Cucurbitacin_E
Cucurbitacin E is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 1, 5 and 23. It is a cucurbitacin and a tertiary alpha-hydroxy ketone. Cucurbitacin E is a natural product found in Cucurbita foetidissima, Helicteres angustifolia, and other organisms with data available. A cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 1, 5 and 23. Cucurbitacin E is a natural compound which from Cucurbitaceae plants. Cucurbitacin E significantly suppresses the activity of the cyclin B1/CDC2 complex. Cucurbitacin E is a natural compound which from Cucurbitaceae plants. Cucurbitacin E significantly suppresses the activity of the cyclin B1/CDC2 complex.
5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one
5,6-Dehydrokawain is an aromatic ether and a member of 2-pyranones. Desmethoxyyangonin is a natural product found in Alpinia blepharocalyx, Alpinia rafflesiana, and other organisms with data available. See also: Piper methysticum root (part of). 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in beverages. 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damag Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.
Acetophenone
Acetophenone appears as a colorless liquid with a sweet pungent taste and odor resembling the odor of oranges. Freezes under cool conditions. Slightly soluble in water and denser than water. Hence sinks in water. Vapor heavier than air. A mild irritant to skin and eyes. Vapors can be narcotic in high concentrations. Used as a flavoring, solvent, and polymerization catalyst. Acetophenone is a methyl ketone that is acetone in which one of the methyl groups has been replaced by a phenyl group. It has a role as a photosensitizing agent, an animal metabolite and a xenobiotic. Acetophenone is used for fragrance in soaps and perfumes, as a flavoring agent in foods, and as a solvent for plastics and resins. Acute (short-term) exposure to acetophenone vapor may produce skin irritation and transient corneal injury in humans. No information is available on the chronic (long-term), reproductive, developmental, or carcinogenic effects of acetophenone in humans. EPA has classified acetophenone as a Group D, not classifiable as to human carcinogenicity. Acetophenone is a natural product found in Nepeta nepetella, Hypericum hyssopifolium, and other organisms with data available. Acetophenone is a metabolite found in or produced by Saccharomyces cerevisiae. Acetophenone is the organic compound with the formula C6H5C(O)CH3. It is the simplest aromatic ketone. This colourless, viscous liquid is a precursor to useful resins and fragrances. Acetophenone is found in chicory. Acetophenone is a flavouring ingredient used in fruit flavours. Acetophenone is a raw material for the synthesis of some pharmaceuticals and is also listed as an approved excipient by the U.S. FDA. In a 1994 report released by five top cigarette companies in the U.S., acetophenone was listed as one of the 599 additives to cigarettes. A methyl ketone that is acetone in which one of the methyl groups has been replaced by a phenyl group. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents Flavouring ingredient used in fruit flavours; leavening agent D003879 - Dermatologic Agents Acetophenone is an organic compound with simple structure[1]. Acetophenone is an organic compound with simple structure[1].
Bergenin
Bergenin is a trihydroxybenzoic acid. It has a role as a metabolite. Bergenin is a natural product found in Ficus racemosa, Ardisia paniculata, and other organisms with data available. A natural product found in Cenostigma gardnerianum. C26170 - Protective Agent > C275 - Antioxidant Annotation level-1 Bergenin is a cytoprotective and antioxidative polyphenol found in many medicinal plants. Bergenin has a wide spectrum activities such as hepatoprotective, antiinflammatory, immunomodulatory, antitumor, antiviral, and antifungal properties[1][2]. Bergenin is a cytoprotective and antioxidative polyphenol found in many medicinal plants. Bergenin has a wide spectrum activities such as hepatoprotective, antiinflammatory, immunomodulatory, antitumor, antiviral, and antifungal properties[1][2].
Adenine
Adenine is the parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. It has a role as a human metabolite, a Daphnia magna metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purine nucleobase and a member of 6-aminopurines. It derives from a hydride of a 9H-purine. A purine base and a fundamental unit of adenine nucleotides. Adenine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenine is a natural product found in Fritillaria cirrhosa, Annona purpurea, and other organisms with data available. Adenine is a purine nucleobase with an amine group attached to the carbon at position 6. Adenine is the precursor for adenosine and deoxyadenosine nucleosides. Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (A3372, A3373). Adenine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine base and a fundamental unit of ADENINE NUCLEOTIDES. See also: adenine; dextrose, unspecified form (component of) ... View More ... Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (PMID: 17052198, 17520339). Widespread throughout animal and plant tissue, purine components of DNA, RNA, and coenzymes. Vitamin The parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. Adenine (/ˈædɪnɪn/) (symbol A or Ade) is a purine nucleobase. It is one of the four nucleobases in the nucleic acids of DNA, the other three being guanine (G), cytosine (C), and thymine (T). Adenine derivatives have various roles in biochemistry including cellular respiration, in the form of both the energy-rich adenosine triphosphate (ATP) and the cofactors nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) and Coenzyme A. It also has functions in protein synthesis and as a chemical component of DNA and RNA.[2] The shape of adenine is complementary to either thymine in DNA or uracil in RNA. The adjacent image shows pure adenine, as an independent molecule. When connected into DNA, a covalent bond is formed between deoxyribose sugar and the bottom left nitrogen (thereby removing the existing hydrogen atom). The remaining structure is called an adenine residue, as part of a larger molecule. Adenosine is adenine reacted with ribose, as used in RNA and ATP; Deoxyadenosine is adenine attached to deoxyribose, as used to form DNA. Adenine forms several tautomers, compounds that can be rapidly interconverted and are often considered equivalent. However, in isolated conditions, i.e. in an inert gas matrix and in the gas phase, mainly the 9H-adenine tautomer is found.[3][4] Purine metabolism involves the formation of adenine and guanine. Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which in turn is synthesized from a pre-existing ribose phosphate through a complex pathway using atoms from the amino acids glycine, glutamine, and aspartic acid, as well as the coenzyme tetrahydrofolate. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].
Inosine
Inosine, also known as hypoxanthosine or inotin, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Inosine is formed when hypoxanthine is attached to a ribose ring a beta-N9-glycosidic bond. Inosine is an intermediate in the degradation of purines and purine nucleosides to uric acid. Inosine is also an intermediate in the purine salvage pathway. Inosine occurs in the anticodon of certain transfer RNA molecules and is essential for proper translation of the genetic code in wobble base pairs. Inosine exists in all living species, ranging from bacteria to plants to humans. Inosine participates in a number of enzymatic reactions. In particular, inosine can be biosynthesized from inosinic acid through its interaction with the enzyme known as cytosolic purine 5-nucleotidase. In addition, inosine can be converted into hypoxanthine and ribose 1-phosphate through its interaction with the enzyme known as purine nucleoside phosphorylase. Altered levels of inosine have also been associated with purine nucleoside phosphorylase deficiency and xanthinuria type I, both of which are inborn errors of metabolism. Animal studies have suggested that inosine has neuroprotective properties. It has been proposed as a potential treatment for spinal cord injury (PMID: 16317421) and for administration after stroke, as inosine appears to induce axonal rewiring (PMID: 12084941). After ingestion, inosine is metabolized into uric acid, which has been found to be a natural antioxidant and peroxynitrite scavenger. As such, inosine may have potential benefits to patients with multiple sclerosis and Parkinson’s disease (PMID: 19425822). Inosine can also be produced by gut bacteria and appears to have a number of beneficial effects. Inosine, has been shown to activate peroxisome proliferator-activated receptor (PPAR)-gamma signaling in human colon epithelial cells. Furthermore, exogenous treatment of inosine has been found to protect against DSS-induced colitis in rodents by improving adenosine 2A receptor (A2AR)/PPAR-gamma-dependent mucosal barrier functions (PMID: 33820558). Microbiome-derived inosine has also been shown to modulate the response to checkpoint inhibitor immunotherapy in cancer models. In particular, decreased gut barrier function induced by immunotherapy increases systemic translocation of bacterially derived inosine and activates antitumor T cells. The effect of inosine is dependent on T cell expression of the adenosine A2A receptor and requires co-stimulation. Inosine appears to have other roles in non-mammalian system. For instance, it has been found to be an important feed stimulant by itself or in combination with certain amino acids in some species of farmed fish. For example, inosine and inosine-5-monophosphate have been reported as specific feeding stimulants for turbot fry, (Scophthalmus maximus) and Japanese amberjack. Inosine is a purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purines D-ribonucleoside and a member of inosines. It is functionally related to a hypoxanthine and a ribofuranose. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) Inosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Inosine is a natural product found in Fritillaria thunbergii, Cichorium endivia, and other organisms with data available. Inosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals A purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Present in meat extracts and sugar beet Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Inosine (exact mass = 268.08077) and L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and L-Tyrosine (exact mass = 181.07389) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 110 KEIO_ID I003 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].
Alliin
Alliin /ˈæli.ɪn/ is a sulfoxide that is a natural constituent of fresh garlic.[1] It is a derivative of the amino acid cysteine. When fresh garlic is chopped or crushed, the enzyme alliinase converts alliin into allicin, which is responsible for the aroma of fresh garlic. Allicin and other thiosulfinates in garlic are unstable and form a number of other compounds, such as diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DAT), dithiins and ajoene.[2] Garlic powder is not a source of alliin, nor is fresh garlic upon maceration, since the enzymatic conversion to allicin takes place in the order of seconds. Alliin was the first natural product found to have both carbon- and sulfur-centered stereochemistry.[3] Constituent of garlic oil (Allium sativum), also from ramsons (Allium ursinum). (R)C(S)S-Alliin is found in garden onion, garlic, and onion-family vegetables. (R)C(S)S-Alliin is found in garden onion. (R)C(S)S-Alliin is a constituent of garlic oil (Allium sativum), also from ramsons (Allium ursinum). Alliin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=556-27-4 (retrieved 2024-07-01) (CAS RN: 556-27-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].
