Castasterone (BioDeep_00000010920)
Secondary id: BioDeep_00000226768
PANOMIX_OTCML-2023 natural product
代谢物信息卡片
化学式: C28H48O5 (464.3502)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 13.54%
分子结构信息
SMILES: CC(C)C(C)C(C(C(C)C1CCC2C1(CCC3C2CC(=O)C4C3(CC(C(C4)O)O)C)C)O)O
InChI: InChI=1S/C28H48O5/c1-14(2)15(3)25(32)26(33)16(4)18-7-8-19-17-11-22(29)21-12-23(30)24(31)13-28(21,6)20(17)9-10-27(18,19)5/h14-21,23-26,30-33H,7-13H2,1-6H3/t15-,16-,17-,18+,19-,20-,21+,23-,24+,25+,26+,27+,28+/m0/s1
描述信息
同义名列表
16 个代谢物同义名
(2alpha,3alpha,5alpha,22R,23R,24S)-2,3,22,23-Tetrahydroxyergostan-6-one; 6-oxo-campestan-2alpha,3alpha,22R,23R-tetrol; Castasterone; ST 28:1;O5; (2R,3S,5S,8S,9S,10R,13S,14S,17R)-17-[(2S,3R,4R,5S)-3,4-dihydroxy-5,6-dimethyl-heptan-2-yl]-2,3-dihydroxy-10,13-dimethyl-1,2,3,4,5,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-6-one; (2R,3S,5S,8S,9S,10R,13S,14S,17R)-17-[(2S,3R,4R,5S)-3,4-dihydroxy-5,6-dimethylheptan-2-yl]-2,3-dihydroxy-10,13-dimethyl-1,2,3,4,5,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-6-one; (2R,3S,5S,8S,9S,10R,13S,14S,17R)-17-[(1S,2R,3R,4S)-2,3-dihydroxy-1,4,5-trimethyl-hexyl]-2,3-dihydroxy-10,13-dimethyl-1,2,3,4,5,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-6-one; (2R,3S,5S,8S,9S,10R,13S,14S,17R)-17-[(1S,2R,3R,4S)-2,3-dihydroxy-1,4,5-trimethylhexyl]-2,3-dihydroxy-10,13-dimethyl-1,2,3,4,5,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-6-one; Ergostan-6-one, 2,3,22,23-tetrahydroxy-, (2alpha,3alpha,5alpha,22R,23R,24S)- (9CI); Ergostan-6-one, 2,3,22,23-tetrahydroxy-, (2alpha,3alpha,5alpha,22R,23R,24S)-; 24-Epicastasterone; LMST01030129; 80736-41-0; BP 214; EPICASTASTERONE; Castasterone
数据库引用编号
15 个数据库交叉引用编号
- ChEBI: CHEBI:23051
- KEGG: C15794
- PubChem: 133534
- PubChem: 13039027
- Metlin: METLIN64142
- LipidMAPS: LMST01030129
- MetaCyc: CPD-634
- KNApSAcK: C00000181
- CAS: 80736-41-0
- PMhub: MS000024824
- PubChem: 47205119
- NIKKAJI: J146.604F
- RefMet: Castasterone
- KNApSAcK: 23051
- LOTUS: LTS0111493
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
PlantCyc(5)
代谢反应
376 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(5)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxotyphasterol + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxotyphasterol + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + a brassinolide sulfate
WikiPathways(1)
- Brassinolide biosynthetic pathway:
(24R)-24-Methyl-cholest-4-en-3-one ⟶ (24R)-24-Methyl-5 -cholestan-3-one
Plant Reactome(0)
INOH(0)
PlantCyc(370)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis II:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
3-dehydro-6-deoxoteasterone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-hydroxyteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis II:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis II:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxotyphasterol + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxotyphasterol + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis II:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis II:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis II:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
3-dehydro-6-deoxoteasterone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-hydroxyteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-hydroxyteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxotyphasterol + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis II:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinosteroid biosynthesis II:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-hydroxyteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
3-dehydro-6-deoxoteasterone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-hydroxyteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-hydroxyteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
3-dehydro-6-deoxoteasterone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-hydroxyteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
(22S,24R)-22-hydroxy-5α-ergostan-3-one + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-dehydro-6-deoxoteasterone + H2O + an oxidized [NADPH-hemoprotein reductase]
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
3-dehydro-6-deoxoteasterone + A ⟶ (22R,23R)-22,23-dihydroxy-campest-4-en-3-one + A(H2)
- brassinosteroid biosynthesis I:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- superpathway of C28 brassinosteroid biosynthesis:
6-deoxoteasterone + A ⟶ 3-dehydro-6-deoxoteasterone + A(H2)
- brassinolide biosynthesis II:
