Gene Association: PTGIS

UniProt Search: PTGIS (PROTEIN_CODING)
Function Description: prostaglandin I2 synthase

found 98 associated metabolites with current gene based on the text mining result from the pubmed database.

Pollenin A

4H-1-Benzopyran-4-one, 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-

C15H10O7 (302.0427)


Herbacetin is a pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. It has a role as an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a plant metabolite, an antilipemic drug, an anti-inflammatory agent and an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. Herbacetin is a natural product found in Sedum anglicum, Sedum apoleipon, and other organisms with data available. See also: Larrea tridentata whole (part of). Isolated from pollen of Camellia sinensis (tea). Pollenin A is found in tea. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2]. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].

   

N-acetylmethionine

(2S)-2-Acetamido-4-(methylsulphanyl)butanoic acid

C7H13NO3S (191.0616)


N-Acetyl-L-methionine or N-Acetylmethionine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylmethionine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylmethionine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-methionine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylmethionine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free methionine can also occur. In particular, N-Acetylmethionine can be biosynthesized from L-methionine and acetyl-CoA by the enzyme methionine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylmethionine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylmethionine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Nutrient supplement used as a source of L-methionine. KEIO_ID A065 N-Acetyl-DL-methionine is an endogenous metabolite. N-Acetyl-L-methionine, a human metabolite, is nutritionally and metabolically equivalent to L-methionine. L-methionine is an indispensable amino acid required for normal growth and development[1].

   

5-Methyldeoxycytidine

4-amino-1-[(2R,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2-dihydropyrimidin-2-one

C10H15N3O4 (241.1063)


5-Methyldeoxycytidine is a dinucleotide. Methylation of cytosine-guanine dinucleotide sequences (CpG dinucleotides) catalyzed by DNA methyltransferase, particularly in the 5′-promoter regions of mammalian genes, forms 5-methyldeoxycytidine (5-mdc) whose levels may regulate gene expression. Levels of 5-mdc and the expression of nm23-H1 (an anti-metastatic gene identified in and human cancer lines) are highly correlated with human hepatoma cells with different invasion activities. DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. The levels of 5-mdc in the urine of patients with breast cancer is not significantly different than controls. (PMID: 17044778, 17264127, 16799933) [HMDB] 5-Methyldeoxycytidine is a dinucleotide. Methylation of cytosine-guanine dinucleotide sequences (CpG dinucleotides) catalyzed by DNA methyltransferase, particularly in the 5′-promoter regions of mammalian genes, forms 5-methyldeoxycytidine (5-mdc) whose levels may regulate gene expression. Levels of 5-mdc and the expression of nm23-H1 (an anti-metastatic gene identified in and human cancer lines) are highly correlated with human hepatoma cells with different invasion activities. DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. The levels of 5-mdc in the urine of patients with breast cancer is not significantly different than controls. (PMID: 17044778, 17264127, 16799933). 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2]. 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2].

   

Aldohexose 6-phosphate

Aldohexose 6-phosphate

C6H13O9P (260.0297)


   

Naproxen

(+)-(S)-6-Methoxy-alpha-methyl-2-naphthaleneacetic acid

C14H14O3 (230.0943)


Naproxen (INN) is a non-steroidal anti-inflammatory drug (NSAID) commonly used for the reduction of mild to moderate pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, ankylosing spondylitis, injury (like fractures), menstrual cramps, tendonitis, bursitis, and the treatment of primary dysmenorrhea. Naproxen and naproxen sodium are marketed under various trade names including: Aleve, Anaprox, Naprogesic, Naprosyn, Naprelan; Naproxen is a non-steroidal anti-inflammatory drug (NSAID) commonly used for the reduction of mild to moderate pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, ankylosing spondylitis, injury (like fractures), menstrual cramps, tendonitis, bursitis, and the treatment of primary dysmenorrhea. Naproxen and naproxen sodium are marketed under various trade names including: Aleve, Anaprox, Naprogesic, Naprosyn, Naprelan. Naproxen was first marketed as the prescription drug Naprosyn in 1976 and naproxen sodium was first marketed under the trade name Anaprox in 1980. It remains a prescription-only drug in much of the world. The U.S. Food and Drug Administration (FDA) approved the use of naproxen sodium as an over-the-counter (OTC) drug in 1991, where OTC preparations are sold under the trade name Aleve. In Australia, small packets of lower-strength preparations of naproxen sodium are Schedule 2 Pharmacy Medicines; Naproxen is a member of the 2-arylpropionic acid (profen) family of NSAIDs. It is an odorless, white to off-white crystalline substance. It is lipid-soluble, practically insoluble in water with a low pH (below pH 4), while freely soluble in water at 6 pH and above. Naproxen has a melting point of 153 degree centigrade. Naproxen (INN) is a non-steroidal anti-inflammatory drug (NSAID) commonly used for the reduction of mild to moderate pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, ankylosing spondylitis, injury (like fractures), menstrual cramps, tendonitis, bursitis, and the treatment of primary dysmenorrhea. Naproxen and naproxen sodium are marketed under various trade names including: Aleve, Anaprox, Naprogesic, Naprosyn, Naprelan; Naproxen is a non-steroidal anti-inflammatory drug (NSAID) commonly used for the reduction of mild to moderate pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, ankylosing spondylitis, injury (like fractures), menstrual cramps, tendonitis, bursitis, and the treatment of primary dysmenorrhea. Naproxen and naproxen sodium are marketed under various trade names including: Aleve, Anaprox, Naprogesic, Naprosyn, Naprelan. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents > D006074 - Gout Suppressants C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents KEIO_ID N018; [MS2] KO009075 D004791 - Enzyme Inhibitors KEIO_ID N018 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Oxyphenbutazone

3,5-Dioxo-1-phenyl-2-(p-hydroxyphenyl)-4-N-butylpyrazolidene

C19H20N2O3 (324.1474)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AA - Butylpyrazolidines S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Oxyphenbutazone is a Phenylbutazone (HY-B0230) metabolite, with anti-inflammatory effect. Oxyphenbutazone is an orally active non-selective COX inhibitor. Oxyphenbutazone selectively kills non-replicating Mycobaterium tuberculosis[1][2].

   

Phenylbutazone

3,5-Dioxo-1,2-diphenyl-4-N-butylpyrazolidine

C19H20N2O2 (308.1525)


A drug that has anti-inflammatory, antipyretic, and analgesic activities. It is especially effective in the treatment of ankylosing spondylitis. It also is useful in rheumatoid arthritis and Reiter's syndrome (investigational indication). Although phenylbutazone is effective in gouty arthritis, risk/benefit considerations indicate that this drug should not be employed for this disease. (From AMA Drug Evaluations Annual, 1994, p1822) M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AA - Butylpyrazolidines C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3615 EAWAG_UCHEM_ID 3615; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 1158 D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

rofecoxib

rofecoxib

C17H14O4S (314.0613)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AH - Coxibs D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C80509 - COX-2 Inhibitor D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor COVID info from COVID-19 Disease Map D000893 - Anti-Inflammatory Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Monocrotaline

5,6-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹⁶]hexadec-10-ene-3,7-dione

C16H23NO6 (325.1525)


Hepatotoxin. Causative agent of much seneciosis, e.g. accidental poisoning by S. by weed residues in bread, and characterised by venoocculosive disease Hepatotoxin. Causative agent of much seneciosis, e.g. accidental poisoning by S. by weed residues in bread, and characterised by venoocculosive diseas CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2249 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 131 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 121 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 151 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 141 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 111 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 161 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 171 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 101 Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8]. Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8].