Eldelin
Deltaline is a diterpene alkaloid, a tertiary alcohol, a tertiary amino compound, an acetate ester, a cyclic acetal and an organic polycyclic compound. It derives from a hydride of an aconitane. Deltaline is a natural product found in Delphinium cheilanthum, Delphinium andersonii, and other organisms with data available. Deltaline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6836-11-9 (retrieved 2024-07-09) (CAS RN: 6836-11-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Deltaline is a diterpenoid alkaloid and isolated from plants of the genus Delphinium delavayi Franch. Deltaline itself has analgesic properties, and plants of the genus Delphinium delavayi Franch have also been therapeutically used to treat rheumaticpain, paralysis due to stroke, rheumatoid arthritis[1]. Deltaline is a diterpenoid alkaloid and isolated from plants of the genus Delphinium delavayi Franch. Deltaline itself has analgesic properties, and plants of the genus Delphinium delavayi Franch have also been therapeutically used to treat rheumaticpain, paralysis due to stroke, rheumatoid arthritis[1].
Cytosine
Cytosine, also known as C, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Cytosine is also classified as a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached (an amine group at position 4 and a keto group at position 2). Cytosine is one of the four main bases found in DNA and RNA, along with adenine, guanine, and thymine (uracil in RNA). The nucleoside of cytosine is cytidine. In Watson-Crick base pairing, cytosine forms three hydrogen bonds with guanine. Cytosine was discovered and named by Albrecht Kossel and Albert Neumann in 1894 when it was hydrolyzed from calf thymus tissues. Cytosine exists in all living species, ranging from bacteria to plants to humans. Within cells, cytosine can undergo several enzymatic reactions. It can be methylated into 5-methylcytosine by an enzyme called DNA methyltransferase (DNMT) or be methylated and hydroxylated to make 5-hydroxymethylcytosine. The DNA methyltransferase (DNMT) family of enzymes transfer a methyl group from S-adenosyl-l-methionine (SAM) to the 5’ carbon of cytosine in a molecule of DNA. High levels of cytosine can be found in the urine of individuals with severe combined immunodeficiency syndrome (SCID). Cytosine concentrations as high as (23-160 mmol/mol creatinine) were detected in SCID patients compared to normal levels of <2 mmol/mol creatinine (PMID: 262183). Cytosine is an aminopyrimidine that is pyrimidin-2-one having the amino group located at position 4. It has a role as a human metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. It is a pyrimidine nucleobase, a pyrimidone and an aminopyrimidine. Cytosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cytosine is a natural product found in Streptomyces antibioticus, Salmonella enterica, and other organisms with data available. Cytosine is a pyrimidine base found in DNA and RNA that pairs with guanine. Cytosine is a metabolite found in or produced by Saccharomyces cerevisiae. A pyrimidine base that is a fundamental unit of nucleic acids. See also: Pyrimidine (related). A pyrimidine base that is a fundamental unit of nucleic acids. The deamination of cytosine alone is apparent and the nucleotide of cytosine is the prime mutagenic nucleotide in leukaemia and cancer. [HMDB]. Cytosine is found in many foods, some of which are beech nut, turmeric, grass pea, and cucurbita (gourd). An aminopyrimidine that is pyrimidin-2-one having the amino group located at position 4. Cytosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=71-30-7 (retrieved 2024-07-01) (CAS RN: 71-30-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2].
3-Butylidene-1(3H)-isobenzofuranone
(Z)-3-butylidenephthalide is a gamma-lactone that is phthalide substituted by a butylidene group at position 3. Isolated from Ligusticum porteri, it exhibits hypoglycemic activity. It has a role as a metabolite, a hypoglycemic agent and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a member of 2-benzofurans and a gamma-lactone. It is functionally related to a 2-benzofuran-1(3H)-one. Butylidenephthalide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. (Z)-3-Butylidene-1(3H)-isobenzofuranone is found in herbs and spices. (Z)-3-Butylidene-1(3H)-isobenzofuranone is a constituent of Angelica glauca Flavouring ingredient. 3-Butylidene-1(3H)-isobenzofuranone is found in wild celery and lovage. 3-Butylidenephthalide (Butylidenephthalide) is a phthalic anhydride derivative identified in Ligusticum chuanxiong Hort, and has larvicidal activity (LC50 of 1.56 mg/g for Spodoptera litura larvae)[1]. 3-Butylidenephthalide (Butylidenephthalide) is a phthalic anhydride derivative identified in Ligusticum chuanxiong Hort, and has larvicidal activity (LC50 of 1.56 mg/g for Spodoptera litura larvae)[1].
3,3',4'5-Tetrahydroxystilbene
Piceatannol is a stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. It has a role as a protein kinase inhibitor, a tyrosine kinase inhibitor, an antineoplastic agent, a plant metabolite, a hypoglycemic agent, an apoptosis inducer and a geroprotector. It is a stilbenol, a member of resorcinols, a member of catechols and a polyphenol. It derives from a hydride of a trans-stilbene. Piceatannol is a natural product found in Vitis amurensis, Smilax bracteata, and other organisms with data available. Piceatannol is a polyhydroxylated stilbene extract from the seeds of Euphorbia lagascae, which inhibits protein tyrosine kinase Syk and induces apoptosis. (NCI) Piceatannol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Wine grape (part of); Robinia pseudoacacia whole (part of); Tsuga canadensis bark (part of). 3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). [HMDB] 3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). A stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4]. Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].
Phellodendrine
Phellodendrine is an alkaloid. Phellodendrine is a natural product found in Phellodendron chinense, Phellodendron chinense var. glabriusculum, and other organisms with data available.
8-Prenylnaringenin
Sophoraflavanone B is a trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. It has a role as a platelet aggregation inhibitor and a plant metabolite. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a sophoraflavanone B(1-). 8-Prenylnaringenin is a natural product found in Macaranga conifera, Macaranga denticulata, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens A trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. INTERNAL_ID 2299; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2299
Psoralen
Psoralen is the simplest member of the class of psoralens that is 7H-furo[3,2-g]chromene having a keto group at position 7. It has been found in plants like Psoralea corylifolia and Ficus salicifolia. It has a role as a plant metabolite. 8-methoxsalen and 5-methoxsalen are furocoumarins referred to collectively as psoralens that have photosensitizing activity and are used orally and topically in conjunction with ultraviolet irradiation for the therapy of psoriasis and vitiligo. Psoralens have been linked to a low rate of transient serum enzyme elevations during therapy and to rare instances of clinically apparent acute liver injury. Psoralen is a natural product found in Cullen cinereum, Ficus erecta var. beecheyana, and other organisms with data available. Psoralen is a furocoumarin that intercalates with DNA, inhibiting DNA synthesis and cell division. Psoralen is used in Photochemotherapy with high-intensity long-wavelength UVA irradiation. Psoralens are tricyclic furocumarins and have a strong tendency to intercalate with DNA base pairs. Irradiation of nucleic acids in the presence of psoralen with long wave UV (~360 nm) results in the 2+2 cyclo- addition of either of its two photoreactive sites with 5,6-carbon bonds of pyrimidines resulting in crosslinking double-stranded nucleic acids. Psoralen is found in carrot. Psoralen is found in common vegetables, e.g. parsnip, celery especially if diseased or `spoiled Psoralen is a significant mutagen and is used for this purpose in molecular biology research.Psoralen has been shown to exhibit anti-proliferative, anti-allergenic and anti-histamine functions (A7781, A7782, A7782).Psoralen belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. A naturally occurring furocoumarin, found in PSORALEA. After photoactivation with UV radiation, it binds DNA via single and double-stranded cross-linking. See also: Angelica keiskei top (part of); Cullen corylifolium fruit (part of). Psoralen, also known as psoralene, ficusin or manaderm, belongs to the class of organic compounds known as psoralens. These are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Psoralen is the parent compound in a family of naturally occurring organic compounds known as the linear furanocoumarins. Psoralen is structurally related to coumarin by the addition of a fused furan ring and is considered as a derivative of umbelliferone. Biosynthetically, psoralen originates from coumarins in the shikimate pathway. Psoralen is produced exclusively by plants but can be found in animals that consume these plants. Psoralen can be found in several plant sources with Ficus carica (the common fig) being probably the most abundant source of psoralens. They are also found in small quantities in Ammi visnaga (bisnaga), Pastinaca sativa (parsnip), Petroselinum crispum (parsley), Levisticum officinale (lovage), Foeniculum vulgare (fruit, i.e., Fennel seeds), Daucus carota (carrot), Psoralea corylifolia (babchi), Apium graveolens (celery), and bergamot oil (bergapten, bergamottin). Psoralen is found in all citrus fruits. Psoralen is a well-known mutagen and is used for this purpose in molecular biology research. Psoralen intercalates into DNA and on exposure to ultraviolet (UVA) radiation can form monoadducts and covalent inter-strand cross-links (ICL) with thymines in the DNA molecule. Psoralen also functions as a drug. An important use of psoralen is in the treatment for skin problems such as psoriasis and, to a lesser extent, eczema and vitiligo. This treatment takes advantage of the high UV absorbance of psoralen. In treating these skin conditions psoralen is applied first to sensitise the skin, then UVA light is applied to clean up the skin problem. Psoralen has also been recommended for treating alopecia. The simplest member of the class of psoralens that is 7H-furo[3,2-g]chromene having a keto group at position 7. It has been found in plants like Psoralea corylifolia and Ficus salicifolia. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics Found in common vegetables, e.g. parsnip, celery especies if diseased or `spoiled D003879 - Dermatologic Agents INTERNAL_ID 18; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 18 Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1]. Psoralen. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=66-97-7 (retrieved 2024-10-18) (CAS RN: 66-97-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Sakuranetin
Sakuranetin is a flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as an antimycobacterial drug and a plant metabolite. It is a dihydroxyflavanone, a monomethoxyflavanone, a flavonoid phytoalexin, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Sakuranetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Sakuranetin is found in black walnut. Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae. A flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2]. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2].
