Gene Association: PPP1R15A
UniProt Search:
PPP1R15A (PROTEIN_CODING)
Function Description: protein phosphatase 1 regulatory subunit 15A
found 31 associated metabolites with current gene based on the text mining result from the pubmed database.
Crocin
Crocin is a water-soluble carotenoid pigment of saffron (Crocus sativus L.) that has been used as a spice for flavoring and coloring food preparations, and in Chinese traditional medicine as an anodyne or tranquilizer. Saffron is now used worldwide in folk medicine and is reputed to be useful in treating various human disorders such as heart and blood disorders. Stroke and heart attack are involved in reputed folkloric uses of saffron. Saffron is orally administrated as a decoction. Saffron extract exerts a protective effect on renal ischemia reperfusion induced oxidative damage in rats. Crocin suppresses tumor necrosis factor (TNF)alpha-induced apoptosis of pheochromocytoma (PC12) cells by modulating mRNA expressions of Bcl-2 family proteins, which trigger downstream signals culminating in caspase-3 activation followed by cell death. Depriving cultured PC12 cells of serum/glucose causes a rapid increase in cellular ceramide levels, followed by an increase in the risk of cell death. The accumulation of ceramide was found to depend on the activation of neutral sphingomyelinase (nSMase). Crocin prevented the activation of nSMase by enhancing the transcription of gamma-glutamylcysteinyl synthase, which contributes to a stable glutathione supply that blocks the activity of nSMase. (PMID: 17215084). Crocetin esters present in saffron stigmas and in Gardenia jasminoides Ellis fruit are the compounds responsible for their color. (PMID: 16448211). Crocin-1 is a diester that is crocetin in which both of the carboxy groups have been converted to their gentiobiosyl esters. It is one of the water-soluble yellow-red pigments of saffron and is used as a spice for flavouring and colouring food. Note that in India, the term Crocin is also used by GlaxoSmithKline as a brand-name for paracetamol. It has a role as an antioxidant, a food colouring, a plant metabolite and a histological dye. It is a diester, a disaccharide derivative and a diterpenoid. It is functionally related to a beta-D-gentiobiosyl crocetin and a gentiobiose. Crocin has been investigated for the treatment of Hyperglycemia, Metabolic Syndrome, Hypertriglyceridemia, and Hypercholesterolemia. Crocin is a natural product found in Gardenia jasminoides, Calycanthus, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids The colouring principle of saffron Crocin (Crocin I) is a nutraceutical and the main constituent isolated from the stigmas of Crocus sativus with immense pharmacological properties as anti-inflammatory, anticancer, antidepressant and anticonvulsant[1]. Crocin (Crocin I) is a nutraceutical and the main constituent isolated from the stigmas of Crocus sativus with immense pharmacological properties as anti-inflammatory, anticancer, antidepressant and anticonvulsant[1].
Se-Methylselenocysteine
Se-Methylselenocysteine (SeMSC) is a naturally occurring seleno-amino acid that is synthesized by plants such as garlic, astragalus, onions, and broccoli. It cannot be synthesized by higher animals. Unlike selenomethionine, which is incorporated into proteins in place of methionine, SeMSC is not incorporated into any proteins, thereby being fully available for the synthesis of selenium-containing enzymes such as glutathione peroxidase. Selenomethionine is the major seleno-compound in cereal grains (wheat grain, maize, and rice), soybeans, and enriched yeast. Seleno-compounds present in plants may have a profound effect upon the health of animals and human subjects. It is now known that the total Se content cannot be used as an indication of its efficacy, but knowledge of individual selenocompounds is necessary to fully assess the significance. Thus, speciation of the seleno-compounds has moved to the forefront. Since animals and man are dependent upon plants for their nutritional requirements, this makes the types of seleno-compounds in plants even more critical. Se enters the food chain through incorporation into plant proteins, mostly as selenocysteine and selenomethionine at normal Se levels. There are two possible pathways for the catabolism of selenomethionine: (1) a transsulfuration pathway via selenocystathionine to produce selenocysteine, which in turn is degraded to H2Se by the