]sulfanyl}formamide

C12H16ClNOS (257.0641)


CONFIDENCE standard compound; INTERNAL_ID 645; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9919; ORIGINAL_PRECURSOR_SCAN_NO 9915 CONFIDENCE standard compound; INTERNAL_ID 645; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9872; ORIGINAL_PRECURSOR_SCAN_NO 9867 CONFIDENCE standard compound; INTERNAL_ID 645; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9934; ORIGINAL_PRECURSOR_SCAN_NO 9929 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

(R)-Sulcatol

5-Hepten-2-ol,6-methyl-

C8H16O (128.1201)


(R)-Sulcatol is found in herbs and spices. (R)-Sulcatol occurs in lemongrass oi Flavouring ingredient. 6-Methyl-5-hepten-2-ol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=4630-06-2 (retrieved 2024-07-12) (CAS RN: 1569-60-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cyclohexanecarboxylic acid

Cyclohexanecarboxylic acid, sodium salt, 11C-labeled

C7H12O2 (128.0837)


Cyclohexanecarboxylic acid is a flavouring ingredien Flavouring ingredient KEIO_ID C180 Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].

   

CHLORENDIC ACID

1,4,5,6,7,7-Hexachloro-5-norbornene-2,3-dicarboxylic acid

C9H4Cl6O4 (385.8241)


CONFIDENCE standard compound; INTERNAL_ID 247; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5103 CONFIDENCE standard compound; INTERNAL_ID 247; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5128; ORIGINAL_PRECURSOR_SCAN_NO 5127 CONFIDENCE standard compound; INTERNAL_ID 247; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5088; ORIGINAL_PRECURSOR_SCAN_NO 5086 CONFIDENCE standard compound; INTERNAL_ID 247; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5203; ORIGINAL_PRECURSOR_SCAN_NO 5202 CONFIDENCE standard compound; INTERNAL_ID 247; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5099; ORIGINAL_PRECURSOR_SCAN_NO 5096

   

naphthoic acid

1-NAPHTHOIC ACID

C11H8O2 (172.0524)


A naphthoic acid carrying a carboxy group at position 1.

   

Azinphos-ethyl

O,O-diethyl {[(4-oxo-3,4-dihydro-1,2,3-benzotriazin-3-yl)methyl]sulfanyl}phosphonothioate

C12H16N3O3PS2 (345.0371)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 3654 CONFIDENCE standard compound; INTERNAL_ID 2608 CONFIDENCE standard compound; INTERNAL_ID 8478

   

Haloxyfop-P

2-(4-{[3-chloro-5-(trifluoromethyl)pyridin-2-yl]oxy}phenoxy)propionic acid

C15H11ClF3NO4 (361.0329)


CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5192; ORIGINAL_PRECURSOR_SCAN_NO 5188 CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9781; ORIGINAL_PRECURSOR_SCAN_NO 9778 CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5197; ORIGINAL_PRECURSOR_SCAN_NO 5195 CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9812; ORIGINAL_PRECURSOR_SCAN_NO 9810 CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9756; ORIGINAL_PRECURSOR_SCAN_NO 9751 CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5211; ORIGINAL_PRECURSOR_SCAN_NO 5206 CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5186; ORIGINAL_PRECURSOR_SCAN_NO 5184 CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5280; ORIGINAL_PRECURSOR_SCAN_NO 5279 CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9776; ORIGINAL_PRECURSOR_SCAN_NO 9774 CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5216; ORIGINAL_PRECURSOR_SCAN_NO 5212 CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9730; ORIGINAL_PRECURSOR_SCAN_NO 9726 CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9784; ORIGINAL_PRECURSOR_SCAN_NO 9781 ORIGINAL_PRECURSOR_SCAN_NO 5195; CONFIDENCE standard compound; INTERNAL_ID 384; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5197 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3562 Haloxyfop is an aryloxyphenoxypropionic acid herbicide and is widely used in grass weeds in broad-leaf crops[2]. Haloxyfop inhibits the acetyl coenzyme A carboxylase (EC 6.4.1.2) from corn seedling chloroplasts with an IC50 of 0.5 μM, but has no effect on this enzyme in pea[2].

   

Robinetin

4H-1-Benzopyran-4-one, 3,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)- (9CI)

C15H10O7 (302.0427)


Robinetin is a pentahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 7, 3, 4 and 5. It has a role as a plant metabolite. It is a pentahydroxyflavone and a 7-hydroxyflavonol. Robinetin is a natural product found in Acacia mearnsii, Intsia bijuga, and other organisms with data available. A pentahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 7, 3, 4 and 5. Robinetin (3,3',4',5',7-Pentahydroxyflavone), a naturally occurring flavonoid with remarkable ‘two color’ intrinsic fluorescence properties, has antifungal, antiviral, antibacterial, antimutagenesis, and antioxidant activity. Robinetin also can inhibit lipid peroxidation and protein glycosylation[1][2][3][4][5]. Robinetin (3,3',4',5',7-Pentahydroxyflavone), a naturally occurring flavonoid with remarkable ‘two color’ intrinsic fluorescence properties, has antifungal, antiviral, antibacterial, antimutagenesis, and antioxidant activity. Robinetin also can inhibit lipid peroxidation and protein glycosylation[1][2][3][4][5].

   

Sakuranin

[ S, (-) ] -5- (beta-D-Glucopyranosyloxy) -2,3-dihydro-2- (4-hydroxyphenyl) -7-methoxy-4H-1-benzopyran-4-one

C22H24O10 (448.1369)


A flavanone glycoside that is sakuranetin attached to a beta-D-glucopyranosyl residue at position 5 via a glycosidic linkage.

   

Josamycin

(2S,3S,4R,6S)-6-{[(2R,3S,4R,5R,6S)-6-{[(4R,5S,6S,7R,9R,10R,11E,13E,16R)-4-(acetyloxy)-10-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-6-yl]oxy}-4-(dimethylamino)-5-hydroxy-2-methyloxan-3-yl]oxy}-4-hydroxy-2,4-dimethyloxan-3-yl 3-methylbutanoate

C42H69NO15 (827.4667)


Josamycin is only found in individuals that have used or taken this drug. It is a macrolide antibiotic from Streptomyces narbonensis. The drug has antimicrobial activity against a wide spectrum of pathogens. [PubChem]The mechanism of action of macrolides such as Josamycin is via inhibition of bacterial protein biosynthesis by binding reversibly to the subunit 50S of the bacterial ribosome, thereby inhibiting translocation of peptidyl tRNA. This action is mainly bacteriostatic, but can also be bactericidal in high concentrations. Macrolides tend to accumulate within leukocytes, and are therefore actually transported into the site of infection. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D01235 Josamycin (EN-141) is a macrolide antibiotic exhibiting antimicrobial activity against a wide spectrum of pathogens, such as bacteria. The dissociation constant Kd from ribosome for Josamycin is 5.5 nM.

   

Zeranol

7,14,16-trihydroxy-3-methyl-3,4,5,6,7,8,9,10,11,12-decahydro-1H-2-benzoxacyclotetradecin-1-one

C18H26O5 (322.178)


Zeranol is isolated from Fusarium species. It is an anabolic agent and estrogenic agent (mainly veterinary use). Zeranol is used as a growth promoter for food animals. It was banned by the EU in 1989, but is still permitted in the USA and some other countries. It may also arise in livestock by ingestion of Fusarium contaminated pasture or feeds D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Same as: D06362

   

Thiethylperazine

2-(ethylsulfanyl)-10-[3-(4-methylpiperazin-1-yl)propyl]-10H-phenothiazine

C22H29N3S2 (399.1803)


A dopamine antagonist that is particularly useful in treating the nausea and vomiting associated with anesthesia, mildly emetic cancer chemotherapy agents, radiation therapy, and toxins. This piperazine phenothiazine does not prevent vertigo or motion sickness. (From AMA Drug Evaluations Annual, 1994, p457) R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Thiethylperazine, a phenothiazine derivate, is an orally active and potent dopamine D2-receptor and histamine H1-receptor antagonist. Thiethylperazine is also a selective ABCC1activator that reduces amyloid-β (Aβ) load in mice. Thiethylperazine has anti-emetic, antipsychotic and antimicrobial effects[1][2][3].

   

Paramethasone Acetate

6alpha-fluoro-11beta,17alpha,21-trihydroxy-16alpha-methylpregna-1,4-diene-3,20-dione acetate

C24H31FO6 (434.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid Same as: D01229

   

2,4-DMA

2,4-Dimethylaniline

C8H11N (121.0891)


KEIO_ID D180

   

GS 14259

TERBUMETON

C10H19N5O (225.159)


EAWAG_UCHEM_ID 346; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 346

   

4-ACETYLAMINOBIPHENYL

(4-Biphenyl)Acetamide

C14H13NO (211.0997)


   

Diguanosine tetraphosphate

{[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[({[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy})phosphinic acid

C20H28N10O21P4 (868.0381)


P(1),p(4)-bis(5-guanosyl) tetraphosphate, also known as gp4g or gppppg, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. P(1),p(4)-bis(5-guanosyl) tetraphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). P(1),p(4)-bis(5-guanosyl) tetraphosphate can be found in a number of food items such as allium (onion), pasta, rocket salad (sspecies), and vanilla, which makes p(1),p(4)-bis(5-guanosyl) tetraphosphate a potential biomarker for the consumption of these food products. P(1),p(4)-bis(5-guanosyl) tetraphosphate exists in all living species, ranging from bacteria to humans. In humans, p(1),p(4)-bis(5-guanosyl) tetraphosphate is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. P(1),p(4)-bis(5-guanosyl) tetraphosphate is also involved in several metabolic disorders, some of which include lesch-nyhan syndrome (LNS), myoadenylate deaminase deficiency, mitochondrial DNA depletion syndrome, and xanthine dehydrogenase deficiency (xanthinuria). Diguanosine tetraphosphate is a diguanosine polyphosphate. Diguanosine polyphosphates (GpnGs) are found in human platelets, among a number of dinucleoside polyphosphates, which vary with respect to the number of phosphate groups and the nucleoside moieties; not only diguanosine polyphosphates (GpnG) are found, but also mixed dinucleoside polyphosphates containing one adenosine and one guanosine moiety (ApnG). The vasoactive nucleotides that can be detected in human plasma contain shorter (n=2-3) and longer (n=4-6) polyphosphate chains. GpnGs have not yet been characterized so far with respect to their effects on kidney vasculature. (PMID: 11159696, 11682456, 11115507).

   

Atraton

N-[4-(ethylimino)-6-methoxy-1,2,3,4-tetrahydro-1,3,5-triazin-2-ylidene]propan-2-amine

C9H17N5O (211.1433)


CONFIDENCE standard compound; INTERNAL_ID 464; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7127; ORIGINAL_PRECURSOR_SCAN_NO 7122 CONFIDENCE standard compound; INTERNAL_ID 464; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7097; ORIGINAL_PRECURSOR_SCAN_NO 7095 CONFIDENCE standard compound; INTERNAL_ID 464; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7050; ORIGINAL_PRECURSOR_SCAN_NO 7048 CONFIDENCE standard compound; INTERNAL_ID 464; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7095; ORIGINAL_PRECURSOR_SCAN_NO 7094 CONFIDENCE standard compound; INTERNAL_ID 464; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7139; ORIGINAL_PRECURSOR_SCAN_NO 7135 CONFIDENCE standard compound; INTERNAL_ID 464; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7122; ORIGINAL_PRECURSOR_SCAN_NO 7120

   

Bz-Arg-OEt

ethyl 5-{[amino(imino)methyl]amino}-2-(benzoylamino)pentanoate

C15H22N4O3 (306.1692)


KEIO_ID B026; [MS3] KO008890 KEIO_ID B026; [MS2] KO008889 KEIO_ID B026

   

N-Acetylhistidine

(2S)-2-Acetamido-3-(1H-imidazol-5-yl)propanoic acid

C8H11N3O3 (197.08)


N-Acetyl-L-histidine or N-Acetylhistidine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylhistidine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylhistidine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-histidine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\% of all human proteins and 68\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylhistidine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free histidine can also occur. In particular, N-Acetylhistidine can be biosynthesized from L-histidine and acetyl-CoA by the enzyme histidine N-acetyltransferase (EC 2.3.1.33). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Constituent of the tissues of various fish and amphibian subspecies N-Acetylhistidine is found in fishes. KEIO_ID A073

   

4-Bromophenol

p-Bromohydroxybenzene

C6H5BrO (171.9524)


4-Bromophenol, also known as P-Bromohydroxybenzene, is classified as a member of the P-bromophenols. P-bromophenols are bromophenols carrying a iodine at the C4 position of the benzene ring. 4-Bromophenol is considered to be slightly soluble (in water) and acidic

   

TES (buffer)

N-Tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid [TES]

C6H15NO6S (229.062)


   

Acetylenedicarboxylic acid

2-Butynedioic acid, potassium salt

C4H2O4 (113.9953)


KEIO_ID A128

   

Ketopantolactone

4,4-dimethyloxolane-2,3-dione

C6H8O3 (128.0473)


2-dehydropantolactone is a tetrahydrofurandione. It is functionally related to a pantoic acid. 2-Dehydropantolactone is a metabolite found in or produced by Saccharomyces cerevisiae. Ketopantolactone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13031-04-4 (retrieved 2024-10-30) (CAS RN: 13031-04-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

5-Keto-D-gluconate

2,3,4,6-tetrahydroxy-5-oxohexanoic acid

C6H10O7 (194.0427)


5-Keto-D-gluconate is metabolized from glucose in certain bacterial species. It is an intermediate in L-idonate degradation and ketogluconate metabolism. 5-Keto-D-gluconate 5-reductase catalyzes the reversible reduction of 5-ketogluconate to D-gluconate. This is the second reaction of the L-idonate catabolic pathway after uptake of L-idonate into the cell. The enzyme specifically reduces 5-ketogluconate using either NADH or NADPH. The enzyme is also specific for D-gluconate oxidation using NADP as the coenzyme, NAD does not serve as a coenzyme. 5-Keto-D-gluconate has also been found to be a metabolite of Gluconobacter (https://www.sciencedirect.com/science/article/pii/S138111779800112X). 5-Keto-D-gluconate is metabolized from glucose in certain bacterial species. It is an intermediate in L-idonate degradation and ketogluconate metabolism. 5-Keto-D-gluconate 5-reductase catalyzes the reversible reduction of 5-ketogluconate to D-gluconate. This is the second reaction of the L-idonate catabolic pathway after uptake of L-idonate into the cell. The enzyme specifically reduces 5-ketogluconate using either NADH or NADPH. The enzyme is also specific for D-gluconate oxidation using NADP as the coenzyme, NAD does not serve as a coenzyme. [HMDB]

   

Glucoiberin

{[(E)-(4-methanesulfinyl-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}butylidene)amino]oxy}sulfonic acid

C11H21NO10S3 (423.0328)


Glucoiberin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Glucoiberin is an extremely weak basic (essentially neutral) compound (based on its pKa). Glucoiberin has been detected, but not quantified in, several different foods, such as capers, cauliflowers, cabbages, Brassicas, and Chinese cabbages. This could make glucoiberin a potential biomarker for the consumption of these foods. Glucoiberin is isolated from the seeds of Brassica oleracea and other crucifers. Isolated from seeds of Brassica oleracea and other crucifers. Glucoiberin is found in many foods, some of which are white cabbage, cabbage, broccoli, and brussel sprouts. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Glucosinalbin

({[2-(4-hydroxyphenyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulphanyl}ethylidene]amino}oxy)sulphonic acid

C14H19NO10S2 (425.045)


Glucosinalbin is found in american pokeweed. Glucosinalbin is isolated from Brassica seeds.

   

Flurenol

Flurenol

C14H10O3 (226.063)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3094

   

xi-gamma-Undecalactone

2(3H)-Furanone, 5-heptyldihydro-

C11H20O2 (184.1463)


(±)-5-Heptyldihydro-2(3H)-furanone is a flavouring ingredient. [Raw Data] CB092_gamma-Undecalactone_pos_20eV_CB000039.txt [Raw Data] CB092_gamma-Undecalactone_pos_30eV_CB000039.txt [Raw Data] CB092_gamma-Undecalactone_pos_10eV_CB000039.txt

   

1,5-Diphenylcarbazide

1,5-Diphenylcarbohydrazide

C13H14N4O (242.1168)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents KEIO_ID D166; [MS2] KO009100 KEIO_ID D166

   

4-Fluorobenzoic acid

4-Fluorobenzoic acid, copper (+2) salt dihydrate

C7H5FO2 (140.0274)


KEIO_ID F023

   

3-Fluorobenzoate

3-FLUOROBENZOIC ACID

C7H5FO2 (140.0274)


KEIO_ID F032

   

3-Methylguanine

7-dihydro-3-Methyl-2-amino-3-6H-purin-6-one (9ci)

C6H7N5O (165.0651)


3-Methylguanine is a methylated purine base. Methylated purine bases are known to be present in normal urine and to change under pathological conditions, in particular in the development of leukemia, tumors and immunodeficiency, by the altered turnover of nucleic acids typical of these diseases. (PMID 9069642) [HMDB] 3-Methylguanine is a methylated purine base. Methylated purine bases are known to be present in normal urine and to change under pathological conditions, in particular in the development of leukemia, tumors and immunodeficiency, by the altered turnover of nucleic acids typical of these diseases. (PMID 9069642). KEIO_ID M042

   

Z-Gly-Pro

Carbobenzoxyglycyl-L-proline

C15H18N2O5 (306.1216)


KEIO_ID Z003; [MS3] KO009084 KEIO_ID Z003; [MS2] KO009083 KEIO_ID Z003

   

Gibberellin A81

(1R,2R,5S,8S,9S,10R,11R,13S)-5,13-dihydroxy-11-methyl-6-methylidene-16-oxo-15-oxapentacyclo[9.3.2.1^{5,8}.0^{1,10}.0^{2,8}]heptadecane-9-carboxylic acid

C19H24O6 (348.1573)


Gibberellin A81 (GA81) belongs to the class of organic compounds known as C19-gibberellin 6-carboxylic acids. These are C19-gibberellins with a carboxyl group at the 6-position. Gibberellin A81 is found in citrus. Gibberellin A81 is a constituent of garden pea (Pisum sativum) and oranges (Citrus sinensis). Constituent of garden pea (Pisum sativum) and oranges (Citrus sinensis). Gibberellin A81 is found in many foods, some of which are citrus, sweet orange, pulses, and garden tomato (variety).

   

Cyclic cmp

CYTIDINE 3:5-CYCLIC MONOPHOSPHATE

C9H12N3O7P (305.0413)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

IDP

[({[(2R,3S,4R)-3,4-dihydroxy-5-(6-oxo-6,9-dihydro-3H-purin-9-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H14N4O11P2 (428.0134)


An inosine nucleotide containing a pyrophosphate group esterified to C5 of the sugar moiety. [HMDB] IDP is an inosine nucleotide containing a pyrophosphate group esterified to C5 of the sugar moiety. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Sinapoyl malate

(E)-2-((3-(4-Hydroxy-3,5-dimethoxyphenyl)acryloyl)oxy)succinic acid

C15H16O9 (340.0794)


Annotation level-2 Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Demethylmedicarpin

(6aR,11aR)-3,9-Dihydroxypterocarpan

C15H12O4 (256.0736)


   

Xenognosin B

7-Hydroxy-3-(2-hydroxy-4-methoxyphenyl)-4H-chromen-4-one

C16H12O5 (284.0685)


Isolated from Trifolium repens (white clover). 2-Hydroxyformononetin is found in many foods, some of which are daikon radish, chervil, pummelo, and turmeric. Xenognosin B is found in green vegetables. Xenognosin B is isolated from Trifolium repens (white clover

   

Multinoside A

3-{[(2S,3R,4S,5R,6S)-3,4-dihydroxy-6-methyl-5-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C27H30O16 (610.1534)


Multinoside A, also known as quercetin 3-(4-glucosylrhamnoside), is a member of the class of compounds known as flavonoid-3-O-glycosides. Flavonoid-3-O-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Multinoside A is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Multinoside A can be found in fruits such as peach (Prunus persica), which makes multinoside A a potential biomarker for the consumption of these food products. Isolated from Prunus persica. Quercetin 3-(4-glucosylrhamnoside) is found in fruits and peach.