Petunidin
Petunidin chloride is an anthocyanidin chloride that has petunidin as the cationic component. It has a role as a metabolite. An anthocyanidin chloride that has petunidin as the cationic component.
Dimethyl trisulfide
Dimethyl trisulfide (DMTS) is an organic chemical compound and the simplest organic trisulfide. It is a flammable liquid with a foul odor, which is detectable at levels as low as 1 part per trillion. Dimethyl trisulfide has been found in volatiles emitted from cooked onion, leek and other Allium species, from broccoli and cabbage, as well as from Limburger cheese, and is involved in the unpalatable aroma of aged beer and stale Japanese sake. It is a decomposition product from bacterial decomposition, including from the early stages of human decomposition, and is a major attractant for blowflies looking for hosts. Dimethyl trisulfide along with dimethyl sulfide and dimethyl disulfide have been confirmed as volatile compounds given off by the fly-attracting plant known as dead-horse arum (Helicodiceros muscivorus). These flies are attracted to the odor of fetid meat and help pollinate this plant. DMTS contributes to the foul odor given off by the fungus Phallus impudicus, also known as the common stinkhorn. DMTS causes the characteristic malodorous smell of a fungating lesion, e.g., from cancer wounds, and contributes to the odor of human feces. Dimethyldisulfide is a volatile organic compound. Methyl disulfide is occasionally found as a volatile component of normal human breath and biofluids. Dimethyldisulfide is one of the representative volatile components found in oral malodor. Dimethyldisulfide concentrations in breath is a practical noninvasive way to assess recent exposure to sulfur compounds in sulfate pulp mills, and therefore it should be applicable to workplaces contaminated. (PMID: 5556886, 14691119, 11236158, 8481097) (Wikipedia). Found in essential oil of hop (Humulus lupulus), garlic (Allium sativum), shallot (Allium cepa) and ramsons (Allium ursinum)and is also found in pineapple, raw cabbage, kohrabi, roasted filberts, roasted peanuts, edible mushrooms, brussel sprouts, fermented radish, Chinese cabbage, parsnips, scallop and squid. The major off-flavour principle of overcooked brassicas. Flavouring ingredient. Dimethyl trisulfide is an organic trisulfide. Dimethyl trisulfide is a natural product found in Psidium guajava, Allium chinense, and other organisms with data available. dimethyltrisulfide is a metabolite found in or produced by Saccharomyces cerevisiae. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].
Azulene
Azulene is a mancude carbobicyclic parent consisting of a cycloheptatriene and cyclopentadiene rings. It has a role as a plant metabolite and a volatile oil component. It is an ortho-fused bicyclic arene, a member of azulenes and a mancude carbobicyclic parent. Azulene is a natural product found in Anthemis cretica, Achillea millefolium, and other organisms with data available. Azulene is one of over 100 different polycyclic aromatic hydrocarbons (PAHs). PAHs are chemicals that are formed during the incomplete burning organic substances, such as fossil fuels. They are usually found as a mixture containing two or more of these compounds. (L10) A mancude carbobicyclic parent consisting of a cycloheptatriene and cyclopentadiene rings. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Same as: D09768 Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].
Coptisine
Coptisine is an alkaloid. It has a role as a metabolite. Coptisine is a natural product found in Fumaria capreolata, Fumaria muralis, and other organisms with data available. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). A natural product found in Coptis japonica.
Mimosine
Mimosine is only found in individuals that have used or taken this drug. It is an antineoplastic alanine-substituted pyridine derivative isolated from Leucena glauca. [PubChem]Mimosine causes inhibition of DNA replication, changes in the progression of the cells in the cell cycle, and apoptosis. Mimosine appears to introduce breaks into DNA. Mimosine is an iron/zinc chelator. Iron depletion induces DNA double-strand breaks in treated cells, and activates a DNA damage response that results in focal phosphorylation of histones. This leads to inhibition of DNA replication and/or DNA elongation. Some studies indicate that mimosine prevents the initiation of DNA replication, whereas other studies indicate that mimosine disrupts elongation of the replication fork by impairing deoxyribonucleotide synthesis by inhibiting the activity of the iron-dependent enzyme ribonucleotide reductase and the transcription of the cytoplasmic serine hydroxymethyltransferase gene (SHMT). Inhibition of serine hydroxymethyltransferase is moderated by a zinc responsive unit located in front of the SHMT gene. L-mimosine is an L-alpha-amino acid that is propionic acid substituted by an amino group at position 2 and a 3-hydroxy-4-oxopyridin-1(4H)-yl group at position 3 (the 2S-stereoisomer). It a non-protein plant amino acid isolated from Mimosa pudica. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a non-proteinogenic L-alpha-amino acid and a member of 4-pyridones. It is functionally related to a propionic acid. It is a conjugate acid of a L-mimosine(1-). It is a tautomer of a L-mimosine zwitterion. Mimosine is an antineoplastic alanine-substituted pyridine derivative isolated from Leucena glauca. 3-Hydroxy-4-oxo-1(4H)-pyridinealanine. An antineoplastic alanine-substituted pyridine derivative isolated from Leucena glauca. An L-alpha-amino acid that is propionic acid substituted by an amino group at position 2 and a 3-hydroxy-4-oxopyridin-1(4H)-yl group at position 3 (the 2S-stereoisomer). It a non-protein plant amino acid isolated from Mimosa pudica. Mimosine, a tyrosine analog , can act as an antioxidant by its potent iron-binding activity[1]. Mimosine is a known chelator of Fe(III)[2]. Mimosine induces apoptosis through metal ion chelation, mitochondrial activation and ROS production in human leukemic cells[3]. Anti-cancer, antiinflammation. Mimosine, a tyrosine analog , can act as an antioxidant by its potent iron-binding activity[1]. Mimosine is a known chelator of Fe(III)[2]. Mimosine induces apoptosis through metal ion chelation, mitochondrial activation and ROS production in human leukemic cells[3]. Anti-cancer, antiinflammation.
Sugiol
Sugiol is an abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group. It has a role as a plant metabolite, an antiviral agent, an antineoplastic agent, an antioxidant and a radical scavenger. It is an abietane diterpenoid, a carbotricyclic compound, a meroterpenoid, a member of phenols and a cyclic terpene ketone. It is functionally related to a ferruginol. Sugiol is a natural product found in Austrocedrus chilensis, Libocedrus bidwillii, and other organisms with data available. An abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group.
Futoquinol
Futoquinol is a monoterpenoid. Futoquinol is a natural product found in Piper wightii, Piper hymenophyllum, and other organisms with data available.
Secoisolariciresinol
Secoisolariciresinol, also known as knotolan or secoisolariciresinol, (r*,s*)-isomer, is a member of the class of compounds known as dibenzylbutanediol lignans. Dibenzylbutanediol lignans are lignan compounds containing a 2,3-dibenzylbutane-1,4-diol moiety. Secoisolariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Secoisolariciresinol can be found in a number of food items such as grape, saskatoon berry, asparagus, and sweet potato, which makes secoisolariciresinol a potential biomarker for the consumption of these food products. Secoisolariciresinol can be found primarily in urine. Secoisolariciresinol is a lignan, a type of phenylpropanoid. It is present in the water extract of silver fir wood, where its content is more than 5 \\\\% . (-)-secoisolariciresinol is an enantiomer of secoisolariciresinol having (-)-(2R,3R)-configuration. It has a role as an antidepressant, a plant metabolite and a phytoestrogen. It is an enantiomer of a (+)-secoisolariciresinol. Secoisolariciresinol has been used in trials studying the prevention of Breast Cancer. Secoisolariciresinol is a natural product found in Fitzroya cupressoides, Crossosoma bigelovii, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.
Cernuine
Aureusidin is a hydroxyaurone that is aurone substituted by hydroxy groups at positions 4, 6, 3 and 4 respectively. It has a role as a plant metabolite. It is functionally related to an aurone. It is a conjugate acid of an aureusidin-6-olate. Aureusidin is a natural product found in Eleocharis dulcis, Eleocharis pallens, and other organisms with data available. Cernuine is found in citrus. Cernuine is isolated from Citrus medica (citron). Isolated from Citrus medica (citron). Cernuine is found in lemon and citrus. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1]. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1]. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1].
Xanthine
Xanthine, also known as 2,6-dioxopurine, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Xanthine is also classified as an oxopurine. An oxopurine in which the purine ring is substituted by oxo groups at positions 2 and 6 and N-9 is protonated. Xanthine exists in all living species, ranging from bacteria to plants to humans. In plants, several stimulants can be derived from xanthine, including caffeine, theophylline, and theobromine. Derivatives of xanthine (known collectively as xanthines) are a group of alkaloids commonly used for their effects as mild stimulants and as bronchodilators, notably in the treatment of asthma or influenza symptoms. Within humans, xanthine participates in a number of enzymatic reactions. In particular, xanthine can be biosynthesized from guanine; which is mediated by the enzyme guanine deaminase. In addition, xanthine and ribose 1-phosphate can be biosynthesized from xanthosine through the action of the enzyme purine nucleoside phosphorylase. In humans and other primates, xanthine can be converted to uric acid by the action of the xanthine oxidase enzyme. People with rare genetic disorders, specifically xanthinuria and Lesch–Nyhan syndrome, lack sufficient xanthine oxidase and cannot convert xanthine to uric acid. Individuals with xanthinuria have unusually high concentrations of xanthine in their blood and urine, which can lead to health problems such as renal failure and xanthine kidney stones. Individuals with Lesch-Nyhan syndrome have a deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). The HGPRT deficiency causes a build-up of uric acid in all body fluids. This results in both high levels of uric acid in the blood and urine, associated with severe gout and kidney problems. Neurological signs include poor muscle control and moderate intellectual disability. 9H-xanthine is an oxopurine in which the purine ring is substituted by oxo groups at positions 2 and 6 and N-9 is protonated. It has a role as a Saccharomyces cerevisiae metabolite. It is a tautomer of a 7H-xanthine. A purine base found in most body tissues and fluids, certain plants, and some urinary calculi. It is an intermediate in the degradation of adenosine monophosphate to uric acid, being formed by oxidation of hypoxanthine. The methylated xanthine compounds caffeine, theobromine, and theophylline and their derivatives are used in medicine for their bronchodilator effects. (Dorland, 28th ed) Xanthine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Xanthine is a natural product found in Beta vulgaris, Camellia sinensis var. assamica, and other organisms with data available. Xanthine is a purine base found in most body tissues and fluids, certain plants, and some urinary calculi. It is an intermediate in the degradation of adenosine monophosphate to uric acid, being formed by oxidation of hypoxanthine. The methylated xanthine compounds caffeine, theobromine, and theophylline and their derivatives are used in medicine for their bronchodilator effects. (Dorland, 28th ed.). Xanthine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine base found in most body tissues and fluids, certain plants, and some urinary calculi. It is an intermediate in the degradation of adenosine monophosphate to uric acid, being formed by oxidation of hypoxanthine. The methylated xanthine compounds caffeine, theobromine, and theophylline and their derivatives are used in medicine for their bronchodilator effects. (Dorland, 28th ed) An oxopurine in which the purine ring is substituted by oxo groups at positions 2 and 6 and N-9 is protonated. Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3]. Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3]. Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3].