enzyme beta-lyase and (2) a transamination-decarboxylation pathway. It was estimated that 90\\\\% of methionine is metabolized through this pathway and thus could be also the major route for selenomethionine catabolism (PMID: 14748935 , Br J Nutr. 2004 Jan;91(1):11-28.). Selenomethionine is an amino acid containing selenium. The L-isomer of selenomethionine, known as Se-met and Sem, is a common natural food source of selenium. In vivo, selenomethionine is randomly incorporated instead of methionine and is readily oxidized. Its antioxidant activity arises from its ability to deplete reactive species. Selenium and sulfur are chalcogen elements that share many chemical properties and the substitution of methionine to selenomethionine may have no effect on protein structure and function. However, the incorporation of selenomethionine into tissue proteins and keratin in horses causes alkali disease. Alkali disease is characterized by emaciation, loss of hair, deformation and shedding of hooves, loss of vitality, and erosion of the joints of long bones. Se-methyl-L-selenocysteine is an L-alpha-amino acid compound having methylselanylmethyl as the side-chain. It has a role as an antineoplastic agent. It is a Se-methylselenocysteine, a non-proteinogenic L-alpha-amino acid and a L-selenocysteine derivative. It is a conjugate base of a Se-methyl-L-selenocysteinium. It is a conjugate acid of a Se-methyl-L-selenocysteinate. It is an enantiomer of a Se-methyl-D-selenocysteine. It is a tautomer of a Se-methyl-L-selenocysteine zwitterion. Methylselenocysteine has been used in trials studying the prevention of Prostate Carcinoma and No Evidence of Disease. Se-Methylselenocysteine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Methylselenocysteine is a naturally occurring organoselenium compound found in many plants, including garlic, onions, and broccoli, with potential antioxidant and chemopreventive activities. Se-Methyl-seleno-L-cysteine (MSC) is an amino acid analogue of cysteine in which a methylselenium moiety replaces the sulphur atom of cysteine. This agent acts as an antioxidant when incorporated into glutathione peroxidase and has been shown to exhibit potent chemopreventive activity in animal models. Se-Methylselenocysteine (SeMSC) is a naturally occurring seleno-amino acid that is synthesized by plants such as garlic, astragalus, onions and broccoli. Unlike selenomethionine, which is incorporated into proteins in place of methionine, SeMSC is not incorporated into any proteins, thereby being fully available for the synthesis of selenium-containing enzymes such as glutathione peroxidase. 3-(Methylseleno)alanine is found in many foods, some of which are common cabbage, white cabbage, lima bean, and cauliflower. D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C26170 - Protective Agent > C275 - Antioxidant D000970 - Antineoplastic Agents Se-Methylselenocysteine, a precursor of Methylselenol, has potent cancer chemopreventive activity and anti-oxidant activity. Se-Methylselenocysteine is orally bioavailable, and induces apoptosis[1][2]. Se-Methylselenocysteine, a precursor of Methylselenol, has potent cancer chemopreventive activity and anti-oxidant activity. Se-Methylselenocysteine is orally bioavailable, and induces apoptosis[1][2].
Thapsigargin
Thapsigargin is an organic heterotricyclic compound that is a hexa-oxygenated 6,7-guaianolide isolated fron the roots of Thapsia garganica L., Apiaceae. A potent skin irritant, it is used in traditional medicine as a counter-irritant. Thapsigargin inhibits Ca(2+)-transporting ATPase mediated uptake of calcium ions into sarcoplasmic reticulum and is used in experimentation examining the impacts of increasing cytosolic calcium concentrations. It has a role as an EC 3.6.3.8 (Ca(2+)-transporting ATPase) inhibitor and a calcium channel blocker. It is a sesquiterpene lactone, an organic heterotricyclic compound and a butyrate ester. Thapsigargin is a natural product found in Thapsia gymnesica, Thapsia villosa, and Thapsia garganica with data available. A sesquiterpene lactone found in roots of THAPSIA. It inhibits SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. C1907 - Drug, Natural Product > C28269 - Phytochemical > C93252 - Sesquiterpene Lactone D004791 - Enzyme Inhibitors (-)-Thapsigargin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67526-95-8 (retrieved 2024-11-06) (CAS RN: 67526-95-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Selenomethionine