   

Trichlormethiazide

6-chloro-3-(dichloromethyl)-1,1-dioxo-3,4-dihydro-2H-1λ⁶,2,4-benzothiadiazine-7-sulfonamide

C8H8Cl3N3O4S2 (378.9022)


Trichlormethiazide is only found in individuals that have used or taken this drug. It is a thiazide diuretic with properties similar to those of hydrochlorothiazide. (From Martindale, The Extra Pharmacopoeia, 30th ed, p830)Trichlormethiazide appears to block the active reabsorption of chloride and possibly sodium in the ascending loop of Henle, altering electrolyte transfer in the proximal tubule. This results in excretion of sodium, chloride, and water and, hence, diuresis. As a diuretic, Trichloromethiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like Trichloromethiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of Trichloromethiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

Arachidonic acid

(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoic acid

C20H32O2 (304.2402)


Arachidonic acid is a polyunsaturated, essential fatty acid that has a 20-carbon chain as a backbone and four cis-double bonds at the C5, C8, C11, and C14 positions. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is synthesized from dietary linoleic acid. Arachidonic acid mediates inflammation and the functioning of several organs and systems either directly or upon its conversion into eicosanoids. Arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. Arachidonic acid can be metabolized by cytochrome p450 (CYP450) enzymes into 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE). The production of kidney CYP450 arachidonic acid metabolites is altered in diabetes, pregnancy, hepatorenal syndrome, and in various models of hypertension, and it is likely that changes in this system contribute to the abnormalities in renal function that are associated with many of these conditions. Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (PMID: 12736897, 12736897, 12700820, 12570747, 12432908). The beneficial effects of omega-3 fatty acids are believed to be due in part to selective alteration of arachidonate metabolism that involves cyclooxygenase (COX) enzymes (PMID: 23371504). 9-Oxononanoic acid (9-ONA), one of the major products of peroxidized fatty acids, was found to stimulate the activity of phospholipase A2 (PLA2), the key enzyme to initiate the arachidonate cascade and eicosanoid production (PMID: 23704812). Arachidonate lipoxygenase (ALOX) enzymes metabolize arachidonic acid to generate potent inflammatory mediators and play an important role in inflammation-associated diseases (PMID: 23404351). Essential fatty acid. Constituent of many animal phospholipids Arachidonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=506-32-1 (retrieved 2024-07-15) (CAS RN: 506-32-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.

   

Thromboxane B2

(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoic acid

C20H34O6 (370.2355)


Thromboxanes. A stable, physiologically active compound formed in vivo from the prostaglandin endoperoxides. It is important in the platelet-release reaction (release of ADP and serotonin). -- Pubchem. Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Thromboxanes

   

6-Keto-prostaglandin F1a

7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoic acid

C20H34O6 (370.2355)


6-keto-Prostaglandin F1a is the physiologically active and stable metabolite of prostacyclin. (A prostaglandin found in nearly all mammalian tissue that is a powerful vasodilator and inhibits platelet aggregation; it is biosynthesized enzymatically from prostaglandin endoperoxides in human vascular tissue; the sodium salt has been also used to treat primary pulmonary hypertension (Hypertension, Pulmonary). A delayed and prolonged increase in 6-keto-PGF1 alpha is reported in animals with septic shock, i.e., those with fecal peritonitis or cecal ligation. 6-keto-Prostaglandin F1a plasma levels has been found increased in patients with epidemic hemorrhagic fever, in patients with acute obstructive suppurative cholangitis, in patients with gynecologic cancer and has significant correlation with the level of high density lipoprotein cholesterol in plasma. (PMID 1976492, 2298410, 2379443, 2111556)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 6-keto-Prostaglandin F1a is the physiologically active and stable metabolite of prostacyclin. (A prostaglandin found in nearly all mammalian tissue that is a powerful vasodilator and inhibits platelet aggregation; it is biosynthesized enzymatically from prostaglandin endoperoxides in human vascular tissue; the sodium salt has been also used to treat primary pulmonary hypertension (Hypertension, Pulmonary).

   

Prostaglandin F1a

7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoic acid

C20H36O5 (356.2563)


Prostaglandin F1a is derived mainly from Prostaglandin E1, and is metabolized to 6-Keto Prostaglandin F1a. Prostaglandin F1a is excreted directly into the urine. Prostaglandin F1a contracts the circular muscle of the gut in opposition to the Prostaglandins of the E series. Prostaglandin F1a is a cytoprotector, protecting mucosal tissue from damage produced by ulcerogenic stimuli.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin F1a is derived mainly from Prostaglandin E1, and is metabolized to 6-Keto Prostaglandin F1a. Prostaglandin F1a is excreted directly into the urine. Prostaglandin F1a contracts the circular muscle of the gut in opposition to the Prostaglandins of the E series. Prostaglandin F1a is a cytoprotector, protecting mucosal tissue from damage produced by ulcerogenic stimuli.

   

Prostaglandin F2alpha

(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoic acid

C20H34O5 (354.2406)


Prostaglandin F2a (PGF2) is one of the earliest discovered and most common prostaglandins. It is actively biosynthesized in various organs of mammals and exhibits a variety of biological activities, including contraction of pulmonary arteries. It is used in medicine to induce labor and as an abortifacient. PGF2a binds to the Prostaglandin F2 receptor (PTGFR) which is a member of the G-protein coupled receptor family. PGF2-alpha mediates luteolysis. Luteolysis is the structural and functional degradation of the corpus luteum (CL) that occurs at the end of the luteal phase of both the estrous and menstrual cycles in the absence of pregnancy. PGF2 may also be involved in modulating intraocular pressure and smooth muscle contraction in the uterus and gastrointestinal tract sphincters. PGF2 is mainly synthesized directly from PGH2 by PGH2 9,11-endoperoxide reductase. A small amount of PGF2 is also produced from PGE2 by PGE2 9-ketoreductase. A PGF2 epimer has been reported to exhibit various biological activities, and its levels are increased in bronchoalveolar lavage fluid, plasma, and urine in patients with mastocytosis and bronchial asthma. PGF2 is synthesized from PGD2 by PGD2 11-ketoreductase. (PMID: 16475787). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin F2a (PGF2) is one of the earliest discovered and most common prostaglandins. It is actively biosynthesized in various organs of mammals and exhibits a variety of biological activities, including contraction of pulmonary arteries. It is used in medicine to induce labor and as an abortifacient. PGF2a binds to the Prostaglandin F2 receptor (PTGFR) which is a member of the G-protein coupled receptor family. PGF2-alpha mediates luteolysis. Luteolysis is the structural and functional degradation of the corpus luteum (CL) that occurs at the end of the luteal phase of both the estrous and menstrual cycles in the absence of pregnancy. PGF2 may also be involved in modulating intraocular pressure and smooth muscle contraction in the uterus and gastrointestinal tract sphincters. PGF2 is mainly synthesized directly from PGH2 by PGH2 9,11-endoperoxide reductase. A small amount of PGF2 is also produced from PGE2 by PGE2 9-ketoreductase. A PGF2 epimer has been reported to exhibit various biological activities, and its levels are increased in bronchoalveolar lavage fluid, plasma, and urine in patients with mastocytosis and bronchial asthma. PGF2 is synthesized from PGD2 by PGD2 11-ketoreductase. (PMID: 16475787) G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins Chemical was purchased from CAY16010 (Lot 171332-126); Diagnostic ions: 353.2, 309.2, 281.1, 253.0, 193.1 D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue KEIO_ID P066 Dinoprost (Prostaglandin F2α) is an orally active, potent prostaglandin F (PGF) receptor (FP receptor) agonist. Dinoprost is a luteolytic hormone produced locally in the endometrial luminal epithelium and corpus luteum (CL). Dinoprost plays a key role in the onset and progression of labour[1][2].