beta-D-Galactopyranosyl-(1->4)-beta-D-galactopyranosyl-(1->4)-D-galactose
beta-D-Galactopyranosyl-(1->4)-beta-D-galactopyranosyl-(1->4)-D-galactose, also known as b-D-galactopyranosyl-(1->4)-b-D-galactopyranosyl-(1->4)-D-galactose belongs to the class of organic compounds known as oligosaccharides or glycans. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. beta-D-galactopyranosyl-(1->4)-beta-D-galactopyranosyl-(1->4)-D-galactose has been detected, but not quantified, in root vegetables. Beta-D-Galactopyranosyl-(1->4)-beta-D-galactopyranosyl-(1->4)-D-galactose is an oligosaccharide. Maltotriose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Maltotriose is a natural product found in Lycium barbarum, Polygonum aviculare, and other organisms with data available. Maltotriose is a metabolite found in or produced by Saccharomyces cerevisiae. Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2]. Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2].
Cyprodinil
CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9314; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9293; ORIGINAL_PRECURSOR_SCAN_NO 9292 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9313; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9269; ORIGINAL_PRECURSOR_SCAN_NO 9268 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9257; ORIGINAL_PRECURSOR_SCAN_NO 9256 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9258; ORIGINAL_PRECURSOR_SCAN_NO 9257 CONFIDENCE standard compound; EAWAG_UCHEM_ID 148 CONFIDENCE standard compound; INTERNAL_ID 2569 KEIO_ID C172; [MS2] KO008908 Cyprodinil is a fungicide. Cyprodinil is a fungicide KEIO_ID C172
Pyraclostrobin
D010575 - Pesticides > D005659 - Fungicides, Industrial > D000073739 - Strobilurins D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9757; ORIGINAL_PRECURSOR_SCAN_NO 9756 CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9779; ORIGINAL_PRECURSOR_SCAN_NO 9775 CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9794; ORIGINAL_PRECURSOR_SCAN_NO 9793 CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9828; ORIGINAL_PRECURSOR_SCAN_NO 9826 CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9794; ORIGINAL_PRECURSOR_SCAN_NO 9792 CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9842; ORIGINAL_PRECURSOR_SCAN_NO 9840 CONFIDENCE standard compound; INTERNAL_ID 2593 CONFIDENCE standard compound; INTERNAL_ID 8468 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2779 Pyraclostrobin is a highly effective and broad-spectrum strobilurin fungicide. Pyraclostrobin can induce oxidative DNA damage, mitochondrial dysfunction and autophagy through the activation of AMPK/mTOR signaling. Pyraclostrobin can be used to control crop diseases[1][2][3].
Deoxycytidine
Deoxycytidine, also known as dC, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxycytidine is also classified as a deoxyribonucleoside, a component of deoxyribonucleic acid (DNA). Deoxycytidine is similar to the ribonucleoside cytidine, but with one hydroxyl group removed from the 2 position. Deoxycytidine exists in all living species, ranging from bacteria to plants to humans. Degradation of DNA through apoptosis or cell death produces deoxycytidine. Within humans, deoxycytidine participates in a number of enzymatic reactions. In particular, deoxycytidine can be biosynthesized from dCMP through the action of the enzyme cytosolic purine 5-nucleotidase. In addition, deoxycytidine can be converted into dCMP; which is mediated by the enzyme uridine-cytidine kinase-like 1. Deoxycytidine can be phosphorylated at the C-5 position by the enzyme deoxycytidine kinase to produce deoxycytidine monophosphate (dCMP), and to a lesser extent, deoxycytidine diphosphate (dCDP), and deoxycytidine triphosphate (dCTP). Deoxycytidine can also be phosphorylated by thymidine kinase 2 (TK2). Deoxycytidine can potentially be used for the treatment of the metabolic disorder known as thymidine kinase 2 deficiency (TK2 deficiency). TK2 deficiency has three disease subtypes: i) infantile-onset myopathy with rapid progression to early death ii) childhood-onset myopathy, which resembles spinal muscular atrophy (SMA) type III, begins between ages 1 and 12 years with progression to loss of ambulation within few years and iii) late-onset myopathy starting at age 12 year or later with moderate to severe myopathy manifesting as either isolated chronic progressive external ophthalmoplegia (CPEO) or a generalized myopathy with CPEO plus facial and limb weakness, gradual progression, and, in some cases, respiratory failure and loss of ability to walk in adulthood (PMID: 28318037). In mouse models of TK2, dC was shown to delay disease onset, prolong life span and restore mtDNA copy number as well as respiratory chain enzyme activities (PMID: 28318037). One of the principal nucleosides of DNA composed of cytosine and deoxyribose. A nucleoside consists of only a pentose sugar linked to a purine or pyrimidine base, without a phosphate group. When N1 is linked to the C1 of deoxyribose, deoxynucleosides and nucleotides are formed from cytosine and deoxyribose; deoxycytidine monophosphate (dCMP), deoxycytidine diphosphate (dCDP), deoxycytidine triphosphate (dCTP). CTP is the source of the cytidine in RNA (ribonucleic acid) and deoxycytidine triphosphate (dCTP) is the source of the deoxycytidine in DNA (deoxyribonucleic acid). [HMDB]. Deoxycytidine is found in many foods, some of which are japanese pumpkin, turmeric, prairie turnip, and kai-lan. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C2459 - Chemoprotective Agent COVID info from COVID-19 Disease Map KEIO_ID D055; [MS2] KO008940 Corona-virus KEIO_ID D055 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxycytidine, a deoxyribonucleoside, can inhibit biological effects of Bromodeoxyuridine (Brdu). 2'-Deoxycytidine is essential for the synthesis of nucleic acids, that can be used for the research of cancer[1][2]. 2'-Deoxycytidine, a deoxyribonucleoside, could inhibit biological effects of Bromodeoxyuridine (Brdu).
Deoxyuridine
Deoxyuridine, also known as dU, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. It is similar in chemical structure to uridine, but without the 2-hydroxyl group. Deoxyuridine exists in all living organisms, ranging from bacteria to humans. Within humans, deoxyuridine participates in a number of enzymatic reactions. In particular, deoxyuridine can be biosynthesized from deoxycytidine through its interaction with the enzyme cytidine deaminase. In addition, deoxyuridine can be converted into uracil and deoxyribose 1-phosphate through its interaction with the enzyme thymidine phosphorylase. Deoxyuridine is considered to be an antimetabolite that is converted into deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies. In humans, deoxyuridine is involved in the metabolic disorder called UMP synthase deficiency (orotic aciduria). Outside of the human body, deoxyuridine has been detected, but not quantified in, several different foods, such as lichee, highbush blueberries, agaves, macadamia nut (M. tetraphylla), and red bell peppers. This could make deoxyuridine a potential biomarker for the consumption of these foods. 2-Deoxyuridine is a naturally occurring nucleoside. It is similar in chemical structure to uridine, but without the 2-hydroxyl group. It is considered to be an antimetabolite that is converted to deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies. [HMDB]. Deoxyuridine is found in many foods, some of which are garden tomato (variety), hickory nut, banana, and hazelnut. Deoxyuridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=951-78-0 (retrieved 2024-07-01) (CAS RN: 951-78-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.
Deoxyadenosine
Deoxyadenosine is a derivative of the nucleoside adenosine. It is composed of adenine attached to a deoxyribose moiety via a N9-glycosidic bond. Deoxyribose differs from ribose by the absence of oxygen in the 3 position of its ribose ring. Deoxyadenosine is a critical component of DNA. When present in sufficiently high levels, deoxyadensoine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxyadenosine are associated with adenosine deaminase (ADA) deficiency, an inborn error of metabolism. ADA deficiency damages the immune system and causes severe combined immunodeficiency (SCID). People with SCID lack virtually all immune protection from bacteria, viruses, and fungi. They are prone to repeated and persistent infections that can be very serious or life-threatening. These infections are often caused by "opportunistic" organisms that ordinarily do not cause illness in people with a normal immune system. The main symptoms of ADA deficiency are pneumonia, chronic diarrhea, and widespread skin rashes. The mechanism by which dATP functions as an immunotoxin is as follows: because deoxyadenosine is a precursor to dATP, a buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Deoxyadenosine is a derivative of nucleoside adenosine. It is comprised of adenine attached to a deoxyribose moiety via a N9-glycosidic bond. Deoxyribose differs from ribose by the absence of oxygen in the 3 position of its ribose ring. Deoxyadenosine is a critical component of DNA. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents COVID info from COVID-19 Disease Map D009676 - Noxae > D009153 - Mutagens KEIO_ID D069 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA. 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA. 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA.
Beta-Tyrosine
The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. GMR beta tyrosine residues are not necessary for activation of the JAK/STAT pathway, or for proliferation, viability, or adhesion signaling in Ba/F3 cells, although tyrosine residues significantly affect the magnitude of the response. (PMID:10372132). The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. KEIO_ID A176
5-Hydroxymethyluracil
5-Hydroxymethyluracil (5hmU), also known as alpha-hydroxythymine, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5hmU has been identified as a thymine base modification found in the genomes of a diverse range of organisms (PMID: 28137275). 5-hydroxymethyluracil has been detected in bacteriophages, dinoflagellates, leishmania, and in eukaryotic genomes where its level appears to be cell type-specific. 5-Hydroxymethyluracil arises from the oxidation of thymine. 5-Hydroxymethyluracil is produced by the enzyme thymine dioxygenase (EC 1.14.11.6) which catalyzes the chemical reaction thymine + 2-oxoglutarate + O2 <-> 5-hydroxymethyluracil + succinate + CO2. The 3 substrates of this enzyme are thymine, 2-oxoglutarate, and O2, whereas its 3 products are 5-hydroxymethyluracil, succinate, and CO2. The 5hmU base can also be generated by oxidation/hydroxylation of thymine by the Ten-Eleven-Translocation (TET) proteins or result from deamination of 5hmC (PMID: 29184924). DNA containing 5hmU has been reported to be more flexible and hydrophilic (PMID: 29184924). 5-Hydroxymethyluracil is an oxidation damage product derived from thymine or 5-methylcytosine. It is a product of thymine dioxygenase [EC 1.14.11.6]. (KEGG) D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D007155 - Immunologic Factors 5-Hydroxymethyluracil is a product of oxidative DNA damage. 5-Hydroxymethyluracil can be used as a potential epigenetic mark enhancing or inhibiting transcription with bacterial RNA polymerase. 5-Hydroxymethyluracil is a product of oxidative DNA damage. 5-Hydroxymethyluracil can be used as a potential epigenetic mark enhancing or inhibiting transcription with bacterial RNA polymerase.
2-Amino-6-[(1R,2S)-1,2,3-trihydroxypropyl]-7,8-dihydro-3H-pteridin-4-one
7,8-Dihydroneopterin, an inflammation marker, induces cellular apoptosis in astrocytes and neurons via enhancement of nitric oxide synthase (iNOS) expression. 7,8-Dihydroneopterin can be used in the research of neurodegenerative diseases[1].
Hypoxanthine
Hypoxanthine, also known as purine-6-ol or Hyp, belongs to the class of organic compounds known as purines. Purines are a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. Hypoxanthine is also classified as an oxopurine, Hypoxanthine is a naturally occurring purine derivative and a reaction intermediate in the metabolism of adenosine and in the formation of nucleic acids by the nucleotide salvage pathway. Hypoxanthine exists in all living species, ranging from bacteria to plants to humans. Hypoxanthine has been detected, but not quantified in, several different foods, such as radish (var.), mountain yams, welsh onions, greenthread tea, and common beets. Hypoxanthine is occasionally found as a constituent of nucleic acids, where it is present in the anticodon of tRNA in the form of its nucleoside inosine. Biologically, hypoxanthine can be formed a number of ways. For instance, it is one of the products of the action of xanthine oxidase on xanthine. However, more frequently xanthine is formed from oxidation of hypoxanthine by xanthine oxidoreductase. The enzyme hypoxanthine-guanine phosphoribosyltransferase converts hypoxanthine into IMP in the nucleotide salvage pathway. Hypoxanthine is also a spontaneous deamination product of adenine. Under normal circumstances hypoxanthine is readily converted to uric acid. In this process, hypoxanthine is first oxidized to xanthine, which is further oxidized to uric acid by xanthine oxidase. Molecular oxygen, the oxidant in both reactions, is reduced to H2O2 and other reactive oxygen species. In humans, uric acid is the final product of purine degradation and is excreted in the urine. Within humans, hypoxanthine participates in a number of other enzymatic reactions. In particular, hypoxanthine and ribose 1-phosphate can be biosynthesized from inosine through its interaction with the enzyme purine nucleoside phosphorylase. Hypoxanthine is also involved in the metabolic disorder called the purine nucleoside phosphorylase deficiency. Purine nucleoside phosphorylase (PNP) deficiency is a disorder of the immune system (primary immunodeficiency) characterized by recurrent infections, neurologic symptoms, and autoimmune disorders. PNP deficiency causes a shortage of white blood cells, called T-cells, that help fight infection. Affected individuals develop neurologic symptoms, such as stiff or rigid muscles (spasticity), uncoordinated movements (ataxia), developmental delay, and intellectual disability. PNP deficiency is associated with an increased risk to develop autoimmune disorders, such as autoimmune hemolytic anemia, idiopathic thrombocytopenic purpura (ITP), autoimmune neutropenia, thyroiditis, and lupus. [Spectral] Hypoxanthine (exact mass = 136.03851) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Occurs widely in plant and animal tissue (CCD). Hypoxanthine is found in many foods, some of which are japanese chestnut, parsnip, okra, and horned melon. Hypoxanthine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=68-94-0 (retrieved 2024-07-02) (CAS RN: 68-94-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia.
L-Serine
Serine (Ser) or L-serine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-serine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Serine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. In humans, serine is a nonessential amino acid that can be easily derived from glycine. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. Like all the amino acid building blocks of protein and peptides, serine can become essential under certain conditions, and is thus important in maintaining health and preventing disease. L-Serine may be derived from four possible sources: dietary intake; biosynthesis from the glycolytic intermediate 3-phosphoglycerate; from glycine; and by protein and phospholipid degradation. Little data is available on the relative contributions of each of these four sources of l-serine to serine homoeostasis. It is very likely that the predominant source of l-serine will be very different in different tissues and during different stages of human development. In the biosynthetic pathway, the glycolytic intermediate 3-phosphoglycerate is converted into phosphohydroxypyruvate, in a reaction catalyzed by 3-phosphoglycerate dehydrogenase (3- PGDH; EC 1.1.1.95). Phosphohydroxypyruvate is metabolized to phosphoserine by phosphohydroxypyruvate aminotransferase (EC 2.6.1.52) and, finally, phosphoserine is converted into l-serine by phosphoserine phosphatase (PSP; EC 3.1.3.3). In liver tissue, the serine biosynthetic pathway is regulated in response to dietary and hormonal changes. Of the three synthetic enzymes, the properties of 3-PGDH and PSP are the best documented. Hormonal factors such as glucagon and corticosteroids also influence 3-PGDH and PSP activities in interactions dependent upon the diet. L-serine is the predominant source of one-carbon groups for the de novo synthesis of purine nucleotides and deoxythymidine monophosphate. It has long been recognized that, in cell cultures, L-serine is a conditional essential amino acid, because it cannot be synthesized in sufficient quantities to meet the cellular demands for its utilization. In recent years, L-serine and the products of its metabolism have been recognized not only to be essential for cell proliferation, but also to be necessary for specific functions in the central nervous system. The findings of altered levels of serine and glycine in patients with psychiatric disorders and the severe neurological abnormalities in patients with defects of L-serine synthesis underscore the importance of L-serine in brain development and function. (PMID 12534373). [Spectral] L-Serine (exact mass = 105.04259) and D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement. L-Serine is found in many foods, some of which are cold cut, mammee apple, coho salmon, and carrot. L-Serine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-45-1 (retrieved 2024-07-01) (CAS RN: 56-45-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.
Parathion
Parathion is a highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors A highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. [HMDB] C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Thymine
Thymine, also known as 5-methyluracil, belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Thymine was first isolated in 1893 by Albrecht Kossel and Albert Neumann from calves thymus glands, hence its name. Thymine is one of the 4 nuelcoebases found in DNA and is essential to all life. Thymine exists in all living species, ranging from bacteria to plants to humans. Thymine combined with deoxyribose creates the nucleoside deoxythymidine (also called thymidine) which when phosphorylated to dTDP can be incorporated into DNA via DNA polymerases. Thymidine can be phosphorylated with up to three phosphoric acid groups, producing dTMP (deoxythymidine monophosphate) dTDP and/or dTTP. In RNA thymine is replaced with uracil in most cases. In DNA, thymine binds to adenine via two hydrogen bonds to assist in stabilizing the nucleic acid structures. Within humans, thymine participates in a number of enzymatic reactions. In particular, thymine and deoxyribose 1-phosphate can be biosynthesized from thymidine through its interaction with the enzyme thymidine phosphorylase. In addition, thymine can be converted into dihydrothymine; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. One of the pyrimidine bases of living matter. Derivation: Hydrolysis of deoxyribonucleic acid, from methylcyanoacetylurea by catalytic reduction. Use: Biochemical research. (Hawleys Condensed Chemical Dictionary) Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus KEIO_ID T015 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.