L-selenomethionine is the L-enantiomer of selenomethionine. It is an enantiomer of a D-selenomethionine. It is a tautomer of a L-selenomethionine zwitterion. Selenomethionine is a naturally occuring amino acid in some plant materials such as cereal grains, soybeans and enriched yeast but it cannot be synthesized from animals or humans. It can be produced from post-structural modifications. *In vivo*, selenomethionine plays an essential role in acting as an antioxidant, where it depletes reactive oxygen species (ROS) and aids in the formation and recycling of glutathione, another important antioxidant. In comparison to selenite, which is the inorganic form of selenium, the organic form of selenomethionine is more readily absorbed in the human body. Selenomethionin is used in biochemical laboratories where its incorporation into proteins that need to be visualized enhances the performance of X-ray crystallography. L-Selenomethionine is the amino acid methionine with selenium substituting for the sulphur moiety. Methionine is an essential amino acid in humans, whereas selenium is a free-radical scavenging anti-oxidant, essential for the protection of various tissues from the damages of lipid peroxidation. As a trace mineral that is toxic in high doses, selenium is a cofactor for glutathione peroxidase, an anti-oxidant enzyme that neutralizes hydrogen peroxide. L-Selenomethionine is considered a safe, efficacious form of selenium and is readily bioavailable. Selenium may be chemoprotective for certain cancers, particularly prostate cancer. (NCI04) Diagnostic aid in pancreas function determination. Selenomethionine (CAS: 1464-42-2) is an amino acid containing selenium that cannot be synthesized by higher animals but can be obtained from plant material. Selenomethionine is the major seleno-compound in cereal grains (wheat grain, maize, and rice), soybeans, and enriched yeast. Seleno-compounds present in plants may have a profound effect on the health of animals and human subjects. It is now known that the total Se content cannot be used as an indication of its efficacy, but knowledge of individual selenocompounds is necessary to fully assess the significance. Thus, speciation of the seleno-compounds has moved to the forefront. Since animals and man are dependent upon plants for their nutritional requirements, this makes the types of seleno-compounds in plants even more critical. Se enters the food chain through incorporation into plant proteins, mostly as selenocysteine and selenomethionine at normal Se levels. There are two possible pathways for the catabolism of selenomethionine. One is the transsulfuration pathway via selenocystathionine to produce selenocysteine, which in turn is degraded into H2Se by the enzyme beta-lyase. The other pathway is the transamination-decarboxylation pathway. It was estimated that 90\\\\% of methionine is metabolized through this pathway and thus could be also the major route for selenomethionine catabolism (PMID:14748935). Found in onion, cabbage, coco de mono (Lecythis elliptica), Brazil nuts (Bertholletia excelsa), wheat grains and other plants. Dietary supplement for avoidance of Se deficiency in humans and ruminants C26170 - Protective Agent > C275 - Antioxidant The L-enantiomer of selenomethionine. L-SelenoMethionine, an L-isomer of Selenomethionine, is a major natural food-form of selenium. L-SelenoMethionin is a cancer chemopreventive agent that can reduce cancer incidence by dietary supplementation and induce apoptosis of cancer cells. L-SelenoMethionine also can increase expression of glutathione peroxidase[1][2][3]. Selenomethionine is a naturally occurring amino acid containing selenium and is a common natural food source.
Citrinin
Citrinin is a mycotoxin originally isolated from Penicillium citrinum. It has since been found to be produced by a variety of other fungi which are found or used in the production of human foods, such as grain, cheese, sake and red pigments. Citrinin has also been found in commercial red yeast rice supplements, and also in Aspergillus niveus and Aspergillus terreus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Citrinin is a mycotoxin which causes contamination in the food and is associated with different toxic effects. Citrinin is usually found together with another nephrotoxic mycotoxin, Ochratoxin A. Citrinin is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro[1][2].
