2,4-Dihydroxy-2H-1,4-benzoxazin-3(4H)-one (BioDeep_00000004061)
Secondary id: BioDeep_00000410202
human metabolite blood metabolite natural product
代谢物信息卡片
化学式: C8H7NO4 (181.0375)
中文名称: 2,4-二羟基-2H-1,4-苯并噁嗪-3(4h)-酮
谱图信息:
最多检出来源 Viridiplantae(plant) 25.14%
分子结构信息
SMILES: C1=CC=C2C(=C1)N(C(=O)C(O2)O)O
InChI: InChI=1S/C8H7NO4/c10-7-8(11)13-6-4-2-1-3-5(6)9(7)12/h1-4,8,11-12H
描述信息
2,4-Dihydroxy-2H-1,4-benzoxazin-3(4H)-one is a benzoxazinoid precursor of 2-aminophenol sulfate. It is a metabolite found in urine of individuals that have consumed whole grains. It is a particularly strong biomarker for whole grain rye bread consumption (PMID: 23307617).
Isolated from seedlings of rye and sweet corn (Zea mays). 2,4-Dihydroxy-2H-1,4-benzoxazin-3(4H)-one is found in cereals and cereal products and fats and oils.
同义名列表
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:63558
- KEGG: C15770
- PubChem: 28495
- HMDB: HMDB0033733
- Metlin: METLIN64531
- ChEMBL: CHEMBL483002
- MetaCyc: CPD-6365
- KNApSAcK: C00036460
- foodb: FDB011857
- chemspider: 26511
- CAS: 17359-54-5
- PMhub: MS000015031
- PubChem: 47205096
- NIKKAJI: J67.842B
- KNApSAcK: 63558
- LOTUS: LTS0222426
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
代谢反应
69 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(69)
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
DIBOA + UDP-α-D-glucose ⟶ DIBOA-Glc + UDP
- superpathway of benzoxazinoid glucosides biosynthesis:
DIBOA + UDP-α-D-glucose ⟶ DIBOA-Glc + UDP
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
DIBOA + UDP-α-D-glucose ⟶ DIBOA-Glc + UDP
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
18 个相关的物种来源信息
- 4185 - Acanthaceae: LTS0222426
- 4186 - Aphelandra: LTS0222426
- 328118 - Aphelandra tetragona:
- 328118 - Aphelandra tetragona: 10.1016/S0031-9422(99)00508-7
- 328118 - Aphelandra tetragona: LTS0222426
- 6656 - Arthropoda: LTS0222426
- 6658 - Branchiopoda: LTS0222426
- 6668 - Daphnia: LTS0222426
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0222426
- 77658 - Daphniidae: LTS0222426
- 2759 - Eukaryota: LTS0222426
- 9606 - Homo sapiens: -
- 3398 - Magnoliopsida: LTS0222426
- 33208 - Metazoa: LTS0222426
- 35493 - Streptophyta: LTS0222426
- 58023 - Tracheophyta: LTS0222426
- 33090 - Viridiplantae: LTS0222426
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Maria Elena de la Calle, Gema Cabrera, Domingo Cantero, Antonio Valle, Jorge Bolivar. A genetically engineered Escherichia coli strain overexpressing the nitroreductase NfsB is capable of producing the herbicide D-DIBOA with 100\% molar yield.
Microbial cell factories.
2019 May; 18(1):86. doi:
10.1186/s12934-019-1135-8
. [PMID: 31109333] - Khem B Adhikari, Bente B Laursen, Per L Gregersen, Heidi J Schnoor, Marianne Witten, Lars K Poulsen, Bettina M Jensen, Inge S Fomsgaard. Absorption and metabolic fate of bioactive dietary benzoxazinoids in humans.
Molecular nutrition & food research.
2013 Oct; 57(10):1847-58. doi:
10.1002/mnfr.201300107
. [PMID: 23650214] - Isabel Bondia-Pons, Thaer Barri, Kati Hanhineva, Katri Juntunen, Lars O Dragsted, Hannu Mykkänen, Kaisa Poutanen. UPLC-QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention.
Molecular nutrition & food research.
2013 Mar; 57(3):412-22. doi:
10.1002/mnfr.201200571
. [PMID: 23307617] - Leslie Dutartre, Frédérique Hilliou, René Feyereisen. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster.
BMC evolutionary biology.
2012 May; 12(?):64. doi:
10.1186/1471-2148-12-64
. [PMID: 22577841] - Kati Hanhineva, Ilana Rogachev, Anna-Marja Aura, Asaph Aharoni, Kaisa Poutanen, Hannu Mykkänen. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling.