Fluconazole
Fluconazole is only found in individuals that have used or taken this drug. It is a triazole antifungal agent that is used to treat oropharyngeal candidiasis and cryptococcal meningitis in AIDS. [PubChem]Fluconazole interacts with 14-α demethylase, a cytochrome P-450 enzyme necessary to convert lanosterol to ergosterol. As ergosterol is an essential component of the fungal cell membrane, inhibition of its synthesis results in increased cellular permeability causing leakage of cellular contents. Fluconazole may also inhibit endogenous respiration, interact with membrane phospholipids, inhibit the transformation of yeasts to mycelial forms, inhibit purine uptake, and impair triglyceride and/or phospholipid biosynthesis. J - Antiinfectives for systemic use > J02 - Antimycotics for systemic use > J02A - Antimycotics for systemic use > J02AC - Triazole and tetrazole derivatives D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065689 - Cytochrome P-450 CYP2C19 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058888 - 14-alpha Demethylase Inhibitors COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Urocanic acid
Urocanic acid (CAS: 104-98-3) is a breakdown (deamination) product of histidine. In the liver, urocanic acid is an intermediate in the conversion of histidine to glutamic acid, whereas, in the epidermis, it accumulates and may be both a UV protectant and an immunoregulator. Urocanic acid (UA) exists as a trans isomer (t-UA, approximately 30 mg/cm2) in the uppermost layer of the skin (stratum corneum). t-UA is formed as the cells of the second layer of the skin become metabolically inactive. During this process, proteins and membranes degrade, histidine is released, and histidase (histidine ammonia lyase) catalyzes the deamination of histidine to form t-UA. t-UA accumulates in the epidermis until removal by either the monthly skin renewal cycle or sweat. Upon absorption of UV light, the naturally occurring t-UA isomerizes to its cis form, c-UA. Because DNA lesions (e.g., pyrimidine dimers) in the lower epidermis can result from UV-B absorption, initial research proposed that t-UA acted as a natural sunscreen absorbing UV-B in the stratum corneum before the damaging rays could penetrate into lower epidermal zones. Researchers have found that c-UA also suppresses contact hypersensitivity and delayed hypersensitivity, reduces the Langerhans cell count in the epidermis, prolongs skin-graft survival time, and affects natural killer cell activity. (E)-Urocanic acid is found in mushrooms. It has been isolated from Coprinus atramentarius (common ink cap) and Phallus impudicus (common stinkhorn). Trans-urocanic acid, also known as 4-imidazoleacrylic acid or urocanate, belongs to imidazolyl carboxylic acids and derivatives class of compounds. Those are organic compounds containing a carboxylic acid chain (of at least 2 carbon atoms) linked to an imidazole ring. Trans-urocanic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Trans-urocanic acid can be found in mung bean, which makes trans-urocanic acid a potential biomarker for the consumption of this food product. Trans-urocanic acid can be found primarily in most biofluids, including sweat, feces, blood, and urine, as well as in human liver and skin tissues. Trans-urocanic acid exists in all living organisms, ranging from bacteria to humans. In humans, trans-urocanic acid is involved in the histidine metabolism. Trans-urocanic acid is also involved in a couple of metabolic disorders, which include ammonia recycling and histidinemia. Urocanic acid, produced in the upper layers of mammalian skin, is a major absorber of ultraviolet radiation (UVR). Urocanic acid, produced in the upper layers of mammalian skin, is a major absorber of ultraviolet radiation (UVR).
thiram
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AA - Sulfur containing products CONFIDENCE standard compound; EAWAG_UCHEM_ID 3724 D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals D010575 - Pesticides Same as: D06114
Deoxyinosine
Deoxyinosine is a nucleoside that is formed when hypoxanthine is attached to a deoxyribose ring (also known as a ribofuranose) via a beta-N9-glycosidic bond. Deoxyinosine is found in DNA while inosine is found in RNA. Inosine is a nucleic acid important for RNA editing. Adenosine deaminase (ADA) catalyzes the conversion of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. ADA-deficient individuals suffer from severe combined immunodeficiency (SCID) and are unable to produce significant numbers of mature T or B lymphocytes. This occurs as a consequence of the accumulation of ADA substrates or their metabolites. Inosine is also an intermediate in a chain of purine nucleotides reactions required for muscle movements. Moreover, deoxyinosine is found to be associated with purine nucleoside phosphorylase (PNP) deficiency, which is an inborn error of metabolism. Isolated from Phaseolus vulgaris (kidney bean). 2-Deoxyinosine is found in pulses, yellow wax bean, and green bean. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.
Thymidine 5'-triphosphate
Thymidine-5-triphosphate, also known as ttp or deoxythymidine 5-triphosphoric acid, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleoside triphosphates. Pyrimidine 2-deoxyribonucleoside triphosphates are pyrimidine nucleotides with a triphosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. Thymidine-5-triphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Thymidine-5-triphosphate can be found in a number of food items such as kohlrabi, garden tomato (variety), cardoon, and star anise, which makes thymidine-5-triphosphate a potential biomarker for the consumption of these food products. Thymidine-5-triphosphate exists in all living species, ranging from bacteria to humans. In humans, thymidine-5-triphosphate is involved in the pyrimidine metabolism. Thymidine-5-triphosphate is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Deoxythymidine triphosphate (dTTP) is one of the four nucleoside triphosphates that are used in the in vivo synthesis of DNA. Unlike the other deoxyribonucleoside triphosphates, thymidine triphosphate does not always contain the "deoxy" prefix in its name. The corresponding ribonucleoside triphosphate is called uridine triphosphate. Thymidine 5-triphosphate, also known as TTP or DTHD5ppp, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside triphosphates. These are pyrimidine nucleotides with a triphosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. Thymidine 5-triphosphate exists in all living species, ranging from bacteria to humans. Outside of the human body, Thymidine 5-triphosphate has been detected, but not quantified in several different foods, such as elliotts blueberries, mamey sapotes, sesames, alliums, and sweet oranges.
Mesalazine
Mesalazine is only found in individuals that have used or taken this drug. It is an anti-inflammatory agent, structurally related to the salicylates, which is active in inflammatory bowel disease. It is considered to be the active moiety of sulphasalazine. (From Martindale, The Extra Pharmacopoeia, 30th ed)Although the mechanism of action of mesalazine is not fully understood, it appears to be topical rather than systemic. Mucosal production of arachidonic acid metabolites, both through the cyclooxygenase pathways, i.e., prostanoids, and through the lipoxygenase pathways, i.e., leukotrienes and hydroxyeicosatetraenoic acids, is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalazine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin production in the colon. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents
2'-Deoxyinosine triphosphate
2-Deoxyinosine triphosphate (dITP) is a deoxyribonucleotide that may be generated from dATP by slow, non-enzymatic hydrolysis or by reduction of ITP. Normally, the cellular dITP concentration is very low. The inability to demonstrate the synthesis of dITP in cellular preparations has been attributed to the presence in the cytoplasm of an inosine triphosphatase pyrophosphatase (ITPase, EC 3.6.1.19), an enzyme that does not permit accumulation of these nucleotides. dITP can be incorporated into DNA by polymerases. The deoxyribonucleotide dITP behaves as a dGTP analogue and is incorporated opposite cytosine with about 50\\% efficiency. Both isolated nuclei and purified DNA polymerases rapidly incorporated dITP into DNA. In the presence of ATP, dITP is stabilized in extracts of nuclei. dITP exist in all cells and is potentially mutagenic, and the levels of these nucleotides are controlled by ITPase. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell. (PMID: 11278832) [HMDB] 2-Deoxyinosine triphosphate (dITP) is a deoxyribonucleotide that may be generated from dATP by slow, non-enzymatic hydrolysis or by reduction of ITP. Normally, the cellular dITP concentration is very low. The inability to demonstrate the synthesis of dITP in cellular preparations has been attributed to the presence in the cytoplasm of an inosine triphosphatase pyrophosphatase (ITPase, EC 3.6.1.19), an enzyme that does not permit accumulation of these nucleotides. dITP can be incorporated into DNA by polymerases. The deoxyribonucleotide dITP behaves as a dGTP analogue and is incorporated opposite cytosine with about 50\\% efficiency. Both isolated nuclei and purified DNA polymerases rapidly incorporated dITP into DNA. In the presence of ATP, dITP is stabilized in extracts of nuclei. dITP exist in all cells and is potentially mutagenic, and the levels of these nucleotides are controlled by ITPase. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell. (PMID: 11278832). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Maltotriose
Maltotriose is a trisaccharide (three-part sugar) consisting of three glucose molecules linked with α-1,4 glycosidic bonds. It is most commonly produced by the digestive enzyme alpha-amylase (a common enzyme in human saliva) on amylose in starch. The creation of both maltotriose and maltose during this process is due to the random manner in which alpha amylase hydrolyses α-1,4 glycosidic bonds. It is the shortest chain oligosaccharide that can be classified as maltodextrin. Maltotriose belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. Maltotriose is a common oligosaccharide metabolite found in human urine after maltose ingestion or infusion (PMID:6645121). Maltotriose is increased in glycogen storage disease II (OMIM: 232300) due to a mutation of the enzyme alpha-1,4-glucosidase (EC 3.2.1.20) (PMID:4286143). Constituent of corn syrup. Amylolysis production from starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers) Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2]. Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2].
Taurolithocholate 3-sulfate
Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids KEIO_ID T072
Xanthosine
Xanthosine, also known as xanthine riboside, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine exists in all living species, ranging from bacteria to plants to humans. In plants xanthosine is the biosynthetic precursor to 7-methylxanthosine which is produced by the action of the enzyme known as 7-methylxanthosine synthase. 7-Methylxanthosine in turn is the precursor to theobromine (the active alkaloid in chocolate), which in turn is the precursor to caffeine, the active alkaloid in coffee and tea. Within humans, xanthosine participates in a number of enzymatic reactions. In particular, xanthosine can be biosynthesized from xanthylic acid; which is catalyzed by the enzyme cytosolic purine 5-nucleotidase. In addition, xanthosine can be converted into xanthine and ribose 1-phosphate; which is mediated by the enzyme purine nucleoside phosphorylase. Xanthosine monophosphate (XMP) is an intermediate in purine metabolism, formed from IMP (inosine monophosphate). Biological Source: Production by guanine-free mutants of bacteria e.g. Bacillus subtilis, Aerobacter aerogenesand is also reported from seeds of Trifolium alexandrinum Physical Description: Prismatic cryst. (H2O) (Chemnetbase) The deamination product of guanosine; Xanthosine monophosphate is an intermediate in purine metabolism, formed from IMP, and forming GMP.; Xanthylic acid can be used in quantitative measurements of the Inosine monophosphate dehydrogenase enzyme activities in purine metabolism, as recommended to ensure optimal thiopurine therapy for children with acute lymphoblastic leukaemia (ALL). (PMID: 16725387). Xanthosine is found in many foods, some of which are calabash, rambutan, apricot, and pecan nut. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 126 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1].