   

15-KETE

(5Z,8Z,11Z,13E)-15-Ketoeicosa-5,8,11,13-tetraenoic acid

C20H30O3 (318.2195)


15-OxoETE or 15-KETE is a keto-containing leukotriene derivative produced by oxidation of the 15-hydroxyl of 15-HETE. [HMDB] 15-OxoETE or 15-KETE is a keto-containing leukotriene derivative produced by oxidation of the 15-hydroxyl of 15-HETE.

   

5-KETE

(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoic acid

C20H30O3 (318.2195)


5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE), 5-lipoxygenase product is a potent chemoattractant for neutrophils and eosinophils. Its actions are mediated by the oxoeicosanoid (OXE) receptor, a member of the G protein-coupled receptor family.(PMID:18292294) [HMDB] 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE), 5-lipoxygenase product is a potent chemoattractant for neutrophils and eosinophils. Its actions are mediated by the oxoeicosanoid (OXE) receptor, a member of the G protein-coupled receptor family.(PMID:18292294).

   

Prostaglandin D2

(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoic acid

C20H32O5 (352.225)


Prostaglandin D2 (or PGD2) is a prostaglandin that is actively produced in various organs such as the brain, spleen, thymus, bone marrow, uterus, ovary, oviduct, testis, prostate and epididymis, and is involved in many physiological events. PGD2 binds to the prostaglandin D2 receptor (PTGDR) which is a G-protein-coupled receptor. Its activity is mainly mediated by G-S proteins that stimulate adenylate cyclase resulting in an elevation of intracellular cAMP and Ca2+. PGD2 promotes sleep; regulates body temperature, olfactory function, hormone release, and nociception in the central nervous system; prevents platelet aggregation; and induces vasodilation and bronchoconstriction. PGD2 is also released from mast cells as an allergic and inflammatory mediator. Prostaglandin H2 is an unstable intermediate formed from PGG2 by the action of cyclooxygenase (COX) in the arachidonate cascade. In mammalian systems, it is efficiently converted into more stable arachidonate metabolites, such as PGD2, PGE2, PGF2a by the action of three groups of enzymes, PGD synthases (PGDS), PGE synthases and PGF synthases, respectively. PGDS catalyzes the isomerization of PGH2 to PGD2. Two types of PGD2 synthase are known. Lipocalin-type PGD synthase is present in cerebrospinal fluid, seminal plasma and may play an important role in male reproduction. Another PGD synthase, hematopoietic PGD synthase is present in the spleen, fallopian tube, endometrial gland cells, extravillous trophoblasts and villous trophoblasts, and perhaps plays an important role in female reproduction. Recent studies demonstrate that PGD2 is probably involved in multiple aspects of inflammation through its dual receptor systems, DP and CRTH2. (PMID:12148545)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin D2 (or PGD2) is a prostaglandin that is actively produced in various organs such as the brain, spleen, thymus, bone marrow, uterus, ovary, oviduct, testis, prostate and epididymis, and is involved in many physiological events. PGD2 binds to the prostaglandin D2 receptor (PTGDR) which is a G-protein-coupled receptor. Its activity is mainly mediated by G-S proteins that stimulate adenylate cyclase resulting in an elevation of intracellular cAMP and Ca2+. PGD2 promotes sleep; regulates body temperature, olfactory function, hormone release, and nociception in the central nervous system; prevents platelet aggregation; and induces vasodilation and bronchoconstriction. PGD2 is also released from mast cells as an allergic and inflammatory mediator. Chemical was purchased from CAY 12010, (Lot 0436713-1); Diagnostic ions: 351.1, 333.0, 271.3, 233.1, 189.1

   

β-D-Fructose 6-phosphate

[(2R,3R,4S)-2,3,4,6-tetrahydroxy-5-oxohexyl] dihydrogen phosphate

C6H13O9P (260.0297)


Fructose 6-phosphate (F6P) belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. F6P is a derivative of fructose, which has been phosphorylated at the 6-hydroxy group. Fructose 6-phosphate is a fundamental metabolite and exists in all living species, ranging from bacteria to plants to humans. The great majority of glucose is converted to fructose 6-phosphate as part of the glycolytic metabolic pathway (glycolysis). Specifically, F6P is produce is produced by the isomerisation of glucose 6-phosphate via the enzyme phosphoglucose isomerase. F6P is in turn further phosphorylated to fructose-1,6-bisphosphate by the enzyme phosphofructokinase-1. Glycolysis is the metabolic pathway that converts glucose into pyruvic acid. The free energy released in this process is used to form ATP and reduced nicotinamide adenine dinucleotide (NADH). In addition to its key involvement in glycolysis, fructose 6-phosphate can also be biosynthesized from glucosamine 6-phosphate via the enzyme glucosamine-6-phosphate isomerase 1. In addition, fructose 6-phosphate and L-glutamine can be converted into glucosamine 6-phosphate and L-glutamic acid through the action of the enzyme glutamine--fructose-6-phosphate aminotransferase. An important intermediate in the Carbohydrates pathway. The interconversion of glucose-6-phosphate and fructose-6-phosphate, the second step of the Embden-Meyerhof glycolytic pathway, is catalyzed by the enzyme phosphoglucose isomerase (PGI). In gluconeogenesis, fructose-6-phosphate is the immediate precursor of glucose-6-phosphate (wikipedia) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID F001

   

6-Phosphogluconic acid

(2R,3S,4R,5R)-2,3,4,5-tetrahydroxy-6-(phosphonooxy)hexanoic acid

C6H13O10P (276.0246)


