Glucoiberin (BioDeep_00000003268)
natural product human metabolite PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C11H21NO10S3 (423.0328)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 68.73%
分子结构信息
SMILES: C(C/C(=N/OS(=O)(=O)O)/S[C@H]1O[C@H]([C@@H]([C@H]([C@H]1O)O)O)CO)C[S@](=O)C
InChI: InChI=1S/C11H21NO10S3/c1-24(17)4-2-3-7(12-22-25(18,19)20)23-11-10(16)9(15)8(14)6(5-13)21-11/h6,8-11,13-16H,2-5H2,1H3,(H,18,19,20)/b12-7+
描述信息
Glucoiberin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Glucoiberin is an extremely weak basic (essentially neutral) compound (based on its pKa). Glucoiberin has been detected, but not quantified in, several different foods, such as capers, cauliflowers, cabbages, Brassicas, and Chinese cabbages. This could make glucoiberin a potential biomarker for the consumption of these foods. Glucoiberin is isolated from the seeds of Brassica oleracea and other crucifers.
Isolated from seeds of Brassica oleracea and other crucifers. Glucoiberin is found in many foods, some of which are white cabbage, cabbage, broccoli, and brussel sprouts.
Acquisition and generation of the data is financially supported in part by CREST/JST.
同义名列表
8 个代谢物同义名
{[(E)-(4-methanesulfinyl-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}butylidene)amino]oxy}sulfonic acid; [(E)-(4-methanesulfinyl-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}butylidene)amino]oxysulfonic acid; [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl] 4-methylsulfinyl-N-sulfooxy-butanimidothioate; 3-(Methylsulfinyl)propyl glucosinolate; 3-(Methylsulfinyl)propylglucosinolate; 3-Methylsulfinylpropyl glucosinolate; Glucoiberin; Glucoiberin
数据库引用编号
30 个数据库交叉引用编号
- KEGG: C08411
- PubChem: 4479897
- PubChem: 9548622
- PubChem: 656543
- HMDB: HMDB0038406
- Metlin: METLIN66953
- MetaCyc: 3-METHYLSULFINYLPROPYL-GLUCOSINOLATE
- KNApSAcK: C00007343
- foodb: FDB017760
- chemspider: 7827545
- CAS: 27303-31-7
- CAS: 554-88-1
- MoNA: PS107410
- MoNA: PS107412
- MoNA: PS107401
- MoNA: PS107407
- MoNA: PS107408
- MoNA: PS107411
- MoNA: PS107404
- MoNA: PS107405
- MoNA: PS107409
- MoNA: PR100429
- MoNA: PS107402
- MoNA: PS107403
- PMhub: MS000008662
- ChEBI: CHEBI:5406
- PubChem: 10607
- NIKKAJI: J398.664K
- KNApSAcK: 5406
- LOTUS: LTS0274245
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
17 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(17)
- glucosinolate biosynthesis from homomethionine:
H2O + O2 + glucoiberin ⟶ 3-hydroxypropyl-glucosinolate + H+ + methanesulfonate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
O2 + glucoiberin ⟶ H+ + methanesulfonate + sinigrin
- glucosinolate biosynthesis from homomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
H2O + O2 + glucoiberin ⟶ 3-hydroxypropyl-glucosinolate + H+ + methanesulfonate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
50 个相关的物种来源信息
- 3702 - Arabidopsis thaliana:
- 3704 - Armoracia rusticana: 10.1016/S0031-9422(00)89990-2
- 3705 - Brassica: 10.1016/S0031-9422(00)81740-9
- 3705 - Brassica: LTS0274245
- 69181 - Brassica cretica: 10.1016/S0031-9422(00)81740-9
- 69181 - Brassica cretica: LTS0274245
- 129365 - Brassica incana: 10.1016/S0031-9422(00)81740-9
- 129365 - Brassica incana: LTS0274245
- 69183 - Brassica insularis: 10.1016/S0031-9422(00)81740-9
- 69183 - Brassica insularis: LTS0274245
- 69184 - Brassica macrocarpa: 10.1016/S0031-9422(00)81740-9
- 69184 - Brassica macrocarpa: LTS0274245
- 69185 - Brassica montana: 10.1016/S0031-9422(00)81740-9
- 69185 - Brassica montana: LTS0274245
- 3712 - Brassica oleracea:
- 3712 - Brassica oleracea: 10.1002/JSFA.2740340308
- 3712 - Brassica oleracea: 10.1016/J.PHYTOCHEM.2006.11.017
- 3712 - Brassica oleracea: 10.1016/S0031-9422(00)81740-9
- 3712 - Brassica oleracea: LTS0274245
- 1216010 - Brassica oleracea var. sabauda:
- 3711 - Brassica rapa: 10.1016/J.PHYTOCHEM.2007.08.014
- 3711 - Brassica rapa: 10.1016/S0031-9422(00)81740-9
- 3711 - Brassica rapa: LTS0274245
- 51351 - Brassica rapa subsp. pekinensis: 10.1016/S0031-9422(00)81740-9
- 51351 - Brassica rapa subsp. pekinensis: LTS0274245
- 69186 - Brassica rupestris: 10.1016/S0031-9422(00)81740-9
- 69186 - Brassica rupestris: LTS0274245
- 37661 - Brassica tournefortii: 10.1016/0305-1978(87)90106-2
- 37661 - Brassica tournefortii: LTS0274245
- 3700 - Brassicaceae: LTS0274245
- 65558 - Capparis spinosa: 10.1016/S0031-9422(00)89999-9
- 65352 - Erysimum: LTS0274245
- 115931 - Erysimum asperum: 10.1016/0031-9422(80)85117-X
- 220481 - Erysimum capitatum: 10.1016/0031-9422(80)85117-X
- 913017 - Erysimum diffusum: 10.1016/0031-9422(80)85117-X
- 450824 - Erysimum linifolium: 10.1016/0031-9422(80)85117-X
- 1137569 - Erysimum odoratum: 10.1016/0031-9422(80)85117-X
- 369001 - Erysimum repandum: 10.1016/0031-9422(80)85117-X
- 369002 - Erysimum sisymbrioides: 10.1016/0031-9422(80)85117-X
- 1370092 - Erysimum sylvestre: 10.1016/0031-9422(80)85117-X
- 2759 - Eukaryota: LTS0274245
- 71353 - Hirschfeldia: LTS0274245
- 71354 - Hirschfeldia incana: 10.1016/S0031-9422(00)81740-9
- 71354 - Hirschfeldia incana: LTS0274245
- 9606 - Homo sapiens: -
- 3398 - Magnoliopsida: LTS0274245
- 234454 - Malcolmia africana: 10.1016/0031-9422(80)85117-X
- 35493 - Streptophyta: LTS0274245
- 58023 - Tracheophyta: LTS0274245
- 33090 - Viridiplantae: LTS0274245
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Teresa Oliviero, Simone Lamers, Edoardo Capuano, Matthijs Dekker, Ruud Verkerk. Bioavailability of Isothiocyanates From Broccoli Sprouts in Protein, Lipid, and Fiber Gels.
Molecular nutrition & food research.
2018 09; 62(18):e1700837. doi:
10.1002/mnfr.201700837
. [PMID: 29532635] - Probo Y Nugrahedi, Teresa Oliviero, Jenneke K Heising, Matthijs Dekker, Ruud Verkerk. Stir-Frying of Chinese Cabbage and Pakchoi Retains Health-Promoting Glucosinolates.
Plant foods for human nutrition (Dordrecht, Netherlands).
2017 Dec; 72(4):439-444. doi:
10.1007/s11130-017-0646-x
. [PMID: 29134463] - Yurena Barrameda-Medina, Begoña Blasco, Marco Lentini, Sergio Esposito, Nieves Baenas, Diego A Moreno, Juan M Ruiz. Zinc biofortification improves phytochemicals and amino-acidic profile in Brassica oleracea cv. Bronco.
Plant science : an international journal of experimental plant biology.
2017 May; 258(?):45-51. doi:
10.1016/j.plantsci.2017.02.004
. [PMID: 28330562] - Sabine Montaut, Benjamin S Guido, Claude Grison, Patrick Rollin. Identification of Glucosinolates in Seeds of Three Brassicaceae Species Known to Hyperaccumulate Heavy Metals.
Chemistry & biodiversity.
2017 Mar; 14(3):. doi:
10.1002/cbdv.201600311
. [PMID: 27981800] - Ingrid Aguiló-Aguayo, Manuel Suarez, Lucia Plaza, Mohammad B Hossain, Nigel Brunton, James G Lyng, Dilip K Rai. Optimization of pulsed electric field pre-treatments to enhance health-promoting glucosinolates in broccoli flowers and stalk.
Journal of the science of food and agriculture.
2015 Jul; 95(9):1868-75. doi:
10.1002/jsfa.6891
. [PMID: 25171771] - Teresa Oliviero, Ruud Verkerk, Martijn Vermeulen, Matthijs Dekker. In vivo formation and bioavailability of isothiocyanates from glucosinolates in broccoli as affected by processing conditions.
Molecular nutrition & food research.
2014 Jul; 58(7):1447-56. doi:
10.1002/mnfr.201300894
. [PMID: 24687744] - Serena Santolamazza-Carbone, Pablo Velasco, Pilar Soengas, María Elena Cartea. Bottom-up and top-down herbivore regulation mediated by glucosinolates in Brassica oleracea var. acephala.
Oecologia.
2014 Mar; 174(3):893-907. doi:
10.1007/s00442-013-2817-2
. [PMID: 24352843] - Simona I Vicas, Alin C Teusdea, Mihai Carbunar, Sonia A Socaci, Carmen Socaciu. Glucosinolates profile and antioxidant capacity of Romanian Brassica vegetables obtained by organic and conventional agricultural practices.
Plant foods for human nutrition (Dordrecht, Netherlands).
2013 Sep; 68(3):313-21. doi:
10.1007/s11130-013-0367-8
. [PMID: 23817957] - Mariateresa Maldini, Simona Baima, Giorgio Morelli, Cristina Scaccini, Fausta Natella. A liquid chromatography-mass spectrometry approach to study "glucosinoloma" in broccoli sprouts.
Journal of mass spectrometry : JMS.
2012 Sep; 47(9):1198-206. doi:
10.1002/jms.3028
. [PMID: 22972788] - Rosa Agneta, Anna Rita Rivelli, Emanuela Ventrella, Filomena Lelario, Giulio Sarli, Sabino Aurelio Bufo. Investigation of glucosinolate profile and qualitative aspects in sprouts and roots of horseradish (Armoracia rusticana) using LC-ESI-hybrid linear ion trap with Fourier transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation.
Journal of agricultural and food chemistry.
2012 Aug; 60(30):7474-82. doi:
10.1021/jf301294h
. [PMID: 22779710] - F A Hashem, H Motawea, A E El-Shabrawy, K Shaker, S El-Sherbini. Myrosinase hydrolysates of Brassica oleraceae L. var. italica reduce the risk of colon cancer.
Phytotherapy research : PTR.
2012 May; 26(5):743-7. doi:
10.1002/ptr.3591
. [PMID: 22076869] - Jeffrey A Harvey, Nicole M van Dam, Ciska E Raaijmakers, James M Bullock, Rieta Gols. Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea).
Oecologia.
2011 Jun; 166(2):421-31. doi:
10.1007/s00442-010-1861-4
. [PMID: 21140168] - Adriaan Verhage, Ido Vlaardingerbroek, Ciska Raaymakers, Nicole M Van Dam, Marcel Dicke, Saskia C M Van Wees, Corné M J Pieterse. Rewiring of the Jasmonate Signaling Pathway in Arabidopsis during Insect Herbivory.
Frontiers in plant science.
2011; 2(?):47. doi:
10.3389/fpls.2011.00047
. [PMID: 22645537] - Erik H Poelman, Nicole M Van Dam, Joop J A Van Loon, Louise E M Vet, Marcel Dicke. Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores.
Ecology.
2009 Jul; 90(7):1863-77. doi:
10.1890/08-0977.1
. [PMID: 19694135] - Jules Beekwilder, Wessel van Leeuwen, Nicole M van Dam, Monica Bertossi, Valentina Grandi, Luca Mizzi, Mikhail Soloviev, Laszlo Szabados, Jos W Molthoff, Bert Schipper, Hans Verbocht, Ric C H de Vos, Piero Morandini, Mark G M Aarts, Arnaud Bovy. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis.
PloS one.
2008 Apr; 3(4):e2068. doi:
10.1371/journal.pone.0002068
. [PMID: 18446225] - Rieta Gols, Tibor Bukovinszky, Nicole M van Dam, Marcel Dicke, James M Bullock, Jeffrey A Harvey. Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations.
Journal of chemical ecology.
2008 Feb; 34(2):132-43. doi:
10.1007/s10886-008-9429-z
. [PMID: 18231835] - María Elena Cartea, Pablo Velasco, Sara Obregón, Guillermo Padilla, Antonio de Haro. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain.
Phytochemistry.
2008 Jan; 69(2):403-10. doi:
10.1016/j.phytochem.2007.08.014
. [PMID: 17889044] - Kristina L Wade, Ian J Garrard, Jed W Fahey. Improved hydrophilic interaction chromatography method for the identification and quantification of glucosinolates.
Journal of chromatography. A.
2007 Jun; 1154(1-2):469-72. doi:
10.1016/j.chroma.2007.04.034
. [PMID: 17482632] - Maaike Bruinsma, Nicole M Van Dam, Joop J A Van Loon, Marcel Dicke. Jasmonic acid-induced changes in Brassica oleracea affect oviposition preference of two specialist herbivores.
Journal of chemical ecology.
2007 Apr; 33(4):655-68. doi:
10.1007/s10886-006-9245-2
. [PMID: 17334923] - Pablo Velasco, María Elena Cartea, Carmen Gonzalez, Marta Vilar, Amando Ordas. Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group).
Journal of agricultural and food chemistry.
2007 Feb; 55(3):955-62. doi:
10.1021/jf0624897
. [PMID: 17263499] - Lijiang Song, John J Morrison, Nigel P Botting, Paul J Thornalley. Analysis of glucosinolates, isothiocyanates, and amine degradation products in vegetable extracts and blood plasma by LC-MS/MS.
Analytical biochemistry.
2005 Dec; 347(2):234-43. doi:
10.1016/j.ab.2005.09.040
. [PMID: 16289008] - Harald Schempp, Angela Toth, Dieter Weiser, Erich F Elstner. Antioxidative properties of Iberis amara extracts in biochemical model reactions.
Arzneimittel-Forschung.
2003; 53(8):568-77. doi:
10.1055/s-0031-1297151
. [PMID: 13677247] - O Vang, H Frandsen, K T Hansen, J N Sørensen, H Sørensen, O Andersen. Biochemical effects of dietary intakes of different broccoli samples. I. Differential modulation of cytochrome P-450 activities in rat liver, kidney, and colon.
Metabolism: clinical and experimental.
2001 Oct; 50(10):1123-9. doi:
10.1053/meta.2001.26743
. [PMID: 11586481]