NAD+ + campest-4-en-3β-ol ⟶ H+ + NADH + campest-4-en-3-one
- brassinosteroid biosynthesis I:
NAD+ + campest-4-en-3β-ol ⟶ H+ + NADH + campest-4-en-3-one
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + castasterone ⟶ H+ + UDP + castasterone-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
PAPS + brassinolide ⟶ 3',5'-ADP + H+ + brassinolide 22-O-sulfate
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
UDP-α-D-glucose + brassinolide ⟶ H+ + UDP + brassinolide-23-O-glucoside
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
- brassinosteroids inactivation:
A(H2) + O2 + brassinolide ⟶ 26-hydroxybrassinolide + A + H2O
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
174 个相关的物种来源信息
- 3515 - Alnus: LTS0111493
- 3517 - Alnus glutinosa: 10.1021/NP50045A033
- 3517 - Alnus glutinosa: LTS0111493
- 3563 - Amaranthaceae: LTS0111493
- 3564 - Amaranthus: LTS0111493
- 29722 - Amaranthus tricolor: 10.5650/JOS1996.48.347
- 29722 - Amaranthus tricolor: LTS0111493
- 4037 - Apiaceae: LTS0111493
- 3701 - Arabidopsis: LTS0111493
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1016/S0031-9422(00)00261-2
- 3702 - Arabidopsis thaliana: 10.1016/S0031-9422(97)00177-5
- 3702 - Arabidopsis thaliana: 10.1016/S0031-9422(98)00065-X
- 3702 - Arabidopsis thaliana: LTS0111493
- 4210 - Asteraceae: LTS0111493
- 3554 - Beta: LTS0111493
- 161934 - Beta vulgaris: 10.1016/S0031-9422(00)97034-1
- 161934 - Beta vulgaris: LTS0111493
- 3555 - Beta vulgaris subsp. vulgaris: 10.1016/S0031-9422(00)97034-1
- 3555 - Beta vulgaris subsp. vulgaris: LTS0111493
- 3514 - Betulaceae: LTS0111493
- 3705 - Brassica: LTS0111493
- 3711 - Brassica rapa: LTS0111493
- 51351 - Brassica rapa subsp. pekinensis: 10.1016/S0021-9673(01)93583-6
- 51351 - Brassica rapa subsp. pekinensis: LTS0111493
- 3700 - Brassicaceae: LTS0111493
- 3208 - Bryophyta: LTS0111493
- 4441 - Camellia: LTS0111493
- 4442 - Camellia sinensis:
- 4442 - Camellia sinensis: 10.1007/BF01963116
- 4442 - Camellia sinensis: 10.1016/S0021-9673(01)93583-6
- 4442 - Camellia sinensis: LTS0111493
- 542762 - Camellia sinensis var. sinensis:
- 3481 - Cannabaceae: LTS0111493
- 3482 - Cannabis: LTS0111493
- 3483 - Cannabis sativa: 10.5650/JOS1996.45.871
- 3483 - Cannabis sativa: LTS0111493
- 21019 - Castanea: 10.1007/BF01963116
- 21019 - Castanea: LTS0111493
- 103480 - Castanea crenata:
- 103480 - Castanea crenata: 10.1016/S0021-9673(01)93583-6
- 103480 - Castanea crenata: 10.1016/S0031-9422(00)83445-7
- 103480 - Castanea crenata: 10.1271/BBB1961.47.655
- 103480 - Castanea crenata: LTS0111493
- 4058 - Catharanthus roseus: 10.1080/00021369.1989.10869357
- 136419 - Cercozoa: LTS0111493
- 1804623 - Chenopodiaceae: LTS0111493
- 2706 - Citrus: LTS0111493
- 171249 - Citrus limonia: LTS0111493
- 2711 - Citrus sinensis: 10.1016/0021-9673(94)85204-9
- 2711 - Citrus sinensis: LTS0111493
- 4118 - Convolvulaceae: LTS0111493
- 3650 - Cucurbitaceae: LTS0111493
- 3367 - Cupressaceae: LTS0111493
- 13468 - Cupressus: LTS0111493
- 4038 - Daucus: LTS0111493
- 4039 - Daucus carota: 10.1002/(SICI)1099-1565(199801/02)9:1<14::AID-PCA381>3.0.CO;2-4
- 4039 - Daucus carota: LTS0111493
- 3256 - Equisetaceae: LTS0111493
- 3257 - Equisetum: 10.1080/00021369.1990.10870042
- 3257 - Equisetum: LTS0111493
- 3258 - Equisetum arvense:
- 3258 - Equisetum arvense: 10.1080/00021369.1990.10870042
- 3258 - Equisetum arvense: 10.1271/BBB1961.54.1057
- 3258 - Equisetum arvense: LTS0111493
- 49641 - Erythronium: LTS0111493
- 49642 - Erythronium japonicum: 10.1271/BBB.59.2156
- 49642 - Erythronium japonicum: LTS0111493
- 2759 - Eukaryota: LTS0111493
- 3803 - Fabaceae: LTS0111493
- 3503 - Fagaceae: LTS0111493
- 3616 - Fagopyrum: LTS0111493
- 3617 - Fagopyrum esculentum:
- 3617 - Fagopyrum esculentum: 10.1271/BBB1961.54.757
- 3617 - Fagopyrum esculentum: LTS0111493
- 4231 - Helianthus: 10.1080/00021369.1989.10869607
- 4231 - Helianthus: LTS0111493
- 4232 - Helianthus annuus:
- 4232 - Helianthus annuus: 10.1080/00021369.1989.10869607
- 4232 - Helianthus annuus: 10.1271/BBB1961.53.2177
- 4232 - Helianthus annuus: LTS0111493
- 4119 - Ipomoea: LTS0111493
- 4121 - Ipomoea purpurea: 10.1271/BBB1961.49.49
- 4121 - Ipomoea purpurea: LTS0111493
- 271790 - Lablab: LTS0111493
- 35936 - Lablab purpureus:
- 35936 - Lablab purpureus: 10.1271/BBB1961.47.1409
- 35936 - Lablab purpureus: LTS0111493
- 3667 - Lagenaria: LTS0111493
- 3668 - Lagenaria siceraria: 10.5650/JOS1996.49.169
- 3668 - Lagenaria siceraria: LTS0111493
- 4136 - Lamiaceae: LTS0111493
- 4677 - Liliaceae: LTS0111493
- 4447 - Liliopsida: LTS0111493
- 4688 - Lilium: LTS0111493