6-phosphogluconic acid, also known as 6-phospho-D-gluconate or D-gluconic acid 6-(dihydrogen phosphate), is a member of the class of compounds known as monosaccharide phosphates. Monosaccharide phosphates are monosaccharides comprising a phosphated group linked to the carbohydrate unit. 6-phosphogluconic acid is soluble (in water) and a moderately acidic compound (based on its pKa). 6-phosphogluconic acid can be found in a number of food items such as purple mangosteen, nopal, chicory leaves, and common sage, which makes 6-phosphogluconic acid a potential biomarker for the consumption of these food products. 6-phosphogluconic acid can be found primarily in blood, cellular cytoplasm, and saliva, as well as throughout most human tissues. 6-phosphogluconic acid exists in all living species, ranging from bacteria to humans. In humans, 6-phosphogluconic acid is involved in the pentose phosphate pathway. 6-phosphogluconic acid is also involved in few metabolic disorders, which include glucose-6-phosphate dehydrogenase deficiency, ribose-5-phosphate isomerase deficiency, transaldolase deficiency, and warburg effect. 6-phosphogluconic acid is formed by 6-phosphogluconolactonase, and acted upon by phosphogluconate dehydrogenase to produce ribulose 5-phosphate. It may also be acted upon by 6-phosphogluconate dehydratase to produce 2-keto-3-deoxy-6-phosphogluconate . 6-Phosphogluconic acid, also known as 6-phospho-D-gluconate or gluconic acid-6-phosphate, belongs to the class of organic compounds known as monosaccharide phosphates. These are monosaccharides comprising a phosphated group linked to the carbohydrate unit. 6-Phosphogluconic acid exists in all living species, ranging from bacteria to humans. Within humans, 6-phosphogluconic acid participates in a number of enzymatic reactions. In particular, 6-phosphogluconic acid can be biosynthesized from gluconolactone; which is mediated by the enzyme 6-phosphogluconolactonase. In addition, 6-phosphogluconic acid can be converted into D-ribulose 5-phosphate through the action of the enzyme 6-phosphogluconate dehydrogenase, decarboxylating. In humans, 6-phosphogluconic acid is involved in the metabolic disorder called the transaldolase deficiency pathway. Outside of the human body, 6-Phosphogluconic acid has been detected, but not quantified in several different foods, such as cascade huckleberries, common chokecherries, half-highbush blueberries, american cranberries, and okra. [Spectral] 6-Phospho-D-gluconate (exact mass = 276.02463) and Phosphoenolpyruvate (exact mass = 167.98237) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. KEIO_ID P031

   

Hexylamine

Hexylamine hydrochloride

C6H15N (101.1204)


Hexylamine is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") Acquisition and generation of the data is financially supported in part by CREST/JST. It is used as a food additive .

   

D-Erythrose 4-phosphate

[(2R,3R)-2,3-dihydroxy-4-oxobutoxy]phosphonic acid

C4H9O7P (200.0086)


D-Erythrose 4-phosphate is a phosphorylated derivative of erythrose that serves as an important intermediate in the pentose phosphate pathway. It is also used in phenylalanine, tyrosine and tryptophan biosynthesis, and it plays a role in vitamin B6 metabolism (KEGG); Erythrose 4-phosphate is an intermediate in the pentose phosphate pathway and the Calvin cycle. In addition, it serves as a precursor in the biosynthesis of the aromatic amino acids tyrosine, phenylalanine, and tryptophan. D-Erythrose 4-phosphate is found in many foods, some of which are shea tree, bog bilberry, arrowhead, and dock. D-Erythrose 4-phosphate is a phosphorylated derivative of erythrose that serves as an important intermediate in the pentose phosphate pathway. It is also used in phenylalanine, tyrosine and tryptophan biosynthesis, and it plays a role in vitamin B6 metabolism (KEGG). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Prostaglandin I2

5-[(3aR,4R,5R,6aS)-5-hydroxy-4-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-hexahydro-2H-cyclopenta[b]furan-2-ylidene]pentanoic acid

C20H32O5 (352.225)


Prostaglandin I2 or prostacyclin (or PGI2) is a member of the family of lipid molecules known as eicosanoids. It is produced in endothelial cells from prostaglandin H2 (PGH2) by the action of the enzyme prostacyclin synthase. It is a powerful vasodilator and inhibits platelet aggregation. Prostaglandin I2 is the main prostaglandin synthesized by the blood vessel wall. This suggests that it may play an important role in limiting platelet-mediated thrombosis. In particular, prostacyclin (PGI2) chiefly prevents formation of the platelet plug involved in primary hemostasis (a part of blood clot formation). The sodium salt (known as epoprostenol) has been used to treat primary pulmonary hypertension. Prostacyclin (PGI2) is released by healthy endothelial cells and performs its function through a paracrine signaling cascade that involves G protein-coupled receptors on nearby platelets and endothelial cells. The platelet Gs protein-coupled receptor (prostacyclin receptor) is activated when it binds to PGI2. This activation, in turn, signals adenylyl cyclase to produce cAMP. cAMP goes on to inhibit any undue platelet activation (in order to promote circulation) and also counteracts any increase in cytosolic calcium levels which would result from thromboxane A2 (TXA2) binding (leading to platelet activation and subsequent coagulation). PGI2 also binds to endothelial prostacyclin receptors and in the same manner raise cAMP levels in the cytosol. This cAMP then goes on to activate protein kinase A (PKA). PKA then continues the cascade by inhibiting myosin light-chain kinase which leads to smooth muscle relaxation and vasodilation. Notably, PGI2 and TXA2 work as antagonists. PGI2 is stable in basic buffers (pH=8), but it is rapidly hydrolyzed to 6-keto PGF1alpha in neutral or acidic solutions. The half-life is short both in vivo and in vitro, ranging from 30 seconds to a few minutes. PGI2 is administered by continuous infusion in humans for the treatment of idiopathic pulmonary hypertension.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin I2 or prostacyclin (or PGI2) is a member of the family of lipid molecules known as eicosanoids. It is produced in endothelial cells from prostaglandin H2 (PGH2) by the action of the enzyme prostacyclin synthase. It is a powerful vasodilator and inhibits platelet aggregation. Prostaglandin I2 is the main prostaglandin synthesized by the blood vessel wall. This suggests that it may play an important role in limiting platelet-mediated thrombosis. In particular, prostacyclin (PGI2) chiefly prevents formation of the platelet plug involved in primary hemostasis (a part of blood clot formation). The sodium salt (known as epoprostenol) has been used to treat primary pulmonary hypertension. Prostacyclin (PGI2) is released by healthy endothelial cells and performs its function through a paracrine signaling cascade that involves G protein-coupled receptors on nearby platelets and endothelial cells. The platelet Gs protein-coupled receptor (prostacyclin receptor) is activated when it binds to PGI2. This activation, in turn, signals adenylyl cyclase to produce cAMP. cAMP goes on to inhibit any undue platelet activation (in order to promote circulation) and also counteracts any increase in cytosolic calcium levels which would result from thromboxane A2 (TXA2) binding (leading to platelet activation and subsequent coagulation). PGI2 also binds to endothelial prostacyclin receptors and in the same manner raise cAMP levels in the cytosol. This cAMP then goes on to activate protein kinase A (PKA). PKA then continues the cascade by inhibiting myosin light-chain kinase which leads to smooth muscle relaxation and vasodilation. Notably, PGI2 and TXA2 work as antagonists. PGI2 is stable in basic buffers (pH=8), but it is rapidly hydrolyzed to 6-keto PGF1alpha in neutral or acidic solutions. The half-life is short both in vivo and in vitro, ranging from 30 seconds to a few minutes. PGI2 is administered by continuous infusion in humans for the treatment of idiopathic pulmonary hypertension. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78568 - Prostaglandin Analogue Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

12-HHTrE

12(S)-Hydroxy-(5Z,8Z,10E)-heptadeca-5,8,10-trienoic acid anion

C17H28O3 (280.2038)


12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH. [HMDB] 12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH.

