Gene Association: LTC4S

UniProt Search: LTC4S (PROTEIN_CODING)
Function Description: leukotriene C4 synthase

found 47 associated metabolites with current gene based on the text mining result from the pubmed database.

Caryophyllene alpha-oxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.1827)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). Caryophyllene alpha-oxide is a minor produced of epoxidn. of KGV69-V. Minor production of epoxidn. of KGV69-V Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

Beclometasone

beclomethasone

C22H29ClO5 (408.1703)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents

   

Aspirin

2-Acetoxybenzenecarboxylic acid

C9H8O4 (180.0423)


Aspirin is only found in individuals who have consumed this drug. Aspirin or acetylsalicylic acid (acetosal) is a drug in the family of salicylates, often used as an analgesic (against minor pains and aches), antipyretic (against fever), and anti-inflammatory. It has also an anticoagulant effect and is used in long-term low-doses to prevent heart attacks and cancer. It was isolated from meadowsweet (Filipendula ulmaria, formerly classified as Spiraea ulmaria) by German researchers in 1839. While their extract was somewhat effective, it also caused digestive problems such as irritated stomach and diarrhoea, and even death when consumed in high doses. In 1853, a French chemist named Charles Frederic Gerhardt neutralized salicylic acid by buffering it with sodium (sodium salicylate) and acetyl chloride, creating acetosalicylic anhydride. Gerhardts product worked, but he had no desire to market it and abandoned his discovery. In 1897, researcher Arthur Eichengrun and Felix Hoffmann, a research assistant at Friedrich Bayer & Co. in Germany, derivatized one of the hydroxyl functional groups in salicylic acid with an acetyl group (forming the acetyl ester), which greatly reduced the negative effects. This was the first synthetic drug, not a copy of something that existed in nature, and the start of the pharmaceuticals industry. The name aspirin is composed of a- (from the acetyl group) -spir- (from the plant genus Spiraea) and -in (a common ending for drugs at the time). It has also been stated that the name originated by another means. As referring to AcetylSalicylic and pir in reference to one of the scientists who was able to isolate it in crystalline form, Raffaele Piria. Finally in due to the same reasons as stated above. Salicylic acid (which is a naturally occurring substance found in many plants) can be acetylated using acetic anhydride, yielding aspirin and acetic acid as a byproduct. It is a common experiment performed in organic chemistry labs, and generally tends to produce low yields due to the relative difficulty of its extraction from an aqueous state. The trick to getting the reaction to work is to acidify with phosphoric acid and heat the reagents under reflux with a boiling water bath for between 40 minutes and an hour. Aspirin acts as an inhibitor of cyclooxygenase which results in the inhibition of the biosynthesis of prostaglandins. Aspirin also inhibits platelet aggregation and is used in the prevention of arterial and venous thrombosis. (From Martindale, The Extra Pharmacopoeia, 30th ed, p5). B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors Constituent of Glycyrrhiza glabra variety typica (licorice) roots. Acetylsalicylic acid is found in herbs and spices. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor > C287 - Aspirin D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3578 D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors D058633 - Antipyretics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Arachidonic acid

(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoic acid

C20H32O2 (304.2402)


Arachidonic acid is a polyunsaturated, essential fatty acid that has a 20-carbon chain as a backbone and four cis-double bonds at the C5, C8, C11, and C14 positions. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is synthesized from dietary linoleic acid. Arachidonic acid mediates inflammation and the functioning of several organs and systems either directly or upon its conversion into eicosanoids. Arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. Arachidonic acid can be metabolized by cytochrome p450 (CYP450) enzymes into 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE). The production of kidney CYP450 arachidonic acid metabolites is altered in diabetes, pregnancy, hepatorenal syndrome, and in various models of hypertension, and it is likely that changes in this system contribute to the abnormalities in renal function that are associated with many of these conditions. Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (PMID: 12736897, 12736897, 12700820, 12570747, 12432908). The beneficial effects of omega-3 fatty acids are believed to be due in part to selective alteration of arachidonate metabolism that involves cyclooxygenase (COX) enzymes (PMID: 23371504). 9-Oxononanoic acid (9-ONA), one of the major products of peroxidized fatty acids, was found to stimulate the activity of phospholipase A2 (PLA2), the key enzyme to initiate the arachidonate cascade and eicosanoid production (PMID: 23704812). Arachidonate lipoxygenase (ALOX) enzymes metabolize arachidonic acid to generate potent inflammatory mediators and play an important role in inflammation-associated diseases (PMID: 23404351). Essential fatty acid. Constituent of many animal phospholipids Arachidonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=506-32-1 (retrieved 2024-07-15) (CAS RN: 506-32-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.

   

Montelukast

1-[[[(1R)-1-[3-(1E)-2-(7-chloro-2-quinolinyl)ethenyl]phenyl]-3-[2-(1-hydroxy-1-methylethyl)phenyl]propyl]thio]-methyl]-cyclopropaneacetic acid, monosodium salt

C35H36ClNO3S (585.2104)


Montelukast is a leukotriene receptor antagonist (LTRA) used for the maintenance treatment of asthma and to relieve symptoms of seasonal allergies. It is usually administered orally. Montelukast blocks the action of leukotriene D4 on the cysteinyl leukotriene receptor CysLT1 in the lungs and bronchial tubes by binding to it. This reduces the bronchoconstriction otherwise caused by the leukotriene, and results in less inflammation. Because of its method of operation, it is not useful for the treatment of acute asthma attacks. Again because of its very specific locus of operation, it does not interact with other allergy medications such as theophylline. Montelukast is marketed in United States and many other countries by Merck & Co. with the brand name Singulair. It is available as oral tablets, chewable tablets, and oral granules. In India and other countries, it is also marketed under the brand name Montair®, produced by Indian company Cipla. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DC - Leukotriene receptor antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D065693 - Cytochrome P-450 Enzyme Inducers > D065694 - Cytochrome P-450 CYP1A2 Inducers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

12(S)-HPETE

(5Z,8Z,10E,14Z)-(12S)-12-Hydroperoxyeicosa-5,8,10,14-tetraenoic acid

C20H32O4 (336.23)


12-HPETE is one of the six monohydroperoxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid (Leukotrienes). Reduction of the hydroperoxide yields the more stable hydroxyl fatty acid (+/-)12-HETE. A family of biologically active compounds derived from arachidonic acid by oxidative metabolism through the 5-lipoxygenase pathway. They participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. They have potent actions on many essential organs and systems, including the cardiovascular, pulmonary, and central nervous system as well as the gastrointestinal tract and the immune system. 12-HPETE is one of the six monohydroperoxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid (Leukotrienes). Reduction of the hydroperoxide yields the more stable hydroxyl fatty acid (+/-)12-HETE. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Zafirlukast

[3-[[2-methoxy-4-[[[(2-methylphenyl)sulfonyl]amino]carbonyl]phenyl]methyl]-1-methyl-1H-indol-5-yl]-carbamic acid, cyclopentyl ester

C31H33N3O6S (575.209)


Zafirlukast is an oral leukotriene receptor antagonist (LTRA) for the maintenance treatment of asthma, often used in conjunction with an inhaled steroid and/or long-acting bronchodilator. It is available as a tablet and is usually dosed twice daily. Another leukotriene receptor antagonist is montelukast (Singulair), which is usually taken just once daily. Zafirlukast blocks the action of the cysteinyl leukotrienes on the CysLT1 receptors, thus reducing constriction of the airways, build-up of mucus in the lungs and inflammation of the breathing passages. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DC - Leukotriene receptor antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent

   

5-HETE

(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoic acid

C20H32O3 (320.2351)


5-Hydroxyeicosatetraenoic acid (5-HETE) is an endogenous eicosanoid. 5-HETE is an intermediate in the pathway of leukotriene synthesis. In addition, it is a modulator of tubuloglomerular feedback.; 5-hydroxyeicosatetraenoic acid (5-HETE) is an endogenous eicosanoid. 5-HETE is an intermediate in Arachidonic acid metabolism. It is converted from 5(S)-HPETE via the enzyme glutathione peroxidase (EC 1.11.1.9)and then it is converted to 5-OxoETE. It is also involved in the pathway of leukotriene synthesis. In addition, it is a modulator of tubuloglomerular feedback. 5-HETE is found in corn. 5-hydroxyeicosatetraenoic acid (5-HETE) is an endogenous eicosanoid. 5-HETE is an intermediate in arachidonic acid metabolism. It is converted from 5(S)-HPETE via the enzyme glutathione peroxidase (EC 1.11.1.9)and then converted to 5-OxoETE. It is also involved in the pathway of leukotriene synthesis. In addition, it is a modulator of tubuloglomerular feedback.

   

Leukotriene B4

5S,12R-dihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


A leukotriene composed of (6Z,8E,10E,14Z)-icosatetraenoic acid having (5S)- and (12R)-hydroxy substituents. It is a lipid mediator of inflammation that is generated from arachidonic acid via the 5-lipoxygenase pathway. Chemical was purchased from CAY20110 (Lot 0439924-0).; Diagnostic ions: 335.1, 317.2, 195.1, 129.0, 115.0, 111.5

   

20-hydroxy LTB4

5S,12R,20-trihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid

C20H32O5 (352.225)


   

Leukotriene C4

(5S,6R,7E,9E,11Z, 14Z)-6-[(2R)-2-[[(4S)-4-amino-4-carboxybutanoyl]amino]-3- (carboxymethylamino)-3-oxopropyl]sulfanyl-5-hydroxyicosa-7,9,11, 14-tetraenoic acid

C30H47N3O9S (625.3033)


Leukotriene C4 (LTC4) is a cysteinyl leukotriene (CysLT), a family of potent inflammatory mediators. Eosinophils, one of the principal cell types recruited to and activated at sites of allergic inflammation, is capable of elaborating lipid mediators, including leukotrienes derived from the oxidative metabolism of arachidonic acid (AA). Potentially activated eosinophils may elaborate greater quantities of LTC4, than normal eosinophils. These activated eosinophils thus are primed for enhanced LTC4 generation in response to subsequent stimuli. Some recognized priming stimuli are chemoattractants (e.g. eotaxin, PAF) that may participate in the recruitment of eosinophils to sites of allergic inflammation. The mechanisms by which chemoattractants and other activating cytokines (e.g. interleukin (IL)-5) or extracellular matrix components (e.g. fibronectin) enhance eosinophil eicosanoid formation are pertinent to the functions of these eicosanoids as paracrine mediators of allergic inflammation. Some eosinophil-derived eicosanoids may be active in down-regulating inflammation. It is increasingly likely that eicosanoids synthesized within cells, including eosinophils, may have intracellular (e.g. intracrine) roles in regulating cell functions, in addition to the more recognized activities of eicosanoids as paracrine mediators of inflammation. Acting extracellularly, the cysteinyl leukotrienes (CysLTs) LTC4 and its extracellular derivatives, LTD4 and LTE4 are key paracrine mediators pertinent to asthma and allergic diseases. Based on their receptor-mediated capabilities, they can elicit bronchoconstriction, mucus hypersecretion, bronchial hyperresponsiveness, increased microvascular permeability, and additional eosinophil infiltration. Eosinophils are a major source of CysLTs and have been identified as the principal LTC4 synthase expressing cells in bronchial mucosal biopsies of asthmatic subjects (PMID: 12895596). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Leukotriene c4, also known as ltc4 or 5s,6r-ltc(sub 4), is a member of the class of compounds known as oligopeptides. Oligopeptides are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds. Thus, leukotriene c4 is considered to be an eicosanoid lipid molecule. Leukotriene c4 is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Leukotriene c4 can be synthesized from icosa-7,9,11,14-tetraenoic acid. Leukotriene c4 is also a parent compound for other transformation products, including but not limited to, leukotriene C4 methyl ester, 11,12-dihydro-(12R)-hydroxyleukotriene C4, and 11,12-dihydro-12-oxoleukotriene C4. Leukotriene c4 can be found in a number of food items such as gram bean, maitake, caraway, and burbot, which makes leukotriene c4 a potential biomarker for the consumption of these food products. Leukotriene c4 can be found primarily in blood and cerebrospinal fluid (CSF), as well as throughout most human tissues. In humans, leukotriene c4 is involved in several metabolic pathways, some of which include trisalicylate-choline action pathway, antipyrine action pathway, nepafenac action pathway, and fenoprofen action pathway. Leukotriene c4 is also involved in a couple of metabolic disorders, which include leukotriene C4 synthesis deficiency and tiaprofenic acid action pathway. Moreover, leukotriene c4 is found to be associated with eczema. Leukotriene C4 (LTC4) is a leukotriene. LTC4 has been extensively studied in the context of allergy and asthma. In cells of myeloid origin such as mast cells, its biosynthesis is orchestrated by translocation to the nuclear envelope along with co-localization of cytosolic phospholipase A2 (cPLA2), Arachidonate 5-lipoxygenase (5-LO), 5-lipoxygenase-activating protein (FLAP) and LTC4 synthase (LTC4S), which couples glutathione to an LTA4 intermediate.The MRP1 transporter then secretes cytosolic LTC4 and cell surface proteases further metabolize it by sequential cleavage of the γ-glutamyl and glycine residues off its glutathione segment, generating the more stable products LTD4 and LTE4. All three leukotrienes then bind at different affinities to two G-protein coupled receptors: CYSLTR1 and CYSLTR2, triggering pulmonary vasoconstriction and bronchoconstriction .

   

Leukotriene D4

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-2-[(carboxymethyl)carbamoyl]ethyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C25H40N2O6S (496.2607)


Leukotriene D4 (LTD4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. LTD4 is a pro-inflammatory mediator known to mediate its effects through specific cell-surface receptors belonging to the G-protein-coupled receptor family, namely the high-affinity CysLT1 (cysteinyl leukotriene 1) receptor. LTD4 is present at high levels in many inflammatory conditions, and areas of chronic inflammation have an increased risk for subsequent cancer development. LTD4 is associated with the pathogenesis of several inflammatory disorders, such as asthma and inflammatory bowel disease. Exposure to LTD4 increases survival and proliferation in intestinal epithelial cells. CysLT1 regulator is up-regulated in colon cancer tissue and LTD4 signalling facilitates the survival of cancer cells. LTD4 could reduce apoptosis in non-transformed epithelial cells. LTD4 causes up-regulation of beta-catenin through the CysLT1 receptor, PI3K (phosphoinositide 3-kinase), and GSK-3β (glycogen synthase kinase 3β). LTD4 induces beta-catenin translocation to the nucleus and activation of TCF/LEF family of transcription factors. LTD4 causes accumulation of free beta-catenin in non-transformed intestinal epithelial cells through the CysLT1 receptor, and this accumulation is dependent upon the activation of PI3K as well as GSK-3β inactivation (PMID: 16042577, 12607939). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signaling pathways. Leukotriene D4 (LTD4) is a cysteinyl leukotriene a family of potent inflammatory mediators. LTD4 is a pro-inflammatory mediator known to mediate its effects through specific cell-surface receptors belonging to the G-protein-coupled receptor family, namely the high-affinity CysLT1 (cysteinyl leukotriene 1) receptor. LTD4 is present at high levels in many inflammatory conditions, and areas of chronic inflammation have an increased risk for subsequent cancer development; LTD4 is associated with the pathogenesis of several inflammatory disorders, such as asthma and inflammatory bowel disease. Exposure to LTD4 increases survival and proliferation in intestinal epithelial cells. CysLT1 regulator is up-regulated in colon cancer tissue and LTD4 signalling facilitates the survival of cancer cells. LTD4 could reduce apoptosis in non-transformed epithelial cells. LTD4 causes up-regulation of b-catenin through the CysLT1 receptor, PI3K (phosphoinositide 3-kinase) and GSK-3b (glycogen synthase kinase 3b). LTD4 induces b-catenin translocation to the nucleus and activation of TCF/LEF family of transcription factors. LTD4 causes accumulation of free b-catenin in non-transformed intestinal epithelial cells through the CysLT1 receptor, and this accumulation is dependent upon the activation of PI3K as well as GSK-3b inactivation. (PMID: 16042577, 12607939)

   

Lipoxin A4

(7E,9E,11Z,13E)-(5S,6R,15S)-5,6,15-Trihydroxyicosa-7,9,11,13-tetraenoic acid

C20H32O5 (352.225)


Lipoxin A4 (LXA4) was first identified in 1984 by Serhan and colleagues as 5-lipoxygenase interaction product of activated leukocytes. Endogenous transcellular biosynthesis of LXA4 occurs via interaction of leukocytes with epithelium, endothelium or platelets. Lipoxins (LXs) or the lipoxygenase interaction products are generated from arachidonic acid via sequential actions of lipoxygenases and subsequent reactions to give specific trihydroxytetraene-containing eicosanoids. These unique structures are formed during cell-cell interactions and appear to act at both temporal and spatially distinct sites from other eicosanoids produced during the course of inflammatory responses and to stimulate natural resolution. Lipoxin A4 (LXA4) and lipoxin B4 (LXB4) are positional isomers that each possesses potent cellular and in vivo actions. These LX structures are conserved across species. The results of numerous studies reviewed in this work now confirm that they are the first recognized eicosanoid chemical mediators that display both potent anti-inflammatory and pro-resolving actions in vivo in disease models that include rabbit, rat, and mouse systems. LXs act at specific GPCRs as agonists to regulate cellular responses of interest in inflammation and resolution. Aspirin has a direct impact in the LX circuit by triggering the biosynthesis of endogenous epimers of LX, termed the aspirin-triggered 15-epi-LX, that share the potent anti-inflammatory actions of LX. (PMID: 16005201, 16613568). Lipoxin A4 (LXA4) was first identified in 1984 by Serhan and colleagues as 5-lipoxygenase interaction product of activated leukocytes. Endogenous transcellular biosynthesis of LXA4 occurs via interaction of leukocytes with epithelium, endothelium or platelets. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

1-Chloro-2,4-dinitrobenzene

1,3-Dinitro-4-chlorobenzene

C6H3ClN2O4 (201.9781)


Dinitrochlorobenzene, also known as 4-chloro-1,3-dinitrobenzene or cdnb, is a member of the class of compounds known as nitrobenzenes. Nitrobenzenes are compounds containing a nitrobenzene moiety, which consists of a benzene ring with a carbon bearing a nitro group. Dinitrochlorobenzene is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Dinitrochlorobenzene can be found in a number of food items such as black radish, american butterfish, hedge mustard, and other cereal product, which makes dinitrochlorobenzene a potential biomarker for the consumption of these food products. Dinitrochlorobenzene is produced commercially by the nitration of p-nitrochlorobenzene with a mixture of nitric and sulfuric acids. Other methods afford the compound less efficiently include the chlorination of dinitrobenzene, nitration of o-nitrochlorobenzene and the dinitration of chlorobenzene . D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents C308 - Immunotherapeutic Agent > C2139 - Immunostimulant CONFIDENCE standard compound; INTERNAL_ID 41 D009676 - Noxae > D007509 - Irritants

   

Hexylglutathione

2-Amino-5-((1-((carboxymethyl)amino)-3-(hexylthio)-1-oxopropan-2-yl)amino)-5-oxopentanoic acid

C16H29N3O6S (391.1777)


D004791 - Enzyme Inhibitors

   

Leukotriene A4

4-[(2S,3S)-3-[(1E,3E,5Z,8Z)-tetradeca-1,3,5,8-tetraen-1-yl]oxiran-2-yl]butanoic acid

C20H30O3 (318.2195)


Leukotriene A4 (LTA4) is the first metabolite in the series of reactions leading to the synthesis of all leukotrienes. 5-Lipoxygenase (5-LO) catalyzes the two-step conversion of arachidonic acid to LTA4.The first step consists of the oxidation of arachidonic acid to the unstable intermediate 5-hydroperoxyeicosatetraenoic acid (5-HPETE), and the second step is the dehydration of 5-HPETE to form LTA4. Leukotriene A4, an unstable epoxide, is hydrolyzed to leukotriene B4 or conjugated with glutathione to yield leukotriene C4 and its metabolites, leukotriene D4 and leukotriene E4. The leukotrienes participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. Recent studies also suggest a neuroendocrine role for leukotriene C4 in luteinizing hormone secretion. (PMID: 10591081, 2820055). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Leukotriene A4 (LTA4) is the first metabolite in the series of reactions leading to the synthesis of all leukotrienes. 5-Lipoxygenase (5-LO) catalyzes the two-step conversion of arachidonic acid to LTA4.The first step consists of the oxidation of arachidonic acid to the unstable intermediate 5-hydroperoxyeicosatetraenoic acid (5-HPETE), and the second step is the dehydration of 5-HPETE to form LTA4. Leukotriene A4, an unstable epoxide, is hydrolyzed to leukotriene B4 or conjugated with glutathione to yield leukotriene C4 and its metabolites, leukotriene D4 and leukotriene E4. The leukotrienes participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. Recent studies also suggest a neuroendocrine role for leukotriene C4 in luteinizing hormone secretion. (PMID: 10591081, 2820055)

   

20-Carboxy-leukotriene B4

(5S,6Z,8E,10E,12R,14Z)-5,12-Dihydroxyicosa-6,8,10,14-tetraenedioic acid

C20H30O6 (366.2042)


20-Carboxyleukotriene B4 is an omega-oxidized metabolite of leukotriene B4 (LTB4). Neutrophil microsomes are known to oxidize 20-hydroxy-LTB4 (20-OH-LTB4) to its 20-oxo and 20-carboxy derivatives in the presence of NADPH. This activity has been ascribed to LTB4 omega-hydroxylase (cytochrome P-450LTB omega). Leukotriene B4 release from polymorphonuclear granulocytes of severely burned patients was reduced as compared to healthy donor cells. This decrease is due to an enhanced conversion of LTB4 into the 20-hydroxy- and 20-carboxy-metabolites and further to a decreased LTB4-synthesis. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/ 15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. (PMID 17623009, 7633595, 2155225, 3039534)Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.

   

Leukotriene E4

(5S-(5R*,6S*(s*),7E,9E,11Z,14Z))-6-((2-amino-2-carboxyethyl)thio)-5-hydroxy-7,9,11,14-eicosatetraenoic acid

C23H37NO5S (439.2392)


Leukotriene E4 (LTE4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. Nasal blockage induced by CysLTs is mainly due to dilatation of nasal blood vessels, which can be induced by the nitric oxide produced through CysLT1 receptor activation. LTE4 activates contractile and inflammatory processes via specific interaction with putative seven transmembrane-spanning receptors that couple to G proteins and subsequent intracellular signaling pathways. LTE4 is metabolized from leukotriene C4 in a reaction catalyzed by gamma-glutamyl transpeptidase and a particulate dipeptidase from kidney (PMID: 12607939, 12432945, 6311078). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signaling pathways. Leukotriene E4 (LTE4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. Nasal blockage induced by CysLTs is mainly due to dilatation of nasal blood vessels, which can be induced by the nitric oxide produced through CysLT1 receptor activation. LTE4, activate contractile and inflammatory processes via specific interaction with putative seven transmembrane-spanning receptors that couple to G proteins and subsequent intracellular signaling pathways. LTE4 is metabolized from leukotriene C4 in a reaction catalyzed by gamma-glutamyl transpeptidase and a particulate dipeptidase from kidney. (PMID: 12607939, 12432945, 6311078)

   

Lipoxin B4

(5S,14R,6E,8Z,10E,12E,15S)-5,14,15-Trihydroxy-6,8,10,12-eicosatetraenoic acid

C20H32O5 (352.225)


Lipoxins (LXs) and aspirin-triggered lipoxin (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A4 (LXA4), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. Many of the eicosanoids derived from arachidonic acid (AA2), including prostaglandins (PGs) and leukotrienes (LTs), play important roles as local mediators exerting a wide range of actions relevant in immune hypersensitivity and inflammation. However, recent observations indicate that other agents derived from the lipoxygenase (LO) pathways are formed and play a key role in initiating the resolution of acute inflammation. This phenomenon is an active process that is governed by specific lipid mediators and involves a series of well-orchestrated temporal events. Thus, potent locally released mediators serve as checkpoint controllers of inflammation. In addition to the well-appreciated ability of aspirin to inhibit PGs, aspirin also acetylates cyclooxygenase (COX)-2, triggering the formation of a 15-epimeric form of lipoxins, termed aspirin-triggered LXA4 (ATL). These eicosanoids (i.e. LXA4 and ATL) with a unique trihydroxytetraene structure function as stop signals in inflammation and actively participate in dampening host responses to bring the inflammation to a close, namely, resolution. LXA4 and ATL elicit the multicellular responses via a specific G protein-coupled receptor (GPCR) termed ALX that has been identified in human (PMID: 16968948, 11478982). Lipoxins (LXs) and aspirin-triggered Lipoxin (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A4 (LXA4), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. Many of the eicosanoids derived from arachidonic acid (AA2), including prostaglandins (PGs) and leukotrienes (LTs), play important roles as local mediators exerting a wide range of actions relevant in immune hypersensitivity and inflammation. However, recent observations indicate that other agents derived from the lipoxygenase (LO) pathways are formed and play a key role in initiating the resolution of acute inflammation. This phenomenon is an active process that is governed by specific lipid mediators and involves a series of well-orchestrated temporal events. Thus, potent locally released mediators serve as checkpoint controllers of inflammation. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

Petasin

Petasin

C20H28O3 (316.2038)


An enoate ester obtained by formal condensation of the carboxy group of angelic acid with the hydroxy group of (1R,2R,7S,8aR)-1,8a-dimethyl-6-oxo-7-(prop-1-en-2-yl)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-ol.

   

Calcimycin

4-CHLORO-2-NITROBENZYLALCOHOL

C29H37N3O6 (523.2682)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D007476 - Ionophores > D061207 - Calcium Ionophores D049990 - Membrane Transport Modulators C254 - Anti-Infective Agent > C258 - Antibiotic Calcimycin (A-23187) is an antibiotic and a unique divalent cation ionophore (like calcium and magnesium). Calcimycin induces Ca2+-dependent cell death by increasing intracellular calcium concentration. Calcimycin inhibits the growth of Gram-positive bacteria and some fungi. Calcimycin also inhibits the activity of ATPase and uncouples oxidative phosphorylation (OXPHOS) of mammalian cells. Calcimycin induces apoptosis[1][2][3][4].

   

Pyricarbate

N-methyl[(6-{[(methyl-C-hydroxycarbonimidoyl)oxy]methyl}pyridin-2-yl)methoxy]carboximidic acid

C11H15N3O4 (253.1063)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D01396

   

Leukotriene B4

(6Z,8E,10E,14Z)-(5S,12R)-5,12-Dihydroxyeicosa-6,8,10,14-tetraenoic acid

C20H32O4 (336.23)


Leukotriene B4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region, and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by omega-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the omega-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted in human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before omega-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. The term leukotriene was coined to indicate the presence of three conjugated double bonds within the 20-carbon structure of arachidonic acid as well as the fact that these compounds were derived from leucocytes such as PMNNs or transformed mast cells. Interestingly, most of the cells known to express 5-LO are of myeloid origin, which includes neutrophils, eosinophils, mast cells, macrophages, basophils, and monocytes. Leukotriene biosynthesis begins with the specific oxidation of arachidonic acid by a free radical mechanism as a consequence of interaction with 5-LO. The first enzymatic step involves the abstraction of a hydrogen atom from C-7 of arachidonate followed by the addition of molecular oxygen to form 5-HpETE (5-hydroperoxyeicosatetraenoic acid). A second enzymatic step is also catalyzed by 5-LO and involves removal of a hydrogen atom from C-10, resulting in the formation of the conjugated triene epoxide LTA4. LTA4 must then be released by 5-LO and encounter either LTA4-H (LTA4 hydrolase) or LTC4-S [LTC4 (leukotriene C4) synthase]. LTA4-H can stereospecifically add water to C-12 while retaining a specific double-bond geometry, leading to LTB4 [leukotriene B4, 5(S),12(R)-dihydroxy-6,8,10,14-(Z,E,E,Z)-eicosatetraenoic acid]. If LTA4 encounters LTC4-S, then the reactive epoxide is opened at C-6 by the thiol anion of glutathione to form the product LTC4 [5(S)-hydroxy-6(R)-S-glutathyionyl-7,9,11,14- (E,E,Z,Z)-eicosatetraenoic acid], essentially a glutathionyl adduct of oxidized arachidonic acid. Both of these terminal leukotrienes are biologically active in that specific GPCRs recognize these chemical structures and receptor recognition initiates complex intracellular signalling cascades. In order for these molecules to serve as lipid mediators, however, they must be released from the biosynthetic cell into the extracellular milieu so that they can encounter the corresponding GPCRs. Surprising features of this cascade include the recognition of the assembly of critical enzymes at the perinuclear region of the cell and even localization of 5-LO within the nucleus of some cells. Under some situations, the budding phagosome has been found to assemble these proteins. Non-enzymatic proteins such as FLAP are now known as critical partners of this protein-machine assembly. An unexpected pathway of leukotriene biosynthesis involves the transfer of the chemically reactive intermediate, LTA4, from the biosynthetic cell followed by conversion into LTB4 or LTC4 by other cells that do not express ...

   

20-Hydroxy-leukotriene B4

5,12,20-Trihydroxy-6,8,10,14-eicosatetraenoic acid, (S-(r*,s*-(e,Z,e,Z)))-isomer

C20H32O5 (352.225)


20-hydroxy- Leukotriene B4 (20-OH-LTB4) is an omega-hydroxylated metabolite of leukotriene B4 in human neutrophils. Elevated urinary concentrations of 20-OH-LTB4 and LTB4 are found in patients with Sjogren-Larsson syndrome (SLS, OMIM 270220), an autosomal recessively inherited neurocutaneous disorder caused by a deficiency of the microsomal enzyme fatty aldehyde dehydrogenase (FALDH), which as an essential role in LTB4 metabolism. Preterm birth seems to be one of the features of the syndrome. The reason for the preterm birth is unclear. It is hypothesized that it relates to the defective LTB4 degradation in SLS. The pathological urinary excretion of LTB4 and 20-OH-LTB4 is a biochemical marker for SLS. Surprisingly, 20-OH-LTB4 concentrations are normal in CSF. Leukotriene B4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/ 15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. (PMID: 12709426, 9799565, 11408337, 17623009). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 20-hydroxy- Leukotriene B4 (20-OH-LTB4) is an omega-hydroxylated metabolite of leukotriene B4 in human neutrophils. Elevated urinary concentrations of 20-OH-LTB4 and LTB4 are found in patients with Sjogren-Larsson syndrome (SLS, OMIM 270220), an autosomal recessively inherited neurocutaneous disorder caused by a deficiency of the microsomal enzyme fatty aldehyde dehydrogenase (FALDH), which as an essential role in LTB4 metabolism. Preterm birth seems to be one of the features of the syndrome. The reason for the preterm birth is unclear. It is hypothesized that it relates to the defective LTB4 degradation in SLS. The pathological urinary excretion of LTB4 and 20-OH-LTB4 is a biochemical marker for SLS. Surprisingly, 20-OH-LTB4 concentrations are normal in CSF. Leukotriene B4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/ 15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. (PMID: 12709426, 9799565, 11408337, 17623009)

   

6-[2-Amino-3-(carboxymethylamino)-3-oxopropyl]sulfanyl-5-hydroxyicosa-7,9,11,14-tetraenoic acid

6-({2-amino-2-[(carboxymethyl)-C-hydroxycarbonimidoyl]ethyl}sulphanyl)-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C25H40N2O6S (496.2607)


   

4-Chloro-2-nitrobenzylalcohol

5-(methylamino)-2-({3,9,11-trimethyl-8-[1-oxo-1-(1H-pyrrol-2-yl)propan-2-yl]-1,7-dioxaspiro[5.5]undecan-2-yl}methyl)-1,3-benzoxazole-4-carboxylic acid

C29H37N3O6 (523.2682)


Calcimycin (A-23187) is an antibiotic and a unique divalent cation ionophore (like calcium and magnesium). Calcimycin induces Ca2+-dependent cell death by increasing intracellular calcium concentration. Calcimycin inhibits the growth of Gram-positive bacteria and some fungi. Calcimycin also inhibits the activity of ATPase and uncouples oxidative phosphorylation (OXPHOS) of mammalian cells. Calcimycin induces apoptosis[1][2][3][4].

   

FA 20:4

all-cis-5,8,11,14-Eicosatetraenoic acid

C20H32O2 (304.2402)


Chemical was purchased from CAY 90010 (Lot. 0447254-11); Diagnostic ions:303.1, 259.2, 205.2 Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.604 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.605 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.603 COVID info from WikiPathways Annotation level-2 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.

   

Arachidonic acid

arachidonic acid

C20H32O2 (304.2402)


A long-chain fatty acid that is a C20, polyunsaturated fatty acid having four (Z)-double bonds at positions 5, 8, 11 and 14. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.

   

LTB4_20-hydroxy

20-Hydroxy-leukotriene B4

C20H32O5 (352.225)


The 20-hydroxy derivative of leukotriene B4.

   

Lipoxin A4

5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid

C20H32O5 (352.225)


A C20 hydroxy fatty acid having (5S)-, (6R)- and (15S)-hydroxy groups as well as (7E)- (9E)-, (11Z)- and (13E)-double bonds. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Chemical was purchased from CAY90410 (Lot D433602-40); Diagnostic ions: 351.2, 251.1, 235,1, 145.6, 114.9

   

zafirlukast

Zafirlukast (Accolate)

C31H33N3O6S (575.209)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DC - Leukotriene receptor antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent

   

aspirin

Acetylsaliycilic acid

C9H8O4 (180.0423)


B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor > C287 - Aspirin D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors D058633 - Antipyretics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 112

   

Montelukast

Montelukast

C35H36ClNO3S (585.2104)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DC - Leukotriene receptor antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D065693 - Cytochrome P-450 Enzyme Inducers > D065694 - Cytochrome P-450 CYP1A2 Inducers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2745

   

Leukotriene C4

5S-hydroxy-6R-(S-glutathionyl),7E,9E,11Z,14Z-eicosatetraenoic acid

C30H47N3O9S (625.3033)


A leukotriene that is (5S,7E,9E,11Z,14Z)-5-hydroxyicosa-7,9,11,14-tetraenoic acid in which a glutathionyl group is attached at position 6 via a sulfide linkage.

   

5-Hete

5S-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid

C20H32O3 (320.2351)


A HETE having a 5-hydroxy group and (6E)-, (8Z)-, (11Z)- and (14Z)-double bonds. A HETE having a (5S)-hydroxy group and (6E)-, (8Z)-, (11Z)- and (14Z)-double bonds.

   

Leukotriene E

5S-hydroxy-6R-(S-cysteinyl),7E,9E,11Z,14Z-eicosatetraenoic acid

C23H37NO5S (439.2392)


A leukotriene that is (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid substituted by a hydroxy group at position 5 (5S) and an L-cystein-S-yl group at position 6 (6R).

   

Leukotriene D4

5S-hydroxy-6R-(S-cysteinylglycinyl)-7E,9E,11E,14Z-eicosatetraenoic acid

C25H40N2O6S (496.2607)


A leukotriene that is (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid substituted by a hydroxy group at position 5 (5S) and a L-cysteinylglycinyl group at position 6 (6R).

   

FA 20:5;O4

(5R,6Z,8E,10E,14Z)-5,20,20-trihydroxy-12-oxoicosa-6,8,10,14-tetraenoic acid

C20H30O6 (366.2042)


   

Leukotriene A4

5S,6S-epoxy-7E,9E,11Z,14Z-eicosatetraenoic acid

C20H30O3 (318.2195)


A leukotriene that is the (5S,6S)-epoxy derivative of (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid.

   

lipoxin B4

5S,14R,15S-trihydroxy-6E,8Z,10E,12E-eicosatetraenoic acid

C20H32O5 (352.225)


A C20 hydroxy fatty acid having (5S)-, (14R)- and (15S)-hydroxy groups as well as (6E)- (8Z)-, (10E)- and (12E)-double bonds. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

Pyricarbate

Pyridinol carbamate

C11H15N3O4 (253.1063)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D01396

   

A3925_SIGMA

5,8,11,14-Eicosatetraenoic acid, labeled with carbon-14, (all-Z)-

C20H32O2 (304.2402)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.

   

12(S)-HPETE

12-Hydroperoxy-5,8,10,14-eicosatetraenoic acid

C20H32O4 (336.23)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents The (S)-enantiomer of 12-HPETE.

   

epoxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.1827)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). A natural product found in Cupania cinerea. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

20-carboxy-Leukotriene B4

20-hydroxy-20-oxoleukotriene B4

C20H30O6 (366.2042)


   

s-Hexylglutathione

s-Hexylglutathione

C16H29N3O6S (391.1777)


D004791 - Enzyme Inhibitors

   

Dinitrochlorobenzene

1-chloro-2,4-dinitrobenzene

C6H3ClN2O4 (201.9781)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D009676 - Noxae > D007509 - Irritants