- 79005 - Lilium maculatum: 10.1271/BBB.58.2075
- 79005 - Lilium maculatum: LTS0111493
- 3398 - Magnoliopsida: LTS0111493
- 3196 - Marchantia: LTS0111493
- 3197 - Marchantia polymorpha: 10.5012/BKCS.2002.23.7.941
- 3197 - Marchantia polymorpha: LTS0111493
- 29585 - Marchantiaceae: LTS0111493
- 3195 - Marchantiophyta: LTS0111493
- 186770 - Marchantiopsida: LTS0111493
- 100159 - Ornithopus: LTS0111493
- 181292 - Ornithopus sativus:
- 181292 - Ornithopus sativus: 10.1016/0031-9422(93)85191-S
- 181292 - Ornithopus sativus: 10.1016/0031-9422(95)98170-L
- 181292 - Ornithopus sativus: LTS0111493
- 4527 - Oryza: LTS0111493
- 4530 - Oryza sativa:
- 4530 - Oryza sativa: LTS0111493
- 48385 - Perilla: LTS0111493
- 48386 - Perilla frutescens: 10.1271/BBB.58.2241
- 48386 - Perilla frutescens: LTS0111493
- 3883 - Phaseolus: LTS0111493
- 3885 - Phaseolus vulgaris:
- 3885 - Phaseolus vulgaris: 10.1271/BBB1961.47.2149
- 3885 - Phaseolus vulgaris: 10.1271/BBB1961.51.1625
- 3885 - Phaseolus vulgaris: LTS0111493
- 3328 - Picea: LTS0111493
- 3332 - Picea sitchensis: 10.1016/S0031-9422(00)81127-9
- 3332 - Picea sitchensis: LTS0111493
- 3318 - Pinaceae: LTS0111493
- 58019 - Pinopsida: LTS0111493
- 3337 - Pinus: LTS0111493
- 3349 - Pinus sylvestris: 10.1104/PP.94.4.1709
- 3349 - Pinus sylvestris: LTS0111493
- 3350 - Pinus thunbergii: 10.1104/PP.94.4.1709
- 4479 - Poaceae: LTS0111493
- 3615 - Polygonaceae: LTS0111493
- 241806 - Polypodiopsida: LTS0111493
- 3725 - Raphanus: LTS0111493
- 109996 - Raphanus raphanistrum: 10.1016/0031-9422(91)84159-P
- 3726 - Raphanus sativus: 10.1016/0031-9422(91)84159-P
- 3726 - Raphanus sativus: LTS0111493
- 35937 - Robinia: LTS0111493
- 35938 - Robinia pseudoacacia: 10.1271/BBB.59.309
- 35938 - Robinia pseudoacacia: LTS0111493
- 23513 - Rutaceae: LTS0111493
- 4549 - Secale: LTS0111493
- 4550 - Secale cereale:
- 4550 - Secale cereale: 10.1016/0031-9422(94)00797-W
- 4550 - Secale cereale: 10.1016/J.PHYTOCHEM.2004.11.008
- 4550 - Secale cereale: 10.1016/S0031-9422(03)00354-6
- 4550 - Secale cereale: LTS0111493
- 53922 - Senna: LTS0111493
- 346985 - Senna obtusifolia: 10.1271/BBB.58.1343
- 346985 - Senna obtusifolia: LTS0111493
- 362788 - Senna tora: 10.1271/BBB.58.1343
- 362788 - Senna tora: LTS0111493
- 35493 - Streptophyta: LTS0111493
- 27065 - Theaceae: LTS0111493
- 1004930 - Thecofilosea: LTS0111493
- 58023 - Tracheophyta: LTS0111493
- 4564 - Triticum: LTS0111493
- 4565 - Triticum aestivum: 10.1271/BBB.58.1183
- 4565 - Triticum aestivum: LTS0111493
- 3904 - Vicia: 10.1248/CPB.36.405
- 3904 - Vicia: LTS0111493
- 3906 - Vicia faba:
- 3906 - Vicia faba: 10.1016/S0021-9673(01)96481-7
- 3906 - Vicia faba: 10.1248/CPB.36.405
- 3906 - Vicia faba: 10.1271/BBB1961.51.3081
- 3906 - Vicia faba: LTS0111493
- 3913 - Vigna: LTS0111493
- 157791 - Vigna radiata: 10.1016/0031-9422(93)85091-5
- 157791 - Vigna radiata: LTS0111493
- 33090 - Viridiplantae: LTS0111493
- 4575 - Zea: LTS0111493
- 4577 - Zea mays: 10.1080/00021369.1986.10867873
- 4577 - Zea mays: 10.1271/BBB1961.50.3133
- 4577 - Zea mays: LTS0111493
- 33090 - 牵牛子: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ling Cheng, Man Li, Wanling Min, Mengke Wang, Rongqing Chen, Wenfei Wang. Optimal Brassinosteroid Levels Are Required for Soybean Growth and Mineral Nutrient Homeostasis.
International journal of molecular sciences.
2021 Aug; 22(16):. doi:
10.3390/ijms22168400
. [PMID: 34445112] - Sufu Gan, Wilfried Rozhon, Elisabeth Varga, Simon Josef Unterholzner, Franz Berthiller, Brigitte Poppenberger. The BAHD Acyltransferase BIA1 Uses Acetyl-CoA for Catabolic Inactivation of Brassinosteroids.
Plant physiology.
2020 09; 184(1):23-26. doi:
10.1104/pp.20.00338
. [PMID: 32611786] - Jeehee Roh, Jinyoung Moon, Ji-Hyun Youn, Chaiweon Seo, Yeon Ju Park, Seong-Ki Kim. Establishment of Biosynthetic Pathways To Generate Castasterone as the Biologically Active Brassinosteroid in Brachypodium distachyon.
Journal of agricultural and food chemistry.
2020 Apr; 68(13):3912-3923. doi:
10.1021/acs.jafc.9b07963
. [PMID: 32146811] - Faisal Aldukhi, Aniket Deb, Chuankai Zhao, Alexander S Moffett, Diwakar Shukla. Molecular Mechanism of Brassinosteroid Perception by the Plant Growth Receptor BRI1.
The journal of physical chemistry. B.
2020 01; 124(2):355-365. doi:
10.1021/acs.jpcb.9b09377
. [PMID: 31873025] - Anket Sharma, Huwei Yuan, Vinod Kumar, M Ramakrishnan, Sukhmeen Kaur Kohli, Ravdeep Kaur, Ashwani Kumar Thukral, Renu Bhardwaj, Bingsong Zheng. Castasterone attenuates insecticide induced phytotoxicity in mustard.
Ecotoxicology and environmental safety.