   

L-Formylkynurenine

(2S)-2-azaniumyl-4-(2-formamidophenyl)-4-oxobutanoate

C11H12N2O4 (236.0797)


This compound belongs to the family of Butyrophenones. These are compounds containing 1-phenylbutan-1-one moiety.

   

Prostaglandin H2

(5Z)-7-[(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

C20H32O5 (352.225)


Prostaglandin H2 (PGH2) is the first intermediate in the biosynthesis of all prostaglandins. Prostaglandins are synthesized from arachidonic acid by the enzyme COX-1 and COX-2, which are also called PGH synthase 1 and 2. These enzymes generate a reactive intermediate PGH2 which has a reasonably long half-life (90-100 s) but is highly lipophilic. PGH2 is converted into the biologically active prostaglandins by prostaglandin isomerases, yielding PGE2, PGD2, and PGF2, or by thromboxane synthase to make TXA2 or by prostacyclin synthase to make PGI2. Most nonsteroidal anti-inflammatory drugs such as aspirin and indomethacin inhibit both PGH synthase 1 and 2. A key feature for eicosanoid transcellular biosynthesis is the export of PGH2 or LTA4 from the donor cell as well as the uptake of these reactive intermediates by the acceptor cell. Very little is known about either process despite the demonstrated importance of both events. In cells, PGH2 rearranges nonenzymatically to LGs even in the presence of enzymes that use PGH2 as a substrate. When platelets form thromboxane A2 (TXA2) from endogenous arachidonic acid (AA), PGH2 reaches concentrations very similar to those of TXA2 and high enough to produce strong platelet activation. Therefore, platelet activation by TXA2 appears to go along with an activation by PGH2. The agonism of PGH2 is limited by the formation of inhibitory prostaglandins, especially PGD2 at higher concentrations. That is why thromboxane synthase inhibitors in PRP and at a physiological HSA concentration do not augment platelet activation (PMID: 2798452, 15650407, 16968946). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signalling pathways. Prostaglandin h2, also known as pgh2 or 9s,11r-epidioxy-15s-hydroxy-5z,13e-prostadienoate, is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Thus, prostaglandin h2 is considered to be an eicosanoid lipid molecule. Prostaglandin h2 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Prostaglandin h2 can be found in a number of food items such as gooseberry, evergreen huckleberry, quince, and capers, which makes prostaglandin h2 a potential biomarker for the consumption of these food products. Prostaglandin h2 can be found primarily in human platelet tissue. In humans, prostaglandin h2 is involved in several metabolic pathways, some of which include magnesium salicylate action pathway, ketorolac action pathway, trisalicylate-choline action pathway, and salicylate-sodium action pathway. Prostaglandin h2 is also involved in a couple of metabolic disorders, which include leukotriene C4 synthesis deficiency and tiaprofenic acid action pathway. Prostaglandin h2 is acted upon by: Prostacyclin synthase to create prostacyclin Thromboxane-A synthase to create thromboxane A2 and 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (HHT) (see 12-Hydroxyheptadecatrienoic acid) Prostaglandin D2 synthase to create prostaglandin D2 Prostaglandin E synthase to create prostaglandin E2 Prostaglandin h2 rearranges non-enzymatically to: A mixture of 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (HHT) and 12-(S)-hydroxy-5Z,8Z,10E-heptadecatrienoic acid (see 12-Hydroxyheptadecatrienoic acid) Use of Prostaglandin H2: regulating the constriction and dilation of blood vessels stimulating platelet aggregation Effects of Aspirin on Prostaglandin H2: Aspirin has been hypothesized to block the conversion of arachidonic acid to Prostaglandin . D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Anisole

Methoxy-benzene (anisol)

C7H8O (108.0575)


Anisole is a flavouring agent Anisole is a precursor to perfumes, insect pheromones, and pharmaceuticals. For example, synthetic anethole is prepared from anisole. Anisole undergoes electrophilic aromatic substitution reaction more quickly than does benzene, which in turn reacts more quickly than nitrobenzene. The methoxy group is an ortho/para directing group, which means that electrophilic substitution preferentially occurs at these three sites. The enhanced nucleophilicity of anisole vs benzene reflects the influence of the methoxy group, which renders the ring more electron-rich. The methoxy group strongly affects the pi cloud of the ring, moreso than the inductive effect of the electronegative oxygen. Flavouring agent

   

Thromboxane A2

(5Z,9α,11α,13E,15S)-9,11-Epoxy-15-hydroxythromboxa-5,13- dien-1-oic acid

C20H32O5 (352.225)


A thromboxane which is produced by activated platelets and has prothrombotic properties: it stimulates activation of new platelets as well as increases platelet aggregation.

   

7a-Hydroxy-cholestene-3-one

(1S,2R,9R,10S,11S,14R,15R)-9-hydroxy-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C27H44O2 (400.3341)


7a-Hydroxy-cholestene-3-one is a metabolite in bile acid synthesis. It is derived from 7a-hydroxy-cholesterol and can be further metabolized to 7a,12a,-dihydroxy-cholest-4-en-3-one. Analysis of 7a-Hydroxycholestene-3-one (HCO) in serum may serve as a novel, simple, and sensitive method for the detection of bile acid malabsorption in patients with chronic diarrhea of unknown origin (PMID 9952217) [HMDB] 7a-Hydroxy-cholestene-3-one is a metabolite in bile acid synthesis. It is derived from 7a-hydroxy-cholesterol and can be further metabolized to 7a,12a,-dihydroxy-cholest-4-en-3-one. Analysis of 7a-Hydroxycholestene-3-one (HCO) in serum may serve as a novel, simple, and sensitive method for the detection of bile acid malabsorption in patients with chronic diarrhea of unknown origin (PMID 9952217).