Guanabenz
Guanabenz is only found in individuals that have used or taken this drug. It is an alpha-2 selective adrenergic agonist used as an antihypertensive agent. [PubChem]Guanabenzs antihypertensive effect is thought to be due to central alpha-adrenergic stimulation, which results in a decreased sympathetic outflow to the heart, kidneys, and peripheral vasculature in addition to a decreased systolic and diastolic blood pressure and a slight slowing of pulse rate. Chronic administration of guanabenz also causes a decrease in peripheral vascular resistance. C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
Benzenebutanoic acid
Benzenebutanoic acid (also known as 4-phenylbutyrate, or 4-PBA) is the oral form of butyrate, which is known to be a transcriptional regulator. Sodium-4-PBA has been shown to induce fetal hemoglobin, and it has been used in clinical trials for sickle cell anemia and β-thalassemia. Because gene expression profiles became more differentiated, it is in phase I trials in several different malignant disorders. The potential for therapeutic benefit in cystic fibrosis (CF) resides in an additional mechanism, involving protein folding and the ER (endoplasmic reticulum) environment (PMID 12458151). 4-PBA is a drug that was developed to treat elevated blood ammonia in urea cycle disorders, a histone deacetylase inhibitor that promotes mutation ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) trafficking (PMID 16798551). 4-phenylbutyrate (4-PBA) is known to be a transcriptional regulator, and sodium-4-PBA has been shown to induce fetal hemoglobin, and it has been used in clinical trials for sickle cell anemia and β-thalassemia Because gene expression profiles became more differentiated, it is in phase I trials in several different malignant disorders. The potential for therapeutic benefit in cystic fibrosis (CF) resides in an additional mechanism, involving protein folding and the ER environment. 4-PBA is a drug that was developed to treat elevated blood ammonia in urea cycle disorders, a histone deacetylase inhibitor that promotes mutation ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) trafficking. (PMID 12458151) [HMDB] C471 - Enzyme Inhibitor > C1946 - Histone Deacetylase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent D000970 - Antineoplastic Agents
4-Hydroxytamoxifen
4-Hydroxytamoxifen (Afimoxifene) is a metabolite of Tamoxifen. Afimoxifene (4-hydroxytamoxifen) is a selective estrogen receptor modulator which is the active metabolite of tamoxifen. Afimoxifene is a transdermal gel formulation and is being developed by Ascend Therapeutics, Inc. under the trademark TamoGel. (Wikipedia) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent
Fenthion
Fenthion is an insecticide with low mammalian toxicity. Fenthion is used in agriculture and against mosquito larvae in tropical fresh waters.Fenthion is an organothiophosphate insecticide, avicide, and acaricide. Like most other organophosphates, its mode of action is via cholinesterase inhibition. Due to its relatively low toxicity towards humans and mammals, fenthion is listed as moderately toxic compound in U.S. Environmental Protection Agency and World Health Organization toxicity class. (Wikipedia). Insecticide with low mammalian toxicity. It is used in agriculture and against mosquito larvae in tropical fresh waters D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
methapyrilene
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents
isopentenyl adenosine
Riboprine, also known as isopentenyladenosine or ipa, is a member of the class of compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Riboprine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Riboprine can be found in a number of food items such as peppermint, chinese mustard, custard apple, and green bean, which makes riboprine a potential biomarker for the consumption of these food products. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Acquisition and generation of the data is financially supported in part by CREST/JST. Same as: D05726 N6-Isopentenyladenosine (Riboprine), an RNA modification found in cytokinins, which regulate plant growth/differentiation, and a subset of tRNAs, where it improves the efficiency and accuracy of translation. N6-Isopentenyladenosine, an end product of the mevalonate pathway, is an autophagy inhibitor with an interesting anti-melanoma activity[1][2][3].
Patulin
Patulin is found in pomes. Mycotoxin, found as a contaminant of foods, e.g. apple juice. Sometimes detd. in apple juice Patulin is a mycotoxin produced by a variety of molds, particularly Aspergillus and Penicillium. It is commonly found in rotting apples, and the amount of patulin in apple products is generally viewed as a measure of the quality of the apples used in production. It is not a particularly potent toxin, but a number of studies have shown that it is genotoxic, which has led to some theories that it may be a carcinogen, though animal studies have remained inconclusive. Patulin is also an antibiotic. Several countries have instituted patulin restrictions in apple products. The World Health Organization recommends a maximum concentration of 50 µg/L in apple juice Mycotoxin, found as a contaminant of foods, e.g. apple juice. Sometimes detd. in apple juice D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D009153 - Mutagens Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].