2019 Sep; 179(?):50-61. doi:
10.1016/j.ecoenv.2019.03.120
. [PMID: 31026750] - Jasna Milanović, Jana Oklestkova, Anamari Majdandžić, Ondřej Novák, Snježana Mihaljević. Organ-specific differences in endogenous phytohormone and antioxidative responses in potato upon PSTVd infection.
Journal of plant physiology.
2019 Jan; 232(?):107-114. doi:
10.1016/j.jplph.2018.10.027
. [PMID: 30537597] - Poonam Yadav, Ravdeep Kaur, Mukesh Kumar Kanwar, Anket Sharma, Vinod Verma, Geetika Sirhindi, Renu Bhardwaj. Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings.
Ecotoxicology and environmental safety.
2018 Jan; 147(?):725-734. doi:
10.1016/j.ecoenv.2017.09.035
. [PMID: 28942275] - Kai Eggert, Nicolaus von Wirén. Response of the plant hormone network to boron deficiency.
The New phytologist.
2017 Nov; 216(3):868-881. doi:
10.1111/nph.14731
. [PMID: 28833172] - Ravdeep Kaur, Poonam Yadav, Anket Sharma, Ashwani Kumar Thukral, Vinod Kumar, Sukhmeen Kaur Kohli, Renu Bhardwaj. Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd(II) toxicity.
Ecotoxicology and environmental safety.
2017 Nov; 145(?):466-475. doi:
10.1016/j.ecoenv.2017.07.067
. [PMID: 28780445] - Bunta Watanabe, Shuji Yamamoto, Taiyo Yokoi, Airi Sugiura, Shinri Horoiwa, Takanori Aoki, Hisashi Miyagawa, Yoshiaki Nakagawa. Brassinolide-like activity of castasterone analogs with varied side chains against rice lamina inclination.
Bioorganic & medicinal chemistry.
2017 09; 25(17):4566-4578. doi:
10.1016/j.bmc.2017.06.012
. [PMID: 28751198] - Johan M Winne, Niloufer G Irani, Jos Van den Begin, Annemieke Madder. Synthetic Protocol for AFCS: A Biologically Active Fluorescent Castasterone Analog Conjugated to an Alexa Fluor 647 Dye.
Methods in molecular biology (Clifton, N.J.).
2017; 1564(?):9-21. doi:
10.1007/978-1-4939-6813-8_2
. [PMID: 28124242] - Ravdeep Kaur, Poonam Yadav, Ashwani Kumar Thukral, Amandeep Walia, Renu Bhardwaj. Co-application of 6-ketone type brassinosteroid and metal chelator alleviates cadmium toxicity in B. juncea L.
Environmental science and pollution research international.
2017 Jan; 24(1):685-700. doi:
10.1007/s11356-016-7864-x
. [PMID: 27752946] - Damian Gruszka, Malgorzata Gorniak, Ewelina Glodowska, Ewa Wierus, Jana Oklestkova, Anna Janeczko, Miroslaw Maluszynski, Iwona Szarejko. A Reverse-Genetics Mutational Analysis of the Barley HvDWARF Gene Results in Identification of a Series of Alleles and Mutants with Short Stature of Various Degree and Disturbance in BR Biosynthesis Allowing a New Insight into the Process.
International journal of molecular sciences.
2016 Apr; 17(4):. doi:
10.3390/ijms17040600
. [PMID: 27110778] - Se-Hwan Joo, Mun-Seok Jang, Min Kyun Kim, Ji-Eun Lee, Seong-Ki Kim. Biosynthetic relationship between C₂₈-brassinosteroids and C₂₉-brassinosteroids in rice (Oryza sativa) seedlings.
Phytochemistry.
2015 Mar; 111(?):84-90. doi:
10.1016/j.phytochem.2014.11.006
. [PMID: 25433632] - Yi Xu, Xia Zhang, Qi Li, Zhiyuan Cheng, Haijuan Lou, Lei Ge, Hailong An. BdBRD1, a brassinosteroid C-6 oxidase homolog in Brachypodium distachyon L., is required for multiple organ development.
Plant physiology and biochemistry : PPB.
2015 Jan; 86(?):91-99. doi:
10.1016/j.plaphy.2014.11.018
. [PMID: 25438141] - Yu E Kolupaev, A A Vayner, T O Yastreb, A I Oboznyi, V A Khripach. [Role of Ca ions in the induction of heat-resistance of wheat coleoptiles by brassinosteroids].
Ukrainian biochemical journal.
2015 Jan; 87(1):127-33. doi:
. [PMID: 26036139]
- Iu E Kolupaev, A A Vaĭner, T O Iastreb, A I Oboznyĭ, V A Khripach. [The role of reactive oxygen species and calcium ions in the implementation of the stress-protective effect of brassinosteroids on plant cells].
Prikladnaia biokhimiia i mikrobiologiia.
2014 Nov; 50(6):593-8. doi:
10.7868/s0555109914060075
. [PMID: 25726668] - Masashi Asahina, Yuji Tamaki, Tomoaki Sakamoto, Kyomi Shibata, Takahito Nomura, Takao Yokota. Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone.
Phytochemistry.
2014 Aug; 104(?):21-9. doi:
10.1016/j.phytochem.2014.04.017
. [PMID: 24856112] - W A Stirk, P Bálint, D Tarkowská, O Novák, M Strnad, V Ördög, J van Staden. Hormone profiles in microalgae: gibberellins and brassinosteroids.
Plant physiology and biochemistry : PPB.
2013 Sep; 70(?):348-53. doi:
10.1016/j.plaphy.2013.05.037
. [PMID: 23811778] - Peiyong Xin, Jijun Yan, Jinshi Fan, Jinfang Chu, Cunyu Yan. An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis.
Plant physiology.
2013 Aug; 162(4):2056-66. doi:
10.1104/pp.113.221952
. [PMID: 23800992] - G M Symons, Y-J Chua, J J Ross, L J Quittenden, N W Davies, J B Reid. Hormonal changes during non-climacteric ripening in strawberry.