   

Prostaglandin G2

(5Z)-7-[(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroperoxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

C20H32O6 (368.2199)


Prostaglandin G2 (PGG2) is synthesized from arachidonic acid on a cyclooxygenase (COX) metabolic pathway as a primary step; the COX biosynthesis of prostaglandin (PG) begins with the highly specific oxygenation of arachidonic acid in the 11R configuration and ends with a 15S oxygenation to form PGG2. The COX site activity that catalyzes the conversion of arachidonic acid to PGG2 is the target for nonsteroidal antiinflammatory drugs (NSAIDs). The peroxidase site activity catalyzes the two-electron reduction of the hydroperoxide bond of PGG2 to yield the corresponding alcohol prostaglandin H2 (PGH2). The formation of a phenoxyl radical on Tyr385 couples the activities of the two sites. The Tyr385 radical is produced via oxidation by compound I, an oxoferryl porphyrin -cation radical, which is generated by reaction of the hemin resting state with PGG2 or other hydroperoxides. The tyrosyl radical homolytically abstracts the 13proS hydrogen atom of arachidonic acid which initiates a radical cascade that ends with the stereoselective formation of PGG2. PGG2 then migrates from the cyclooxygenase (COX) site to the peroxidase (POX) site where it reacts with the hemin group to generate PGH2 and compound I. The heterolytic oxygen-oxygen bond cleavage is assisted by the conserved distal residues His207 and Gln203, mutation of which has been shown to severely impair enzyme activity. Compound I, upon reaction with Tyr385, gives compound II, which in turn is reduced to the hemin resting state by one-electron oxidation of reducing cosubstrates or undergoes reactions that result in enzyme self-inactivation. Prostaglandin endoperoxide H synthase (PGHS) 1 is a bifunctional membrane enzyme of the endoplasmic reticulum that converts arachidonic acid into prostaglandin H2 (PGH2), the precursor of all prostaglandins, thromboxanes, and prostacyclins. These lipid mediators are intricately involved in normal physiology, namely, in mitogenesis, fever generation, pain response, lymphocyte chemotaxis, fertility, and contradictory stimuli such as vasoconstriction and vasodilatation, as well as platelet aggregation and quiescence. PGHS is implicated in numerous pathologies, including inflammation, cancers of the colon, lung, and breast, Alzheimers disease, Parkinsons disease, and numerous cardiovascular diseases including atherosclerosis, thrombosis, myocardial infarction, and stroke. (PMID: 14594816, 16552393, 16411757). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin G2 (PGG2) is synthesized from arachidonic acid on a cyclooxygenase (COX) metabolic pathway as a primary step; the COX biosynthesis of prostaglandin (PG) begins with the highly specific oxygenation of arachidonic acid in the 11R configuration and ends with a 15S oxygenation to form PGG2. D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

11-Dehydro-thromboxane B2

(5E)-7-[(2R,3S,4S)-4-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)

   

15(S)-HPETE

15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid, (S)-(e,Z,Z,Z)-isomer

C20H32O4 (336.23)


15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HPETE) is the corresponding hydroperoxide of 15(S)-HETE and undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, a precursor of heptanone-etheno-2-deoxyguanosine. Reactive oxygen species convert the omega-6 polyunsaturated fatty acid arachidonic acid into (15-HPETE); vitamin C mediates 15(S)-HPETE decomposition. 15(S)-HPETE initiates apoptosis in vascular smooth muscle cells. 15(S)-HPETE is a lipoxygenase metabolite that affects the expression of cell adhesion molecules (CAMs) involved in the adhesion of leukocytes and/or the accumulation of leukocytes in the vascular endothelium, these being the initial events in endothelial cell injury. 15(S)-HPETE induces a loss of cardiomyocytes membrane integrity. 15-(S)HPETE is a hydroperoxide that enhances the activity of the enzymes lipoxygenase [EC 1.13.11.12] and Na+, K+-ATPase [EC 3.6.3.9] of brain microvessels. Lipoxygenase(s) and Na+-K+-ATPase of brain microvessels may play a significant role in the occurrence of ischemic brain edema. (PMID: 15964853, 15723435, 8655602, 8595608, 2662983). D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Prostaglandin E3

(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]hept-5-enoic acid

C20H30O5 (350.2093)


Prostaglandin E3 is from the cyclooxygenase metabolism of eicosapentaenoic acid.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin E3 is from the cyclooxygenase metabolism of eicosapentaenoic acid.

   

Prostaglandin F3a

(5Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]cyclopentyl]hept-5-enoic acid

C20H32O5 (352.225)


Prostaglandin F3alpha (PGF3a) is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin F3alpha (PGF3a) is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)

   

Tranylcypromine

(1R,2S)-rel-2-phenyl-cyclopropanamine, monohydrochloride

C9H11N (133.0891)


A propylamine formed from the cyclization of the side chain of amphetamine. This monoamine oxidase inhibitor is effective in the treatment of major depression, dysthymic disorder, and atypical depression. It also is useful in panic and phobic disorders. (From AMA Drug Evaluations Annual, 1994, p311) N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors

   

1-((4-Methylsulfonyl)phenyl)-3-trifluoromethyl-5-(4-fluorophenyl)pyrazole

5-(4-fluorophenyl)-1-[4-(methylsulfonyl)phenyl]-3-(trifluoromethyl)-1H-pyrazole

C17H12F4N2O2S (384.0556)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

Gallopamil

5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)-2-(3,4,5-trimethoxyphenyl)pentanenitrile

C28H40N2O5 (484.2937)


C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DA - Phenylalkylamine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Same as: D08009

   

D-NONOate

1,1-Diethyl-2-hydroxy-2-nitrosohydrazine

C4H10N3O2- (132.0773)


D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors

   

Cholinephosphorylneogalatriaosylceramide

Cholinephosphorylneogalatriaosylceramide

C63H122N2O21P+ (1273.8277)


   

4-Hydroxyestradiol

(1S,10R,11S,14S,15S)-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2,4,6-triene-5,6,14-triol

C18H24O3 (288.1725)


4-Hydroxyestradiol is an oncogenic catechol estrogen produced by metabolism of Estrogen. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A human metabolite taken as a putative food compound of mammalian origin [HMDB]

   

8(R)-Hydroperoxylinoleic acid

(9Z,12Z)-(8R)-8-Hydroperoxyoctadeca-9,12-dienoic acid

C18H32O4 (312.23)


8(R)-hydroperoxylinoleic acid (8(R)-EPODE) is an oxidized product of linoleic acid. Oxidized lipids such as 8(R)-HPODE can decrease cellular proteoglycan metabolism in endothelial monolayers and alter mRNA levels of major specific proteoglycans in a concentration-dependent manner. This may have implications in lipid-mediated disruption of endothelial barrier function and atherosclerosis. (PMID: 8645361, 9507987).

   

ST 27:2;O2

(22,23-dinor)-24-vinyl-cholest-5-en-3beta,24-diol

C27H44O2 (400.3341)


   

(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-{[2-({2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H64N7O17P3S (1051.3292)


This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.

   

Furanone A

4-Hydroxy-3-butenoic acid gamma-lactone

C4H4O2 (84.0211)


Furanone a, also known as alpha-Crotonolactone or 2-Furanone, is classified as a member of the butenolides. Butenolides are dihydrofurans with a carbonyl group at the C2 carbon atom. Furanone a is considered to be a soluble (in water) and an extremely weak acidic compound. Furanone a can be found in feces. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants

   

Thromboxane A2

7-[3-(3-Hydroxy-1-octenyl)-2,6-dioxabicyclo[3.1.1]hept-4-yl]-[1S-[1alpha,3alpha(1E,3R*),4beta(Z),5alpha]]-5-heptenoic acid

C20H32O5 (352.225)


Thromboxane A2 is an unstable intermediate between the prostaglandin endoperoxides and thromboxane B2. The compound has a bicyclic oxaneoxetane structure. It is a potent inducer of platelet aggregation and causes vasoconstriction. It is the principal component of rabbit aorta contracting substance (RCS).Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.