1-Hydroxypyrene
1-Hydroxypyrene is a metabolite of the noncarcinogen pyrene found in urine that is always a component of PAH mixtures. 1-hydroxypyrene is an accepted biomarker of carcinogenic Polycyclic aromatic hydrocarbons (PAH) dose(PMID: 15159317). PAH are a diverse group of environmental carcinogens formed during the incomplete combustion of organic matter. PAHs are believed to play an important role as causes of human cancer, particularly in certain occupational settings and in cigarette smokers. (PMID: 15247141) [HMDB] 1-Hydroxypyrene is a metabolite of the noncarcinogen pyrene found in urine that is always a component of PAH mixtures. 1-Hydroxypyrene is an accepted biomarker of carcinogenic polycyclic aromatic hydrocarbons (PAHs) dose (PMID: 15159317). PAHs are a diverse group of environmental carcinogens formed during the incomplete combustion of organic matter. PAHs are believed to play an important role as causes of human cancer, particularly in certain occupational settings and in cigarette smokers (PMID: 15247141). CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5366; ORIGINAL_PRECURSOR_SCAN_NO 5365 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5365; ORIGINAL_PRECURSOR_SCAN_NO 5363 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5373; ORIGINAL_PRECURSOR_SCAN_NO 5371 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5353; ORIGINAL_PRECURSOR_SCAN_NO 5351 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5367; ORIGINAL_PRECURSOR_SCAN_NO 5365 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5334; ORIGINAL_PRECURSOR_SCAN_NO 5333 CONFIDENCE standard compound; INTERNAL_ID 44 D009676 - Noxae > D009153 - Mutagens 1-Hydroxypyrene, a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs), is analyzed in urine samples. 1-Hydroxypyrene is the major biomarker of exposure to pyrenes[1].
Dibutyl succinate
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents
Flufenoxuron
CONFIDENCE standard compound; INTERNAL_ID 2334 CONFIDENCE standard compound; INTERNAL_ID 8487
Flupentixol
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AF - Thioxanthene derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist
Uracil
Uracil, also known as U, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Uracil is a common naturally occurring pyrimidine found in RNA. It base pairs with adenine and is replaced by thymine in DNA. Uracil is one of the four nucleobases in RNA that are represented by the letters A, G, C and U. Methylation of uracil produces thymine. The name "uracil" was coined in 1885 by the German chemist Robert Behrend, who was attempting to synthesize derivatives of uric acid. Originally discovered in 1900, uracil was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. Uracil exists in all living species, ranging from bacteria to plants to humans. Uracils use in the body is to help carry out the synthesis of many enzymes necessary for cell function through bonding with riboses and phosphates. Uracil serves as an allosteric regulator and a coenzyme for many important biochemical reactions. Uracil (via the nucleoside uridine) can be phosphorylated by various kinases to produce UMP, UDP and UTP. UDP and UTP regulate carbamoyl phosphate synthetase II (CPSase II) activity in animals. Uracil is also involved in the biosynthesis of polysaccharides and in the transport of sugars containing aldehydes. Within humans, uracil participates in a number of enzymatic reactions. In particular, uracil and ribose 1-phosphate can be biosynthesized from uridine; which is mediated by the enzyme uridine phosphorylase 2. In addition, uracil can be converted into dihydrouracil through the action of the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. Uracil is rarely found in DNA, and this may have been an evolutionary change to increase genetic stability. This is because cytosine can deaminate spontaneously to produce uracil through hydrolytic deamination. Therefore, if there were an organism that used uracil in its DNA, the deamination of cytosine (which undergoes base pairing with guanine) would lead to formation of uracil (which would base pair with adenine) during DNA synthesis. Uracil can be used for drug delivery and as a pharmaceutical. When elemental fluorine reacts with uracil, it produces 5-fluorouracil. 5-Fluorouracil is an anticancer drug (antimetabolite) that mimics uracil during the nucleic acid (i.e. RNA) synthesis and transcription process. Because 5-fluorouracil is similar in shape to, but does not undergo the same chemistry as, uracil, the drug inhibits RNA replication enzymes, thereby blocking RNA synthesis and stopping the growth of cancerous cells. Uracil is a common and naturally occurring pyrimidine derivative. Originally discovered in 1900, it was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. It is a planar, unsaturated compound that has the ability to absorb light. Uracil. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=66-22-8 (retrieved 2024-07-01) (CAS RN: 66-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.
Picloram
CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2943; ORIGINAL_PRECURSOR_SCAN_NO 2939 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2946; ORIGINAL_PRECURSOR_SCAN_NO 2942 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2930; ORIGINAL_PRECURSOR_SCAN_NO 2927 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3021; ORIGINAL_PRECURSOR_SCAN_NO 3019 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2942; ORIGINAL_PRECURSOR_SCAN_NO 2939 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2945; ORIGINAL_PRECURSOR_SCAN_NO 2941 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Didanosine
A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by a hydrogen. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. Didanosine is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA by binding to reverse transcriptase; ddI is then metabolized to dideoxyadenosine triphosphate, its putative active metabolite. [PubChem] J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3135 Didanosine (2',3'-Dideoxyinosine; ddI) is a a potent and orally active dideoxynucleoside analogue, and also is a potent nucleoside reverse transcriptase inhibitor. Didanosine shows antiretroviral activity for HIV[1][2][3].
Thiophanate-methyl
CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7987; ORIGINAL_PRECURSOR_SCAN_NO 7982 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7998; ORIGINAL_PRECURSOR_SCAN_NO 7997 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3833; ORIGINAL_PRECURSOR_SCAN_NO 3831 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3865; ORIGINAL_PRECURSOR_SCAN_NO 3862 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3858; ORIGINAL_PRECURSOR_SCAN_NO 3857 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7945; ORIGINAL_PRECURSOR_SCAN_NO 7943 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3838; ORIGINAL_PRECURSOR_SCAN_NO 3835 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3837; ORIGINAL_PRECURSOR_SCAN_NO 3832 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3853; ORIGINAL_PRECURSOR_SCAN_NO 3849 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8013; ORIGINAL_PRECURSOR_SCAN_NO 8011 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7980; ORIGINAL_PRECURSOR_SCAN_NO 7977 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7934; ORIGINAL_PRECURSOR_SCAN_NO 7932 D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics CONFIDENCE standard compound; INTERNAL_ID 2620 D016573 - Agrochemicals D010575 - Pesticides
Trichloromethylthio-1,2,5,6-tetrahydrophthalamide
D016573 - Agrochemicals D010575 - Pesticides
Nitrofen
Nitrofen is an herbicide of the diphenyl ether class. Because of concerns about its carcinogenicity, the use of nitrofen is banned in the European Union and in the United States. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3098 CONFIDENCE standard compound; INTERNAL_ID 43 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Enoxacin
Enoxacin is only found in individuals that have used or taken this drug. It is a broad-spectrum 6-fluoronaphthyridinone antibacterial agent (fluoroquinolones) structurally related to nalidixic acid. [PubChem]Enoxacin exerts its bactericidal action via the inhibition of the essential bacterial enzyme DNA gyrase (DNA Topoisomerase II). J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3078
Fludrocortisone acetate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; INTERNAL_ID 2101 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Carprofen
Carprofen is a non-steroidal anti-inflammatory drug (NSAID) that is used by veterinarians as a supportive treatment for the relief of arthritic symptoms in geriatric dogs. Carprofen was previously used in human medicine for over 10 years (1985-1995). It was generally well tolerated, with the majority of adverse effects being mild, such as gastro-intestinal pain and nausea, similar to those recorded with aspirin and other non-steroidal anti-inflammatory drugs. It is no longer marketed for human usage, after being withdrawn on commercial grounds. [Wikipedia] C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D003879 - Dermatologic Agents Carprofen is a nonsteroid anti-inflammatory agent, acts as a multi-target FAAH/COX inhibitor, with IC50s of 3.9 μM, 22.3 μM and 78.6 μM for COX-2, COX-1 and FAAH, respectively.
Olanzapine
Olanzapine was the third atypical antipsychotic to gain approval by the Food and Drug Administration (FDA) and has become one of the most commonly used atypical antipsychotics. Olanzapine has been approved by the FDA for the treatment of schizophrenia, acute mania in bipolar disorder, agitation associated with schizophrenia and bipolar disorder, and as maintenance treatment in bipolar disorder and psychotic depression. It has also been established in treating depression off-label because of its mood-stabilizing properties and its ability to increase the efficacy of antidepressants. Olanzapine is manufactured and marketed by the pharmaceutical company Eli Lilly and Company. It is available as a pill that comes in the strengths of 2.5 mg, 5 mg, 7.5 mg, 10 mg, 15 mg, and 20 mg and as as Zydis orally disintegrating tablets in the strengths of 5 mg, 10 mg, 15 mg, and 20 mg. It is also available as a rapid-acting intramuscular injection for short term acute use. Olanzapine (oh-LAN-za-peen, sold as Zyprexa, Zydis, or in combination with fluoxetine, as Symbyax) was the third atypical antipsychotic to gain approval by the Food and Drug Administration (FDA) and has become one of the most commonly used atypical antipsychotics. Olanzapine has been approved by the FDA for the treatment of schizophrenia, acute mania in bipolar disorder, agitation associated with schizophrenia and bipolar disorder, and as maintenance treatment in bipolar disorder and psychotic depression. Olanzapine was the third atypical antipsychotic to gain approval by the Food and Drug Administration (FDA) and has become one of the most commonly used atypical antipsychotics. Olanzapine has been approved by the FDA for the treatment of schizophrenia, acute mania in bipolar disorder, agitation associated with schizophrenia and bipolar disorder, and as maintenance treatment in bipolar disorder and psychotic depression. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; INTERNAL_ID 1517 D049990 - Membrane Transport Modulators Olanzapine (LY170053) is a selective, orally active monoaminergic antagonist with high affinity binding to serotonin H1, 5HT2A/2C, 5HT3, 5HT6 (Ki=7, 4, 11, 57, and 5 nM, respectively), dopamine D1-4 (Ki=11 to 31 nM), muscarinic M1-5 (Ki=1.9-25 nM), and adrenergic α1 receptor (Ki=19 nM). Olanzapine is an atypical antipsychotic[1][2].