Journal of experimental botany.
2012 Aug; 63(13):4741-50. doi:
10.1093/jxb/ers147
. [PMID: 22791823] - Niloufer G Irani, Simone Di Rubbo, Evelien Mylle, Jos Van den Begin, Joanna Schneider-Pizoń, Jaroslava Hniliková, Miroslav Šíša, Dieter Buyst, Josep Vilarrasa-Blasi, Anna-Mária Szatmári, Daniël Van Damme, Kiril Mishev, Mirela-Corina Codreanu, Ladislav Kohout, Miroslav Strnad, Ana I Caño-Delgado, Jiří Friml, Annemieke Madder, Eugenia Russinova. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane.
Nature chemical biology.
2012 May; 8(6):583-9. doi:
10.1038/nchembio.958
. [PMID: 22561410] - Se-Hwan Joo, Tae-Wuk Kim, Seung-Hyun Son, Woo Sung Lee, Takao Yokota, Seong-Ki Kim. Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana.
Journal of experimental botany.
2012 Mar; 63(5):1823-33. doi:
10.1093/jxb/err354
. [PMID: 22170941] - Thomas Hartwig, Claudia Corvalan, Norman B Best, Joshua S Budka, Jia-Ying Zhu, Sunghwa Choe, Burkhard Schulz. Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize.
PloS one.
2012; 7(5):e36625. doi:
10.1371/journal.pone.0036625
. [PMID: 22590578] - Ilkay Erdogan Orhan. Centella asiatica (L.) Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):946259. doi:
10.1155/2012/946259
. [PMID: 22666298] - Mukesh Kumar Kanwar, Renu Bhardwaj, Priya Arora, Sikandar Pal Chowdhary, Priyanka Sharma, Subodh Kumar. Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L.
Chemosphere.
2012 Jan; 86(1):41-9. doi:
10.1016/j.chemosphere.2011.08.048
. [PMID: 21959144] - Katja Schneider, Christian Breuer, Ayako Kawamura, Yusuke Jikumaru, Atsushi Hanada, Shozo Fujioka, Takanari Ichikawa, Youichi Kondou, Minami Matsui, Yuji Kamiya, Shinjiro Yamaguchi, Keiko Sugimoto. Arabidopsis PIZZA has the capacity to acylate brassinosteroids.
PloS one.
2012; 7(10):e46805. doi:
10.1371/journal.pone.0046805
. [PMID: 23071642] - Leeann E Thornton, Hao Peng, Michael M Neff. Rice CYP734A cytochrome P450s inactivate brassinosteroids in Arabidopsis.
Planta.
2011 Dec; 234(6):1151-62. doi:
10.1007/s00425-011-1464-2
. [PMID: 21735198] - Ana M Fortes, Patricia Agudelo-Romero, Marta S Silva, Kashif Ali, Lisete Sousa, Federica Maltese, Young H Choi, Jerome Grimplet, José M Martinez-Zapater, Robert Verpoorte, Maria S Pais. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening.
BMC plant biology.
2011 Nov; 11(?):149. doi:
10.1186/1471-2229-11-149
. [PMID: 22047180] - Doug J Hinchliffe, Rickie B Turley, Marina Naoumkina, Hee Jin Kim, Yuhong Tang, Kathleen M Yeater, Ping Li, David D Fang. A combined functional and structural genomics approach identified an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic locus in cotton (Gossypium hirsutum L.).
BMC genomics.
2011 Sep; 12(?):445. doi:
10.1186/1471-2164-12-445
. [PMID: 21902843] - Tomoaki Sakamoto, Ayami Kawabe, Asako Tokida-Segawa, Bun-Ichi Shimizu, Suguru Takatsuto, Yukihisa Shimada, Shozo Fujioka, Masaharu Mizutani. Rice CYP734As function as multisubstrate and multifunctional enzymes in brassinosteroid catabolism.
The Plant journal : for cell and molecular biology.
2011 Jul; 67(1):1-12. doi:
10.1111/j.1365-313x.2011.04567.x
. [PMID: 21418356] - Sigrid Husar, Franz Berthiller, Shozo Fujioka, Wilfried Rozhon, Mamoona Khan, Florian Kalaivanan, Luisa Elias, Gillian S Higgins, Yi Li, Rainer Schuhmacher, Rudolf Krska, Hideharu Seto, Fabian E Vaistij, Dianna Bowles, Brigitte Poppenberger. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana.
BMC plant biology.
2011 Mar; 11(?):51. doi:
10.1186/1471-2229-11-51
. [PMID: 21429230] - Brigitte Poppenberger, Wilfried Rozhon, Mamoona Khan, Sigrid Husar, Gerhard Adam, Christian Luschnig, Shozo Fujioka, Tobias Sieberer. CESTA, a positive regulator of brassinosteroid biosynthesis.
The EMBO journal.
2011 Mar; 30(6):1149-61. doi:
10.1038/emboj.2011.35
. [PMID: 21336258] - Victor Hugo Pérez-España, Nidia Sánchez-León, Jean-Philippe Vielle-Calzada. CYP85A1 is required for the initiation of female gametogenesis in Arabidopsis thaliana.
Plant signaling & behavior.
2011 Mar; 6(3):321-6. doi:
10.4161/psb.6.3.13206
. [PMID: 21364326] - Yuya Yoshimitsu, Kiwamu Tanaka, Wataru Fukuda, Tadao Asami, Shigeo Yoshida, Ken-Ichiro Hayashi, Yuji Kamiya, Yusuke Jikumaru, Tomoaki Shigeta, Yasushi Nakamura, Tomoaki Matsuo, Shigehisa Okamoto. Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana.
PloS one.
2011; 6(8):e23851. doi:
10.1371/journal.pone.0023851
. [PMID: 21909364] - Jinyeong Cheon, So-Young Park, Burkhard Schulz, Sunghwa Choe. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction.