alpha-Zearalenol
Alpha-zearlenol is a nonsteroidal estrogen or mycoestrogen found in fungi belonging to the Fusarium genus including F. graminearum, F. culmorum, F. crookwellense, etc (PMID: 22095651), As a mycotoxin, alpha-zearalenol is a widely distributed compound that contaminates many crops, grains, and other commodities (PMID: 30830360). Alpha-zearalenol, is also a major hepatic metabolite of zearalenone (another mycotoxin). Zearalenone has two metabolites, alpha and beta zearalenol which are produced in the liver by 3α-hydroxisteroid dehydrogenase and 3β-hydroxisteroid dehydrogenase (PMID: 30830360). Like Alpha-zearlenol, zearalenone or F-2 mycotoxin is produced by certain Fusarium species. It causes infertility, abortion and other breeding problems in swine. Alpha-zearlenol is also produced synthetically and sold as Zeranol, which is used as an anabolic agent for cattle. Alpha-zearlenol exhibits strong growth-promoting properties, but its sale is restricted in Europe (PMID: 22095651). Alpha-zearalenol has three to four times the biological activity of zearalenone. Alpha-zearlenol contains a lactone ring in its structure and is structurally analogous to estrogen, thus it can bind to estrogen receptors, and causes hepatotoxic, hematotoxic, immunotoxic, genotoxic, teratogenic and carcinogenic effects on different animal species (PMID: 17045381).
HOMATROPINE
S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics Annotation level-1
Usnic acid
A member of the class of dibenzofurans that is dibenzo[b,d]furan-1(9bH)-one substituted by acetyl groups at positions 2 and 6, hydroxy groups at positions 3 and 7 and methyl groups at positions 8 and 9b. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.457 D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.456 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.458 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.459 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.455 (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].
Boric acid (H3BO3)
Food contaminant deriving from paper and paperboard in contact with food. V. limited use as an antibacterial agent in caviar. Boric acid (H3BO3) is found in many foods, some of which are pomegranate, fig, french plantain, and redcurrant. Boric acid (H3BO3) is found in fig. Boric acid (H3BO3) is a food contaminant deriving from paper and paperboard in contact with food. V. limited use as an antibacterial agent in cavia S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Same as: D01089
Usnic_acid
7-Hydroxy-(S)-usnate is a member of benzofurans. Usnic acid is a natural product found in Lecanora muralis, Usnea florida, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].
methylselenocysteine
D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Se-Methylselenocysteine, a precursor of Methylselenol, has potent cancer chemopreventive activity and anti-oxidant activity. Se-Methylselenocysteine is orally bioavailable, and induces apoptosis[1][2]. Se-Methylselenocysteine, a precursor of Methylselenol, has potent cancer chemopreventive activity and anti-oxidant activity. Se-Methylselenocysteine is orally bioavailable, and induces apoptosis[1][2].
fenthion
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 3155 CONFIDENCE standard compound; INTERNAL_ID 8480
Citrinin
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 11 D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Citrinin is a mycotoxin which causes contamination in the food and is associated with different toxic effects. Citrinin is usually found together with another nephrotoxic mycotoxin, Ochratoxin A. Citrinin is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro[1][2].
Crocin
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Crocin (Crocin I) is a nutraceutical and the main constituent isolated from the stigmas of Crocus sativus with immense pharmacological properties as anti-inflammatory, anticancer, antidepressant and anticonvulsant[1]. Crocin (Crocin I) is a nutraceutical and the main constituent isolated from the stigmas of Crocus sativus with immense pharmacological properties as anti-inflammatory, anticancer, antidepressant and anticonvulsant[1].
patulin
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE standard compound; INTERNAL_ID 5971 D009676 - Noxae > D009153 - Mutagens CONFIDENCE Reference Standard (Level 1) Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].
Riboprine
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Same as: D05726 CONFIDENCE standard compound; INTERNAL_ID 306 N6-Isopentenyladenosine (Riboprine), an RNA modification found in cytokinins, which regulate plant growth/differentiation, and a subset of tRNAs, where it improves the efficiency and accuracy of translation. N6-Isopentenyladenosine, an end product of the mevalonate pathway, is an autophagy inhibitor with an interesting anti-melanoma activity[1][2][3].
BORIC ACID
S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Same as: D01089
Phenylbutyric acid
C471 - Enzyme Inhibitor > C1946 - Histone Deacetylase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent D000970 - Antineoplastic Agents
guanabenz
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
Mycoin
A furopyran and lactone that is (2H-pyran-3(6H)-ylidene)acetic acid which is substituted by hydroxy groups at positions 2 and 4 and in which the hydroxy group at position 4 has condensed with the carboxy group to give the corresponding bicyclic lactone. A mycotoxin produced by several species of Aspergillus and Penicillium, it has antibiotic properties but has been shown to be carcinogenic and mutagenic. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D009153 - Mutagens Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].
methapyrilene
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents