N-Acetylhistidine (BioDeep_00000003001)
Secondary id: BioDeep_00001868607
human metabolite Endogenous
代谢物信息卡片
化学式: C8H11N3O3 (197.0800376)
中文名称: N-乙酰-L-组氨酸, N-乙酰基-L-组氨酸
谱图信息:
最多检出来源 Homo sapiens(feces) 0.22%
Last reviewed on 2024-09-13.
Cite this Page
N-Acetylhistidine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/n-acetylhistidine (retrieved
2024-11-08) (BioDeep RN: BioDeep_00000003001). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(=O)NC(CC1=CN=CN1)C(=O)O
InChI: InChI=1S/C8H11N3O3/c1-5(12)11-7(8(13)14)2-6-3-9-4-10-6/h3-4,7H,2H2,1H3,(H,9,10)(H,11,12)(H,13,14)
描述信息
N-Acetyl-L-histidine or N-Acetylhistidine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylhistidine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylhistidine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-histidine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\% of all human proteins and 68\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylhistidine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free histidine can also occur. In particular, N-Acetylhistidine can be biosynthesized from L-histidine and acetyl-CoA by the enzyme histidine N-acetyltransferase (EC 2.3.1.33). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557).
Constituent of the tissues of various fish and amphibian subspecies N-Acetylhistidine is found in fishes.
KEIO_ID A073
同义名列表
23 个代谢物同义名
(2S)-2-Acetamido-3-(1H-imidazol-5-yl)propanoic acid; (2S)-2-acetamido-3-(1H-imidazol-4-yl)propanoic acid; (2S)-2-Acetamido-3-(1H-imidazol-5-yl)propionic acid; (S)-2-Acetamido-3-(1H-imidazol-4-yl)propanoicacid; N-Acetylhistidine, (DL)-isomer; N-Acetylhistidine monohydrate; N-alpha-Acetyl-L-histidine; alpha-N-Acetyl-L-histidine; Nalpha-acetyl-L-histidine; Nalpha-acetylhistidine; N-Α-acetyl-L-histidine; Α-N-acetyl-L-histidine; N-Acetyl-dl-histidine; Nα-acetyl-L-histidine; N-Acetyl-L-histidine; N-alpha-L-Histidine; Nα-acetylhistidine; N2-Acetylhistidine; N-Acetyl histidine; N-Acetylhistidine; N-a-L-Histidine; N-Α-L-histidine; N-Hydroxy-aabp
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:16437
- KEGG: C02997
- PubChem: 273260
- PubChem: 75619
- HMDB: HMDB0032055
- Metlin: METLIN44784
- ChEMBL: CHEMBL3251664
- MetaCyc: CPD-424
- foodb: FDB008762
- chemspider: 68142
- CAS: 2497-02-1
- MoNA: KO002220
- MoNA: KO000146
- MoNA: KO000147
- MoNA: KO002219
- MoNA: KO000144
- MoNA: KO000145
- MoNA: KO002221
- MoNA: KO000143
- MoNA: KO002222
- MoNA: KO002218
- PMhub: MS000007676
- PubChem: 5906
- 3DMET: B00525
- NIKKAJI: J125.811G
- RefMet: N-Acetylhistidine
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
5 个相关的物种来源信息
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens: -
- 5691 - Trypanosoma brucei:
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Shengyuan Luo, Aditya Surapaneni, Zihe Zheng, Eugene P Rhee, Josef Coresh, Adriana M Hung, Girish N Nadkarni, Bing Yu, Eric Boerwinkle, Adrienne Tin, Dan E Arking, Inga Steinbrenner, Pascal Schlosser, Anna Köttgen, Morgan E Grams. NAT8 Variants, N-Acetylated Amino Acids, and Progression of CKD.
Clinical journal of the American Society of Nephrology : CJASN.
2020 12; 16(1):37-47. doi:
10.2215/cjn.08600520
. [PMID: 33380473] - Nishikant Wase, Boqiang Tu, James W Allen, Paul N Black, Concetta C DiRusso. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae.
Plant physiology.
2017 Aug; 174(4):2146-2165. doi:
10.1104/pp.17.00433
. [PMID: 28652262] - Fikremariam Geda, Annelies M Declercq, Sofie C Remø, Rune Waagbø, Marta Lourenço, Geert P J Janssens. The metabolic response in fish to mildly elevated water temperature relates to species-dependent muscular concentrations of imidazole compounds and free amino acids.
Journal of thermal biology.
2017 Apr; 65(?):57-63. doi:
10.1016/j.jtherbio.2017.02.004
. [PMID: 28343576] - S C Remø, E M Hevrøy, P A Olsvik, R Fontanillas, O Breck, R Waagbø. Dietary histidine requirement to reduce the risk and severity of cataracts is higher than the requirement for growth in Atlantic salmon smolts, independently of the dietary lipid source.
The British journal of nutrition.
2014 May; 111(10):1759-72. doi:
10.1017/s0007114513004418
. [PMID: 24576359] - S C Remø, P A Olsvik, B E Torstensen, H Amlund, O Breck, R Waagbø. Susceptibility of Atlantic salmon lenses to hydrogen peroxide oxidation ex vivo after being fed diets with vegetable oil and methylmercury.
Experimental eye research.