BMC plant biology.
2010 Dec; 10(?):270. doi:
10.1186/1471-2229-10-270
. [PMID: 21143877] - Satish K Guttikonda, Joshi Trupti, Naveen C Bisht, Hui Chen, Yong-Qiang C An, Sona Pandey, Dong Xu, Oliver Yu. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases.
BMC plant biology.
2010 Nov; 10(?):243. doi:
10.1186/1471-2229-10-243
. [PMID: 21062474] - Staci Nole-Wilson, Elizabeth E Rueschhoff, Huda Bhatti, Robert G Franks. Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development.
BMC plant biology.
2010 Sep; 10(?):198. doi:
10.1186/1471-2229-10-198
. [PMID: 20836864] - Leeann E Thornton, Sanjeewa G Rupasinghe, Hao Peng, Mary A Schuler, Michael M Neff. Arabidopsis CYP72C1 is an atypical cytochrome P450 that inactivates brassinosteroids.
Plant molecular biology.
2010 Sep; 74(1-2):167-81. doi:
10.1007/s11103-010-9663-y
. [PMID: 20669042] - Bogusław Buszewski, Júlia Ricanyová, Renata Gadzała-Kopciuch, Michał Szumski. Supramolecular recognition of estrogens via molecularly imprinted polymers.
Analytical and bioanalytical chemistry.
2010 Aug; 397(7):2977-86. doi:
10.1007/s00216-010-3859-5
. [PMID: 20549493] - Wilfried Rozhon, Juliane Mayerhofer, Elena Petutschnig, Shozo Fujioka, Claudia Jonak. ASKtheta, a group-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway.
The Plant journal : for cell and molecular biology.
2010 Apr; 62(2):215-23. doi:
10.1111/j.1365-313x.2010.04145.x
. [PMID: 20128883] - Andrzej Bajguz. Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophyceae).
Journal of plant physiology.
2009 Nov; 166(17):1946-9. doi:
10.1016/j.jplph.2009.05.003
. [PMID: 19535168] - Adaucto B Pereira-Netto, Ute Roessner, Shozo Fujioka, Antony Bacic, Tadao Asami, Shigeo Yoshida, Steven D Clouse. Shooting control by brassinosteroids: metabolomic analysis and effect of brassinazole on Malus prunifolia, the Marubakaido apple rootstock.
Tree physiology.
2009 Apr; 29(4):607-20. doi:
10.1093/treephys/tpn052
. [PMID: 19203977] - Andrzej Bajguz, Shamsul Hayat. Effects of brassinosteroids on the plant responses to environmental stresses.
Plant physiology and biochemistry : PPB.
2009 Jan; 47(1):1-8. doi:
10.1016/j.plaphy.2008.10.002
. [PMID: 19010688] - Cercis Morera-Boado, Esther Alonso-Becerra, Raúl González-Jonte, Luis Alberto Montero-Cabrera, José Manuel García-de-la-Vega. A theoretical approach to the solvation of brassinosteroids.
Journal of molecular graphics & modelling.
2009 Jan; 27(5):600-10. doi:
10.1016/j.jmgm.2008.09.013
. [PMID: 19013088] - Dong Ju Lee, Jong Wha Park, Han Woo Lee, Jungmook Kim. Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression.
Journal of experimental botany.
2009; 60(13):3935-57. doi:
10.1093/jxb/erp230
. [PMID: 19654206] - Ana Caño-Delgado, Zhi-Yong Wang. Binding assays for brassinosteroid receptors.
Methods in molecular biology (Clifton, N.J.).
2009; 495(?):81-8. doi:
10.1007/978-1-59745-477-3_7
. [PMID: 19085145] - Bo Kyung Kim, Shozo Fujioka, Suguru Takatsuto, Masafumi Tsujimoto, Sunghwa Choe. Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice.
Biochemical and biophysical research communications.
2008 Oct; 374(4):614-9. doi:
10.1016/j.bbrc.2008.07.073
. [PMID: 18656444] - Ko Hirano, Koichiro Aya, Tokunori Hobo, Hitoshi Sakakibara, Mikiko Kojima, Rosalyn Angeles Shim, Yasuko Hasegawa, Miyako Ueguchi-Tanaka, Makoto Matsuoka. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice.
Plant & cell physiology.
2008 Oct; 49(10):1429-50. doi:
10.1093/pcp/pcn123
. [PMID: 18718932] - Corinne E Jager, Gregory M Symons, John J Ross, James B Reid. Do brassinosteroids mediate the water stress response?.
Physiologia plantarum.
2008 Jun; 133(2):417-25. doi:
10.1111/j.1399-3054.2008.01057.x
. [PMID: 18282191] - Laurent G Deluc, Jérôme Grimplet, Matthew D Wheatley, Richard L Tillett, David R Quilici, Craig Osborne, David A Schooley, Karen A Schlauch, John C Cushman, Grant R Cramer. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.
BMC genomics.
2007 Nov; 8(?):429. doi:
10.1186/1471-2164-8-429
. [PMID: 18034876] - Tong Yuan, Shozo Fujioka, Suguru Takatsuto, Shogo Matsumoto, Xiaoping Gou, Kai He, Scott D Russell, Jia Li. BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2007 Jul; 51(2):220-33. doi:
10.1111/j.1365-313x.2007.03129.x
. [PMID: 17521414] - V A Khripach, O V Sviridov, A G Priadko, R P Litvinovskaia, S V Drach, V D Matveentsev, T V Novik, K I Mikhaĭlopulo, V N Zhabinskiĭ, M I Zavadskaia, M A Aver'kova, O A Drachenova, N M Chashchina. [Enzyme immunoassay of (24R)-brassinosteroids].
Bioorganicheskaia khimiia.
2007 May; 33(3):371-8. doi:
10.1134/s1068162007030120
. [PMID: 17682395] - Corinne E Jager, Gregory M Symons, Takahito Nomura, Yumiko Yamada, Jennifer J Smith, Shinjiro Yamaguchi, Yuji Kamiya, James L Weller, Takao Yokota, James B Reid. Characterization of two brassinosteroid C-6 oxidase genes in pea.
Plant physiology.
2007 Apr; 143(4):1894-904. doi:
10.1104/pp.106.093088
. [PMID: 17322341] - Andrzej Bajguz. Metabolism of brassinosteroids in plants.
Plant physiology and biochemistry : PPB.
2007 Feb; 45(2):95-107. doi:
10.1016/j.plaphy.2007.01.002
. [PMID: 17346983] - Ryo Yamamoto, Shozo Fujioka, Kuninori Iwamoto, Taku Demura, Suguru Takatsuto, Shigeo Yoshida, Hiroo Fukuda. Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation.
Plant & cell physiology.
2007 Jan; 48(1):74-83. doi:
10.1093/pcp/pcl039
. [PMID: 17132633] - Janina Lisso, Thomas Altmann, Carsten Müssig. Metabolic changes in fruits of the tomato dx mutant.
Phytochemistry.
2006 Oct; 67(20):2232-8. doi:
10.1016/j.phytochem.2006.07.008
. [PMID: 16930643] - Toshiyuki Ohnishi, Takahito Nomura, Bunta Watanabe, Daisaku Ohta, Takao Yokota, Hisashi Miyagawa, Kanzo Sakata, Masaharu Mizutani. Tomato cytochrome P450 CYP734A7 functions in brassinosteroid catabolism.
Phytochemistry.
2006 Sep; 67(17):1895-906. doi:
10.1016/j.phytochem.2006.05.042
. [PMID: 16872648] - Shuji Yamamoto, Bunta Watanabe, Junko Otsuki, Yoshiaki Nakagawa, Miki Akamatsu, Hisahi Miyagawa. Synthesis of 26,27-bisnorcastasterone analogs and analysis of conformation-activity relationship for brassinolide-like activity.
Bioorganic & medicinal chemistry.
2006 Mar; 14(6):1761-70. doi:
10.1016/j.bmc.2005.10.024
. [PMID: 16288879] - Ayako Nakamura, Shozo Fujioka, Hidehiko Sunohara, Noriko Kamiya, Zhi Hong, Yoshiaki Inukai, Kotaro Miura, Suguru Takatsuto, Shigeo Yoshida, Miyako Ueguchi-Tanaka, Yasuko Hasegawa, Hidemi Kitano, Makoto Matsuoka. The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice.
Plant physiology.
2006 Feb; 140(2):580-90. doi:
10.1104/pp.105.072330
. [PMID: 16407447] - Tae-Wuk Kim, Jung-Yun Hwang, Young-Soo Kim, Se-Hwan Joo, Soo Chul Chang, June Seung Lee, Suguru Takatsuto, Seong-Ki Kim. Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis.
The Plant cell.
2005 Aug; 17(8):2397-412. doi:
10.1105/tpc.105.033738
. [PMID: 16024588] - Takahito Nomura, Tetsuo Kushiro, Takao Yokota, Yuji Kamiya, Gerard J Bishop, Shinjiro Yamaguchi. The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis.
The Journal of biological chemistry.
2005 May; 280(18):17873-9. doi:
10.1074/jbc.m414592200
. [PMID: 15710611] - Young-Soo Kim, Tae-Wuk Kim, Seong-Ki Kim. Brassinosteroids are inherently biosynthesized in the primary roots of maize, Zea mays L.
Phytochemistry.
2005 May; 66(9):1000-6. doi:
10.1016/j.phytochem.2005.03.007
. [PMID: 15896368] - Edward M Turk, Shozo Fujioka, Hideharu Seto, Yukihisa Shimada, Suguru Takatsuto, Shigeo Yoshida, Huachun Wang, Quetzal I Torres, Jason M Ward, Girish Murthy, Jingyu Zhang, John C Walker, Michael M Neff. BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms.
The Plant journal : for cell and molecular biology.
2005 Apr; 42(1):23-34. doi:
10.1111/j.1365-313x.2005.02358.x
. [PMID: 15773851] - Gyung-Tae Kim, Shozo Fujioka, Toshiaki Kozuka, Frans E Tax, Suguru Takatsuto, Shigeo Yoshida, Hirokazu Tsukaya. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2005 Mar; 41(5):710-21. doi:
10.1111/j.1365-313x.2004.02330.x
. [PMID: 15703058] - Toshinori Kinoshita, Ana Caño-Delgado, Hideharu Seto, Sayoko Hiranuma, Shozo Fujioka, Shigeo Yoshida, Joanne Chory. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1.
Nature.
2005 Jan; 433(7022):167-71. doi:
10.1038/nature03227
. [PMID: 15650741] - Tae-Wuk Kim, Soo Chul Chang, June Seung Lee, Suguru Takatsuto, Takao Yokota, Seong-Ki Kim. Novel biosynthetic pathway of castasterone from cholesterol in tomato.
Plant physiology.
2004 Jul; 135(3):1231-42. doi:
10.1104/pp.104.043588
. [PMID: 15247383] - Shinya Uesusuki, Bunta Watanabe, Shuji Yamamoto, Junko Otsuki, Yoshiaki Nakagawa, Hisashi Miyagawa. Synthesis of brassinosteroids of varying acyl side chains and evaluation of their brassinolide-like activity.
Bioscience, biotechnology, and biochemistry.
2004 May; 68(5):1097-105. doi:
10.1271/bbb.68.1097
. [PMID: 15170115] - Ales Svatos, Andrey Antonchick, Bernd Schneider. Determination of brassinosteroids in the sub-femtomolar range using dansyl-3-aminophenylboronate derivatization and electrospray mass spectrometry.
Rapid communications in mass spectrometry : RCM.
2004; 18(7):816-21. doi:
10.1002/rcm.1413
. [PMID: 15052565] - Carsten Müssig, Ga-Hee Shin, Thomas Altmann. Brassinosteroids promote root growth in Arabidopsis.