Journal of agricultural and food chemistry.
2011 Feb; 59(3):921-7. doi:
10.1021/jf103612u
. [PMID: 21214244] - Hisashi Kato-Noguchi, Francisco A Macías, José M G Molinillo. Structure-activity relationship of benzoxazinones and related compounds with respect to the growth inhibition and alpha-amylase activity in cress seedlings.
Journal of plant physiology.
2010 Oct; 167(15):1221-5. doi:
10.1016/j.jplph.2010.04.006
. [PMID: 20605653] - Francisco A Macías, Nuria Chinchilla, Elena Arroyo, José M G Molinillo, David Marín, Rosa M Varela. Combined strategy for phytotoxicity enhancement of benzoxazinones.
Journal of agricultural and food chemistry.
2010 Feb; 58(3):2047-53. doi:
10.1021/jf903445m
. [PMID: 20014762] - Hisashi Kato-Noguchi. Effects of four benzoxazinoids on gibberellin-induced alpha-amylase activity in barley seeds.
Journal of plant physiology.
2008 Dec; 165(18):1889-94. doi:
10.1016/j.jplph.2008.04.006
. [PMID: 18538892] - Katrin Schullehner, Regina Dick, Florian Vitzthum, Wilfried Schwab, Wolfgang Brandt, Monika Frey, Alfons Gierl. Benzoxazinoid biosynthesis in dicot plants.
Phytochemistry.
2008 Nov; 69(15):2668-77. doi:
10.1016/j.phytochem.2008.08.023
. [PMID: 18929374] - Christoph A Buchmann, Armen Nersesyan, Brigitte Kopp, Doris Schauberger, Firouz Darroudi, Tamara Grummt, Georg Krupitza, Michael Kundi, Rolf Schulte-Hermann, Siegfried Knasmueller. Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), two naturally occurring benzoxazinones contained in sprouts of Gramineae are potent aneugens in human-derived liver cells (HepG2).
Cancer letters.
2007 Feb; 246(1-2):290-9. doi:
10.1016/j.canlet.2006.03.013
. [PMID: 16644106] - Francisco A Macías, David Marín, Alberto Oliveros-Bastidas, José M G Molinillo. Optimization of benzoxazinones as natural herbicide models by lipophilicity enhancement.
Journal of agricultural and food chemistry.
2006 Dec; 54(25):9357-65. doi:
10.1021/jf062168v
. [PMID: 17147418] - Anna Stochmal, Jan Kus, Stefan Martyniuk, Wieslaw Oleszek. Concentration of benzoxazinoids in roots of field-grown wheat (Triticum aestivum L.) varieties.
Journal of agricultural and food chemistry.
2006 Feb; 54(4):1016-22. doi:
10.1021/jf050899+
. [PMID: 16478211] - Marta Villagrasa, Miriam Guillamón, Ethel Eljarrat, Damià Barceló. Determination of benzoxazinone derivatives in plants by combining pressurized liquid extraction-solid-phase extraction followed by liquid chromatography-electrospray mass spectrometry.
Journal of agricultural and food chemistry.
2006 Feb; 54(4):1001-8. doi:
10.1021/jf050897p
. [PMID: 16478209] - Clifford P Rice, Yong Bong Park, Frédérick Adam, Aref A Abdul-Baki, John R Teasdale. Hydroxamic acid content and toxicity of rye at selected growth stages.
Journal of chemical ecology.
2005 Aug; 31(8):1887-905. doi:
10.1007/s10886-005-5933-6
. [PMID: 16222814] - Scott R Baerson, Adela Sánchez-Moreiras, Nuria Pedrol-Bonjoch, Margot Schulz, Isabelle A Kagan, Ameeta K Agarwal, Manuel J Reigosa, Stephen O Duke. Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one.
The Journal of biological chemistry.
2005 Jun; 280(23):21867-81. doi:
10.1074/jbc.m500694200
. [PMID: 15824099] - Sebastian Grün, Monika Frey, Alfons Gierl. Evolution of the indole alkaloid biosynthesis in the genus Hordeum: distribution of gramine and DIBOA and isolation of the benzoxazinoid biosynthesis genes from Hordeum lechleri.
Phytochemistry.
2005 Jun; 66(11):1264-72. doi:
10.1016/j.phytochem.2005.01.024
. [PMID: 15907959] - Francisco A Macías, Nuria Chinchilla, Rosa M Varela, Alberto Oliveros-Bastidas, David Marín, José M G Molinillo. Structure-activity relationship studies of benzoxazinones and related compounds. Phytotoxicity on Echinochloa crus-galli (L.) P. Beauv.
Journal of agricultural and food chemistry.
2005 Jun; 53(11):4373-80. doi:
10.1021/jf0502911
. [PMID: 15913298] - Héctor R Bravo, Sylvia V Copaja, Sebastián Figueroa-Duarte, Madeleine Lamborot, José San Martín. 1,4-benzoxazin-3-one, 2-benzoxazolinone and gallic acid from Calceolaria thyrsiflora Graham and their antibacterial activity.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2005 May; 60(5-6):389-93. doi:
10.1515/znc-2005-5-604
. [PMID: 16042337] - M M Finney, D A Danehower, J D Burton. Gas chromatographic method for the analysis of allelopathic natural products in rye (Secale cereale L.).
Journal of chromatography. A.
2005 Feb; 1066(1-2):249-53. doi:
10.1016/j.chroma.2005.01.050
. [PMID: 15794579] - Francisco A Macías, David Marín, Alberto Oliveros-Bastidas, Diego Castellano, Ana M Simonet, José M G Molinillo. Structure-Activity Relationships (SAR) studies of benzoxazinones, their degradation products and analogues. phytotoxicity on standard target species (STS).
Journal of agricultural and food chemistry.
2005 Feb; 53(3):538-48. doi:
10.1021/jf0484071
. [PMID: 15686399] - Regina G Belz, Karl Hurle. Differential exudation of two benzoxazinoids--one of the determining factors for seedling allelopathy of Triticeae species.
Journal of agricultural and food chemistry.
2005 Jan; 53(2):250-61. doi:
10.1021/jf048434r
. [PMID: 15656658] - S Chris Reberg-Horton, James D Burton, David A Danehower, Guoying Ma, David W Monks, J Paul Murphy, Noah N Ranells, John D Williamson, Nancy G Creamer. Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.).
Journal of chemical ecology.
2005 Jan; 31(1):179-93. doi:
10.1007/s10886-005-0983-3
. [PMID: 15839489] - Héctor R Bravo, Sylvia V Copaja, Victor H Argandoña. Chemical basis for the antifeedant activity of natural hydroxamic acids and related compounds.
Journal of agricultural and food chemistry.
2004 May; 52(9):2598-601. doi:
10.1021/jf030766t
. [PMID: 15113164] - N R Burgos, R E Talbert, K S Kim, Y I Kuk. Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale).
Journal of chemical ecology.
2004 Mar; 30(3):671-89. doi:
10.1023/b:joec.0000018637.94002.ba
. [PMID: 15139316] - Francisco A Macias, David Marin, Alberto Oliveros-Bastidas, Rosa M Varela, Ana M Simonet, Ceferino Carrera, Jose M Molinillo. Allelopathy as a new strategy for sustainable ecosystems development.
Uchu Seibutsu Kagaku.
2003 Jun; 17(1):18-23. doi:
10.2187/bss.17.18
. [PMID: 12897457] - T Nomura, A Ishihara, H Imaishi, T R Endo, H Ohkawa, H Iwamura. Molecular characterization and chromosomal localization of cytochrome P450 genes involved in the biosynthesis of cyclic hydroxamic acids in hexaploid wheat.
Molecular genetics and genomics : MGG.
2002 Apr; 267(2):210-7. doi:
10.1007/s00438-002-0653-x
. [PMID: 11976964] - C S Davis, X Ni, S S Quisenberry, J E Foster. Identification and quantification of hydroxamic acids in maize seedling root tissue and impact on western corn rootworm (Coleoptera: Chrysomelidae) larval development.
Journal of economic entomology.
2000 Jun; 93(3):989-92. doi:
10.1603/0022-0493-93.3.989
. [PMID: 10902360] - K P Roberts, R A Iyer, G Prasad, L T Liu, R E Lind, P E Hanna. Cyclic hydroxamic acid inhibitors of prostate cancer cell growth: selectivity and structure activity relationships.
The Prostate.
1998 Feb; 34(2):92-9. doi:
10.1002/(sici)1097-0045(19980201)34:2<92::aid-pros3>3.0.co;2-l
. [PMID: 9465940] - H Iwamura, E Nakagawa, N Hirai. Localization of benzoxazinones that occur constitutively in wheat seedlings.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
1996 Nov; 51(11-12):807-12. doi:
10.1515/znc-1996-11-1207
. [PMID: 9031524] - . .
.
. doi:
. [PMID: 9235894]
- . .
.
. doi:
. [PMID: 18192444]