Melezitose (BioDeep_00000000872)

 

Secondary id: BioDeep_00000406149

natural product human metabolite PANOMIX_OTCML-2023 Endogenous Volatile Flavor Compounds


代谢物信息卡片


(2R,3R,4S,5S,6R)-2-[(2S,3S,4R,5R)-4-hydroxy-2,5-bis(hydroxymethyl)-2-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-tetrahydrofuran-3-yl]oxy-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

化学式: C18H32O16 (504.1690272)
中文名称: D-(+)-松三糖, 松三糖, 松三糖,水合物
谱图信息: 最多检出来源 Viridiplantae(plant) 0.14%

分子结构信息

SMILES: C(C1C(C(C(C(O1)OC2C(C(OC2(CO)OC3C(C(C(C(O3)CO)O)O)O)CO)O)O)O)O)O
InChI: InChI=1/C18H32O16/c19-1-5-8(23)11(26)13(28)16(30-5)32-15-10(25)7(3-21)33-18(15,4-22)34-17-14(29)12(27)9(24)6(2-20)31-17/h5-17,19-29H,1-4H2/t5-,6-,7-,8-,9-,10-,11+,12+,13-,14-,15+,16-,17-,18+/m1/s1

描述信息

Melezitose, also spelled melicitose, is a nonreducing trisaccharide sugar that is produced by many plant sap eating insects, including aphids such as Cinara pilicornis by an enzyme reaction. This is beneficial to the insects, as it reduces the stress of osmosis by reducing their own water potential. The melezitose is part of the honeydew which acts as an attractant for ants and also as a food for bees. This is useful to the lice as they have a symbiotic relationship with ants. Melezitose can be partially hydrolyzed to glucose and turanose the latter of which is an isomer of sucrose (Wikipedia).
Melezitose is a trisaccharide produced by insects such as aphids. It has a role as an animal metabolite.
Melezitose is a natural product found in Pogostemon cablin, Arabidopsis thaliana, and Drosophila melanogaster with data available.
A trisaccharide produced by insects such as aphids.
Constituent of honey
Acquisition and generation of the data is financially supported in part by CREST/JST.
CONFIDENCE standard compound; INTERNAL_ID 231
D-(+)-Melezitose can be used to identify clinical isolates of indole-positive and indole-negative Klebsiella spp.

同义名列表

38 个代谢物同义名

(2R,3R,4S,5S,6R)-2-[(2S,3S,4R,5R)-4-hydroxy-2,5-bis(hydroxymethyl)-2-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-tetrahydrofuran-3-yl]oxy-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol; (2R,3R,4S,5S,6R)-2-{[(2S,3S,4R,5R)-4-hydroxy-2,5-bis(hydroxymethyl)-3-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol; (2R,3R,4S,5S,6R)-2-{[(2S,3S,4R,5R)-4-hydroxy-2,5-bis(hydroxymethyl)-2-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol; (2R,3R,4S,5S,6R)-2-[(2S,3S,4R,5R)-4-hydroxy-2,5-bis(hydroxymethyl)-2-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxolan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol; (2R,2R,3S,3S,4S,4S,5R,5R,6R,6R)-6,6-((2S,3S,4R,5R)-4-hydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2,3-diyl)bis(oxy)bis(2-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol); Melezitose (6CI,8CI); O-?-D-Glucopyranosyl-(1?3)-?-D-fructofuranosyl ?-D-glucopyranoside; (+)-Melezitose; D-(+)-Melezitose; D-Melezitose; alpha-D-Glucopyranoside, O-alpha-D-glucopyranosyl-(1.fwdarw.3)-beta-D-fructofuranosyl; .alpha.-D-Glucopyranoside, O-.alpha.-D-glucopyranosyl-(1-3)-.beta.-D-fructofuranosyl-; O alpha-D-glucopyranosyl-(1,3)-O beta-D-fructofuranosyl-(2,1) alpha-D-glucopyranoside; .alpha.-D-Glucopyranoside, O-.alpha.-D-glucopyranosyl-(1->3)-.beta.-D-fructofuranosyl; O-.ALPHA.-D-GLUCOPYRANOSYL-(1->3)-.BETA.-D-FRUCTOFURANOSYL-.ALPHA.-D-GLUCOPYRANOSIDE; alpha-D-Glucopyranoside, O-alpha-D-glucopyranosyl-(1->3)-beta-D-fructofuranosyl; O-alpha-D-glucopyranosyl-(1,3)-beta-D-fructofuranosyl-alpha-D-glucopyranoside; O-alpha-D-glucopyranosyl-(1-3)-beta-D-fructofuranosyl-alpha-D-glucopyranoside; alpha-D-glucopyranosyl-(1->3)-beta-D-fructofuranosyl alpha-D-glucopyranoside; O-a-D-Glucopyranosyl-(1-3)-b-D-fructofuranosyl-a-D-glucopyranoside; O-Α-D-glucopyranosyl-(1-3)-β-D-fructofuranosyl-α-D-glucopyranoside; WURCS=2.0/2,3,2/[a2122h-1a_1-5][ha122h-2b_2-5]/1-2-1/a1-b2_b3-c1; (+)-Melezitose;D-Melezitose; D(+)-melezitose 1-hydrate; D-(+)-Melezitose; MELEZITOSE, (+)-; UNII-T4T25QN29L; MELEZITOSE [MI]; D-(+)Melezitose; (+)-Melezitose; D-Melezitose; T4T25QN29L; Melizitose; Melezitose; Melicitose; AI3-19426; D-(+)-Melezitose monohydrate; D-((addition))-Melezitose; D-(+)-Melezitose hydrate; D(+)-Melezitose; Melezitose; Melezitose



数据库引用编号

36 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

6 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Victoria Charlotte Seeburger, Paul D'Alvise, Basel Shaaban, Karsten Schweikert, Gertrud Lohaus, Annette Schroeder, Martin Hasselmann. The trisaccharide melezitose impacts honey bees and their intestinal microbiota. PloS one. 2020; 15(4):e0230871. doi: 10.1371/journal.pone.0230871. [PMID: 32275718]
  • Sharon Schillewaert, Amélie Vantaux, Wim Van den Ende, Tom Wenseleers. The effect of host plants on genotype variability in fitness and honeydew composition of Aphis fabae. Insect science. 2017 Oct; 24(5):781-788. doi: 10.1111/1744-7917.12360. [PMID: 27226343]
  • Claire Detrain, Jacques Prieur. Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources. Journal of insect physiology. 2014 May; 64(?):74-80. doi: 10.1016/j.jinsphys.2014.03.010. [PMID: 24667145]
  • Patrick von Aderkas, Massimo Nepi, Marlies Rise, Federico Buffi, Massimo Guarnieri, Andrea Coulter, Karen Gill, Patricia Lan, Sarah Rzemieniak, Ettore Pacini. Post-pollination prefertilization drops affect germination rates of heterospecific pollen in larch and Douglas-fir. Sexual plant reproduction. 2012 Sep; 25(3):215-25. doi: 10.1007/s00497-012-0193-4. [PMID: 22806585]
  • Dmitriy V Volokhov, Megan Amselle, Brian J Beck, David L Popham, Paul Whittaker, Hua Wang, Elizabeth Kerrigan, Vladimir E Chizhikov. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis). International journal of systematic and evolutionary microbiology. 2012 Sep; 62(Pt 9):2068-2076. doi: 10.1099/ijs.0.033852-0. [PMID: 22021580]
  • David Toubiana, Yaniv Semel, Takayuki Tohge, Romina Beleggia, Luigi Cattivelli, Leah Rosental, Zoran Nikoloski, Dani Zamir, Alisdair R Fernie, Aaron Fait. Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations. PLoS genetics. 2012; 8(3):e1002612. doi: 10.1371/journal.pgen.1002612. [PMID: 22479206]
  • A Vantaux, W Van den Ende, J Billen, T Wenseleers. Large interclone differences in melezitose secretion in the facultatively ant-tended black bean aphid Aphis fabae. Journal of insect physiology. 2011 Dec; 57(12):1614-21. doi: 10.1016/j.jinsphys.2011.08.014. [PMID: 21896277]
  • Ulrike Lingner, Steffen Münch, Björn Sode, Holger B Deising, Norbert Sauer. Functional characterization of a eukaryotic melibiose transporter. Plant physiology. 2011 Jul; 156(3):1565-76. doi: 10.1104/pp.111.178624. [PMID: 21593216]
  • Silke Schiebold, Henning Tschiersch, Ljudmilla Borisjuk, Nicolas Heinzel, Ruslana Radchuk, Hardy Rolletschek. A novel procedure for the quantitative analysis of metabolites, storage products and transcripts of laser microdissected seed tissues of Brassica napus. Plant methods. 2011 Jun; 7(?):19. doi: 10.1186/1746-4811-7-19. [PMID: 21718489]
  • Julia Hofmann, Abd El Naser El Ashry, Shahbaz Anwar, Alexander Erban, Joachim Kopka, Florian Grundler. Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. The Plant journal : for cell and molecular biology. 2010 Jun; 62(6):1058-71. doi: 10.1111/j.1365-313x.2010.04217.x. [PMID: 20374527]
  • Hirokazu Tsuji, Kaoru Moriyama, Koji Nomoto, Naoto Miyanaga, Hideyuki Akaza. Isolation and characterization of the equol-producing bacterium Slackia sp. strain NATTS. Archives of microbiology. 2010 Apr; 192(4):279-87. doi: 10.1007/s00203-010-0546-z. [PMID: 20237913]
  • Ramon Wahl, Kathrin Wippel, Sarah Goos, Jörg Kämper, Norbert Sauer. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS biology. 2010 Feb; 8(2):e1000303. doi: 10.1371/journal.pbio.1000303. [PMID: 20161717]
  • Hui Cai, Rebecca Thompson, Mateo F Budinich, Jeff R Broadbent, James L Steele. Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome biology and evolution. 2009 Jul; 1(?):239-57. doi: 10.1093/gbe/evp019. [PMID: 20333194]
  • Nora C Lawo, Felix L Wäckers, Jörg Romeis. Indian Bt cotton varieties do not affect the performance of cotton aphids. PloS one. 2009; 4(3):e4804. doi: 10.1371/journal.pone.0004804. [PMID: 19279684]
  • Cecilia Vasquez-Robinet, Shrinivasrao P Mane, Alexander V Ulanov, Jonathan I Watkinson, Verlyn K Stromberg, David De Koeyer, Roland Schafleitner, David B Willmot, Merideth Bonierbale, Hans J Bohnert, Ruth Grene. Physiological and molecular adaptations to drought in Andean potato genotypes. Journal of experimental botany. 2008; 59(8):2109-23. doi: 10.1093/jxb/ern073. [PMID: 18535297]
  • Cristina A Faria, Felix L Wäckers, Jeremy Pritchard, David A Barrett, Ted C J Turlings. High susceptibility of Bt maize to aphids enhances the performance of parasitoids of lepidopteran pests. PloS one. 2007 Jul; 2(7):e600. doi: 10.1371/journal.pone.0000600. [PMID: 17622345]
  • Yu-Ji Jiang, You-Jin Deng, Xin-Rui Liu, Bao-Gui Xie, Fang-Ping Hu. [Isolation and identification of a bacterial strain JS018 capable of degrading several kinds of organophosphate pesticides]. Wei sheng wu xue bao = Acta microbiologica Sinica. 2006 Jun; 46(3):463-6. doi: . [PMID: 16933622]
  • Zoë Kernan, A M R Ferrie. Microspore embryogenesis and the development of a double haploidy protocol for cow cockle (Saponaria vaccaria). Plant cell reports. 2006 Apr; 25(4):274-80. doi: 10.1007/s00299-005-0064-7. [PMID: 16231184]
  • Aly M Ezz El-Arab, Shenouda M Girgis, Eman M Hegazy, Azzat B Abd El-Khalek. Effect of dietary honey on intestinal microflora and toxicity of mycotoxins in mice. BMC complementary and alternative medicine. 2006 Mar; 6(?):6. doi: 10.1186/1472-6882-6-6. [PMID: 16533410]
  • Claudia Hausmann, Felix L Wäckers, Silvia Dorn. Sugar convertibility in the parasitoid Cotesia glomerata (Hymenoptera: Braconidae). Archives of insect biochemistry and physiology. 2005 Dec; 60(4):223-9. doi: 10.1002/arch.20093. [PMID: 16304615]
  • G Oberto, E Bauza, A Berghi, F Portolan, J M Botto, D Peyronel, C Dal Farra, N Domloge. Cotton honeydew (Gossypium hirsutum L.) extract offers very interesting properties for hair cosmetics and care products. Drugs under experimental and clinical research. 2005; 31(4):131-40. doi: ". [PMID: 16223202]
  • Vadivel Prabahar, Smita Dube, G S N Reddy, S Shivaji. Pseudonocardia antarctica sp. nov. an Actinomycetes from McMurdo Dry Valleys, Antarctica. Systematic and applied microbiology. 2004 Feb; 27(1):66-71. doi: 10.1078/0723-2020-00249. [PMID: 15053323]
  • Carmen Menéndez, Lázaro Hernández, Guillermo Selman, Milady F Mendoza, Pedro Hevia, Mailin Sotolongo, Juan G Arrieta. Molecular cloning and expression in Escherichia coli of an exo-levanase gene from the endophytic bacterium Gluconacetobacter diazotrophicus SRT4. Current microbiology. 2002 Jul; 45(1):5-12. doi: 10.1007/s00284-001-0044-2. [PMID: 12029520]
  • Curtis B Russell, Fiona E Hunter. Analysis of nectar and honeydew feeding in Aedes and Ochlerotatus mosquitoes. Journal of the American Mosquito Control Association. 2002 Jun; 18(2):86-90. doi: ". [PMID: 12083360]
  • J E Slosser, M N Parajulee, D L Hendrix, T J Henneberry, D R Rummel. Relationship between Aphis gossypii (Homoptera: Aphididae) and sticky lint in cotton. Journal of economic entomology. 2002 Apr; 95(2):299-306. doi: 10.1603/0022-0493-95.2.299. [PMID: 12020004]
  • V Rada, J Bartonová, E Vlková. Specific growth rate of bifidobacteria cultured on different sugars. Folia microbiologica. 2002; 47(5):477-80. doi: 10.1007/bf02818784. [PMID: 12503390]
  • M A Lachance, J M Bowles, S Kwon, G Marinoni, W T Starmer, D H Janzen. Metschnikowia lochheadii and Metschnikowia drosophilae, two new yeast species isolated from insects associated with flowers. Canadian journal of microbiology. 2001 Feb; 47(2):103-9. doi: 10.1139/w00-130. [PMID: 11261488]