   

Timnodonyl CoA

(2R)-4-({[({[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoylsulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C41H64N7O17P3S (1051.3292)


Timnodonyl coenzyme A is an intermediate in the biosynthesis of fatty acids. Timnodonyl CoA is produced from linolenyl- CoA.

   

trans-2-Phenylcyclopropylamine

GlaxoSmithKline brand OF tranylcypromine sulfate

C9H11N (133.0891)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors

   

15-Hydroperoxyicosa-5,8,11,13-tetraenoic acid

15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid, (S)-(e,Z,Z,Z)-isomer

C20H32O4 (336.23)


   

FA 20:4

all-cis-5,8,11,14-Eicosatetraenoic acid

C20H32O2 (304.2402)


Chemical was purchased from CAY 90010 (Lot. 0447254-11); Diagnostic ions:303.1, 259.2, 205.2 Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.604 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.605 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.603 COVID info from WikiPathways Annotation level-2 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.

   

Naproxen

2-(6-Methoxynaphthalen-2-yl)propanoic acid

C14H14O3 (230.0943)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents > D006074 - Gout Suppressants C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 202 D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Monocrotaline

2H-(1,6)DIOXACYCLOUNDECINO(2,3,4-GH)PYRROLIZINE-2,6(3H)-DIONE, 4,5,8,10,12,13,13A,13B-OCTAHYDRO-4,5-DIHYDROXY-3,4,5-TRIMETHYL-, (3R-(3R*,4R*,5R*,13AR*,13BR*))-

C16H23NO6 (325.1525)


Monocrotaline is a pyrrolizidine alkaloid. Monocrotaline is a natural product found in Crotalaria novae-hollandiae, Crotalaria recta, and other organisms with data available. A pyrrolizidine alkaloid and a toxic plant constituent that poisons livestock and humans through the ingestion of contaminated grains and other foods. The alkaloid causes pulmonary artery hypertension, right ventricular hypertrophy, and pathological changes in the pulmonary vasculature. Significant attenuation of the cardiopulmonary changes are noted after oral magnesium treatment. Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.154 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.142 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.145 Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8]. Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8].

   

6-Phosphogluconic acid

6-Phosphogluconic acid

C6H13O10P (276.0246)


   

N-Formylkynurenine

N-Formyl-L-kynurenine

C11H12N2O4 (236.0797)


   

Arachidonic acid

arachidonic acid

C20H32O2 (304.2402)


A long-chain fatty acid that is a C20, polyunsaturated fatty acid having four (Z)-double bonds at positions 5, 8, 11 and 14. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.

   

5-Oxoete

(6E,8Z,11Z,14Z)-5-Oxoicosa-6,8,11,14-tetraenoic acid

C20H30O3 (318.2195)


An oxoicosatetraenoic acid having a 5-oxo group; and (6E)-, (8Z), (11Z)- and (14Z)-double bonds.

   

Naproxen

2-(6-Methoxynaphthalen-2-yl)propanoic acid

C14H14O3 (230.0943)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents > D006074 - Gout Suppressants C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2651 CONFIDENCE standard compound; INTERNAL_ID 8544 CONFIDENCE standard compound; INTERNAL_ID 4066

   

phenylbutazone

"Phenylbutazone (Butazolidin, Butatron)"

C19H20N2O2 (308.1525)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AA - Butylpyrazolidines A member of the class of pyrazolidines that is 1,2-diphenylpyrazolidine-3,5-dione carrying a butyl group at the 4-position. C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

D-Glucose 6-phosphate

D-Glucose-6-phosphate sodium salt

C6H13O9P (260.0297)


The open-chain form of D-glucose 6-phosphate.

   

Hexylamine

1-Hexanamine

C6H15N (101.1204)


A 6-carbon primary aliphatic amine.

   

Herbacetin

4H-1-Benzopyran-4-one, 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-

C15H10O7 (302.0427)


Herbacetin is a pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. It has a role as an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a plant metabolite, an antilipemic drug, an anti-inflammatory agent and an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. Herbacetin is a natural product found in Sedum anglicum, Sedum apoleipon, and other organisms with data available. See also: Larrea tridentata whole (part of). A pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2]. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].

   

N-acetyl-L-methionine

N-acetyl-L-methionine

C7H13NO3S (191.0616)


An L-methionine derivative that is L-methionine in which one of the amine hydrogens is substituted by an acetyl group. N-Acetyl-L-methionine, a human metabolite, is nutritionally and metabolically equivalent to L-methionine. L-methionine is an indispensable amino acid required for normal growth and development[1].

   

7α-Hydroxy-4-cholesten-3-one

7-alpha-Hydroxy-4-cholesten-3-one

C27H44O2 (400.3341)


   

FA 20:5;O

(5Z,8Z,11Z,14Z)-(17R,18S)-17,18-Epoxyicosa-5,8,11,14-tetraenoic acid

C20H30O3 (318.2195)


A 17(18)-EpETE in which the epoxy group has (17R,18S)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

FA 20:3;O4

(S)-5-hydroxy-5-((2S,4S,5S)-4-hydroxy-5-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)tetrahydrofuran-2-yl)pentanoic acid

C20H34O6 (370.2355)


   

Cyclosin

9S,11R,15S-trihydroxy-5Z,13E-prostadienoic acid

C20H34O5 (354.2406)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Dinoprost (Prostaglandin F2α) is an orally active, potent prostaglandin F (PGF) receptor (FP receptor) agonist. Dinoprost is a luteolytic hormone produced locally in the endometrial luminal epithelium and corpus luteum (CL). Dinoprost plays a key role in the onset and progression of labour[1][2].

   

Prostaglandin D2

(5Z,13E,15S)-9alpha,15-Dihydroxy-11-oxoprosta-5,13-dienoate

C20H32O5 (352.225)


A member of the class of prostaglandins D that is prosta-5,13-dien-1-oic acid substituted by hydroxy groups at positions 9 and 15 and an oxo group at position 11 (the 5Z,9alpha,13E,15S- stereoisomer).

   

Prostaglandin G2

9S,11R-epidioxy-15S-hydroperoxy-5Z,13E-prostadienoic acid

C20H32O6 (368.2199)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Prostaglandin H2

9S,11R-epidioxy-15S-hydroxy-5Z,13E-prostadienoic acid

C20H32O5 (352.225)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

FA 20:4;O4

4-(3-{[(1S,2S,3S)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]methyl}oxiran-2-yl)butanoic acid

C20H32O6 (368.2199)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Prostaglandin E3

9-oxo-11R,15S-dihydroxy-5Z,13E,17Z-prostatrienoic acid

C20H30O5 (350.2093)


   

PGF3alpha

9S,11R,15S-trihydroxy-5Z,13E,17Z-prostatrienoic acid

C20H32O5 (352.225)


   

Thromboxane B2

9S,11,15S-trihydroxy-thromboxa-5Z,13E-dien-1-oic acid

C20H34O6 (370.2355)


A member of the class of thromboxanes B that is (5Z,13E)-thromboxa-5,13-dien-1-oic acid substituted by hydroxy groups at positions 9, 11 and 15.