2011 May; 92(5):414-24. doi:
10.1016/j.exer.2011.02.018
. [PMID: 21377462] - Christiane Trösse, Jeremy D Rhodes, Julie Sanderson, Olav Breck, Rune Waagbø. Effect of plant-based feed ingredients on osmoregulation in the Atlantic salmon lens.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2010 Apr; 155(4):354-62. doi:
10.1016/j.cbpb.2009.12.002
. [PMID: 20044022] - Christiane Trösse, Rune Waagbø, Olav Breck, Anne-Kristin Stavrum, Kjell Petersen, Pål A Olsvik. Genome-wide transcription analysis of histidine-related cataract in Atlantic salmon (Salmo salar L).
Molecular vision.
2009 Jul; 15(?):1332-50. doi:
. [PMID: 19597568]
- Meike Schaefer, Rüdiger Hardeland. The melatonin metabolite N-acetyl-5-methoxykynuramine is a potent singlet oxygen scavenger.
Journal of pineal research.
2009 Jan; 46(1):49-52. doi:
10.1111/j.1600-079x.2008.00614.x
. [PMID: 18643875] - Fiona A Summers, Philip E Morgan, Michael J Davies, Clare L Hawkins. Identification of plasma proteins that are susceptible to thiol oxidation by hypochlorous acid and N-chloramines.
Chemical research in toxicology.
2008 Sep; 21(9):1832-40. doi:
10.1021/tx8001719
. [PMID: 18698849] - Suresh P Annangudi, Yijun Deng, Xiaorong Gu, Wujuan Zhang, John W Crabb, Robert G Salomon. Low-density lipoprotein has an enormous capacity to bind (E)-4-hydroxynon-2-enal (HNE): detection and characterization of lysyl and histidyl adducts containing multiple molecules of HNE.
Chemical research in toxicology.
2008 Jul; 21(7):1384-95. doi:
10.1021/tx8000303
. [PMID: 18570390] - Wei Lu, Jack P Uetrecht. Possible bioactivation pathways of lamotrigine.
Drug metabolism and disposition: the biological fate of chemicals.
2007 Jul; 35(7):1050-6. doi:
10.1124/dmd.107.015271
. [PMID: 17409271] - U Rauen, S Klempt, H de Groot. Histidine-induced injury to cultured liver cells, effects of histidine derivatives and of iron chelators.
Cellular and molecular life sciences : CMLS.
2007 Jan; 64(2):192-205. doi:
10.1007/s00018-006-6456-1
. [PMID: 17180300] - Shoji Yamada, Yoshito Tanaka, Seiichi Ando. Purification and sequence identification of anserinase.
The FEBS journal.
2005 Dec; 272(23):6001-13. doi:
10.1111/j.1742-4658.2005.04991.x
. [PMID: 16302965] - Magdalena M Staniszewska, Ram H Nagaraj. 3-hydroxykynurenine-mediated modification of human lens proteins: structure determination of a major modification using a monoclonal antibody.
The Journal of biological chemistry.
2005 Jun; 280(23):22154-64. doi:
10.1074/jbc.m501419200
. [PMID: 15817458] - Wei-Han Zhang, Jiyun Liu, Guozhang Xu, Quan Yuan, Lawrence M Sayre. Model studies on protein side chain modification by 4-oxo-2-nonenal.
Chemical research in toxicology.
2003 Apr; 16(4):512-23. doi:
10.1021/tx020105a
. [PMID: 12703968] - Mika Hashimoto, Takahiro Sibata, Hiroaki Wasada, Shinya Toyokuni, Koji Uchida. Structural basis of protein-bound endogenous aldehydes. Chemical and immunochemical characterizations of configurational isomers of a 4-hydroxy-2-nonenal-histidine adduct.
The Journal of biological chemistry.
2003 Feb; 278(7):5044-51. doi:
10.1074/jbc.m210129200
. [PMID: 12473681] - T Peleg-Shulman, D Gibson, R Cohen, R Abra, Y Barenholz. Characterization of sterically stabilized cisplatin liposomes by nuclear magnetic resonance.
Biochimica et biophysica acta.
2001 Feb; 1510(1-2):278-91. doi:
10.1016/s0005-2736(00)00359-x
. [PMID: 11342165] - M H Baslow, T R Resnik. Canavan disease. Analysis of the nature of the metabolic lesions responsible for development of the observed clinical symptoms.
Journal of molecular neuroscience : MN.
1997 Oct; 9(2):109-25. doi:
10.1007/bf02736855
. [PMID: 9407392] - K Uchida, E R Stadtman. Modification of histidine residues in proteins by reaction with 4-hydroxynonenal.
Proceedings of the National Academy of Sciences of the United States of America.
1992 May; 89(10):4544-8. doi:
10.1073/pnas.89.10.4544
. [PMID: 1584790] - Y Endo. In vivo deacetylation of N-acetyl amino acids by kidney acylases in mice and rats. A possible role of acylase system in mammalian kidneys.
Biochimica et biophysica acta.
1980 Feb; 628(1):13-8. doi:
10.1016/0304-4165(80)90346-3
. [PMID: 7357028] - J F Lenney, M H Baslow, G H Sugiyama. Similarity of tuna N-acetylhistidine deacetylase and cod fish anserinase.
Comparative biochemistry and physiology. B, Comparative biochemistry.
1978; 61(2):253-8. doi:
10.1016/0305-0491(78)90171-2
. [PMID: 318374]