Gene Association: ANP32A

UniProt Search: ANP32A (PROTEIN_CODING)
Function Description: acidic nuclear phosphoprotein 32 family member A

found 4 associated metabolites with current gene based on the text mining result from the pubmed database.

Sphinganine

D-Erythro-1,3-dihydroxy-2-aminooctadecane

C18H39NO2 (301.2981)


Sphinganine, also known as c18-dihydrosphingosine or safingol, is a member of the class of compounds known as 1,2-aminoalcohols. 1,2-aminoalcohols are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sphinganine can be found in a number of food items such as agar, biscuit, herbs and spices, and pasta, which makes sphinganine a potential biomarker for the consumption of these food products. Sphinganine can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Sphinganine exists in all eukaryotes, ranging from yeast to humans. In humans, sphinganine is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Sphinganine is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Moreover, sphinganine is found to be associated with pregnancy. Sphinganine is a lyso-sphingolipid protein kinase inhibitor. It has the molecular formula C18H39NO2 and is a colorless solid. Medicinally, safingol has demonstrated promising anticancer potential as a modulator of multi-drug resistance and as an inducer of necrosis. The administration of safingol alone has not been shown to exert a significant effect on tumor cell growth. However, preclinical and clinical studies have shown that combining safingol with conventional chemotherapy agents such as fenretinide, vinblastine, irinotecan and mitomycin C can dramatically potentiate their antitumor effects. Currently in Phase I clinical trials, it is believed to be safe to co-administer with cisplatin . Sphinganine belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Sphinganine exists in all living species, ranging from bacteria to humans. Within humans, sphinganine participates in a number of enzymatic reactions. In particular, sphinganine can be converted into 3-dehydrosphinganine through its interaction with the enzyme 3-ketodihydrosphingosine reductase. In addition, sphinganine can be converted into sphinganine 1-phosphate; which is catalyzed by the enzyme sphingosine kinase 2. Outside of the human body, sphinganine has been detected, but not quantified in, several different foods, such as Mexican oregano, jostaberries, winter squash, angelica, and epazotes. This could make sphinganine a potential biomarker for the consumption of these foods. Sphinganine blocks postlysosomal cholesterol transport by inhibiting low-density lipoprotein-induced esterification of cholesterol and causing unesterified cholesterol to accumulate in perinuclear vesicles. It has been suggested that endogenous sphinganine may inhibit cholesterol transport in Niemann-Pick Type C (NPC) disease (PMID: 1817037). D004791 - Enzyme Inhibitors KEIO_ID D078 D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity. D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity.

   

Tetrahydropteridine

5,6,7,8-Tetrahydro-pteridine

C6H8N4 (136.0749)


Tetrahydrobiopterin serves well-characterized cofactor functions for hydroxylating aromatic amino acids and ether lipids and for formation of nitric oxide (NO) from L-arginine. Formation of NO involves two cycles of oxidation of Tetrahydrobiopterin to its radical with subsequent rehydroxylation into Tetrahydrobiopterin, one for reduction of the heme-bound arginine-Fe(II)O2 complex of NO synthase (NOS), the other for reduction of the N-hydroxy-L-arginine-Fe(II)O2 complex. Tetrahydrobiopterin-dependent glyceryl ether monooxygenase (EC 1.14.16.5) is found not only in liver and the gastrointestinal tract but also in brain and other organs (this enzyme plays an essential role in conjugation with the cleavage enzyme in the regulation of cellular levels of -alkyl moieties in glycerolipids). Tetrahydrobiopterin is essential for the enzymatic reaction of tyrosine 3-monooxygenase (EC 1.14.16.2) for the first step in the biosynthesis of catecholamines such as norepinephrine, epinephrine and dopamine. Limited Tetrahydrobiopterin availability not only decreases formation of NO but also causes NOS-derived superoxide/hydrogen peroxide production leading to formation of peroxynitrite as well as S-nitrosoglutathione. As a consequence of its oxygen-activating potential, Tetrahydrobiopterin is also subject to autoxidation in a free radical chain reaction in leading to formation of superoxide and finally to hydrogen peroxide. On the other hand, Tetrahydrobiopterin, like other H4-pterins, can scavenge reactive oxygen species and peroxynitrite. Thus, Tetrahydrobiopterin may have opposing effects in various biological systems depending on whether its cofactor roles outweigh its chemical reactivity or vice versa. Sepiapterin reductase (EC 1.1.1.153) catalyzes the reduction of tetrahydro-sepiapterin to tetrahydrobiopterin -the terminal step in this biosynthetic pathway for tetrahydrobiopterin. This reaction is N-acetyl-serotonin-sensitive and can completely inhibit tetrahydrobiopterin synthesis. (PMID: 3881214, 17303893, 3756924, 15223071) [HMDB] Tetrahydrobiopterin serves well-characterized cofactor functions for hydroxylating aromatic amino acids and ether lipids and for formation of nitric oxide (NO) from L-arginine. Formation of NO involves two cycles of oxidation of Tetrahydrobiopterin to its radical with subsequent rehydroxylation into Tetrahydrobiopterin, one for reduction of the heme-bound arginine-Fe(II)O2 complex of NO synthase (NOS), the other for reduction of the N-hydroxy-L-arginine-Fe(II)O2 complex. Tetrahydrobiopterin-dependent glyceryl ether monooxygenase (EC 1.14.16.5) is found not only in liver and the gastrointestinal tract but also in brain and other organs (this enzyme plays an essential role in conjugation with the cleavage enzyme in the regulation of cellular levels of -alkyl moieties in glycerolipids). Tetrahydrobiopterin is essential for the enzymatic reaction of tyrosine 3-monooxygenase (EC 1.14.16.2) for the first step in the biosynthesis of catecholamines such as norepinephrine, epinephrine and dopamine. Limited Tetrahydrobiopterin availability not only decreases formation of NO but also causes NOS-derived superoxide/hydrogen peroxide production leading to formation of peroxynitrite as well as S-nitrosoglutathione. As a consequence of its oxygen-activating potential, Tetrahydrobiopterin is also subject to autoxidation in a free radical chain reaction in leading to formation of superoxide and finally to hydrogen peroxide. On the other hand, Tetrahydrobiopterin, like other H4-pterins, can scavenge reactive oxygen species and peroxynitrite. Thus, Tetrahydrobiopterin may have opposing effects in various biological systems depending on whether its cofactor roles outweigh its chemical reactivity or vice versa. Sepiapterin reductase (EC 1.1.1.153) catalyzes the reduction of tetrahydro-sepiapterin to tetrahydrobiopterin -the terminal step in this biosynthetic pathway for tetrahydrobiopterin. This reaction is N-acetyl-serotonin-sensitive and can completely inhibit tetrahydrobiopterin synthesis. (PMID: 3881214, 17303893, 3756924, 15223071).

   

DL-THREO-DIHYDROSPHINGOSINE

DL-1,3-DIHYDROXY-2-AMINO-OCTADECANE

C18H39NO2 (301.2981)


D004791 - Enzyme Inhibitors DL-erythro-Dihydrosphingosine is a potent inhibitor of PKC and phospholipase A2 (PLA2)[1][2].

   

5,6,7,8-tetrahydropteridine

5,6,7,8-tetrahydropteridine

C6H8N4 (136.0749)