   

corytuberine

(S)-corytuberine

C19H21NO4 (327.1471)


An aporphine alkaloid that is aporphine which is substituted by hydroxy groups at positions 1 and 11, and by methoxy groups at positions 2 and 10 (the S enantiomer).

   

Nitidine

Nitidine chloride

C21H18NO4+ (348.1236)


   

Rabelomycin

3,6,8-Trihydroxy-3-methyl-2,4-dihydrobenzo[a]anthracene-1,7,12-trione

C19H14O6 (338.079)


   

Picein

1-(4-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)ethanone

C14H18O7 (298.1052)


Picein is a glycoside. Picein is a natural product found in Salix candida, Halocarpus biformis, and other organisms with data available. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1]. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1].

   

Sulochrin

Sulochrin

C17H16O7 (332.0896)


A benzophenone that is the methyl ester of 2-(2,6-dihydroxy-4-methylbenzoyl)-5-hydroxy-3-methoxybenzoic acid.

   

Xanthyletin

8,8-dimethyl-2H,8H-pyrano[3,2-g]chromen-2-one

C14H12O3 (228.0786)


Xanthyletin is a member of the class of compounds known as linear pyranocoumarins. Linear pyranocoumarins are organic compounds containing a pyran (or a hydrogenated derivative) linearly fused to a coumarin moiety. Xanthyletin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Xanthyletin can be found in lemon, lime, mandarin orange (clementine, tangerine), and sweet orange, which makes xanthyletin a potential biomarker for the consumption of these food products.

   

Parfumine

Parfumine

C20H19NO5 (353.1263)


A benzylisoquinoline alkaloid isolated from Fumaria vaillantii and Fumaria parviflora.

   

Cellobionic acid

Cellobionic Acid Ammonium Salt

C12H22O12 (358.1111)


A disaccharide consisting beta-D-glucosyl and D-gluconic acid residues joined by a (1->4)-linkage.

   

Adenosine 3',5'-diphosphate

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}phosphonic acid

C10H15N5O10P2 (427.0294)


Adenosine-3-5-diphosphate, also known as 3-phosphoadenylate or pap, is a member of the class of compounds known as purine ribonucleoside 3,5-bisphosphates. Purine ribonucleoside 3,5-bisphosphates are purine ribobucleotides with one phosphate group attached to 3 and 5 hydroxyl groups of the ribose moiety. Adenosine-3-5-diphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine-3-5-diphosphate can be found in a number of food items such as beech nut, canola, chickpea, and red algae, which makes adenosine-3-5-diphosphate a potential biomarker for the consumption of these food products. Adenosine-3-5-diphosphate can be found primarily in cellular cytoplasm, as well as in human brain and liver tissues. Adenosine-3-5-diphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine-3-5-diphosphate is involved in several metabolic pathways, some of which include acetaminophen metabolism pathway, tamoxifen action pathway, androgen and estrogen metabolism, and metachromatic leukodystrophy (MLD). Adenosine-3-5-diphosphate is also involved in several metabolic disorders, some of which include gaucher disease, krabbe disease, fabry disease, and 17-beta hydroxysteroid dehydrogenase III deficiency. Adenosine 3, 5-diphosphate or PAP is a nucleotide that is closely related to ADP. It has two phosphate groups attached to the 5 and 3 positions of the pentose sugar ribose (instead of pyrophosphoric acid at the 5 position, as found in ADP), and the nucleobase adenine. PAP is converted to PAPS by Sulfotransferase and then back to PAP after the sulfotransferase reaction. Sulfotransferase (STs) catalyze the transfer reaction of the sulfate group from the ubiquitous donor 3-phosphoadenosine 5-phosphosulfate (PAPS) to an acceptor group of numerous substrates. This reaction, often referred to as sulfuryl transfer, sulfation, or sulfonation, is widely observed from bacteria to humans and plays a key role in various biological processes such as cell communication, growth and development, and defense. PAP also appears to a role in bipolar depression. Phosphatases converting 3-phosphoadenosine 5-phosphate (PAP) into adenosine 5-phosphate are of fundamental importance in living cells as the accumulation of PAP is toxic to several cellular systems. These enzymes are lithium-sensitive and we have characterized a human PAP phosphatase as a potential target of lithium therapy.

   

TR 1 toxin

verruculogen

C27H33N3O7 (511.2318)


   

Aminoundecanoic acid

11-amino-undecanoic acid

C11H23NO2 (201.1729)


11-Aminoundecanoic acid is an organic compound with the formula H2N(CH2)10CO2H. This white solid is classified as an amine and a fatty acid. 11-Aminoundecanoic acid is a precursor to Nylon-11.[1] As practiced by Arkema, 11-aminoundecanoic acid is prepared industrially from undecylenic acid, which is derived from castor oil.[2] The synthesis proceeds in four separate reactions: 1. Transesterification of castor oil to methyl ricinoleate: Crude castor oil consists of about 80\\% triglycerides, from the ricinoleic acid, itself representing about 90\\% of the oil.[3] It is quantitatively transesterified with methanol to methyl ricinoleate (the methyl ester of ricinoleic acid) in the presence of the basic sodium methoxide at 80 °C within 1 h reaction time in a stirred reactor. At the end of the reaction, the resulting glycerol separates and the liquid methyl ester is washed with water to remove residual glycerol. 2. Pyrolysis of methylricinoleate to heptanal and methyl undecenoate: Methylricinoleate is evaporated at 250 °C, mixed with hot steam (600 °C) in a 1:1 ratio and decomposed in a cracking furnace at 400 - 575 °C at a retention time of about 10 seconds into its cleavage products heptanal and methyl undecenoate. The cleavage of the aliphatic chain occurs in this variant of the steam cracking selectively between the hydroxymethylene and the allyl-methylene group. Besides heptanal and methyl undecenoate, a mixture of methyl esters of saturated and unsaturated C18-carboxylic acids is obtained. This mixture is known under the trade name Esterol and is used as a lubricant additive. 3. Hydrolysis of methyl undecenoate to 10-undecenoic acid The hydrolysis of the methyl ester with sodium hydroxide proceeds at 25 °C within 30 min with quantitative yield. After acidification with hydrochloric acid, solid 10-undecenoic acid (undecylenic acid) is obtained. 4. Hydrobromination of 10-undecenoic acid to 11-bromoundecanoic acid The undecenoic acid is dissolved in toluene and, in the presence of the radical initiator benzoyl peroxide (BPO), gaseous hydrogen bromide is added, in contrary to the Markovnikov rule ("anti-Markovnikov"). When cooled to 0 °C, the fast and highly exothermic reaction produces 11-bromoundecanoic acid in 95\\% yield - the Markovnikov product 10-bromoundecanoic acid is produced in small quantities as a by-product. Toluene and unreacted hydrogen bromide are extracted under reduced pressure and reused. 5. Bromine exchange of 11-bromoundecanoic acid to 11-aminoundecanoic acid 11-Bromodecanoic acid is mixed at 30 °C with a large excess of 40\\% aqueous ammonia solution. When the reaction is complete, water is added and the mixture is heated to 100 °C to remove the excess ammonia. The acid can be recrystallized from water. For further purification, the hydrochloride of 11-aminoundecanoic acid, which is available by acidification with hydrochloric acid, can be recrystallized from a methanol/ethyl acetate mixture. Aminoundecanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2432-99-7 (retrieved 2024-07-01) (CAS RN: 2432-99-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1006

   

Nostoxanthin

Nostoxanthin

C40H56O4 (600.4178)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

2,4-Dihydroxy-2H-1,4-benzoxazin-3(4H)-one

2,4-dihydroxy-3,4-dihydro-2H-1,4-benzoxazin-3-one

C8H7NO4 (181.0375)


2,4-Dihydroxy-2H-1,4-benzoxazin-3(4H)-one is a benzoxazinoid precursor of 2-aminophenol sulfate. It is a metabolite found in urine of individuals that have consumed whole grains. It is a particularly strong biomarker for whole grain rye bread consumption (PMID: 23307617). Isolated from seedlings of rye and sweet corn (Zea mays). 2,4-Dihydroxy-2H-1,4-benzoxazin-3(4H)-one is found in cereals and cereal products and fats and oils.

   

Capsorubin

(2E,4E,6E,8E,10E,12E,14E,16E,18E)-1,20-bis[(1R,4S)-4-hydroxy-1,2,2-trimethylcyclopentyl]-4,8,13,17-tetramethylicosa-2,4,6,8,10,12,14,16,18-nonaene-1,20-dione

C40H56O4 (600.4178)


Capsorubin is found in herbs and spices. Capsorubin is a constituent of paprika (Capsicum annuum). Potential nutriceutical.Capsorubin is one of the main colouring constituant of paprika oleoresin (paprika extract). (Wikipedia). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Constituent of paprika (Capsicum annuum). Potential nutriceutical

   

Tetrahydrospirilloxanthin

3,4,3,4-Tetrahydrospirilloxanthin

C42H64O2 (600.4906)


   

2'-Hydroxygenistein

3-(2,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one, 9CI

C15H10O6 (286.0477)


Isolated from Cajanus cajan (pigeon pea), Dolichos biflorus (papadi), Lablab niger (hyacinth bean), Phaseolus vulgaris (kidney bean) and Phaseolus coccineus (scarlet runner bean). 2-Hydroxygenistein is found in many foods, some of which are pulses, walnut, saskatoon berry, and garden tomato (variety). 2-Hydroxygenistein is found in adzuki bean. 2-Hydroxygenistein is isolated from Cajanus cajan (pigeon pea), Dolichos biflorus (papadi), Lablab niger (hyacinth bean), Phaseolus vulgaris (kidney bean) and Phaseolus coccineus (scarlet runner bean).

   

3-Methyl-2-butenal

β,β-Dimethylacrylic aldehyde

C5H8O (84.0575)


3-Methyl-2-butenal, also known as senecialdehyde or 3,3-dimethylacrolein, belongs to the class of organic compounds known as enals. These are alpha,beta-unsaturated aldehydes of the general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position. 3-methyl-2-butenal has been detected, but not quantified, in several different foods, such as common oregano, beechnuts, oval-leaf huckleberries, tea leaf willows, and red rice. This could make 3-methyl-2-butenal a potential biomarker for the consumption of these foods. 3-Methyl-2-butenal is a derivative of acrolein that is an alpha, beta-unsaturated carbonyl metabolite. It can be formed endogenously during lipid peroxidation or after oxidative stress, and is considered to play an important role in human carcinogenesis. The endogenously formed acroleins are a constant source of DNA damage, can lead to mutation, and can also induce tumours in humans (PMID:8319634). 3-Methyl-2-butenal, which is an unsaturated aldehyde bearing substitution at the alkene terminus, is a poor inactivator of the enzymes protein tyrosine phosphatases (PTPs). The inactivation of PTPs can yield profound biological consequences arising from the disruption of cellular signalling pathways (PMID:17655273). Present in blackberry, grape brandy, cocoa, currants, baked potato, tea, costmary and white bread. Flavouring ingredient

   

Dihydro-5-pentyl-2(3H)-furanone

(±)-Dihydro-5-pentyl-2(3H)-furanone

C9H16O2 (156.115)


Dihydro-5-pentyl-2(3H)-furanone is found in alcoholic beverages. Dihydro-5-pentyl-2(3H)-furanone is present in blackcurrant buds and berries, melon, papaya, pineapple, peaches, apricot, wheat bread, crispbread, wines, black tea and other foodstuffs. Dihydro-5-pentyl-2(3H)-furanone is a flavouring agent Flavouring ingredient. It is used in coconut flavours.

   

Salutaridinol

5,6,8,14-Tetradehydro-3,6-dimethoxy-17-methyl-morphinan-4,7-diol

C19H23NO4 (329.1627)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids

   

Dihydroxyindole

2,3-Dihydroxyindole

C8H7NO2 (149.0477)


   

2,3-Naphthalenediol

2,3-Dihydroxynaphthalene

C10H8O2 (160.0524)


   

Gibberellin A12 aldehyde

(1R,2S,3S,4R,8S,9S,12R)-2-formyl-4,8-dimethyl-13-methylidenetetracyclo[10.2.1.0(1,9).0(3,8)]pentadecane-4-carboxylic acid 10beta-formyl-1beta,4a-dimethyl-8-methylidene-4aalpha,4bbeta-gibbane-1alpha-carboxylic acid

C20H28O3 (316.2038)


Gibberellin A12 aldehyde (GA12-aldehyde), also known as gibberellin A12 7-aldehyde, belongs to the class of organic compounds known as C20-gibberellins. These are gibberellins with carboxy groups in positions 7 and 18 and some also in 20, while others have an aldehyde group in the latter position. Thus, gibberellin A12 aldehyde is considered to be an isoprenoid lipid molecule. Gibberellin A12 aldehyde is found in pulses. It is also a constituent of Phaseolus species, Pisum sativum (peas), and other plant species. Constituent of Phaseolus subspecies, Pisum sativum (peas) and other plant subspecies Gibberellin A12 7-aldehyde is found in many foods, some of which are japanese pumpkin, pulses, common pea, and winter squash. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins

   

Undecaprenyl phosphate

(2E,6E,10E,14E,18E,22E,26E,30E,34E,38E)-3,7,11,15,19,23,27,31,35,39,43-undecamethyltetratetraconta-2,6,10,14,18,22,26,30,34,38,42-undecaen-1-yl dihydrogen phosphate

C55H91O4P (846.6655)


   

5-Formiminotetrahydrofolic acid

5-Formimidoyltetrahydrofolic acid

C20H24N8O6 (472.1819)


5-Formiminotetrahydrofolic acid is a substrate for Formimidoyltransferase-cyclodeaminase. [HMDB] 5-Formiminotetrahydrofolic acid is a substrate for Formimidoyltransferase-cyclodeaminase.

   

hydroxymuconic semialdehyde

2-hydroxy-6-oxohexa-2,4-dienoic acid

C6H6O4 (142.0266)


   

Oxaluric acid

2-hydroxy-2-[(C-hydroxycarbonimidoyl)imino]acetic acid

C3H4N2O4 (132.0171)


Oxalureate, also known as monooxalylurea or oxaluric acid, is a member of the class of compounds known as N-carbamoyl-alpha amino acids. N-carbamoyl-alpha amino acids are compounds containing an alpha amino acid which bears an carbamoyl group at its terminal nitrogen atom. Oxalureate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Oxalureate can be found in cocoa bean, which makes oxalureate a potential biomarker for the consumption of this food product. Oxalureate may be a unique E.coli metabolite.

   

Pentanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(pentanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C26H44N7O17P3S (851.1727)


Pentanoyl CoA is an acyl-CoA with the C-5 Acyl chain. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Pentanoyl coA is a acyl-CoA with the C-5 Acyl chain.

   

2-Ketohexanoic acid

alpha-Ketocaproic acid, sodium salt

C6H10O3 (130.063)


2-Ketohexanoic acid is a potent insulin secretagogue (PMID 7045091). 2-Ketohexanoic acid directly inhibits the ATP-sensitive K+ channel (KATP channel) in pancreatic beta-cells (stimulated in isolated mouse islets), but it is unknown whether direct KATP channel inhibition contributes to insulin release by 2-ketohexanoic acid and related alpha-keto acid anions, which are generally believed to act via beta-cell metabolism (PMID 16014804). 2-Ketohexanoic acid is a potent insulin secretagogue. (PMID 7045091)

   

2-Aminoadenosine

2,6-Diaminopurine riboside

C10H14N6O4 (282.1076)


2-Aminoadenosine is an adenosine analog. Adenosine analogs mostly act as smooth muscle vasodilators and have also been shown to inhibit cancer progression. Its popular products are adenosine phosphate, Acadesine (HY-13417), Clofarabine (HY-A0005), Fludarabine phosphate (HY-B0028) and Vidarabine (HY-B0277)[1].

   

Formylmethanofuran

7-[[(1S)-1-carboxy-4-[[(1S)-1-carboxy-4-[2-[4-[[5-(formamidomethyl)-3-furyl]methoxy]phenyl]ethylamino]-4-oxo-butyl]amino]-4-oxo-butyl]amino]-7-oxo-heptane-1,3,4-tricarboxylic acid

C35H44N4O16 (776.2752)


   

dihydroriboflavin

1,5-Dihydroriboflavin

C17H22N4O6 (378.1539)


   

dihydro-3-hydroxy-4,4-dimethyl- 2(3H)-Furanone

2,4-Dihydroxy-3,3-dimethylbutyric acid gamma-lactone

C6H10O3 (130.063)


Flavouring compound [Flavornet] DL-Pantolactone can be hydrolyzed to Pantoic acid by the lactonohydrolase of Fusarium oxysporum. DL-Pantolactone also can be used in the preparation of 3,5-dinitrobenzoyl-DL-pantolactone[1][2]. DL-Pantolactone can be hydrolyzed to Pantoic acid by the lactonohydrolase of Fusarium oxysporum. DL-Pantolactone also can be used in the preparation of 3,5-dinitrobenzoyl-DL-pantolactone[1][2]. Pantolactone is an endogenous metabolite.

   

Dec-4-enedioyl-CoA

4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(2-methylbutanoyl)sulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidic acid

C26H44N7O17P3S (851.1727)


Dec-4-enedioyl-coa, also known as 2-methylbutanoyl-CoA is an acyl-CoA or acyl-coenzyme A. More specifically, it is a dec-4-enedioic acid thioester of coenzyme A. Dec-4-enedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Dec-4-enedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Dec-4-enedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Dec-4-enedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Dec-4-enedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Dec-4-enedioyl-CoA into Dec-4-enedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Dec-4-enedioylcarnitine is converted back to Dec-4-enedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Dec-4-enedioyl-CoA occurs in four steps. First, since Dec-4-enedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Dec-4-enedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ket... a-Methylbutyryl-CoA is a a product of isoleucine catabolism. It is converted to Tiglyl-CoA by short/branched-chain acyl-CoA dehydrogenase. 2-Methylbutyryl-CoA dehydrogenase deficiency, also called 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency or MBHD, is an inherited disorder in which the body is unable to process the amino acid isoleucine properly. It is caused by a mutation in the HADH2 gene. Untreated MBHD can lead to progressive loss of motor skills, to mental retardation and to epilepsy. 2-Methylbutyryl-CoA is a substrate for Acyl-CoA dehydrogenase (short-chain specific, mitochondrial), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial) and Acyl-CoA dehydrogenase (long-chain specific, mitochondrial). [HMDB]

   

NSC-14980

Cellobiose-1,5-lactone

C12H20O11 (340.1006)


   

4-Trimethylammoniobutanal

N,N,N-Trimethyl-4-oxo-1-butanaminium

C7H16NO+ (130.1232)


4-Trimethylammoniobutanal is a substrate for Serine hydroxymethyltransferase (cytosolic), Serine hydroxymethyltransferase (mitochondrial), Aldehyde dehydrogenase (mitochondrial), Fatty aldehyde dehydrogenase, 4-trimethylaminobutyraldehyde dehydrogenase, Aldehyde dehydrogenase (dimeric NADP-preferring), Aldehyde dehydrogenase family 7 member A1, Aldehyde dehydrogenase 1A3 and Aldehyde dehydrogenase X (mitochondrial). [HMDB] 4-Trimethylammoniobutanal is a substrate for Serine hydroxymethyltransferase (cytosolic), Serine hydroxymethyltransferase (mitochondrial), Aldehyde dehydrogenase (mitochondrial), Fatty aldehyde dehydrogenase, 4-trimethylaminobutyraldehyde dehydrogenase, Aldehyde dehydrogenase (dimeric NADP-preferring), Aldehyde dehydrogenase family 7 member A1, Aldehyde dehydrogenase 1A3 and Aldehyde dehydrogenase X (mitochondrial).

   

ADP-Ribosyl-L-arginine

2-amino-5-[(E)-[amino({5-[({[({[5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-3,4-dihydroxyoxolan-2-yl}amino)methylidene]amino]pentanoic acid

C21H35N9O15P2 (715.1728)


ADP-Ribosyl-L-arginine is the substrate of the protein ADP-ribosylarginine hydrolase (EC-Number 3.2.2.19 ), removing ADP-ribose from arginine residues in ADP ribosylated proteins. Arginine residues in proteins act as acceptors, catalyzing the NAD (+)-dependent activation of the enzyme adenylate cyclase (EC 4.6.1.1). (MetaCyc) [HMDB] ADP-Ribosyl-L-arginine is the substrate of the protein ADP-ribosylarginine hydrolase (EC-Number 3.2.2.19 ), removing ADP-ribose from arginine residues in ADP ribosylated proteins. Arginine residues in proteins act as acceptors, catalyzing the NAD (+)-dependent activation of the enzyme adenylate cyclase (EC 4.6.1.1). (MetaCyc).

   

scyllo-Inosamine

6-aminocyclohexane-1,2,3,4,5-pentol

C6H13NO5 (179.0794)


   

GDP-4-Dehydro-6-deoxy-D-mannose

[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3S,4R,6R)-3,4-dihydroxy-6-methyl-5-oxooxan-2-yl]oxy})phosphinic acid

C16H23N5O15P2 (587.0666)


GDP-4-Dehydro-6-deoxy-D-mannose is an intermediate in the fucosylation of mammalian cells. The functional significance of these fucosylated glycans is unclear, although there is evidence that the sialyl Lex determinant participaates in leukocyte adhesion and trafficking processes. GDP-4-Dehydro-6-deoxy-D-mannose is generated by GDP-D-mannose-4,6-dehydratase (GMD). This compound is then converted by the FX protein (GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase) to GDP-L-fucose. (PMID: 11698403) [HMDB]. GDP-4-Dehydro-6-deoxy-D-mannose is found in many foods, some of which are bayberry, cherimoya, greenthread tea, and pulses. GDP-4-Dehydro-6-deoxy-D-mannose is an intermediate in the fucosylation of mammalian cells. The functional significance of these fucosylated glycans is unclear, although there is evidence that the sialyl Lex determinant participaates in leukocyte adhesion and trafficking processes. GDP-4-Dehydro-6-deoxy-D-mannose is generated by GDP-D-mannose-4,6-dehydratase (GMD). This compound is then converted by the FX protein (GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase) to GDP-L-fucose. (PMID: 11698403). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

all-trans-Hexaprenyl diphosphate

[({[(2E,6E,10E,14E,18E)-3,7,11,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaen-1-yl]oxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C30H52O7P2 (586.3188)


all-trans-Hexaprenyl diphosphate is the final product of the hexaprenyl diphosphate biosynthesis pathway. In this pathway, multiple units of isopentenyl diphosphate (IPP) undergo a series of polymerizations to form various polyisoprenoids. There are two different pathways for the biosynthesis of IPP. Bacteria that possess ubiquinone generally use the methylerythritol phosphate pathway (MEP), while the eukaryotic microorganisms use the mevalonate pathway. However, exceptions exist. For example, some eukaryotic microbes, like the green algae and the malarial parasite Plasmodium falciparum, appear to utilize the MEP pathway, and some bacteria utilize the mevalonate pathway (Eisenreich01, Eisenreich04). In Saccharomyces cerevisiae S288C, the initial addition of two isoprenyl units to form (E, E)-farnesyl diphosphate is catalyzed by geranyltransferase / dimethylallyltransferase, encoded by FPP1. An additional unit is added by farnesyltranstransferase (encoded by BTS1), resulting in the formation of all-trans-geranyl-geranyl diphosphate. The last enzyme in this pathway is hexaprenyl diphosphate synthase (encoded by COQ1), which adds additional isoprenoid units to a maximal length unique to the organism. In the case of Saccharomyces cerevisiae S288C, it is 6 units. Polyprenyl diphosphate synthase enzymes, such as hexaprenyl diphosphate synthase, are responsible for determining the final length of the tail. When yeast COQ1 mutants are complemented with homologs from other organisms, ubiquinone biosynthesis is restored, but the tail length of the quinone depends on the source of the enzyme. All-trans-hexaprenyl diphosphate is the final product of hexaprenyl diphosphate biosynthesis pathway.In this pathway multiple units of isopentenyl diphosphate (IPP) undergo a series of polymerizations to form various polyisoprenoids.

   

6-Phosphonoglucono-D-lactone

[(2R,3S,4S,5R)-3,4,5-Trihydroxy-6-oxotetrahydro-2H-pyran-2-yl]methyl dihydrogen phosphoric acid

C6H11O9P (258.0141)


6-phosphonoglucono-d-lactone, also known as D-glucono-1,5-lactone 6-phosphate or 6-pgdl, is a member of the class of compounds known as hexose phosphates. Hexose phosphates are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. 6-phosphonoglucono-d-lactone is soluble (in water) and a moderately acidic compound (based on its pKa). 6-phosphonoglucono-d-lactone can be found in a number of food items such as chicory leaves, pepper (c. chinense), opium poppy, and green bell pepper, which makes 6-phosphonoglucono-d-lactone a potential biomarker for the consumption of these food products. 6-phosphonoglucono-d-lactone can be found primarily in cellular cytoplasm. 6-phosphonoglucono-d-lactone exists in all living species, ranging from bacteria to humans. In humans, 6-phosphonoglucono-d-lactone is involved in warburg effect, which is a metabolic disorder. 6-phosphoglucono-delta-lactone (d-6PGL) is the immediate product of the Glucose-6-phosphate dehydrogenase (G-6-PD), the first enzyme of the hexose monophosphate pathway. (PMID 3711719). The pentose-phosphate pathway provides reductive power and nucleotide precursors to the cell through oxidative and nonoxidative branches. 6-Phosphogluconolactonase is the second enzyme of the oxidative branch and catalyzes the hydrolysis of 6-phosphogluconolactones, the products of glucose 6-phosphate oxidation by glucose-6-phosphate dehydrogenase. By efficiently catalyzing the hydrolysis of d-6PGL, 6-phosphogluconolactonase prevents the reaction between d-6PGL and intracellular nucleophiles; such a reaction would interrupt the functioning of the pentose-phosphate pathway. (PMID 11457850).

   

Glycinol

8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2(7),3,5,11(16),12,14-hexaene-5,10,14-triol

C15H12O5 (272.0685)


Constituent of soybean seedlings (Glycine max) and kudzu (Pueraria thunbergiana). Glycinol is found in many foods, some of which are scarlet bean, soy bean, gram bean, and pulses. Glycinol is found in gram bean. Glycinol is a constituent of soybean seedlings (Glycine max) and kudzu (Pueraria thunbergiana).

   

2,6-dioxo-6-phenylhexa-3-enoate

2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid

C12H10O4 (218.0579)


   

Tyr-OEt

Ethyl 2-amino-3-(4-hydroxyphenyl)propanoate

C11H15NO3 (209.1052)


   

L-2-(Hydroxymethyl)-1,2,3,4-butanetetrol

(+)-(3R)-Hydroxymethylbutane-1,2,3,4-tetrol

C5H12O5 (152.0685)


L-2-(Hydroxymethyl)-1,2,3,4-butanetetrol is found in caraway. L-2-(Hydroxymethyl)-1,2,3,4-butanetetrol is a constituent of the fruit of Foeniculum vulgare (fennel). Constituent of the fruit of Foeniculum vulgare (fennel). L-2-(Hydroxymethyl)-1,2,3,4-butanetetrol is found in caraway and herbs and spices.

   

Tauropine

2-(2-sulfoethylamino)propanoic acid

C5H11NO5S (197.0358)


A derivative of L-alanine having a 2-sulfoethyl group attached to the alpha-nitrogen.

   

Discadenine

3-(3-Amino-3-carboxypropyl)-N6-(δ2-isopentenyl)-adenine

C14H20N6O2 (304.1648)


A 6-isopentenylaminopurine having a 3-amino-3-carboxypropyl group attached at the 3-position.

   

Pentalenene

(2R,5S,8S)-2,6,10,10-tetramethyltricyclo[6.3.0.01,5]undec-6-ene

C15H24 (204.1878)


   

(+)-Sabinone

(1S,5S)-4-methylidene-1-(propan-2-yl)bicyclo[3.1.0]hexan-3-one

C10H14O (150.1045)


(+)-sabinone is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-sabinone is considered to be an isoprenoid lipid molecule (+)-sabinone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-sabinone can be found in common sage, which makes (+)-sabinone a potential biomarker for the consumption of this food product.

   

Bleomycin B2

Dehydrophleomycin D1

C55H84N20O21S2 (1424.5561)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents

   

Aspulvinone E

(5Z)-4-Hydroxy-3-(4-hydroxyphenyl)-5-[(4-hydroxyphenyl)methylene]-2(5H)-furanone

C17H12O5 (296.0685)


A 4-hydroxy-5-(4-hydroxybenzylidene)-3-(4-hydroxyphenyl)furan-2(5H)-one in which the double bond adopts a Z-configuration. It is a marine metabolite isolated from the fungus Aspergillus terreus and exhibits antiviral activity.

   

Maleylpyruvate

4,6-dioxo-2Z-heptenedioic acid

C7H6O6 (186.0164)


   

beta-Alanopine

N-(D-1-Carboxyethyl)-beta-alanine

C6H11NO4 (161.0688)


   

N-Methyltyramine

4-Hydroxy-N-methylphenethylamine

C9H13NO (151.0997)


N-methyltyramine (NMT) is a phenolic amine. NMT is a potent stimulant of gastrin release present in alcoholic beverages produced by alcoholic fermentation, but not by distillation (i.e.: beer.). NMT is well absorbed in the small intestine, especially in the duodenum and jejunum. NMT is metabolized in the liver (the site of first-pass metabolism), but not in the small-intestinal mucosa. NMT is occasionally present in the stools of children and infants. Satisfactory results have been obtained in treating infective shock with injection of natural Fructus Aurantii immaturus (nat-FAI); the anti-shock effective compositions in FAI have been proved to be synephrine and NMT. (PMID: 10772638, 2570680). Present in germinating barley roots but not dormant grainsand is also present in dormant sawa millet seed hulls, but not hulled seeds. Alkaloid from prosso millet (Panicum miliaceum)

   

(2E)-Pentenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(pent-2-enoylsulfanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C26H42N7O17P3S (849.1571)


(2E)-Pentenoyl-CoA is also known as (2E)-Pent-2-enoyl-coenzyme A(4-). (2E)-Pentenoyl-CoA is considered to be slightly soluble (in water) and acidic

   

Uroporphyrin III

3-[9,14,20-tris(2-carboxyethyl)-5,10,15,19-tetrakis(carboxymethyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1,3,5,7,9,11(23),12,14,16,18(21),19-undecaen-4-yl]propanoic acid

C40H38N4O16 (830.2283)


Uroporphyrin is the porphyrin produced by oxidation of the methylene bridges in uroporphyrinogen. Uroporphyrins have four acetic acid and four propionic acid side chains attached to their pyrrole rings. The enzyme uroporphyrinogen I synthase catalyzes the formation of hydroxymethylbilane from four molecules of porphobilinogen. Uroporphyrinogen III cosynthase then catalyzes the conversion of hydroxymethylbilane into uroporphyrinogen III. Otherwise, hydroxymethylbilane cyclizes nonenzymatically to form uroporphyrinogen I. Uroporphyrinogen I and III yield their respective uroporphyrins via autooxidation or their respective coproporphyrinogens via decarboxylation. Excessive amounts of uroporphyrin I are excreted in congenital erythropoietic porphyria, and both uroporphyrin I and uroporphyrin III are excreted in porphyria cutanea tarda. Uroporphyrin I and III are the most common isomers. Under certain conditions, uroporphyrin III can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, porphyria cutanea tarda, and hereditary coproporphyria (HCP). There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Occurs in urine in small amounts as by-product of haem biosynthesis, also in Rhodopseudomonas spheroides (CCD). Uroporphyrin III is found in soy bean.

   

4-Hydroxy-3-methoxy-cinnamoylglycine

2-[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enamido]acetic acid

C12H13NO5 (251.0794)


4-Hydroxy-3-methoxy-cinnamoylglycine belongs to the family of Acyl Glycines. These are organic compounds containing a glycine residue with the N-atom attached to another moiety through an N-ester bond

   

Benzyl thiocyanate

Thiocyanic acid, phenylmethyl ester

C8H7NS (149.0299)


Benzyl thiocyanate is found in brassicas. Benzyl thiocyanate is isolated from Lepidium sativum (garden cress) as a benzyl glucosinolate (see Benzyl glucosinolate LBB34-N) degradation produce Isolated from Lepidium sativum (garden cress) as a benzyl glucosinolate (see Benzyl glucosinolate LBB34-N) degradation production Benzyl thiocyanate is found in garden cress and brassicas.

   

Dimethyl telluride

Dimethyl telluride

C2H6Te (159.9532)


An organotellurium compound in which the tellurium atom is covalently bonded to two methyl groups. A xenobiotic metabolite produced by certain strains of bacteria exposed to tellurium containing compounds.

   

3,5-DICHLOROCATECHOL

3,5-DICHLOROCATECHOL

C6H4Cl2O2 (177.9588)


   

2-hydroxyphytanic acid

(2S)-2-hydroxy-3,7,11,15-tetramethylhexadecanoic acid

C20H40O3 (328.2977)


A methylated long-chain hyroxy fatty acid formed during alpha-oxidation of phytanic acid by liver mitochondria and peroxisomes, but it is detected in tissues only in patients with peroxisomal disorders.

   

Arginine, N2-benzoyl

5-{[amino(imino)methyl]amino}-2-(benzoylamino)pentanoic acid

C13H18N4O3 (278.1379)


   

N-Hydroxy-L-tyrosine

(2S)-2-(hydroxyamino)-3-(4-Hydroxyphenyl)propanoic acid

C9H11NO4 (197.0688)


Biosynthetic intermediate of dhurrin in Sorghum bicolor (sorghum). N-Hydroxy-L-tyrosine is found in many foods, some of which are allspice, asparagus, lemon thyme, and sparkleberry. N-Hydroxy-L-tyrosine is found in cereals and cereal products. Biosynthetic intermediate of dhurrin in Sorghum bicolor (sorghum).

   

Diisopropylphosphate

Phosphoric acid, bis(1-methylethyl) ester

C6H15O4P (182.0708)


   

2-Keto-6-aminocaproate

alpha-keto-epsilon-Aminohexanoic acid

C6H11NO3 (145.0739)


2-Keto-6-aminocaproate is an intermediate in lysine degradation and can be formed from L-lysine. L-Lysine is an essential amino-acid that is a necessary building block for all protein in the body. L-Lysine plays a major role in calcium absorption; building muscle protein; recovering from surgery or sports injuries; and the bodys production of hormones, enzymes, and antibodies. L-Lysine can be converted to 2-keto-6-aminocaproate via the enzyme L-lysine alpha-oxidase. 2-Keto-6-aminocaproate can spontaneously decarboxylate to 5-aminovalerate in the presence of the reaction product, hydrogen peroxide. It can also be spontaneously converted in solution to its cyclic form delta-piperideine-2-carboxylate. This has been demonstrated in vitro in the presence of catalase, which splits hydrogen peroxide. [HMDB] 2-Keto-6-aminocaproate is an intermediate in lysine degradation and can be formed from L-lysine. L-Lysine is an essential amino-acid that is a necessary building block for all protein in the body. L-Lysine plays a major role in calcium absorption; building muscle protein; recovering from surgery or sports injuries; and the bodys production of hormones, enzymes, and antibodies. L-Lysine can be converted to 2-keto-6-aminocaproate via the enzyme L-lysine alpha-oxidase. 2-Keto-6-aminocaproate can spontaneously decarboxylate to 5-aminovalerate in the presence of the reaction product, hydrogen peroxide. It can also be spontaneously converted in solution to its cyclic form delta-piperideine-2-carboxylate. This has been demonstrated in vitro in the presence of catalase, which splits hydrogen peroxide.

   

D-galacto-Hexodialdose

(2S,3R,4S,5R)-3,4,5,6-tetrahydroxyoxane-2-carbaldehyde

C6H10O6 (178.0477)


   

3,5-Dichloro-L-tyrosine

3,5-Dichloro-L-tyrosine

C9H9Cl2NO3 (248.9959)


A chloroamino acid that is L-tyrosine carrying chloro- substituents at positions C-3 and C-5 of the benzyl group.

   

(±)-2'-Hydroxydihydrodaidzein

3-(2,4-dihydroxyphenyl)-7-hydroxy-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O5 (272.0685)


(±)-2-hydroxydihydrodaidzein, also known as 2,4,7-trihydroxyisoflavanone, is a member of the class of compounds known as isoflavanones. Isoflavanones are polycyclic compounds containing an isoflavan skeleton which bears a ketone at position C4. Thus, (±)-2-hydroxydihydrodaidzein is considered to be a flavonoid lipid molecule (±)-2-hydroxydihydrodaidzein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (±)-2-hydroxydihydrodaidzein can be found in green bean, pulses, and yellow wax bean, which makes (±)-2-hydroxydihydrodaidzein a potential biomarker for the consumption of these food products. (±)-2-Hydroxydihydrodaidzein is found in pulses. (±)-2-Hydroxydihydrodaidzein is isolated from pods of Phaseolus vulgaris (kidney bean) and also from Phaseolus coccineus (scarlet runner bean).

   

8Z,11Z,14Z-eicosatrienoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-{[2-({2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H68N7O17P3S (1055.3605)


8Z,11Z,14Z-eicosatrienoyl-CoA participates in the biosynthesis of unsaturated fatty acids. 8Z,11Z,14Z-eicosatrienoyl-CoA is converted from (8Z,11Z,14Z)-Icosatrienoic acid via palmitoyl-CoA hydrolase [EC:3.1.2.2].

Unsaturated fatty acids are of similar form, except that one or more alkenyl functional groups exist along the chain, with each alkene substituting a single-bonded "-CH2-CH2-" part of the chain with a double-bonded "-CH=CH-" portion (that is, a carbon double-bonded to another carbon). The differences in geometry between the various types of unsaturated fatty acids, as well as between saturated and unsaturated fatty acids, play an important role in biological processes, and in the construction of biological structures (such as cell membranes). (Wikipedia)

.

8Z,11Z,14Z-eicosatrienoyl-CoA participates in the biosynthesis of unsaturated fatty acids. 8Z,11Z,14Z-eicosatrienoyl-CoA is converted from (8Z,11Z,14Z)-Icosatrienoic acid via palmitoyl-CoA hydrolase [EC:3.1.2.2].

   

4-Amino-3-hydroxybutyrate

4-Amino-3-hydroxybutyric acid, (Z)-2-butenedioate salt (2:1), (+-)-isomer

C4H9NO3 (119.0582)


4-Amino-3-hydroxybutyrate belongs to the class of organic compounds known as hydroxy fatty acids. These are fatty acids in which the chain bears a hydroxyl group.

   

2-Methylpropionyl phosphate

2-Methylpropionyl phosphate

C4H9O5P (168.0188)


   

Strombine

2,2-(Methylazanediyl)diacetic acid

C5H9NO4 (147.0532)


   

Adenosine 2,5-bisphosphate

adenosine-2,5-bisphosphate

C10H15N5O10P2 (427.0294)


   

nonaprenyl-4-hydroxybenzoate

3-Nonaprenyl-4-hydroxybenzoic acid

C52H78O3 (750.5951)


   

SCHEMBL534447

Isobutyraldoxime O-methyl ether

C5H11NO (101.0841)


   

7-Methylguanosine 5'-phosphate

9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-6-hydroxy-2-imino-7-methyl-3,9-dihydro-2H-purin-7-ium

C11H17N5O8P+ (378.0815)


7-methylguanosine 5-phosphate is part of the RNA degradation pathway. It is a substrate for: m7GpppX diphosphatase, and m7GpppX diphosphatase.

   

1-aminopropan-2-yl phosphate

(R)-1-Aminopropan-2-yl phosphate

C3H10NO4P (155.0347)


   

6-Lactoyltetrahydropterin

2-amino-6-(2-hydroxypropanoyl)-3,4,5,6,7,8-hexahydropteridin-4-one

C9H13N5O3 (239.1018)


6-Lactoyltetrahydropterin is a putative intermediate in the de novo synthesis of tetrahydrobiopterin (BH4) pathway, in a reaction involving the enzyme sepiapterin reductase (E.C. 1.1.1.153) in human liver. In brain, an enzyme distinct from sepiapterin reductase catalyzes the TPNH-dependent reduction of 6-pyruvoyl-tetrahydropterin to 6-lactoyl-tetrahydropterin. (PMID: 4004850). In brain, the expression of other enzymes involved in BH4 biosynthesis includes aldose reductase, carbonyl reductase, GTP-cyclohydrolase I, and 6-pyruvoyltetrahydrobiopterin. Sepiapterin reductase expression is increased in Parkinsons disease brain tissue. (PMID: 17270157). 6-Lactoyltetrahydropterin is a putative intermediate in the de novo synthesis of tetrahydrobiopterin (BH4) pathway, in a reaction involving the enzyme sepiapterin reductase (E.C. 1.1.1.153) in human liver. In brain, an enzyme distinct from sepiapterin reductase catalyzes the TPNH-dependent reduction of 6-pyruvoyl-tetrahydropterin to 6-lactoyl-tetrahydropterin. (PMID: 4004850)

   

boc-dl-leucine

N(alpha)-t-Butoxycarbonyl-L-leucine

C11H21NO4 (231.1471)


   

4-Carboxy-2-hydroxy-cis,cis-muconate

(1E,3E)-4-Hydroxybuta-1,3-diene-1,2,4-tricarboxylate; 2-Hydroxy-4-carboxyhexa-2,4-dienedioate; 4-Carboxy-2-hydroxy-cis,cis-muconate; 4-Carboxy-2-hydroxyhexa-2,4-cis,cis-dienedioate

C7H6O7 (202.0114)


   

5,10-(Methanylylidene)tetrahydromethanopterin

5,10-(Methanylylidene)tetrahydromethanopterin

C31H44N6O16P+ (787.2551)


   

4'-Phosphopantothenoylcysteine

(2R)-2-{3-[(2R)-2-hydroxy-3-methyl-3-[(phosphonooxy)methyl]butanamido]propanamido}-3-sulfanylpropanoic acid

C12H23N2O9PS (402.0862)


4-Phosphopantothenoylcysteine, also known as pantothenoylcysteine 4-phosphate, belongs to the class of organic compounds known as hybrid peptides. Hybrid peptides are compounds containing at least two different types of amino acids (alpha, beta, gamma, delta) linked to each other through a peptide bond. 4-Phosphopantothenoylcysteine is an extremely weak basic (essentially neutral) compound (based on its pKa). Within humans, 4-phosphopantothenoylcysteine participates in a number of enzymatic reactions. In particular, cytidine monophosphate and 4-phosphopantothenoylcysteine can be biosynthesized from cytidine triphosphate, D-4-phosphopantothenate, and L-cysteine through the action of the enzyme phosphopantothenate--cysteine ligase. 4-Phosphopantothenoylcysteine (PPC) is an intermediate in the biosynthetic machinery (pathway) that converts pantothenate (vitamin B5) into coenzyme A (CoA). The enzyme phosphopantothenoylcysteine decarboxylase catalyzes the decarboxylation of PPC into 4-phosphopantetheine. Coenzyme A is the principal acyl carrier and is required for many synthetic and degradative reactions in intermediary metabolism, and is an essential cofactor in all living systems (PMID: 15450493, 16371361, 14501115). 4-Phosphopantothenoylcysteine (PPC) is an intermediate in the biosynthetic machinery (pathway) that converts pantothenate (vitamin B5) into coenzyme A (CoA). The enzyme Phosphopantothenoylcysteine decarboxylase catalyzes the decarboxylation of PPC to 4-phosphopantetheine. Coenzyme A is the principal acyl carrier and is required for many synthetic and degradative reactions in intermediary metabolism, and is an essential cofactor in all living systems. (PMID: 15450493, 16371361, 14501115) [HMDB]

   

5-Me-5,6,7,8-Tetrahydromethanopterin

5-Methyl-5,6,7,8-tetrahydromethanopterin

C31H47N6O16P (790.2786)


   

(4-Amino-2-methylpyrimidin-5-YL)methyl dihydrogen phosphate

[(6-imino-2-methyl-1,6-dihydropyrimidin-5-yl)methoxy]phosphonic acid

C6H10N3O4P (219.0409)


   

Diketogulonic acid

(4R,5S)-2,3-Dioxo-4,5,6-trihydroxyhexanoic acid

C6H8O7 (192.027)


Diketogulonic acid (DKG) is a metabolite of the degradation of vitamin C, the nonenzymatic hydrolysis-product of dehydroascorbate. Dehydroascorbate can be reduced back to ascorbate or hydrolyzed to DKG; the latter reaction is irreversible and DKG is devoid of antiscorbutic activity. The degradation pathway of vitamin C continues to produce l-erythrulose and oxalate as final products. DKG appears in human urine and represents approximately 20\\% of the vitamin C by-products (oxalate being approximately 44\\% and dehydroascorbate 20\\%). A major catabolic event in man is the cleavage of the molecule (presumably a spontaneous cleavage of DKG) between C2 and C3, with little if any decarboxylation. The oxalate formed in this way may contribute to the formation of kidney stones in susceptible individuals. However, the association between ascorbate supplementation and increased risk of kidney stone formation remains a matter of controversy. (PMID: 16698813, 17222174)

   

(13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid

7-[(1R,2R,3R)-3-hydroxy-5-oxo-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]heptanoic acid

C20H32O5 (352.225)


(13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid is a substrate for Carbonyl reductase 1.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. (13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid is a substrate for Carbonyl reductase 1.

   

Lipid A disaccharide

2,3-Bis-(β-hydroxymyristoyl)-D-glucosaminyl-(β-D-1,6)-2,3- bis(β-hydroxymyristoyl)-D-glucosaminyl β-phosphate

C68H129N2O20P (1324.8876)


   

Histidylleucine

(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanoic acid

C12H20N4O3 (268.1535)


Histidylleucine is a dipeptide composed of histidine and leucine. It is an incomplete breakdown product of protein digestion or protein catabolism. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Some dipeptides are known to have physiological or cell-signalling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.

   

3-Oxohexadecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxohexadecanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C37H64N7O18P3S (1019.3241)


3-Oxohexadecanoyl-CoA has a role in the synthesis and oxidation of fatty acid. It is involved in the pathway, fatty acid elongation in mitochondria. In this pathway Acetyl-CoA is acted upon by the enzyme, acetyl-CoA C-acyltransferase to produce 3-Oxohexadecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA. [HMDB] 3-Oxohexadecanoyl-CoA has a role in the synthesis and oxidation of fatty acid. It is involved in the pathway, fatty acid elongation in mitochondria. In this pathway Acetyl-CoA is acted upon by the enzyme, acetyl-CoA C-acyltransferase to produce 3-Oxohexadecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA.

   

(S)-Hydroxydecanoyl-CoA

{[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-({2-[(2-{[(3S)-3-hydroxydecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C31H54N7O18P3S (937.2459)


(s)-hydroxydecanoyl-coa, also known as S-(3-hydroxydecanoate) CoA or 3S-hydroxy-decanoyl-CoA is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxydecanoic acid thioester of coenzyme A. (s)-hydroxydecanoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (s)-hydroxydecanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (s)-hydroxydecanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (S)-Hydroxydecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (S)-Hydroxydecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (S)-Hydroxydecanoyl-CoA into 3-Hydroxydecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Hydroxydecanoylcarnitine is converted back to (S)-Hydroxydecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (S)-Hydroxydecanoyl-CoA occurs in four steps. First, since (S)-Hydroxydecanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (S)-Hydroxydecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bo... (S)-Hydroxydecanoyl-CoA has a role in the synthesis and oxidation of fatty acids. It is involved in fatty acid elongation in mitochondria. In this pathway 3-Oxodecanoyl-CoA is acted upon by two enzymes, 3-hydroxyacyl-CoA dehydrogenase and long-chain-3-hydroxyacyl-CoA dehydrogenase to produce (S)-Hydroxydecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA. [HMDB]

   

3-Oxodecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxodecanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C31H52N7O18P3S (935.2302)


3-oxodecanoyl-coa, also known as 3-ketodecanoyl-CoA is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-oxodecanoic acid thioester of coenzyme A. 3-oxodecanoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-oxodecanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-oxodecanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Oxodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Oxodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Oxodecanoyl-CoA into 3-oxodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-oxodecanoylcarnitine is converted back to 3-Oxodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Oxodecanoyl-CoA occurs in four steps. First, since 3-Oxodecanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Oxodecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is ... 3-Oxodecanoyl-CoA is an intermediate in fatty acid metabolism, the substrate of the enzyme acetyl-Coenzyme A acetyltransferase 1 and 2 [EC:2.3.1.16-2.3.1.9]; 3-Oxodecanoyl-CoA is an intermediate in fatty acid elongation in mitochondria, being the substrate of the enzymes beta-hydroxyacyl-CoA dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.211-1.1.1.35]. (KEGG) [HMDB]. 3-Oxodecanoyl-CoA is found in many foods, some of which are chinese cabbage, calabash, safflower, and sunburst squash (pattypan squash).

   

19-Oxotestosterone

(1S,2S,10S,11S,14S,15S)-14-hydroxy-15-methyl-5-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-ene-2-carbaldehyde

C19H26O3 (302.1882)


19-oxotestosterone, also known as 19-aldehyde-testosterone, belongs to androgens and derivatives class of compounds. Those are 3-hydroxylated C19 steroid hormones. They are known to favor the development of masculine characteristics. They also show profound effects on scalp and body hair in humans. 19-oxotestosterone is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 19-oxotestosterone can be found in a number of food items such as tree fern, italian sweet red pepper, anise, and atlantic herring, which makes 19-oxotestosterone a potential biomarker for the consumption of these food products. 19-oxotestosterone can be found primarily throughout most human tissues. In humans, 19-oxotestosterone is involved in the androgen and estrogen metabolism. 19-oxotestosterone is also involved in a couple of metabolic disorders, which include 17-beta hydroxysteroid dehydrogenase III deficiency and aromatase deficiency. 19-Oxotestosterone is catalyzed by Aromatase (EC 1.14.14.1),also called estrogen synthetase (a cytochrome P450 enzyme which catalyzes the formation of aromatic C18 estrogens from C19 androgens; it is symbolized CYP19) into oestrogens via sequential oxidations at the 19-methyl group. Biosynthesis of estrogens from C19 steroids is catalyzed by aromatase and its tissue-specific expression is determined at least in part by alternative use of tissue-specific promoters, which give rise to transcripts with unique 5-prime noncoding termini.(OMIM 107910).

   

Ergosta-5,7,22,24(28)-tetraen-3beta-ol

(3S,10R,13R)-10,13-dimethyl-17-[(E,2R)-6-methyl-5-methylidenehept-3-en-2-yl]-2,3,4,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H42O (394.3235)


A 3beta-sterol having double bonds in the 5-, 7- and 22-positions and a methylene group at position 24.

   

dihydrocorticosterone

17-hydroxy-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-one

C21H32O4 (348.23)


   

4,6-Dihydroxyquinoline

6-Hydroxy-1H-quinolin-4-one

C9H7NO2 (161.0477)


4,6-Dihydroxyquinoline is the product of the conversion of 5-hydroxykynurenamine by the enzyme monoamine oxidase, both metabolites from the 5-hydroxytryptophan metabolism. (PMIDs 7160021, 312499) [HMDB] 4,6-Dihydroxyquinoline is the product of the conversion of 5-hydroxykynurenamine by the enzyme monoamine oxidase, both metabolites from the 5-hydroxytryptophan metabolism. (PMIDs 7160021, 312499). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-Ketosucrose

3-Ketosucrose; 3-Dehydro-alpha-D-glucosyl-beta-D-fructofuranoside

C12H20O11 (340.1006)


   

Uroporphyrinogen I

3-[9,14,19-tris(2-carboxyethyl)-5,10,15,20-tetrakis(carboxymethyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C40H44N4O16 (836.2752)


Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction. [HMDB]. Uroporphyrinogen I is found in many foods, some of which are great horned owl, nutmeg, lime, and cascade huckleberry. Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction.

   

Lipid II

Undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine-N-acetylglucoside

C94H156N8O26P2 (1875.0605)


An undecaprenyldiphospho-N-acetyl-(N-acetylglucosaminyl)muramoyl peptide in which the peptide element is L-alanyl-D-gamma-glutamyl-L-lysyl-D-alanyl-D-alanine.

   

2-Propyn-1-al

Propargylaldehyde

C3H2O (54.0106)


2-Propyn-1-al is involved in the propanoate metabolism system. It is created from 2-Propyn-1-ol through the action of alcohol dehydrogenase [EC:1.1.99.8]. 2-Propyn-1-al is converted to propynoate by aldehyde dehydrogenase [EC:1.2.1.3]. [HMDB] 2-Propyn-1-al is involved in the propanoate metabolism system. It is created from 2-Propyn-1-ol through the action of alcohol dehydrogenase [EC:1.1.99.8]. 2-Propyn-1-al is converted to propynoate by aldehyde dehydrogenase [EC:1.2.1.3].

   

3-Butyn-1-al

3-Butyn-1-al

C4H4O (68.0262)


3-Butyn-1-al is an intermediate in Butanoate metabolism (KEGG ID C06145). It is the third to last step in the synthesis and degradation of ketone bodies and is converted from 3-Butyn-1-ol via the enzyme alcohol dehydrogenase (acceptor) [EC:1.1.99.8]. It is then converted to 3-Butynoate via the enzyme aldehyde dehydrogenase (NAD+) [EC:1.2.1.3]. 3-Butyn-1-al is an intermediate in Butanoate metabolism (KEGG ID

   

Macarpine

Macarpine

C22H18NO6+ (392.1134)


A benzophenanthridine alkaloid that is sanguinarine bearing two methoxy substituents.

   

Guanosine 3'-monophosphate

{[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}phosphonic acid

C10H14N5O8P (363.058)


Guanosine 3-monophosphate, also known as 3-GMP or 3-guanylic acid, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Guanosine 3-monophosphate has been identified in the human placenta (PMID: 32033212).

   

1-Deoxy-D-xylulose

(2S,3S,4R)-2-(hydroxymethyl)oxolane-3,4-diol

C5H10O4 (134.0579)


1-Deoxy-D-xylulose is a product of the splitting up of Pyridoxine (an intermediate in Vitamin B6 metabolism) into two components (the other one being 4-Hydroxy-L-threonine). (KEGG) [HMDB] 1-Deoxy-D-xylulose is a product of the splitting up of Pyridoxine (an intermediate in Vitamin B6 metabolism) into two components (the other one being 4-Hydroxy-L-threonine). (KEGG).

   

5-(5-(2,6-Dichloro-4-(4,5-Dihydro-2-Oxazoly)phenoxy)pentyl)-3-Methyl Isoxazole

5-{5-[2,6-dichloro-4-(4,5-dihydro-1,3-oxazol-2-yl)phenoxy]pentyl}-3-methyl-1,2-oxazole

C18H20Cl2N2O3 (382.0851)


   

5-Guanylylmethylenediphosphonate

Guanosine 5-monophosphate, monoanhydride with (phosphonomethyl)phosphonic acid

C11H18N5O13P3 (521.0114)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents

   

Deacetoxycephalosporin C

Deacetoxycephalosporin C; DAOC

C14H19N3O6S (357.0995)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

2,5-dichlorohydroquinone

2,5-Dichloro-1,4-benzenediol

C6H4Cl2O2 (177.9588)


A dichlorohydroquinone that is hydroquinone substituted by chloro groups at positions 2 and 5 respectively.

   

Bis(4-chlorophenyl)acetic acid

Bis(p-chlorophenyl)acetic acid, potassium salt

C14H10Cl2O2 (280.0058)


D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D050258 - Mitosis Modulators > D008934 - Mitogens

   

Nitrosobenzene

Nitrosobenzene, 14C-labeled

C6H5NO (107.0371)


   

Ceforanide

(6R,7R)-7-{2-[2-(aminomethyl)phenyl]acetamido}-3-({[1-(carboxymethyl)-1H-1,2,3,4-tetrazol-5-yl]sulfanyl}methyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C20H21N7O6S2 (519.0995)


Ceforanide is a second-generation parenteral cephalosporin antibiotic. It has a longer elimination half-life than any currently available cephalosporin. Its activity is very similar to that of cefamandole, a second-generation cephalosporin, except that ceforanide is less active against most gram-positive organisms. Many coliforms, including Escherichia coli, Klebsiella, Enterobacter, and Proteus, are susceptible to ceforanide, as are most strains of Salmonella, Shigella, Hemophilus, Citrobacter and Arizona species. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

3,6-dichlorocatechol

3,6-Dichloro-1,2-benzenediol

C6H4Cl2O2 (177.9588)


3,6-dichlorocatechol, also known as 3,6-dichloro-1,2-benzenediol, is a member of the class of compounds known as 3-chlorocatechols. 3-chlorocatechols are chlorocatechols with the chlorine atom attached at position C3 of the benzene ring. 3,6-dichlorocatechol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 3,6-dichlorocatechol can be found in a number of food items such as gooseberry, jicama, nutmeg, and lingonberry, which makes 3,6-dichlorocatechol a potential biomarker for the consumption of these food products.

   

5-chlorobenzene-1,2,4-triol

5-Chloro-1,2,4-trihydroxybenzene

C6H5ClO3 (159.9927)


   

(Lys8)-Vasopressin

N-[6-amino-1-[(2-amino-2-oxoethyl)amino]-1-oxohexan-2-yl]-1-[19-amino-7-(2-amino-2-oxoethyl)-10-(3-amino-3-oxopropyl)-13-benzyl-16-[(4-hydroxyphenyl)methyl]-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carbonyl]pyrrolidine-2-carboxamide

C46H65N13O12S2 (1055.4317)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents Lysipressin (Lysine vasopressin) is antidiuretic hormone that have been found in pigs and some marsupial families. Lysipressin induces contraction of the rabbit urinary bladder smooth muscle, activate adenylate-cyclase[1][2]. Lysipressin (Lysine vasopressin) is antidiuretic hormone that have been found in pigs and some marsupial families. Lysipressin induces contraction of the rabbit urinary bladder smooth muscle, activate adenylate-cyclase[1][2].

   

Nitroferricyanide

Nitroprusside; Pentacyanidonitrosylferrate(2-)

C5FeN6O-2 (215.9483)


D006401 - Hematologic Agents > D006397 - Hematinics > D005290 - Ferric Compounds D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Paramethadione

5-ethyl-3,5-dimethyl-1,3-oxazolidine-2,4-dione

C7H11NO3 (157.0739)


Paramethadione is only found in individuals that have used or taken this drug. It is an anticonvulsant in the oxazolidinedione class. It is associated with fetal trimethadione syndrome, which is also known as paramethadione syndrome.Dione anticonvulsants such as paramethadione reduce T-type calcium currents in thalamic neurons (including thalamic relay neurons). This inhibits corticothalamic transmission and raises the threshold for repetitive activity in the thalamus. This results in a dampening of the abnormal thalamocortical rhythmicity proposed to underlie the 3-Hz spike-and-wave discharge seen on electroencephalogram (EEG) during absence seizures. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AC - Oxazolidine derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent

   

BURIMAMIDE

1-[4-(1H-imidazol-5-yl)butyl]-3-methylthiourea

C9H16N4S (212.1096)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents

   

Phthalylsulfathiazole

2-[[[4-[(2-Thiazolylamino)sulphonyl]phenyl]amino]carbonyl]benzoic acid

C17H13N3O5S2 (403.0297)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AB - Sulfonamides C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013432 - Sulfathiazoles D000890 - Anti-Infective Agents > D013424 - Sulfanilamides

   

Ethinamate

1-Ethynylcyclohexanol carbamic acid

C9H13NO2 (167.0946)


Ethinamate is a short-acting sedative-hypnotic medication used to treat insomnia. Regular use leads to tolerance, and it is usually not effective for more than 7 days. Structurally, it does not resemble the barbituates, but it shares many effects with this class of drugs; the depressant effects of ethinamate are, however, generally milder than those of most barbiturates. C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

Fluphenazine enanthate

2-(4-{3-[2-(trifluoromethyl)-10H-phenothiazin-10-yl]propyl}piperazin-1-yl)ethyl heptanoic acid

C29H38F3N3O2S (549.2637)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

   

Fluphenazine decanoate

2-(4-{3-[2-(trifluoromethyl)-10H-phenothiazin-10-yl]propyl}piperazin-1-yl)ethyl decanoate

C32H44F3N3O2S (591.3106)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Fluphenazine decanoate is a dopamine D2 receptor inhibitor, is a long-acting phenothiazine neuroleptic. Fluphenazine can be used for schizophrenia research[1][2][3].

   

Kenacourt

Triamcinolone diacetate

C25H31FO8 (478.2003)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D004791 - Enzyme Inhibitors

   

Ajugose

alpha-Galactosyl-(1-6)-alpha-galactosyl-(1-6)-alpha-galactosyl-(1-6)-alpha-galactosyl-(1-6)-alpha-glucosyl-(1-2)-beta-fructose

C36H62O31 (990.3275)


   

Miserotoxin

ZINC01531158

C9H17NO8 (267.0954)


A beta-D-glucoside having 3-nitropropyl as the anomeric alkyl group.

   

Eburnamine

Eburnamenin-14-ol, 14,15-dihydro-, (14alpha)-

C19H24N2O (296.1889)


   
   

DivK1c_000746

alpha-Cyclocostunolide

C15H20O2 (232.1463)


   

beta-cyclocostunolide

[3aR-(3aalpha,5aalpha,9abeta,9balpha)]-Decahydro-5a-methyl-3,9-bis(methylene)naphtho[1,2-b]furan-2(3H)-one

C15H20O2 (232.1463)


   

Hymenoxon

5,7-dihydroxy-4a,9-dimethyl-3-methylidenedecahydrofuro[2,3:5,6]cyclohepta[1,2-c]pyran-2(3h)-one

C15H22O5 (282.1467)


   

alpha-Cubebene

(1R,5S,6R,7S,10R)-4,10-dimethyl-7-(propan-2-yl)tricyclo[4.4.0.0^{1,5}]dec-3-ene

C15H24 (204.1878)


alpha-Cubebene is found in cloves. alpha-Cubebene is a constituent of oil of cubeb pepper (Piper cubeba).

   

Ovalicin

4-hydroxy-5-methoxy-4-[2-methyl-3-(3-methylbut-2-en-1-yl)oxiran-2-yl]-1-oxaspiro[2.5]octan-6-one

C16H24O5 (296.1624)


Ovalicin is found in lettuce seeds. Found in lettuce seeds

   

alpha-Irone

4-(2,5,6,6-Tetramethyl-2-cyclohexen-1-yl)-3-buten-2-one, 9ci

C14H22O (206.1671)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids alpha-Irone is a flavouring ingredien Flavouring ingredient

   

prontosil

p-[(2,4-diaminophenyl)azo]benzenesulphonamide

C12H13N5O2S (291.079)


A diphenyldiazene compound having two amino substituents at the 2- and 4-positions and an aminosulphonyl substituent at the 4-position. It was the first antibacterial drug, (introduced 1935) and the first of the sulfonamide antibiotics. C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent

   

Allosedamine

(-)-Sedamine

C14H21NO (219.1623)


   

Pisatin

16-methoxy-5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-2(10),3,8,13,15,17-hexaen-1-ol

C17H14O6 (314.079)


Stress metabolite from Pisum sativum (pea) and Trifolium pratense (red clover). Pisatin is found in many foods, some of which are pulses, tea, common pea, and herbs and spices. Pisatin is found in common pea. Pisatin is a stress metabolite from Pisum sativum (pea) and Trifolium pratense (red clover). D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents

   

Sophoraisoflavanone A

Sophoraisoflavanone A

C21H22O6 (370.1416)


A hydroxyisoflavanone that is isoflavanone substituted by hydroxy groups at positions 5, 7 and 4, a methoxy substituent at position 2 and a prenyl group at position 3.

   

Decalin

Decaline; Decalin

C26H31NO5 (437.2202)


   

Withasomnine

Withasomnine

C12H12N2 (184.1)


   
   

Furofoline

5-Hydroxy-11-methylfuro[2,3-c]acridin-6(11H)-one, 9ci

C16H11NO3 (265.0739)


Furofoline is found in herbs and spices. Furofoline is an alkaloid from the roots of Ruta graveolens (rue Alkaloid from the roots of Ruta graveolens (rue). Furofoline is found in herbs and spices.

   

Chlorpromazine-N-oxide

3-(2-chloro-10H-phenothiazin-10-yl)-N,N-dimethylpropanamine oxide

C17H19ClN2OS (334.0907)


Chlorpromazine-N-oxide is a metabolite of chlorpromazine. Chlorpromazine (as chlorpromazine hydrochloride, abbreviated CPZ; marketed in the United States as Thorazine and elsewhere as Largactil) is a typical antipsychotic. First synthesized on December 11, 1950, chlorpromazine was the first drug developed with specific antipsychotic action, and would serve as the prototype for the phenothiazine class of drugs, which later grew to comprise several other agents. (Wikipedia)

   

1,2,3,4-Tetrachlorodibenzo-P-dioxin

1,2,3,4-Tetrachlorodibenzo[b,e][1,4]dioxin

C12H4Cl4O2 (319.8965)


D009676 - Noxae > D013723 - Teratogens > D000072317 - Polychlorinated Dibenzodioxins

   

Bicozamycin

Bicyclomycin

C12H18N2O7 (302.1114)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals C784 - Protein Synthesis Inhibitor D004791 - Enzyme Inhibitors

   

Mikamycin A

Virginiamycin Complex

C28H35N3O7 (525.2475)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins Virginiamycin M1 (Pristinamycin IIA; Ostreogrycin A), produced by?Streptomyces virginiae, is an polyunsaturated macrocyclic lactone antibiotic and acts as a component of Virginiamycin (HY-112665)[1]. Virginiamycin M1 alone is against Staphylococcus aureus with a MIC of 0.25 μg/mL. The combination of Virginiamycin M1 and Virginiamycin S1 (HY-N6680) is 0.125 μg/mL (MIC Value), which can improve the bactericidal effect 1-30 times[2].

   

Oligomycin C

Oligomycin C

C45H74O10 (774.5282)


An oligomycin with formula C45H74O10 that is oligomycin A in which the hydroxy group that is alpha- to a macrolide keto group has been replaced by a hydrogen. It is an inhibitor of the mitochondrial F1F0 ATP synthase. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D009840 - Oligomycins

   

2-Pyridyl hydroxymethane sulfonic acid

2-Pyridyl hydroxymethane sulfonic acid

C6H7NO4S (189.0096)


   

(3beta,4beta,5alpha)-4-Methylergosta-7,24(28)-dien-3-ol

(1R,2S,5S,6S,7S,11R,14R,15R)-2,6,15-trimethyl-14-[(2R,5Z)-5-(propan-2-yl)hept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-5-ol

C30H50O (426.3861)


(3beta,4beta,5alpha)-4-Methylergosta-7,24(28)-dien-3-ol is isolated from marigold (Calendula officinalis) flowers.

   

11-Hydroxytabersonine

11-Hydroxytabersonine

C21H24N2O3 (352.1787)


   

CB3717

10-Propargyl-5,8-dideazafolic acid

C24H23N5O6 (477.1648)


D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D000970 - Antineoplastic Agents

   
   

R-Soterenol

N-[2-hydroxy-5-[1-hydroxy-2-(propan-2-ylamino)ethyl]phenyl]methanesulfonamide

C12H20N2O4S (288.1144)


C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator

   

Talactoferrin Alfa

3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)cyclohexyl)-benzeneacetamide monomethanesulfonate, (trans)-(+-)-isomer

C19H26Cl2N2O (368.1422)


D000970 - Antineoplastic Agents

   

Lamtidine

Lamtidine

C18H28N6O (344.2324)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist

   

Cembrene

(1E,3Z,6E,10E,14S)-3,7,11-Trimethyl-14-(1-methylethyl)-1,3,6,10-cyclotetradecatetraene

C20H32 (272.2504)


Cembrene is found in fats and oils. Cembrene is a constituent of oil of Pinus koraiensis (Korean pine) Cembrene A, or sometimes neocembrene, is a natural monocyclic diterpene isolated from corals of the genus Nephthea. It is a colorless oil with a faint wax-like odor.

   
   

2-Butenyl-4-methylthreonine

(E)-2-Butenyl-4-methyl-threonine; 2-Butenyl-4-methylthreonine

C9H17NO3 (187.1208)


   

Fe(CN)3

Fe(CN)3; Ferric cyanide; Iron cyanide (Fe(CN)3)

C3FeN3 (133.9442)


   
   

Homochelidonine

(+/-)-Homochelidonine

C21H23NO5 (369.1576)


   

Tetrangulol

Tetrangulol

C19H12O4 (304.0736)


A member of the class of tetraphenes that is tetraphene-7,12-dione substituted by hydroxy groups at positions 1 and 8 and a methyl group at position 3.

   

Urdamycin A

Kerriamycin B

C43H56O17 (844.3517)


   

Auramycinone

SCHEMBL11062020

C21H18O8 (398.1002)


   

methyl aklanonate

Aklanonic acid methyl ester

C22H18O8 (410.1002)


   

2-(4-Chlorophenoxy)propionic acid

2-(4-Chlorophenoxy)propionic acid, potassium salt

C9H9ClO3 (200.024)


   

202-791

isopropyl (4S)-4-(2,1,3-benzoxadiazol-4-yl)-2,6-dimethyl-5-nitro-1,4-dihydropyridine-3-carboxylate

C17H18N4O5 (358.1277)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Devazepide

2-(3,4-dimethoxyphenyl)-5-{[2-(3-methoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile

C26H36N2O3 (424.2726)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Prostaglandin D3

(5Z)-7-[(1R,2R,5S)-5-Hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-3-oxocyclopentyl]hept-5-enoic acid

C20H30O5 (350.2093)


Prostaglandin D3 (PGD3) is a prostanoid that has been identified as an inhibitor of human platelet aggregation and as a modulator of autonomic nerve transmission. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207, 6252026, 6952267, 4019112, 6945633Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin D3 (PGD3) is a prostanoid that has been identified as an inhibitor of human platelet aggregation and as a modulator of autonomic nerve transmission. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207, 6252026, 6952267, 4019112, 6945633

   

4,4-Dihydroxybenzophenone

4,4-Dihydroxybenzophenone

C13H10O3 (214.063)


   

Dimethylstilbestrol

(E)-4,4-(1,2-Dimethyl-1,2-ethenediyl)bisphenol

C16H16O2 (240.115)


   

1,2-Dimethylnaphthalene

1,2-DIMETHYLNAPHTHALENE

C12H12 (156.0939)


   

3-Biphenylol

3-Hydroxybiphenyl

C12H10O (170.0732)


   

3,4-Dichlorophenol

3,4-DICHLOROPHENOL

C6H4Cl2O (161.9639)


   

Chinomethionat

6-Methyl-2,3-quinoxalinedithiol cyclic S,S-dithiocarbonate

C10H6N2OS2 (233.9922)


D016573 - Agrochemicals D010575 - Pesticides

   

1,2,4-Trimethylbenzene

1,2,4-Trimethylbenzene (pseudocumene)

C9H12 (120.0939)


1,2,4-trimethylbenzene, also known as pseudocumene or psi-cumene, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. 1,2,4-trimethylbenzene is a plastic tasting compound found in black walnut and corn, which makes 1,2,4-trimethylbenzene a potential biomarker for the consumption of these food products. 1,2,4-trimethylbenzene can be found primarily in urine. 1,2,4-trimethylbenzene exists in all eukaryotes, ranging from yeast to humans. 1,2,4-trimethylbenzene is a non-carcinogenic (not listed by IARC) potentially toxic compound. 1,2,4-Trimethylbenzene is a colorless liquid with chemical formula C9H12. It is a flammable aromatic hydrocarbon with a strong odor. It occurs naturally in coal tar and petroleum (about 3\\%). It is nearly insoluble in water, but well-soluble in ethanol, diethyl ether, and benzene.

   

4-t-Butylbenzoic acid

p-tert-Butylbenzoic acid

C11H14O2 (178.0994)


CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4630; ORIGINAL_PRECURSOR_SCAN_NO 4625 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4617; ORIGINAL_PRECURSOR_SCAN_NO 4616 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4640; ORIGINAL_PRECURSOR_SCAN_NO 4636 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4710; ORIGINAL_PRECURSOR_SCAN_NO 4706 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4650; ORIGINAL_PRECURSOR_SCAN_NO 4645 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4623; ORIGINAL_PRECURSOR_SCAN_NO 4620

   

(±)-2,4,6-Triphenyl-1-hexene

(3,5-diphenylhex-5-en-1-yl)benzene

C24H24 (312.1878)


Styrene trimer. Present as an impurity in polystyrene food containers and other products - liberated on heating. Styrene trimer. Present as an impurity in polystyrene food containers and other products - liberated on heating

   

Drostanolone

(1S,2S,4R,7S,10R,11S,14S,15S)-14-hydroxy-2,4,15-trimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-one

C20H32O2 (304.2402)


Drostanolone is only found in individuals that have used or taken this drug. It is a potent synthetic androgenic anabolic steroid similar to testosterone. Drostanolone is indicated in postmenopausal women with recurrent breast cancer, in a combined hormone therapy.Dromostanolone is a synthetic androgenic anabolic steroid and is approximately 5 times as potent as natural methyltestosterone. Like testosterone and other androgenic hormones, dromostanolone binds to the androgen receptor. This causes downstream genetic transcriptional changes. This ultimately causes retention of nitrogen, potassium, and phosphorus; increases protein anabolism; and decreases amino acid catabolism. The antitumour activity of dromostanolone appears related to reduction or competitive inhibition of prolactin receptors or estrogen receptors or production. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

trans,trans-1,4-Diphenyl-1,3-butadiene

Benzene,1,1-(1E,3E)-1,3-butadiene-1,4-diylbis-

C16H14 (206.1095)


   

15H-11,12-EETA

(5Z,8Z)-10-{3-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxiran-2-yl}deca-5,8-dienoic acid

C20H32O4 (336.23)


15H-11,12-EETA is an epoxyeicosatrienoic acid (EET). The role of EETs in regulation of the cerebral circulation has become more important, since it was realized that EETs are produced in another specialized cell type of the brain, the astrocytes. It has become evident that EETs released from astrocytes may mediate cerebral functional hyperemia. Molecular and pharmacological evidence hve shown that neurotransmitter release and spillover onto astrocytes can generate EETs. Since these EETs may reach the vasculature via astrocyte foot-processes, they have the same potential as their endothelial counterparts to hyperpolarize and dilate cerebral vessels. P450 enzymes contain heme in their catalytic domain and nitric oxide (NO) appears to bind to these heme moieties and block formation of P450 products, including EETs. Thus, there appears to be crosstalk between P450 enzymes and NO/NO synthase. The role of fatty acid metabolites and cerebral blood flow becomes even more complex in light of data demonstrating that cyclooxygenase products can act as substrates for P450 enzymes. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597, 11413051, 10519554, 11893556) [HMDB] 15H-11,12-EETA is an epoxyeicosatrienoic acid (EET). The role of EETs in regulation of the cerebral circulation has become more important, since it was realized that EETs are produced in another specialized cell type of the brain, the astrocytes. It has become evident that EETs released from astrocytes may mediate cerebral functional hyperemia. Molecular and pharmacological evidence hve shown that neurotransmitter release and spillover onto astrocytes can generate EETs. Since these EETs may reach the vasculature via astrocyte foot-processes, they have the same potential as their endothelial counterparts to hyperpolarize and dilate cerebral vessels. P450 enzymes contain heme in their catalytic domain and nitric oxide (NO) appears to bind to these heme moieties and block formation of P450 products, including EETs. Thus, there appears to be crosstalk between P450 enzymes and NO/NO synthase. The role of fatty acid metabolites and cerebral blood flow becomes even more complex in light of data demonstrating that cyclooxygenase products can act as substrates for P450 enzymes. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597, 11413051, 10519554, 11893556).

   

11,14,15-THETA

(5Z,8Z,12E)-11,14,15-Trihydroxyeicosa-5,8,12-trienoic acid

C20H34O5 (354.2406)


11,14,15-trihydroxyeicosatrienoic acid (11,14,15-THETA) is a metabolite of the 15-lipoxygenase (15-LO) pathway of arachidonic acid (AA). Increased amounts of 11,14,15-THETA are synthesized in subacute hypoxia. Prolonged exposure to reduced PO2 activates 15-LO in small pulmonary arteries (PA); activation of 15-LO is associated with translocation of the enzyme from the cytosol to membrane. 11,14,15-THETA is an endothelium-derived relaxing factor. (PMID: 12690037, 9812980, 15388505, 14622984) [HMDB] 11,14,15-trihydroxyeicosatrienoic acid (11,14,15-THETA) is a metabolite of the 15-lipoxygenase (15-LO) pathway of arachidonic acid (AA). Increased amounts of 11,14,15-THETA are synthesized in subacute hypoxia. Prolonged exposure to reduced PO2 activates 15-LO in small pulmonary arteries (PA); activation of 15-LO is associated with translocation of the enzyme from the cytosol to membrane. 11,14,15-THETA is an endothelium-derived relaxing factor. (PMID: 12690037, 9812980, 15388505, 14622984).

   

8(R)-Hydroperoxylinoleic acid

(9Z,12Z)-(8R)-8-Hydroperoxyoctadeca-9,12-dienoic acid

C18H32O4 (312.23)


8(R)-hydroperoxylinoleic acid (8(R)-EPODE) is an oxidized product of linoleic acid. Oxidized lipids such as 8(R)-HPODE can decrease cellular proteoglycan metabolism in endothelial monolayers and alter mRNA levels of major specific proteoglycans in a concentration-dependent manner. This may have implications in lipid-mediated disruption of endothelial barrier function and atherosclerosis. (PMID: 8645361, 9507987).

   

2-Bromoacetaldehyde

Bromoacetaldehyde, 2-(14)C-labeled

C2H3BrO (121.9367)


This compound belongs to the family of Enolates. These are salts of enols (or of the tautomeric aldehydes or ketones), in which the anionic charge is delocalized over oxygen and carbon, or similar covalent metal derivatives in which the metal is bound to oxygen.

   

2alpha-Methylandrosterone

3alpha-Hydroxy-2alpha-methyl-5alpha-androstan-17-one

C20H32O2 (304.2402)


   

Surestryl

2-Phenanthrenecarboxylicacid, 1-ethyl-1,2,3,4-tetrahydro-7-methoxy-2-methyl-, (1R,2S)-rel-

C19H22O3 (298.1569)


   

Complestatin

Chloropeptin II

C61H45Cl6N7O15 (1325.1105)


A heterodetic cyclic peptide consisting of N-acylated trytophan, 3,5-dichloro-4-hydroxyphenylglycine, 4-hydroxyphenylglycine, 3,5-dichloro-4-hydroxyphenylglycyl, tyrosine and 4-hydroxyphenylglycine residues joined in sequence and in which the side-chain of the central 4-hydroxyphenylglycine residue is attached to the side-chain of the tryptophan via a C3-C6 bond and to the side-chain of the tyrosine via an ether bond from C5. It is isolated from the culture broth of Streptomyces and has anti-HIV-1 activity.

   
   

Castasterone

(2R,3S,5S,8S,9S,10R,13S,14S,17R)-17-[(2S,3R,4R,5S)-3,4-dihydroxy-5,6-dimethyl-heptan-2-yl]-2,3-dihydroxy-10,13-dimethyl-1,2,3,4,5,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-6-one

C28H48O5 (464.3502)


   

ST 28:0;O3

5alpha-campestan-3alpha,22R,23R-triol

C28H50O3 (434.376)


Typhasterol in which the oxygen atom of the keto group has been substituted by two hydrogen atoms. A member of a biosynthetic pathway to castasterone, it has been isolated from the primary roots of maize.

   

6-Deoxocastasterone

(1S,2S,4R,5S,7S,10R,11S,14R,15S)-14-[(2S,3R,4R,5S)-3,4-dihydroxy-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecane-4,5-diol

C28H50O4 (450.3709)


6-Deoxocastasterone belongs to the class of organic compounds known as tetrahydroxy bile acids, alcohols, and derivatives. These are prenol lipids structurally characterized by a bile acid or alcohol which bears four hydroxyl groups. Thus, 6-deoxocastasterone is considered to be a sterol lipid molecule. 6-Deoxocastasterone is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 6-Deoxocastasterone is found in common bean and has been isolated from Phaseolus vulgaris (kidney bean). Isolated from Phaseolus vulgaris (kidney bean). 6-Deoxocastasterone is found in many foods, some of which are jerusalem artichoke, alaska blueberry, sourdough, and yautia.

   

Iminoglycine

Iminoacetic acid

C2H3NO2 (73.0164)


   

6-(alpha-D-Glucosaminyl)-1D-myo-inositol 1,2-cyclic phosphate

6-(alpha-D-Glucosaminyl)-1D-myo-inositol 1,2-cyclic phosphate

C12H22NO12P (403.088)


A myo-inositol cyclic phosphate that is 1D-myo-inositol 1,2-cyclic phosphate having an alpha-D-glucosaminyl residue attached at the 6-position.

   

2,3,4,5,6-Pentachlorocyclohexanol

beta-2,3,4,5,6-Pentachlorocyclohexanol

C6H7Cl5O (269.894)


   

3-Oxooctadecanoyl-CoA

{[5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxooctadecanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C39H68N7O18P3S (1047.3554)


3-Oxooctadecanoyl-CoA is a metabolite intermediate in the microsomal fatty acid chain elongation system. Microsomal electron-transport components NADPH-cytochrome P450 reductase (EC 1.6.2.4) and cytochrome b5 (EC 1.6.2.2) participate in the conversion from 3-Oxooctadecanoyl-CoA to beta-hydroxystearoyl-CoA, the first reductive step of the microsomal chain elongating system initiated by NADPH. (PMID: 6404652) [HMDB] 3-Oxooctadecanoyl-CoA is a metabolite intermediate in the microsomal fatty acid chain elongation system. Microsomal electron-transport components NADPH-cytochrome P450 reductase (EC 1.6.2.4) and cytochrome b5 (EC 1.6.2.2) participate in the conversion from 3-Oxooctadecanoyl-CoA to beta-hydroxystearoyl-CoA, the first reductive step of the microsomal chain elongating system initiated by NADPH. (PMID: 6404652).

   

Sophorol

7,2-Dihydroxy-4,5-methylenedioxyisoflavanone

C16H12O6 (300.0634)


   

2,6-Dibromophenol

2,6-Dibromo-phenol

C6H4Br2O (249.8629)


2,6-Dibromophenol is found in crustaceans. 2,6-Dibromophenol is an important flavour component of marine fish, molluses and crustacean 2,6-Dibromophenol is an endogenous metabolite.

   

FA 18:4;O

(9Z)-(13S)-12,13-Epoxyoctadeca-9,11,15-trienoate;(9Z,15Z)-(13S)-12,13-Epoxyoctadeca-9,11,15-trienoic acid

C18H28O3 (292.2038)


A long-chain, divinyl ether fatty acid composed of 8-nonenoic acid in which the E-hydrogen at position 9 is substituted by a (1E,3Z,6Z)-nona-1,3,6-trien-1-yloxy group.

   

Methylurea

N-methylcarbamimidic acid

C2H6N2O (74.048)


   

4-hydroxylamino-2,6-dinitrotoluene

N-(4-methyl-3,5-dinitrophenyl)hydroxylamine

C7H7N3O5 (213.0386)


4-hydroxylamino-2,6-dinitrotoluene, also known as 4-hadnt, is a member of the class of compounds known as dinitrotoluenes. Dinitrotoluenes are organic aromatic compounds containing a benzene that carries a single methyl group and exactly two nitro groups. 4-hydroxylamino-2,6-dinitrotoluene is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-hydroxylamino-2,6-dinitrotoluene can be found in a number of food items such as elderberry, pigeon pea, tea leaf willow, and tree fern, which makes 4-hydroxylamino-2,6-dinitrotoluene a potential biomarker for the consumption of these food products.

   

2-hydroxylamino-4,6-dinitrotoluene

N-(2-methyl-3,5-dinitrophenyl)hydroxylamine

C7H7N3O5 (213.0386)


2-hydroxylamino-4,6-dinitrotoluene, also known as 2-hadnt or 4,6-dinitro-2-hydroxylaminotoluene, is a member of the class of compounds known as dinitrotoluenes. Dinitrotoluenes are organic aromatic compounds containing a benzene that carries a single methyl group and exactly two nitro groups. 2-hydroxylamino-4,6-dinitrotoluene is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-hydroxylamino-4,6-dinitrotoluene can be found in a number of food items such as rye, jujube, komatsuna, and allspice, which makes 2-hydroxylamino-4,6-dinitrotoluene a potential biomarker for the consumption of these food products.

   

4-Amino-2,6-dinitrotoluene

4-Amino-1-methyl-2,6-dinitrobenzene

C7H7N3O4 (197.0437)


   

2-Amino-4,6-dinitrotoluene

2-Methyl-3,5-dinitrobenzenamine

C7H7N3O4 (197.0437)


   

6-Thiourate

6-thio- (van) (8CI) uric acid

C5H4N4O2S (184.0055)


This compound belongs to the family of Purines and Purine Derivatives. These are aromatic heterocyclic compounds containing a purine moiety, which is formed a pyrimidine-ring ring fused to an imidazole ring.

   

6-Mercaptopurine ribonucleoside triphosphate

({[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(6-sulfanyl-9H-purin-9-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C10H15N4O13P3S (523.9569)


6-Mercaptopurine ribonucleoside triphosphate is a metabolite of mercaptopurine. Mercaptopurine (also called 6-mercaptopurine, 6-MP or its brand name Purinethol) is an immunosuppressive drug. It is a thiopurine. (Wikipedia)

   

2-ene-Valproic acid

2-Propyl-2-pentenoic acid, sodium salt

C8H14O2 (142.0994)


2-ene-Valproic acid is only found in individuals that have used or taken Valproic Acid.2-ene-Valproic acid is a metabolite of Valproic Acid. 2-ene-valproic acid belongs to the family of Branched Fatty Acids. These are fatty acids containing a branched chain. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D009676 - Noxae > D013723 - Teratogens

   

Dinophysistoxin 1

3-{8-[(3E)-4-[6-(3-{3,11-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl}-1-hydroxybutyl)-8-hydroxy-7-methylidene-hexahydro-3H-spiro[oxolane-2,2-pyrano[3,2-b]pyran]-5-yl]but-3-en-2-yl]-5-hydroxy-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl}-2-hydroxy-2-methylpropanoic acid

C45H70O13 (818.4816)


Dinophysistoxin 1 is found in mollusks. Dinophysistoxin 1 is a metabolite of Dinophysis fortii. Dinophysistoxin 1 is found in scallops and mussels. Component toxin in diarrhetic shellfish poisonin D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

Homomethionine

(2S)-2-Amino-5-(methylsulfanyl)pentanoic acid

C6H13NO2S (163.0667)


Homomethionine (CAS: 6094-76-4) belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Homomethionine is possibly neutral. Homomethionine has been detected, but not quantified in, several different foods, such as lima beans, red huckleberries, catjang pea, Chinese chestnuts, and pepper (C. annuum). This could make homomethionine a potential biomarker for the consumption of these foods. Homomethionine is found in brassicas and is isolated from cabbage and horseradish. Isolated from cabbage and horseradish. L-2-Amino-5-(methylthio)pentanoic acid is found in many foods, some of which are pepper (c. frutescens), vanilla, cauliflower, and pineappple sage.

   

7α,12α-dihydroxycholest-4-en-3-one

7α,12α-Dihydroxycholest-4-en-3-one

C27H44O3 (416.329)


   
   

Cysteinyldopa

5-S-Cysteinyl-DOPA

C12H16N2O6S (316.0729)


   

5,6-Indolequinone-2-carboxylic acid

5,6-Indolequinone-2-carboxylic acid

C9H5NO4 (191.0219)


   

N-Acetylphinothricin

N-Acetyl-L-phosphinothricin

C7H14NO5P (223.061)


   

D-Psicose

(3R,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one

C6H12O6 (180.0634)


The D-enantiomer of psicose.

   

Isodiprene

(1S,6R)-3,7,7-trimethylbicyclo[4.1.0]hept-3-ene

C10H16 (136.1252)


   

Zeaxanthin dipalmitate

4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[4-(Hexadecanoyloxy)-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl hexadecanoic acid

C72H116O4 (1044.8873)


Zeaxanthin dipalmitate is found in green vegetables. Zeaxanthin dipalmitate is a constituent of Physalis species, asparagus (Asparagus officinalis), beans and others Constituent of Physalis subspecies, asparagus (Asparagus officinalis), beans and others. Zeaxanthin dipalmitate is found in sea-buckthornberry and green vegetables. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

4-(Phosphonomethyl)piperidine-2-carboxylic acid

4-(Phosphonomethyl)-2-piperidinecarboxylic acid

C7H14NO5P (223.061)


   

8-Prenylnaringenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-en-1-yl)-3,4-dihydro-2H-1-benzopyran-4-one

C20H20O5 (340.1311)


(s)-4,5,7-trihydroxy-8-prenylflavanone is a member of the class of compounds known as 8-prenylated flavanones. 8-prenylated flavanones are flavanones that features a C5-isoprenoid substituent at the 8-position. Thus, (s)-4,5,7-trihydroxy-8-prenylflavanone is considered to be a flavonoid lipid molecule (s)-4,5,7-trihydroxy-8-prenylflavanone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-4,5,7-trihydroxy-8-prenylflavanone can be found in beer, which makes (s)-4,5,7-trihydroxy-8-prenylflavanone a potential biomarker for the consumption of this food product.

   

9-(2-Phosphonomethoxypropyl)adenine

({[1-(6-amino-9H-purin-9-yl)propan-2-yl]oxy}methyl)phosphonic acid

C9H14N5O4P (287.0783)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors

   

Propenylguaiacol

1-Hydroxy-2-methoxy-4-propen-1-ylbenzene

C10H12O2 (164.0837)


   

Cholestan-3-one

2,15-dimethyl-14-(6-methylheptan-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-one

C27H46O (386.3548)


   

Doisynoestrol

1-ethyl-7-methoxy-2-methyl-1,2,3,4-tetrahydrophenanthrene-2-carboxylic acid

C19H22O3 (298.1569)


   

Histidinyl-Leucine

2-{[2-amino-1-hydroxy-3-(1H-imidazol-5-yl)propylidene]amino}-4-methylpentanoate

C12H20N4O3 (268.1535)


   

Oleoyl coenzyme A

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(octadec-9-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C39H68N7O17P3S (1031.3605)


   

Soterenol monohydrochloride

2-Hydroxy-5-(1-hydroxy-2-(isopropylamino)ethyl)methane sulfonanilide monohydrochloride

C12H20N2O4S (288.1144)


C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator

   

(S)-3-hydroxydecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-({2-[(2-{[(3S)-3-hydroxydecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C31H54N7O18P3S (937.2459)


(s)-3-hydroxydecanoyl-coa, also known as 3-oh 10:0-coa or beta-hydroxydecanoyl coenzyme a, is a member of the class of compounds known as (s)-3-hydroxyacyl coas (s)-3-hydroxyacyl coas are organic compounds containing a (S)-3-hydroxyl acylated coenzyme A derivative (s)-3-hydroxydecanoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). (s)-3-hydroxydecanoyl-coa can be found in a number of food items such as black crowberry, pomegranate, deerberry, and winter savory, which makes (s)-3-hydroxydecanoyl-coa a potential biomarker for the consumption of these food products (s)-3-hydroxydecanoyl-coa may be a unique S.cerevisiae (yeast) metabolite.

   

Tiglic acid

4-02-00-01552 (Beilstein Handbook Reference)

C5H8O2 (100.0524)


A 2-methylbut-2-enoic acid having its double bond in trans-configuration. Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1]. Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1].

   

3,3,4,4-Tetrahydrospirilloxanthin

1,1,2,2-Tetrahydro-1,1-dimethoxy-psi,psi-carotene

C42H64O2 (600.4906)


   

Demethylmedicarpin

3,9-Dihydroxypterocarpan

C15H12O4 (256.0736)


(6ar,11ar)-3,9-dihydroxypterocarpan is a member of the class of compounds known as pterocarpans. Pterocarpans are benzo-pyrano-furano-benzene compounds, containing the 6H-[1]benzofuro[3,2-c]chromene skeleton. They are derivatives of isoflavonoids. Thus, (6ar,11ar)-3,9-dihydroxypterocarpan is considered to be a flavonoid lipid molecule (6ar,11ar)-3,9-dihydroxypterocarpan is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (6ar,11ar)-3,9-dihydroxypterocarpan can be found in a number of food items such as bayberry, sweet bay, agave, and red bell pepper, which makes (6ar,11ar)-3,9-dihydroxypterocarpan a potential biomarker for the consumption of these food products.

   

2-Hydroxydihydrodaidzein

2-Hydroxy-2,3-dihydrodaidzein

C15H12O5 (272.0685)


A hydroxyisoflavanone that is 2,3-dihydrodaidzein with an additonal hydroxy substituent at position 2.

   

Multinoside A

3-[[(2S,3R,4S,5R,6S)-3,4-dihydroxy-6-methyl-5-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-chromenone

C27H30O16 (610.1534)


A glycosyloxyflavone that is quercetin attached to a 6-deoxy-4-O-beta-D-glucopyranosyl-alpha-L-mannopyranosyl residue at position 3 via a glycosidic linkage.

   

GLUTARIC ANHYDRIDE

GLUTARIC ANHYDRIDE

C5H6O3 (114.0317)


   

11b,21-Dihydroxy-5b-pregnane-3,20-dione

11-hydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-1,2,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-3-one

C21H32O4 (348.23)


11beta,21-Dihydroxy-5beta-pregnane-3,20-dione is an intermediate in C21-Steroid hormone metabolism. 11beta,21-Dihydroxy-5beta-pregnane-3,20-dione is the 3rd to last step in the synthesis of 3alpha,20alpha,21-Trihydroxy-5beta-pregnane-11-one and is converted from Corticosterone via the enzyme 3-oxo-5beta-steroid 4-dehydrogenase (EC 1.3.99.6). It is then converted to Tetrahydrocorticosterone via the enzyme 3-alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50). [HMDB] 11beta,21-Dihydroxy-5beta-pregnane-3,20-dione is an intermediate in C21-Steroid hormone metabolism. 11beta,21-Dihydroxy-5beta-pregnane-3,20-dione is the 3rd to last step in the synthesis of 3alpha,20alpha,21-Trihydroxy-5beta-pregnane-11-one and is converted from Corticosterone via the enzyme 3-oxo-5beta-steroid 4-dehydrogenase (EC 1.3.99.6). It is then converted to Tetrahydrocorticosterone via the enzyme 3-alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50).

   

Lysipressin

[Lys8]-Vasopressin TFA

C46H65N13O12S2 (1055.4317)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents Lysipressin (Lysine vasopressin) is antidiuretic hormone that have been found in pigs and some marsupial families. Lysipressin induces contraction of the rabbit urinary bladder smooth muscle, activate adenylate-cyclase[1][2]. Lysipressin (Lysine vasopressin) is antidiuretic hormone that have been found in pigs and some marsupial families. Lysipressin induces contraction of the rabbit urinary bladder smooth muscle, activate adenylate-cyclase[1][2].

   

2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid

2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid

C12H10O4 (218.0579)


   

Glaucine, dl

4,5,15,16-tetramethoxy-10-methyl-10-azatetracyclo[7.7.1.0(2),?.0(1)(3),(1)?]heptadeca-1(16),2,4,6,13(17),14-hexaene

C21H25NO4 (355.1783)


1,2,9,10-Tetramethoxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available.

   

2'-Hydroxygenistein

3-(2,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one, 9CI

C15H10O6 (286.0477)


2-hydroxygenistein is a hydroxyisoflavone that is genistein substituted by an additional hydroxy group at position 2. It has been isolated from Crotalaria lachnophora. It has a role as a plant metabolite. It is functionally related to a genistein. It is a conjugate acid of a 2-hydroxygenistein(1-). 2-Hydroxygenistein is a natural product found in Crotalaria lachnophora, Vigna radiata, and other organisms with data available. Isolated from Cajanus cajan (pigeon pea), Dolichos biflorus (papadi), Lablab niger (hyacinth bean), Phaseolus vulgaris (kidney bean) and Phaseolus coccineus (scarlet runner bean). 2-Hydroxygenistein is found in many foods, some of which are pulses, walnut, saskatoon berry, and garden tomato (variety). 2-Hydroxygenistein is found in adzuki bean. 2-Hydroxygenistein is isolated from Cajanus cajan (pigeon pea), Dolichos biflorus (papadi), Lablab niger (hyacinth bean), Phaseolus vulgaris (kidney bean) and Phaseolus coccineus (scarlet runner bean). A hydroxyisoflavone that is genistein substituted by an additional hydroxy group at position 2. It has been isolated from Crotalaria lachnophora.

   

pisatin

(1S,12S)-16-methoxy-5,7,11,19-tetraoxapentacyclo[10.8.0.02,10.04,8.013,18]icosa-2,4(8),9,13(18),14,16-hexaen-1-ol

C17H14O6 (314.079)


A member of the class of pterocarpans that is the 3-O-methyl ether of (+)-6a-hydroxymaackiain (the 6aR,12aR stereoisomer). A phytoalexin found in pods of garden peas (Pisum sativum) and other plants of the pea family, including Tephrosia candida. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents 6H-(1,3)Dioxolo(5,6)benzofuro(3,2-c)(1)benzopyran-6a(12aH)-ol, 3-methoxy-, (6aS-cis)- is a natural product found in Millettia pachyloba with data available.

   

Atraton

Atraton

C9H17N5O (211.1433)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 157

   

thiethylperazine

thiethylperazine

C22H29N3S2 (399.1803)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Thiethylperazine, a phenothiazine derivate, is an orally active and potent dopamine D2-receptor and histamine H1-receptor antagonist. Thiethylperazine is also a selective ABCC1activator that reduces amyloid-β (Aβ) load in mice. Thiethylperazine has anti-emetic, antipsychotic and antimicrobial effects[1][2][3].

   

Josamycin

Leucomycin a3

C42H69NO15 (827.4667)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides A macrolide antibiotic produced by certain strains of Streptomyces narbonensis var. josamyceticus. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D01235 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.133 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.131 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.130 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.135 Josamycin (EN-141) is a macrolide antibiotic exhibiting antimicrobial activity against a wide spectrum of pathogens, such as bacteria. The dissociation constant Kd from ribosome for Josamycin is 5.5 nM.

   

Pantolactone

D-(-)-Pantolactone

C6H10O3 (130.063)


Pantolactone is an endogenous metabolite.

   

D-glucosamine 6-phosphate

D-glucosamine 6-phosphate

C6H14NO8P (259.0457)


   

6-Hydroxynicotinic Acid

6-Hydroxynicotinic Acid

C6H5NO3 (139.0269)


A monohydroxypyridine that is the 6-hydroxy derivative of nicotinic acid. 6-Hydroxynicotinic acid is an endogenous metabolite.

   

2-Hydroxyphenylacetic acid

ortho-Hydroxyphenylacetic acid

C8H8O3 (152.0473)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). D-(-)-Mandelic acid is a natural compound isolated from bitter almonds. D-(-)-Mandelic acid is a natural compound isolated from bitter almonds.

   

4-BROMOPHENOL

4-BROMOPHENOL

C6H5BrO (171.9524)


A bromophenol containing only hydroxy and bromo substituents that are para to one another. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8650

   

2-Hydroxyformononetin

2-Hydroxyformononetin

C16H12O5 (284.0685)


A methoxyisoflavone that is formononetin with a hydroxy group at position 2.

   

N-Methyltyramine

N-Methyltyramine

C9H13NO (151.0997)


   

N-Methyltryptamine

Nω-methyltryptamine

C11H14N2 (174.1157)


   

benthiocarb

Pesticide3_Thiobencarb_C12H16ClNOS_S-(4-Chlorobenzyl) diethylcarbamothioate

C12H16ClNOS (257.0641)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

pimelic acid

6-Carboxyhexanoate

C7H12O4 (160.0736)


An alpha,omega-dicarboxylic acid that is pentane with two carboxylic acid groups at positions C-1 and C-5. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.

   

2-Phenylglycine

(±)-α-Aminophenylacetic acid

C8H9NO2 (151.0633)


   

N8-Acetylspermidine

N8-Acetylspermidine

C9H21N3O (187.1685)


   

2,5-Dihydroxybenzaldehyde

2,5-Dihydroxybenzaldehyde

C7H6O3 (138.0317)


A dihydroxybenzaldehyde carrying hydroxy groups at positions 2 and 5. 2,5-Dihydroxybenzaldehyde (Gentisaldehyde) is a naturally occurring antimicrobial that inhibits the growth of Mycobacterium avium subsp. paratuberculosis. 2,5-Dihydroxybenzaldehyde is active against S. aureus strains with a MIC50 of 500 mg/L[1][2].

   

Melezitose

Glc(alpha1-3)Fruf(beta2-1alpha)Glc

C18H32O16 (504.169)


Origin: Plant; Formula(Parent): C18H32O16; Bottle Name:D-(+)-Melezitose monohydrate / D-(+)-Melezitose hydrate; PRIME Parent Name:D-Melezitose; PRIME in-house No.:?V0068 S0210, Polysaccharides (?V0068: D-Melezitose, ?S0210: D-Melezitose) D-(+)-Melezitose can be used to identify clinical isolates of indole-positive and indole-negative Klebsiella spp.

   

N-Acetylhistamine

N-[2-(1H-imidazol-5-yl)ethyl]acetamide

C7H11N3O (153.0902)


A member of the class of acetamides that is acetamide comprising histamine having an acetyl group attached to the side-chain amino function. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.

   

Xanthyletin

Xanthyletin

C14H12O3 (228.0786)


   

verruculogen

verruculogen

C27H33N3O7 (511.2318)


An organic heterohexacyclic compound that is a mycotoxic indole alkaloid isolated from Penicillium and Aspergillus species. CONFIDENCE Penicillium amphipolaria

   

HALOXYFOP

HALOXYFOP

C15H11ClF3NO4 (361.0329)


Haloxyfop is an aryloxyphenoxypropionic acid herbicide and is widely used in grass weeds in broad-leaf crops[2]. Haloxyfop inhibits the acetyl coenzyme A carboxylase (EC 6.4.1.2) from corn seedling chloroplasts with an IC50 of 0.5 μM, but has no effect on this enzyme in pea[2].

   

16-Hydroxytabersonine

16-Hydroxytabersonine

C21H24N2O3 (352.1787)


   

DIBOA

2,4-Dihydroxy-2H-1,4-benzoxazin-3(4H)-one

C8H7NO4 (181.0375)


A lactol that consists of 1,4-benzoxazine bearing two hydroxy substituents at positions 2 and 4 as well as a keto group at position 3. Annotation level-3

   

Hippeastrine

(2S,3S,9S,10S)-9-hydroxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.02,10.03,7.015,19]icosa-1(20),7,13,15(19)-tetraen-12-one

C17H17NO5 (315.1107)


Hippeastrine is an indole alkaloid isolated from the Amaryllidaceae family and has been shown to exhibit cytotoxic activity. It has a role as an antineoplastic agent and a metabolite. It is an indole alkaloid, a delta-lactone, a secondary alcohol and an organic heteropentacyclic compound. Hippeastrine is a natural product found in Pancratium trianthum, Pancratium canariense, and other organisms with data available. An indole alkaloid isolated from the Amaryllidaceae family and has been shown to exhibit cytotoxic activity. Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Amaryllidaceae alkaloids

   
   

Diguanosine tetraphosphate

Diguanosine tetraphosphate

C20H28N10O21P4 (868.0381)


   

2-Hydroxyphytanic acid

2-hydroxy-3,7,11,15-tetramethylhexadecanoic acid

C20H40O3 (328.2977)


An alpha-hydroxy fatty acid formed from phytanic acid by bacterial cytochrome P450; and also formed in human peroxisomal disorders.

   

3-oxopalmitoyl-CoA

3-oxohexadecanoyl-CoA

C37H64N7O18P3S (1019.3241)


The S-(3-oxopalmitoyl) derivative of coenzyme A.

   

FA 6:3;O2

(2E,4Z)-4-hydroxy-6-oxohexa-2,4-dienoic acid

C6H6O4 (142.0266)


cis,cis-Muconic acid, a metabolic intermediate of Klebsiella pneumonia, can be converted to adipic acid and terephthalic acid, which are important monomers of synthetic polymers. cis,cis-Muconic acid is also a biochemical material that can be used for the production of various plastics and polymers and is particularly gaining attention as an adipic acid precursor for the synthesis of nylon-6,6[1][2].

   

FA 6:2;O5

2,5-Dioxo-D-gluconic acid;2,5-didehydro-D-gluconic acid;2,5-diketo-D-gluconic acid;D-threo-2,5-Hexodiulosonic acid

C6H8O7 (192.027)


   

FA 7:4;O5

4-hydroxy-1E,3E-butadiene-1,2,4-tricarboxylic acid

C7H6O7 (202.0114)


   

Sulcatol

5-Hepten-2-ol,6-methyl-

C8H16O (128.1201)


Occurs in lemongrass oil. (R)-Sulcatol is found in herbs and spices.

   

CoA 20:3

(8Z,11Z,14Z)-eicosatrienoyl-coenzyme A;8Z,11Z,14Z-eicosatrienoyl-CoA;8Z,11Z,14Z-icosatrienoyl-CoA;CoA[20:3(8Z,11Z,14Z)];all-cis-eicosa-8,11,14-trienoyl-CoA;all-cis-eicosa-8,11,14-trienoyl-coenzyme A;all-cis-icosa-8,11,14-trienoyl-CoA;all-cis-icosa-8,11,14-trienoyl-coenzyme A

C41H68N7O17P3S (1055.3605)


   

CoA 18:1;O

16-methyl-3-oxoheptadecanoyl-CoA;16-methyl-3-oxoheptadecanoyl-coenzyme A;3-ketoisooctadecanoyl-CoA;3-ketoisooctadecanoyl-coenzyme A;3-oxoisooctadecanoyl-coenzyme A;3-oxoisostearoyl-CoA;3-oxoisostearoyl-coenzyme A

C39H68N7O18P3S (1047.3554)


A 3-oxo-fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-oxooctadecanoic acid.

   

CoA 16:1;O

3S-Hydroxy-9Z-hexadecenoyl-CoA

C37H64N7O18P3S (1019.3241)


   

CoA 7:3

Cyclohex-2,5-diene-1-carbonyl-CoA;Cyclohex-2,5-diene-1-formyl-CoA;Cyclohex-2,5-dienecarbonyl-CoA;cyclohex-2,5-dienecarboxyl-coenzyme A;cyclohexa-2,5-diene-1-carbonyl-coenzyme A

C28H42N7O17P3S (873.1571)


   

ST 28:4;O

(22E)-24-methylcholesta-5,7,22,24(24(1))-tetraen-3beta-ol

C28H42O (394.3235)


   

ST 28:0;O4

campestan-2alpha,3alpha,22R,23R-tetrol

C28H50O4 (450.3709)


   

(+)-sabinone

(1S,5S)-4-methylidene-1-(propan-2-yl)bicyclo[3.1.0]hexan-3-one

C10H14O (150.1045)


   

alpha-Cubebene

(-)-Alpha-Cubebene

C15H24 (204.1878)


A tricyclic sesquiterpene with formula C15H24, isolated from Hungarian thyme, citrus fruit, chamomile, and several other flowering plants. Constituent of oil of cubeb pepper (Piper cubeba). alpha-Cubebene is found in many foods, some of which are parsley, ginger, nutmeg, and lemon balm.

   

gibberellin A29

gibberellin A29

C19H24O6 (348.1573)


A C19-gibberellin, initially identified in Pharbitis nil. It differs from gibberellin A1 in lacking a beta-OH at C-2 but possessing one at C-3 (gibbane numberings).

   

gibberellin A12 aldehyde

(1R,2S,3S,4R,8S,9S,12R)-2-formyl-4,8-dimethyl-13-methylidenetetracyclo[10.2.1.0(1,9).0(3,8)]pentadecane-4-carboxylic acid 10beta-formyl-1beta,4a-dimethyl-8-methylidene-4aalpha,4bbeta-gibbane-1alpha-carboxylic acid

C20H28O3 (316.2038)


D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins

   

All-trans-hexaprenyl diphosphate

(2E,6E,10E,14E,18E)-3,7,11,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaen-1-yl trihydrogen diphosphate

C30H52O7P2 (586.3188)


   

Xenognosin B

7-Hydroxy-3-(2-hydroxy-4-methoxyphenyl)-4H-chromen-4-one

C16H12O5 (284.0685)


   

(-)-Glycinol

3,6a,9-Trihydroxypterocarpan

C15H12O5 (272.0685)


   

Sophoraflavanone B

Sophoraflavanone B

C20H20O5 (340.1311)


   

1-[4-Hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione

2,4(1H,3H)-Pyrimidinedione,1-(2-deoxy-b-D-threo-pentofuranosyl)-5-methyl-

C10H14N2O5 (242.0903)


1-(2-Deoxy-β-D-threo-pentofuranosyl)thymine is a thymidine analog. Analogs of this series have insertional activity towards replicated DNA. They can be used to label cells and track DNA synthesis[1].

   

NITROSOBENZENE

NITROSOBENZENE

C6H5NO (107.0371)


A nitroso compound that is the nitroso derivative of benzene; a diamagnetic hybrid of singlet O2 and azobenzene.

   

10-Propargyl-5,8-dideazafolic acid

N-(4-(N-((2-amino-3,4-dihydro-4-oxo-6-quinazolinyl)methyl)-N-prop-2-ynylamino)benzoyl)glutamic acid

C24H23N5O6 (477.1648)


D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D000970 - Antineoplastic Agents

   

isopropyl (4S)-4-(2,1,3-benzoxadiazol-4-yl)-2,6-dimethyl-5-nitro-1,4-dihydropyridine-3-carboxylate

isopropyl (4S)-4-(2,1,3-benzoxadiazol-4-yl)-2,6-dimethyl-5-nitro-1,4-dihydropyridine-3-carboxylate

C17H18N4O5 (358.1277)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Virginiamycin M1

Pristinamycin IIA

C28H35N3O7 (525.2475)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic Virginiamycin M1 (Pristinamycin IIA; Ostreogrycin A), produced by?Streptomyces virginiae, is an polyunsaturated macrocyclic lactone antibiotic and acts as a component of Virginiamycin (HY-112665)[1]. Virginiamycin M1 alone is against Staphylococcus aureus with a MIC of 0.25 μg/mL. The combination of Virginiamycin M1 and Virginiamycin S1 (HY-N6680) is 0.125 μg/mL (MIC Value), which can improve the bactericidal effect 1-30 times[2].

   

(+)-3-Carene

(+)-alpha-carene

C10H16 (136.1252)


Widespread plant product, found especies in turpentine oils (from Pinus subspecies) and oil of galbanum. (+)-alpha-Carene is found in sweet marjoram and herbs and spices.

   

4-tert-Butylbenzoic acid

4-tert-Butylbenzoic acid

C11H14O2 (178.0994)


   

Estradiol dipropionate

Estradiol dipropionate

C24H32O4 (384.23)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

CHEBI:7

InChI=1\C10H16\c1-7-4-5-8-9(6-7)10(8,2)3\h4,8-9H,5-6H2,1-3H

C10H16 (136.1252)


   

80605_FLUKA

Bicyclo(3.1.1)hept-2-ene, 2,6,6-trimethyl-, (1theta)-

C10H16 (136.1252)


(1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].

   

Prenal

InChI=1\C5H8O\c1-5(2)3-4-6\h3-4H,1-2H

C5H8O (84.0575)


   

Tropeolin

InChI=1\C8H7NS\c9-7-10-6-8-4-2-1-3-5-8\h1-5H,6H

C8H7NS (149.0299)


   

Pseudocumol

InChI=1\C9H12\c1-7-4-5-8(2)9(3)6-7\h4-6H,1-3H

C9H12 (120.0939)


   

614-75-5

InChI=1\C8H8O3\c9-7-4-2-1-3-6(7)5-8(10)11\h1-4,9H,5H2,(H,10,11

C8H8O3 (152.0473)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU).

   

370-98-9

4-13-00-01790 (Beilstein Handbook Reference)

C9H13NO (151.0997)


   

Pentanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(pentanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C26H44N7O17P3S (851.1727)


Pentanoyl CoA is an acyl-CoA with the C-5 Acyl chain. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Pentanoyl coA is a acyl-CoA with the C-5 Acyl chain.

   
   

Ferric cyanide

Ferric cyanide

C3FeN3 (133.9442)


   

Physalien

[(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hexadecanoyloxy-2,6,6-trimethyl-cyclohexen-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethyl-cyclohex-3-en-1-yl] hexadecanoate

C72H116O4 (1044.8873)


Physalien is a xanthophyll. Physalien is a natural product found in Lycium chinense and Alkekengi officinarum var. franchetii with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

CYCLOHEXANECARBOXYLIC ACID

CYCLOHEXANECARBOXYLIC ACID

C7H12O2 (128.0837)


Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].

   

3-Methyl-2-butenal

3-Methyl-2-butenal

C5H8O (84.0575)


   

Azinphos-ethyl

Azinphos-ethyl

C12H16N3O3PS2 (345.0371)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

paramethadione (500 mg)

paramethadione (500 mg)

C7H11NO3 (157.0739)


N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AC - Oxazolidine derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent

   

Ethinamate

Ethinamate

C9H13NO2 (167.0946)


C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

mesotartaric acid

mesotartaric acid

C4H6O6 (150.0164)


DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].

   

Benzyl thiocyanate

Benzyl thiocyanate

C8H7NS (149.0299)


   

Ceforanide

Ceforanide

C20H21N7O6S2 (519.0995)


A second-generation cephalosporin antibiotic with {[1-(carboxymethyl)-1H-tetrazol-5-yl]sulfanyl}methyl and 2-(aminomethyl)phenylacetamido groups at positions 3 and 7, respectively, of the cephem skeleton. It is effective against many coliforms, including Escherichia coli, Klebsiella, Enterobacter and Proteus, and most strains of Salmonella, Shigella, Hemophilus, Citrobacter and Arizona species. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

carbinoxamine

carbinoxamine

C16H19ClN2O (290.1186)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist

   

fluphenazine enanthate

fluphenazine enanthate

C29H38F3N3O2S (549.2637)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

   

Triamcinolone diacetate

Triamcinolone diacetate

C25H31FO8 (478.2003)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D004791 - Enzyme Inhibitors

   

phthalylsulfathiazole

phthalylsulfathiazole

C17H13N3O5S2 (403.0297)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AB - Sulfonamides C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013432 - Sulfathiazoles D000890 - Anti-Infective Agents > D013424 - Sulfanilamides

   

Fluphenazine decanoate

Fluphenazine decanoate

C32H44F3N3O2S (591.3106)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Fluphenazine decanoate is a dopamine D2 receptor inhibitor, is a long-acting phenothiazine neuroleptic. Fluphenazine can be used for schizophrenia research[1][2][3].

   
   

Propynal

2-Propynal

C3H2O (54.0106)


   

15-Oxoprostaglandin e1

15-dehydro-prostaglandin E1

C20H32O5 (352.225)


   

11-Aminoundecanoic acid

11-Aminoundecanoic acid

C11H23NO2 (201.1729)


11-Aminoundecanoic acid is an organic compound with the formula H2N(CH2)10CO2H. This white solid is classified as an amine and a fatty acid. 11-Aminoundecanoic acid is a precursor to Nylon-11.[1] As practiced by Arkema, 11-aminoundecanoic acid is prepared industrially from undecylenic acid, which is derived from castor oil.[2] The synthesis proceeds in four separate reactions: 1. Transesterification of castor oil to methyl ricinoleate: Crude castor oil consists of about 80\% triglycerides, from the ricinoleic acid, itself representing about 90\% of the oil.[3] It is quantitatively transesterified with methanol to methyl ricinoleate (the methyl ester of ricinoleic acid) in the presence of the basic sodium methoxide at 80 °C within 1 h reaction time in a stirred reactor. At the end of the reaction, the resulting glycerol separates and the liquid methyl ester is washed with water to remove residual glycerol. 2. Pyrolysis of methylricinoleate to heptanal and methyl undecenoate: Methylricinoleate is evaporated at 250 °C, mixed with hot steam (600 °C) in a 1:1 ratio and decomposed in a cracking furnace at 400 - 575 °C at a retention time of about 10 seconds into its cleavage products heptanal and methyl undecenoate. The cleavage of the aliphatic chain occurs in this variant of the steam cracking selectively between the hydroxymethylene and the allyl-methylene group. Besides heptanal and methyl undecenoate, a mixture of methyl esters of saturated and unsaturated C18-carboxylic acids is obtained. This mixture is known under the trade name Esterol and is used as a lubricant additive. 3. Hydrolysis of methyl undecenoate to 10-undecenoic acid The hydrolysis of the methyl ester with sodium hydroxide proceeds at 25 °C within 30 min with quantitative yield. After acidification with hydrochloric acid, solid 10-undecenoic acid (undecylenic acid) is obtained. 4. Hydrobromination of 10-undecenoic acid to 11-bromoundecanoic acid The undecenoic acid is dissolved in toluene and, in the presence of the radical initiator benzoyl peroxide (BPO), gaseous hydrogen bromide is added, in contrary to the Markovnikov rule ("anti-Markovnikov"). When cooled to 0 °C, the fast and highly exothermic reaction produces 11-bromoundecanoic acid in 95\% yield - the Markovnikov product 10-bromoundecanoic acid is produced in small quantities as a by-product. Toluene and unreacted hydrogen bromide are extracted under reduced pressure and reused. 5. Bromine exchange of 11-bromoundecanoic acid to 11-aminoundecanoic acid 11-Bromodecanoic acid is mixed at 30 °C with a large excess of 40\% aqueous ammonia solution. When the reaction is complete, water is added and the mixture is heated to 100 °C to remove the excess ammonia. The acid can be recrystallized from water. For further purification, the hydrochloride of 11-aminoundecanoic acid, which is available by acidification with hydrochloric acid, can be recrystallized from a methanol/ethyl acetate mixture. Aminoundecanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2432-99-7 (retrieved 2024-07-01) (CAS RN: 2432-99-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

2-Oxohexanoic acid

2-Oxohexanoic acid

C6H10O3 (130.063)


A straight-chain fatty acid consisting of hexanoic acid having an oxo group at position 2.

   

N-Acetyl-L-histidine

N-Acetyl-L-histidine

C8H11N3O3 (197.08)


A histidine derivative that is L-histidine having an acetyl substituent on the alpha-nitrogen.

   

4-FLUOROBENZOIC ACID

4-FLUOROBENZOIC ACID

C7H5FO2 (140.0274)


A fluorobenzoic acid carrying a fluoro substituent at position 4.

   

3-FLUOROBENZOIC ACID

3-FLUOROBENZOIC ACID

C7H5FO2 (140.0274)


   

2-Butynedioic acid

Acetylenedicarboxylic acid

C4H2O4 (113.9953)


   

4,4-DDA

Bis(4-chlorophenyl)acetic acid

C14H10Cl2O2 (280.0058)


D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D050258 - Mitosis Modulators > D008934 - Mitogens

   

4-Amino-3-hydroxybutyric acid

DL-γ-Amino-β-hydroxybutyric acid

C4H9NO3 (119.0582)


   

Adenosine-3-5-diphosphate

Adenosine-3-5-diphosphate

C10H15N5O10P2 (427.0294)


   

2-Deoxyguanosine-5-diphosphate

2-Deoxyguanosine-5-diphosphate

C10H15N5O10P2 (427.0294)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

4,4-Dimethyldihydro-2,3-furandione

Dihydro-4,4-dimethyl-2,3-Furandione

C6H8O3 (128.0473)


   

BURIMAMIDE

BURIMAMIDE

C9H16N4S (212.1096)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents

   

Boc-Leu-OH.H2O

N-(tert-Butoxycarbonyl)-L-leucine

C11H21NO4 (231.1471)


   

3,6-Dichlorocatechol

3,6-Dichlorocatechol

C6H4Cl2O2 (177.9588)


   

2,3-Dihydroxyindole

2,3-Dihydroxyindole

C8H7NO2 (149.0477)


   

2-Deoxyinosine triphosphate

2-Deoxyinosine triphosphate

C10H15N4O13P3 (491.9848)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-methylbut-2-enoyl-CoA

3-methylbut-2-enoyl-CoA

C26H42N7O17P3S (849.1571)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-methylbut-2-enoic acid.

   

8Z,11Z,14Z-eicosatrienoyl-CoA

all-cis-icosa-8,11,14-trienoyl-CoA

C41H68N7O17P3S (1055.3605)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of all-cis-icosa-8,11,14-trienoic acid.

   

8-L-Lysine vasopressin

[Lys8]-Vasopressin TFA

C46H65N13O12S2 (1055.4317)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents Lysipressin (Lysine vasopressin) is antidiuretic hormone that have been found in pigs and some marsupial families. Lysipressin induces contraction of the rabbit urinary bladder smooth muscle, activate adenylate-cyclase[1][2]. Lysipressin (Lysine vasopressin) is antidiuretic hormone that have been found in pigs and some marsupial families. Lysipressin induces contraction of the rabbit urinary bladder smooth muscle, activate adenylate-cyclase[1][2].

   

4,6-Quinolinediol

4,6-Dihydroxyquinoline

C9H7NO2 (161.0477)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Ethyl L-tyrosinate

L-Tyrosine ethyl ester

C11H15NO3 (209.1052)


   

3-Methylguanine

6H-Purin-6-one,2-amino-3,9-dihydro-3-methyl-

C6H7N5O (165.0651)


A 3-methylguanine that is 3,7-dihydro-6H-purin-6-one substituted by an amino group at position 2 and a methyl group at position 3.

   

Oxaluric acid

3-OXALURIC ACID

C3H4N2O4 (132.0171)


A 2-oxo monocarboxylic acid that is amino(oxo)acetic acid substituted by a carbamoylamino group at the nitrogen atom.

   
   

Uroporphyrinogen I

Uroporphyrinogen I

C40H44N4O16 (836.2752)


   

GUANOSINE-3-monophosphATE

GUANOSINE-3-monophosphATE

C10H14N5O8P (363.058)


   

4-TRIMETHYLAMMONIOBUTANAL

4-TRIMETHYLAMMONIOBUTANAL

C7H16NO+ (130.1232)


   

6-Lactoyltetrahydropterin

6-Lactoyl-5,6,7,8-tetrahydropterin

C9H13N5O3 (239.1018)


   

GDP-4-Keto-6-deoxymannose

GDP-4-Keto-6-deoxymannose

C16H23N5O15P2 (587.0666)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(-)-alpha-Hydrastine

(-)-alpha-Hydrastine

C21H21NO6 (383.1369)


   

(S)-3-Hydroxydecanoyl-CoA

(S)-3-Hydroxydecanoyl-CoA

C31H54N7O18P3S (937.2459)


A 3-hydroxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-hydroxydecanoic acid.

   

L-Homomethionine

L-Homomethionine

C6H13NO2S (163.0667)


   

D-Glucono-1,5-lactone 6-phosphate

D-Glucono-1,5-lactone 6-phosphate

C6H11O9P (258.0141)


   

N-[(R)-4-phosphopantothenoyl]-L-cysteine

N-[(R)-4-phosphopantothenoyl]-L-cysteine

C12H23N2O9PS (402.0862)


The N-[(R)-4-phosphopantothenoyl] derivative of L-cysteine.

   

1-Deoxy-D-xylulose

1-Deoxy-D-xylulose

C5H10O4 (134.0579)


   

Histidylleucine

Histidylleucine

C12H20N4O3 (268.1535)


   

but-3-ynal

but-3-ynal

C4H4O (68.0262)


A butynal which has a monosubstituted triple bond.

   

alpha-Cyclocostunolide

alpha-Cyclocostunolide

C15H20O2 (232.1463)


   

6-amino-2-oxohexanoic acid

6-amino-2-oxohexanoic acid

C6H11NO3 (145.0739)


   

19-Oxotestosterone

19-Oxotestosterone

C19H26O3 (302.1882)


   

beta-cyclocostunolide

beta-cyclocostunolide

C15H20O2 (232.1463)


   

4-Methylene-L-glutamic acid

4-Methylene-L-glutamic acid

C6H9NO4 (159.0532)


The L-enantiomer of 4-methyleneglutamic acid.

   

7-Methylguanosine 5-phosphate

7-Methylguanosine 5-phosphate

C11H17N5O8P+ (378.0815)


   

2,3-Diketogulonic Acid

(4R,5S)-4,5,6-Trihydroxy-2,3-dioxohexanoic acid

C6H8O7 (192.027)


A carbohydrate acid formally derived from gulonic acid by oxidation of the -OH groups at positions 2 and 3 to keto groups.

   

4-amino-2-methyl-5-phosphooxymethylpyrimidine

(4-AMINO-2-METHYLPYRIMIDIN-5-YL)METHYL DIHYDROGEN PHOSPHATE

C6H10N3O4P (219.0409)


An aminopyrimidine having the amino group at the 4-position together with methyl and phosphooxymethyl groups at the 2- and 5-positions respectively.

   

cyclohexa-1,5-diene-1-carbonyl-CoA

cyclohexa-1,5-diene-1-carbonyl-CoA

C28H42N7O17P3S (873.1571)


   

lipid A-disaccharide-1-phosphate

lipid A-disaccharide-1-phosphate

C68H129N2O20P (1324.8876)


   

5-Formimidoyltetrahydrofolic acid

5-Formimidoyltetrahydrofolic acid

C20H24N8O6 (472.1819)


The 5-formimidoyl derivative of tetrahydrofolic acid.

   

Diisopropylphosphate

Diisopropylphosphate

C6H15O4P (182.0708)


   

pentanoyl-CoA

pentanoyl-CoA

C26H44N7O17P3S (851.1727)


A short-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of pentanoic acid.

   

5-(5-(2,6-Dichloro-4-(4,5-Dihydro-2-Oxazoly)phenoxy)pentyl)-3-Methyl Isoxazole

5-(5-(2,6-Dichloro-4-(4,5-Dihydro-2-Oxazoly)phenoxy)pentyl)-3-Methyl Isoxazole

C18H20Cl2N2O3 (382.0851)


   

2-Methylpropanal O-methyloxime

2-Methylpropanal O-methyloxime

C5H11NO (101.0841)


   
   

ditrans,octacis-Undecaprenyl phosphate

ditrans,octacis-Undecaprenyl phosphate

C55H91O4P (846.6655)


   

N-(Carboxymethyl)-D-alanine

N-(Carboxymethyl)-D-alanine

C5H9NO4 (147.0532)


   

N-Hydroxytyrosine

N-Hydroxy-L-tyrosine

C9H11NO4 (197.0688)


   

Cellobiono-1,5-lactone

Cellobiono-1,5-lactone

C12H20O11 (340.1006)


   

Phaselic acid

Phaselic acid

C13H12O8 (296.0532)


   

4-carboxy-2-hydroxy-cis,cis-muconic acid

4-carboxy-2-hydroxy-cis,cis-muconic acid

C7H6O7 (202.0114)


   

2-Methylpropanoyl phosphate

2-Methylpropanoyl phosphate

C4H9O5P (168.0188)


   
   

1-Amino-1-deoxy-scyllo-inositol

1-Amino-1-deoxy-scyllo-inositol

C6H13NO5 (179.0794)


   

(E)-2-Butenyl-4-methyl-threonine

(E)-2-Butenyl-4-methyl-threonine

C9H17NO3 (187.1208)


   

Nomega-(ADP-D-ribosyl)-L-arginine

Nomega-(ADP-D-ribosyl)-L-arginine

C21H35N9O15P2 (715.1728)


   

(R)-1-Aminopropan-2-yl phosphate

(R)-1-Aminopropan-2-yl phosphate

C3H10NO4P (155.0347)


   

5-Methyl-5,6,7,8-tetrahydromethanopterin

5-Methyl-5,6,7,8-tetrahydromethanopterin

C31H47N6O16P (790.2786)


   

(2S,3R,4S,5R)-3,4,5,6-tetrahydroxyoxane-2-carbaldehyde

(2S,3R,4S,5R)-3,4,5,6-tetrahydroxyoxane-2-carbaldehyde

C6H10O6 (178.0477)


   

Pseudocumene

1,2,4-TRIMETHYL BENZENE

C9H12 (120.0939)


   

2-AMINO-4,6-DINITROTOLUENE

2-Methyl-3,5-dinitroaniline

C7H7N3O4 (197.0437)


An amino-nitrotoluene that is 4,6-dinitrotoluene substituted at position 2 by an amino group.

   

1-Methylurea

1-Methylurea

C2H6N2O (74.048)


   

4-Amino-2,6-dinitrotoluene

4-Amino-2,6-dinitrotoluene

C7H7N3O4 (197.0437)


An amino-nitrotoluene that is 2,6-dinitrotoluene substituted at position 4 by an amino group.

   

alpha1-Sitosterol

alpha1-Sitosterol

C30H50O (426.3861)


   

4-Hydroxylamino-2,6-dinitrotoluene

4-Hydroxylamino-2,6-dinitrotoluene

C7H7N3O5 (213.0386)


A member of the class of nitrotoluenes that is 2,6-dinitrotoluene bearing an additional hydroxylamino substituent at position 4.

   

2-Hydroxylamino-4,6-dinitrotoluene

2-Hydroxylamino-4,6-dinitrotoluene

C7H7N3O5 (213.0386)


A member of the class of nitrotoluenes that is 4,6-dinitrotoluene bearing an additional hydroxylamino substituent at position 2.

   

Cembrene

(+)-Thunbergen

C20H32 (272.2504)


   

8R-HpODE

(9Z,12Z)-(8R)-8-Hydroperoxyoctadeca-9,12-dienoic acid

C18H32O4 (312.23)


The 8(R)-isomer of HPODE.

   
   

2-Phenylpropene

1-Methyl-1-phenylethylene

C9H10 (118.0782)


   

4-Undecanolide

Gamma-undecalactone

C11H20O2 (184.1463)


   

2,6-DIBROMOPHENOL

2,6-DIBROMOPHENOL

C6H4Br2O (249.8629)


A dibromophenol that is phenol in which both of the hydrogens that are ortho to the phenolic hydroxy group have been replaced by bromines. 2,6-Dibromophenol is an endogenous metabolite.

   

3,4-DICHLOROPHENOL

3,4-DICHLOROPHENOL

C6H4Cl2O (161.9639)


   

2-Ene-vpa

2-N-Propyl-2-pentenoic acid

C8H14O2 (142.0994)


D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D009676 - Noxae > D013723 - Teratogens

   

irone

alpha-Irone

C14H22O (206.1671)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

1,2,3,4-TCDD

1,2,3,4-TETRACHLORODIBENZO-P-DIOXIN

C12H4Cl4O2 (319.8965)


D009676 - Noxae > D013723 - Teratogens > D000072317 - Polychlorinated Dibenzodioxins

   

Diphenylcarbazide

1,5-Diphenylcarbazide

C13H14N4O (242.1168)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

1,2-DIMETHYLNAPHTHALENE

1,2-DIMETHYLNAPHTHALENE

C12H12 (156.0939)


   

2,3,4,6-tetrahydroxy-5-oxohexanoic acid

2,3,4,6-tetrahydroxy-5-oxohexanoic acid

C6H10O7 (194.0427)


   

Prostaglandin D3

9S,15S-dihydroxy-11-oxo-5Z,13E,17Z-prostatrienoic acid

C20H30O5 (350.2093)


A member of the class of prostaglandins D that is prosta-5,13,17-trien-1-oic acid substituted by hydroxy groups at positions 9 and 15 and an oxo group at position 11 (the 5Z,13E,15S,17Z-stereoisomer).

   

15H-11,12-EETA

(5Z,8Z,13E)-(15S)-11,12-Epoxy-15-hydroxyeicosa-5,8,13-trienoic acid

C20H32O4 (336.23)


   

11,14,15-THETA

(5Z,8Z,12E)-11,14,15-Trihydroxyeicosa-5,8,12-trienoic acid

C20H34O5 (354.2406)


   

bromoacetaldehyde

2-Bromoacetaldehyde

C2H3BrO (121.9367)


   

4-CPP

2-(4-Chlorophenoxy)propionic acid

C9H9ClO3 (200.024)


   

6-Thiourate

6-Thiouric acid

C5H4N4O2S (184.0055)


   

2,4,6-Triphenyl-1-hexene

1,5-diphenylhex-5-en-3-ylbenzene

C24H24 (312.1878)


   
   

Ovalicine subst.

Ovalicine subst.

C16H24O5 (296.1624)


   
   

Devapamil

5-(N-(3-METHOXYPHENETHYL)-N-METHYLAMINO)-2-ISOPROPYL-2-(3,4-DIMETHOXYPHENYL)PENTANENITRILE

C26H36N2O3 (424.2726)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

6-Thioinosine-5-triphosphate

6-Mercaptopurine ribonucleoside triphosphate

C10H15N4O13P3S (523.9569)


   

Talactoferrin Alfa

Talactoferrin Alfa

C19H26Cl2N2O (368.1422)


D000970 - Antineoplastic Agents

   

5-Formiminotetrahydrofolate

5-Formiminotetrahydrofolate

C20H24N8O6 (472.1819)


   

Chlorpromazine N-oxide

Chlorpromazine N-oxide

C17H19ClN2OS (334.0907)


An organochlorine compound that is chlorpromazine in which the acyclic tertiary amino group has been converted into the corresponding N-oxide.

   

N-acetylphosphinothricin

N-acetylphosphinothricin

C7H14NO5P (223.061)


   

O4-phosphotyrosine

O-Phospho-DL-Tyrosine

C9H12NO6P (261.0402)


   
   

gamma-Aminobutyryl-L-histidine

gamma-Aminobutyryl-L-histidine

C10H16N4O3 (240.1222)


   

(5-Amino-3,4,6-trihydroxyoxan-2-yl)methyl dihydrogen phosphate

(5-Amino-3,4,6-trihydroxyoxan-2-yl)methyl dihydrogen phosphate

C6H14NO8P (259.0457)