   

CoA 20:5

(5Z,8Z,11Z,14Z,17Z)-eicosapentaenoyl-CoA;(5Z,8Z,11Z,14Z,17Z)-icosapentaenoyl-CoA;20:5(n-3);5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl-CoA;CoA(20:5(5Z,8Z,11Z,14Z,17Z));all-cis-5,8,11,14,17-eicosapentaenoyl-CoA;all-cis-5,8,11,14,17-icosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (5Z,8Z,11Z,14Z,17Z)-icosapentaenoic acid. It is a member of n-3 PUFA and by-product of alpha-linolenic acid metabolism.

   

ST 18:3;O3

estra-1,3.5(10)-triene-3,16beta,17beta-triol

C18H24O3 (288.1725)


A 4-hydroxy steroid that consists of 17beta-estradiol having an additional hydroxy group at position 4. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen

   

ANISOLE

ANISOLE

C7H8O (108.0575)


A monomethoxybenzene that is benzene substituted by a methoxy group.

   

Gallopamil

Gallopamil

C28H40N2O5 (484.2937)


C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DA - Phenylalkylamine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Same as: D08009

   

A3925_SIGMA

5,8,11,14-Eicosatetraenoic acid, labeled with carbon-14, (all-Z)-

C20H32O2 (304.2402)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.

   

Anizol

InChI=1\C7H8O\c1-8-7-5-3-2-4-6-7\h2-6H,1H

C7H8O (108.0575)


   

15(S)-HPETE

15-hydroperoxy-5,8,11,13-eicosatetraenoic acid

C20H32O4 (336.23)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides The (S)-enantiomer of 15-HPETE. 15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HPETE) is the corresponding hydroperoxide of 15(S)-HETE and undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, a precursor of heptanone-etheno-2-deoxyguanosine. Reactive oxygen species convert the omega-6 polyunsaturated fatty acid arachidonic acid into (15-HPETE); vitamin C mediates 15(S)-HPETE decomposition. 15(S)-HPETE initiates apoptosis in vascular smooth muscle cells. 15(S)-HPETE is a lipoxygenase metabolite that affects the expression of cell adhesion molecules (CAMs) involved in the adhesion of leukocytes and/or the accumulation of leukocytes in the vascular endothelium, these being the initial events in endothelial cell injury. 15(S)-HPETE induces a loss of cardiomyocytes membrane integrity. 15-(S)HPETE is a hydroperoxide that enhances the activity of the enzymes lipoxygenase [EC 1.13.11.12] and Na+, K+-ATPase [EC 3.6.3.9] of brain microvessels. Lipoxygenase(s) and Na+-K+-ATPase of brain microvessels may play a significant role in the occurrence of ischemic brain edema. (PMID: 15964853, 15723435, 8655602, 8595608, 2662983) [HMDB]

   

11-Dehydro-thromboxane B2

(E)-7-[4-Hydroxy-2-[(E)-3-hydroxyoct-1-enyl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


A thromboxane obtained by formal oxidation of the hemiacetal hydroxy function of thromboxane B2.

   

1,1-Diethyl-2-hydroxy-2-nitrosohydrazine

1,1-Diethyl-2-hydroxy-2-nitrosohydrazine

C4H10N3O2- (132.0773)


D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors

   

G-29701

oxyphenbutazone

C19H20N2O3 (324.1474)


A metabolite of phenylbutazone obtained by hydroxylation at position 4 of one of the phenyl rings. Commonly used (as its hydrate) to treat pain, swelling and stiffness associated with arthritis and gout, it was withdrawn from the market 1984 following association with blood dyscrasis and Stevens-Johnson syndrome. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AA - Butylpyrazolidines S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Oxyphenbutazone is a Phenylbutazone (HY-B0230) metabolite, with anti-inflammatory effect. Oxyphenbutazone is an orally active non-selective COX inhibitor. Oxyphenbutazone selectively kills non-replicating Mycobaterium tuberculosis[1][2].

   

trichlormethiazide

trichlormethiazide

C8H8Cl3N3O4S2 (378.9022)


C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

Dinoprost

tromethamine

C20H34O5 (354.2406)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Dinoprost (Prostaglandin F2α) is an orally active, potent prostaglandin F (PGF) receptor (FP receptor) agonist. Dinoprost is a luteolytic hormone produced locally in the endometrial luminal epithelium and corpus luteum (CL). Dinoprost plays a key role in the onset and progression of labour[1][2].

   

6-Oxoprostaglandin F1α

6-keto-Prostaglandin F1alpha

C20H34O6 (370.2355)


   

(1R)-2-phenylcyclopropan-1-amine

(1R)-2-phenylcyclopropan-1-amine

C9H11N (133.0891)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors

   

PGF1alpha

(13E,15S)-9alpha,11alpha-9,11,15-Trihydroxyprost-13-en-1-Oic acid

C20H36O5 (356.2563)


   

2(3H)-Furanone

2(3H)-Furanone

C4H4O2 (84.0211)


D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants

   

15-Oxo-ETE

15-Oxo-ETE

C20H30O3 (318.2195)


An oxoicosatetraenoic acid having (5Z,8Z,11Z,13E) double bond stereochemistry, and an oxo group in position 15.

   

12S-HHTrE

12-Hydroxyheptadecatrienoic acid

C17H28O3 (280.2038)


A trienoic fatty acid that consists of (5Z,8E,10E)-heptadeca-5,8,10-trienoic acid bearing an additional 12S-hydroxy substituent.

   

D-Erythrose 4-phosphate

D-Erythrose 4-phosphate

C4H9O7P (200.0086)


An erythrose phosphate that is D-erythrose carrying a phosphate group at position 4. It is an intermediate in the pentose phosphate pathway and Calvin cycle.

   

Prostaglandin F3α

Prostaglandin F3alpha

C20H32O5 (352.225)


   

5-Methyl-2-deoxycytidine

5-Methyl-2-deoxycytidine

C10H15N3O4 (241.1063)


5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2]. 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2].

   

N-formylkynurenine

N-Formyl-L-kynurenine

C11H12N2O4 (236.0797)


   

Parnate

2-Phenyl cyclo propan-1-amine

C9H11N (133.0891)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors

   

Fructose-6-phosphate

D-fructofuranose 6-phosphate

C6H13O9P (260.0297)


   

8R-HpODE

(9Z,12Z)-(8R)-8-Hydroperoxyoctadeca-9,12-dienoic acid

C18H32O4 (312.23)


The 8(R)-isomer of HPODE.

   

SC-58125

1-((4-Methylsulfonyl)phenyl)-3-trifluoromethyl-5-(4-fluorophenyl)pyrazole

C17H12F4N2O2S (384.0556)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors