ST 28:0;O3 (BioDeep_00000010924)

   


代谢物信息卡片


5alpha-campestan-3alpha,22R,23R-triol

化学式: C28H50O3 (434.376)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(plant) 7.77%

分子结构信息

SMILES: CC(C)C(C)C(C(C(C)C1CCC2C1(CCC3C2CCC4C3(CCC(C4)O)C)C)O)O
InChI: InChI=1S/C28H50O3/c1-16(2)17(3)25(30)26(31)18(4)22-9-10-23-21-8-7-19-15-20(29)11-13-27(19,5)24(21)12-14-28(22,23)6/h16-26,29-31H,7-15H2,1-6H3/t17-,18-,19-,20+,21-,22+,23-,24-,25+,26+,27-,28+/m0/s1

描述信息

Typhasterol in which the oxygen atom of the keto group has been substituted by two hydrogen atoms. A member of a biosynthetic pathway to castasterone, it has been isolated from the primary roots of maize.

同义名列表

5 个代谢物同义名

5alpha-campestan-3alpha,22R,23R-triol; 6-Deoxotyphasterol; ST 28:0;O3; 5alpha-campestan-3beta,22R,23R-triol; 6-Deoxoteasterone



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(3)

PlantCyc(5)

代谢反应

355 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(6)

WikiPathways(1)

Plant Reactome(3)

INOH(0)

PlantCyc(345)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Toshiyuki Ohnishi, Blanka Godza, Bunta Watanabe, Shozo Fujioka, Lidia Hategan, Kouhei Ide, Kiyomi Shibata, Takao Yokota, Miklos Szekeres, Masaharu Mizutani. CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. The Journal of biological chemistry. 2012 Sep; 287(37):31551-60. doi: 10.1074/jbc.m112.392720. [PMID: 22822057]
  • Tomoaki Sakamoto, Toshiyuki Ohnishi, Shozo Fujioka, Bunta Watanabe, Masaharu Mizutani. Rice CYP90D2 and CYP90D3 catalyze C-23 hydroxylation of brassinosteroids in vitro. Plant physiology and biochemistry : PPB. 2012 Sep; 58(?):220-6. doi: 10.1016/j.plaphy.2012.07.011. [PMID: 22846333]
  • Se-Hwan Joo, Tae-Wuk Kim, Seung-Hyun Son, Woo Sung Lee, Takao Yokota, Seong-Ki Kim. Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana. Journal of experimental botany. 2012 Mar; 63(5):1823-33. doi: 10.1093/jxb/err354. [PMID: 22170941]
  • Brigitte Poppenberger, Wilfried Rozhon, Mamoona Khan, Sigrid Husar, Gerhard Adam, Christian Luschnig, Shozo Fujioka, Tobias Sieberer. CESTA, a positive regulator of brassinosteroid biosynthesis. The EMBO journal. 2011 Mar; 30(6):1149-61. doi: 10.1038/emboj.2011.35. [PMID: 21336258]
  • Andrzej Bajguz. Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophyceae). Journal of plant physiology. 2009 Nov; 166(17):1946-9. doi: 10.1016/j.jplph.2009.05.003. [PMID: 19535168]
  • Ryo Yamamoto, Shozo Fujioka, Kuninori Iwamoto, Taku Demura, Suguru Takatsuto, Shigeo Yoshida, Hiroo Fukuda. Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant & cell physiology. 2007 Jan; 48(1):74-83. doi: 10.1093/pcp/pcl039. [PMID: 17132633]
  • Young-Soo Kim, Tae-Wuk Kim, Seong-Ki Kim. Brassinosteroids are inherently biosynthesized in the primary roots of maize, Zea mays L. Phytochemistry. 2005 May; 66(9):1000-6. doi: 10.1016/j.phytochem.2005.03.007. [PMID: 15896368]
  • Naoki Takahashi, Miki Nakazawa, Kyomi Shibata, Takao Yokota, Akie Ishikawa, Kumiko Suzuki, Mika Kawashima, Takanari Ichikawa, Hiroaki Shimada, Minami Matsui. shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels. The Plant journal : for cell and molecular biology. 2005 Apr; 42(1):13-22. doi: 10.1111/j.1365-313x.2005.02357.x. [PMID: 15773850]
  • Sumiyo Tanabe, Motoyuki Ashikari, Shozo Fujioka, Suguru Takatsuto, Shigeo Yoshida, Masahiro Yano, Atsushi Yoshimura, Hidemi Kitano, Makoto Matsuoka, Yukiko Fujisawa, Hisaharu Kato, Yukimoto Iwasaki. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. The Plant cell. 2005 Mar; 17(3):776-90. doi: 10.1105/tpc.104.024950. [PMID: 15705958]
  • Takahito Nomura, Corinne E Jager, Yukiko Kitasaka, Keiichi Takeuchi, Motohiro Fukami, Koichi Yoneyama, Yasuhiko Matsushita, Hiroshi Nyunoya, Suguru Takatsuto, Shozo Fujioka, Jennifer J Smith, L Huub J Kerckhoffs, James B Reid, Takao Yokota. Brassinosteroid deficiency due to truncated steroid 5alpha-reductase causes dwarfism in the lk mutant of pea. Plant physiology. 2004 Aug; 135(4):2220-9. doi: 10.1104/pp.104.043786. [PMID: 15286289]
  • Zhi Hong, Miyako Ueguchi-Tanaka, Kazuto Umemura, Sakurako Uozu, Shozo Fujioka, Suguru Takatsuto, Shigeo Yoshida, Motoyuki Ashikari, Hidemi Kitano, Makoto Matsuoka. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. The Plant cell. 2003 Dec; 15(12):2900-10. doi: 10.1105/tpc.014712. [PMID: 14615594]
  • T Nomura, T Sato, G J Bishop, Y Kamiya, S Takatsuto, T Yokota. Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry. 2001 May; 57(2):171-8. doi: 10.1016/s0031-9422(00)00440-4. [PMID: 11382232]
  • R Yamamoto, S Fujioka, T Demura, S Takatsuto, S Yoshida, H Fukuda. Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant physiology. 2001 Feb; 125(2):556-63. doi: 10.1104/pp.125.2.556. [PMID: 11161013]
  • . . . . doi: . [PMID: 9927639]
  • . . . . doi: . [PMID: 11402205]
  • . . . . doi: . [PMID: 17138693]
  • . . . . doi: . [PMID: 14502988]