Plant physiology.
2003 Nov; 133(3):1261-71. doi:
10.1104/pp.103.028662
. [PMID: 14526105] - Zora Marković-Housley, Massimo Degano, Doriano Lamba, Edda von Roepenack-Lahaye, Stephan Clemens, Markus Susani, Fátima Ferreira, Otto Scheiner, Heimo Breiteneder. Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier.
Journal of molecular biology.
2003 Jan; 325(1):123-33. doi:
10.1016/s0022-2836(02)01197-x
. [PMID: 12473456] - Gregory M Symons, James B Reid. Hormone levels and response during de-etiolation in pea.
Planta.
2003 Jan; 216(3):422-31. doi:
10.1007/s00425-002-0860-z
. [PMID: 12520333] - Sunghwa Choe, Robert J Schmitz, Shozo Fujioka, Suguru Takatsuto, Mi-Ok Lee, Shigeo Yoshida, Kenneth A Feldmann, Frans E Tax. Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3beta-like kinase.
Plant physiology.
2002 Nov; 130(3):1506-15. doi:
10.1104/pp.010496
. [PMID: 12428015] - Martín A Iglesias-Arteaga, Carlos Pérez Martínez, Francisco Coll Manchado. Spirostanic analogues of castasterone.
Steroids.
2002 Mar; 67(3-4):159-63. doi:
10.1016/s0039-128x(01)00150-7
. [PMID: 11856539] - G Smagghe, L Decombel, B Carton, B Voigt, G Adam, L Tirry. Action of brassinosteroids in the cotton leafworm Spodoptera littoralis.
Insect biochemistry and molecular biology.
2002 Feb; 32(2):199-204. doi:
10.1016/s0965-1748(01)00108-4
. [PMID: 11755064] - Gerard J Bishop, Csaba Koncz. Brassinosteroids and plant steroid hormone signaling.
The Plant cell.
2002; 14 Suppl(?):S97-110. doi:
10.1105/tpc.001461
. [PMID: 12045272] - T Yokota, T Sato, Y Takeuchi, T Nomura, K Uno, T Watanabe, S Takatsuto. Roots and shoots of tomato produce 6-deoxo-28-norcathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone.
Phytochemistry.
2001 Sep; 58(2):233-8. doi:
10.1016/s0031-9422(01)00237-0
. [PMID: 11551544] - T Asami, M Mizutani, S Fujioka, H Goda, Y K Min, Y Shimada, T Nakano, S Takatsuto, T Matsuyama, N Nagata, K Sakata, S Yoshida. Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta.
The Journal of biological chemistry.
2001 Jul; 276(28):25687-91. doi:
10.1074/jbc.m103524200
. [PMID: 11319239] - B Voigt, P Whiting, L Dinan. The ecdysteroid agonist/antagonist and brassinosteroid-like activities of synthetic brassinosteroid/ecdysteroid hybrid molecules.
Cellular and molecular life sciences : CMLS.
2001 Jul; 58(8):1133-40. doi:
10.1007/pl00000927
. [PMID: 11529505] - T Nomura, T Sato, G J Bishop, Y Kamiya, S Takatsuto, T Yokota. Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis.
Phytochemistry.
2001 May; 57(2):171-8. doi:
10.1016/s0031-9422(00)00440-4
. [PMID: 11382232] - R Yamamoto, S Fujioka, T Demura, S Takatsuto, S Yoshida, H Fukuda. Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements.
Plant physiology.
2001 Feb; 125(2):556-63. doi:
10.1104/pp.125.2.556
. [PMID: 11161013] - S Fujioka, T Noguchi, M Sekimoto, S Takatsuto, S Yoshida. 28-Norcastasterone is biosynthesized from castasterone.
Phytochemistry.
2000 Sep; 55(2):97-101. doi:
10.1016/s0031-9422(00)00261-2
. [PMID: 11065283] - G C Sung, L Janzen, R P Pharis, T G Back. Synthesis and bioactivity of 6alpha- and 6beta-hydroxy analogues of castasterone.
Phytochemistry.
2000 Sep; 55(2):121-6. doi:
10.1016/s0031-9422(00)00259-4
. [PMID: 11065287] - S K Kim, S C Chang, E J Lee, W S Chung, Y S Kim, S Hwang, J S Lee. Involvement of brassinosteroids in the gravitropic response of primary root of maize.
Plant physiology.
2000 Jul; 123(3):997-1004. doi:
10.1104/pp.123.3.997
. [PMID: 10889248] - S Fujioka, Y H Choi, S Takatsuto, T Yokota, J Li, J Chory, A Sakurai. Identification of castasterone, 6-deoxocastasterone, typhasterol and 6-deoxotyphasterol from the shoots of Arabidopsis thaliana.
Plant & cell physiology.
1996 Dec; 37(8):1201-3. doi:
10.1093/oxfordjournals.pcp.a029074
. [PMID: 9032971] - B Voigt, A Porzel, H Naumann, C Hörhold-Schubert, G Adam. Hydroxylation of the native brassinosteroids 24-epicastasterone and 24-epibrassinolide by the fungus Cunninghamella echinulata.
Steroids.
1993 Jul; 58(7):320-3. doi:
10.1016/0039-128x(93)90091-z
. [PMID: 8212079] - R A Vigersky, S Kono, M Sauer, M B Lipsett, D L Loriaux. Relative binding of testosterone and estradiol to testosterone-estradiol-binding globulin.
The Journal of clinical endocrinology and metabolism.
1979 Dec; 49(6):899-904. doi:
10.1210/jcem-49-6-899
. [PMID: 574516] - . .
.
. doi:
. [PMID: 16214889]
- . .
.
. doi:
. [PMID: 9927639]
- . .
.
. doi:
. [PMID: 14502988]
- . .
.
. doi:
. [PMID: 18685225]
- . .
.
. doi:
. [PMID: 11402205]
- . .
.
. doi:
. [PMID: 14605216]