Quetiapine
The most common side effect is sedation, and is prescribed specifically for this effect in patients with sleep disorders. Seroquel will put the patient into a drowsy state, and will help the patient fall asleep. It is one of the most sedating of all anti psychotic drugs, rivaling even the most sedating older antipsychotics. Many prescriptions call for the entire dose to be taken before bedtime because of its sedative effects. Although quetiapine is approved by the FDA for the treatment of schizophrenia and bipolar disorder, it is frequently prescribed for off-label purposes including insomnia or the treatment of anxiety disorders. Due to its sedative side effects, reports of quetiapine abuse (sometimes by insufflating crushed tablets) have emerged in medical literature; Quetiapine belongs to a series of neuroleptics known as "atypical antipsychotics", which have become increasingly popular alternatives to "typical antipsychotics" such as haloperidol. Quetiapine HAS approvals for the treatment of schizophrenia and acute mania in bipolar disorder. It is also used off-label to treat other disorders, such as post-traumatic stress disorder, alcoholism, obsessive compulsive disorder, anxiety disorders, hallucinations in Parkinsons disease patients using ropinirole, and as a sedative for those with sleep disorders. The most common side effect is sedation, and is prescribed specifically for this effect in patients with sleep disorders. Seroquel will put the patient into a drowsy state, and will help the patient fall asleep. It is one of the most sedating of all anti psychotic drugs, rivaling even the most sedating older antipsychotics. Many prescriptions call for the entire dose to be taken before bedtime because of its sedative effects. Although quetiapine is approved by the FDA for the treatment of schizophrenia and bipolar disorder, it is frequently prescribed for off-label purposes including insomnia or the treatment of anxiety disorders. Due to its sedative side effects, reports of quetiapine abuse (sometimes by insufflating crushed tablets) have emerged in medical literature; for the same reason, abuse of other antipsychotics, such as chlorpromazine (Thorazine), may occur as well, but research related to the abuse of typical antipsychotics is limited. for the same reason, abuse of other antipsychotics, such as chlorpromazine (Thorazine), may occur as well, but research related to the abuse of typical antipsychotics is limited. The most common side effect is sedation, and is prescribed specifically for this effect in patients with sleep disorders. Seroquel will put the patient into a drowsy state, and will help the patient fall asleep. It is one of the most sedating of all anti psychotic drugs, rivaling even the most sedating older antipsychotics. Many prescriptions call for the entire dose to be taken before bedtime because of its sedative effects. Although quetiapine is approved by the FDA for the treatment of schizophrenia and bipolar disorder, it is frequently prescribed for off-label purposes including insomnia or the treatment of anxiety disorders. Due to its sedative side effects, reports of quetiapine abuse (sometimes by insufflating crushed tablets) have emerged in medical literature; Quetiapine belongs to a series of neuroleptics known as "atypical antipsychotics", which have become increasingly popular alternatives to "typical antipsychotics" such as haloperidol. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quetiapine (ICI204636) is a 5-HT receptors agonist with a pEC50 of 4.77 for human 5-HT1A receptor. Quetiapine is a dopamine receptor antagonist with a pIC50 of 6.33 for human D2 receptor. Quetiapine has moderate to high affinity for the human D2, HT1A, 5-HT2A, 5-HT2C receptor with pKis of 7.25, 5.74, 7.54, 5.55. Antidepressant and anxiolytic effects[1].
Natamycin
Natamycin is only found in individuals that have used or taken this drug. It is an amphoteric macrolide antifungal antibiotic from Streptomyces natalensis or S. chattanoogensis. It is used for a variety of fungal infections, mainly topically. [PubChem]Like other polyene antibiotics, Natamycin inhibits fungal growth by binding to sterols. Specifically, Natamycin binds to ergosterol in the plasma membrane, preventing ergosterol-dependent fusion of vacuoles, as well as membrane fusion and fission. This differs from the mechanism of most other polyene antibiotics, which tend to work by altering fungal membrane permeability instead. Primarily used as a surface treatment to prevent growth of yeasts and moulds, especies on cheese. Permitted agent in USA for surface treatment of cheeses as mould-inhibitor. No reported allergic reactions and it has GRAS status G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Natamycin (Pimaricin) is a macrolide antibiotic agent produced by several Streptomyces strains. Natamycin inhibits the growth of fungi via inhibition of amino acid and glucose transport across the plasma membrane. Natamycin is a food preservative, an antifungal agent in agriculture, and is widely used for fungal keratitis research[1][2].
Paliperidone
Paliperidone is the primary active metabolite of the older antipsychotic risperidone. While its specific mechanism of action is unknown, it is believed that paliperidone and risperidone act via similar if not the same pathways. It has been proposed that the drugs therapeutic activity in schizophrenia is mediated through a combination of central dopamine Type 2 (D2) and serotonin Type 2 (5HT2A) receptor antagonism. Paliperidone is also active as an antagonist at alpha 1 and alpha 2 adrenergic receptors and H1 histaminergic receptors, which may explain some of the other effects of the drug. Paliperidone was approved by the FDA for treatment of schizophrenia on December 20, 2006. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics Paliperidone (9-Hydroxyrisperidone), the major active metabolite of Risperidone, is a dopamine D2 antagonist and 5-HT2A antagonist. Paliperidone is also active as an antagonist at α1 and α2 adrenergic receptors and H1-histaminergic receptors. Paliperidone, a antipsychotic agent, shows efficacy against schizophrenia[1]. Paliperidone (9-Hydroxyrisperidone), the major active metabolite of Risperidone, is a dopamine D2 antagonist and 5-HT2A antagonist. Paliperidone is also active as an antagonist at α1 and α2 adrenergic receptors and H1-histaminergic receptors. Paliperidone, a antipsychotic agent, shows efficacy against schizophrenia[1].
Lomefloxacin
Lomefloxacin is only found in individuals that have used or taken this drug. It is a fluoroquinolone antibiotic, used to treat bacterial infections including bronchitis and urinary tract infections. It is also used to prevent urinary tract infections prior to surgery.Lomefloxacin is a bactericidal fluoroquinolone agent with activity against a wide range of gram-negative and gram-positive organisms. The bactericidal action of lomefloxacin results from interference with the activity of the bacterial enzymes DNA gyrase and topoisomerase IV, which are needed for the transcription and replication of bacterial DNA. DNA gyrase appears to be the primary quinolone target for gram-negative bacteria. Topoisomerase IV appears to be the preferential target in gram-positive organisms. Interference with these two topoisomerases results in strand breakage of the bacterial chromosome, supercoiling, and resealing. As a result DNA replication and transcription is inhibited. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
Sulfasalazine
Sulfasalazine is only found in individuals that have used or taken this drug. It is a drug that is used in the management of inflammatory bowel diseases. Its activity is generally considered to lie in its metabolic breakdown product, 5-aminosalicylic acid (see mesalamine) released in the colon. (From Martindale, The Extra Pharmacopoeia, 30th ed, p907)The mode of action of Sulfasalazine or its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), is still under investigation, but may be related to the anti-inflammatory and/or immunomodulatory properties that have been observed in animal and in vitro models, to its affinity for connective tissue, and/or to the relatively high concentration it reaches in serous fluids, the liver and intestinal walls, as demonstrated in autoradiographic studies in animals. In ulcerative colitis, clinical studies utilizing rectal administration of Sulfasalazine, SP and 5-ASA have indicated that the major therapeutic action may reside in the 5-ASA moiety. The relative contribution of the parent drug and the major metabolites in rheumatoid arthritis is unknown. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D005765 - Gastrointestinal Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents
Diethanolamine
Diethanolamine, often abbreviated as DEA, is an organic chemical compound which is both a secondary amine and a dialcohol. A dialcohol has two hydroxyl groups in its molecule. Like other amines, diethanolamine acts as a weak base. Diethanolamine is widely used in the preparation of diethanolamides and diethanolamine salts of long-chain fatty acids that are formulated into soaps and surfactants used in liquid laundry and dishwashing detergents, cosmetics, shampoos, and hair conditioners. Diethanolamine is also used in textile processing, in industrial gas purification to remove acid gases, as an anticorrosion agent in metalworking fluids, and in preparations of agricultural chemicals. Aqueous diethanolamine solutions are used as solvents for numerous drugs that are administered intravenously. [HMDB] Diethanolamine, often abbreviated as DEA, is an organic chemical compound which is both a secondary amine and a dialcohol. A dialcohol has two hydroxyl groups in its molecule. Like other amines, diethanolamine acts as a weak base. Diethanolamine is widely used in the preparation of diethanolamides and diethanolamine salts of long-chain fatty acids that are formulated into soaps and surfactants used in liquid laundry and dishwashing detergents, cosmetics, shampoos, and hair conditioners. Diethanolamine is also used in textile processing, in industrial gas purification to remove acid gases, as an anticorrosion agent in metalworking fluids, and in preparations of agricultural chemicals. Aqueous diethanolamine solutions are used as solvents for numerous drugs that are administered intravenously.
Cysteic acid
Cysteic acid is a crystalline amino acid formed in the oxidation of cysteine; it is a precursor of taurine. A crystalline amino acid formed in the oxidation of cysteine; it is a precursor of taurine. [HMDB]
N-Nitroso-pyrrolidine
N-Nitroso-pyrrolidine belongs to the class of organic compounds known as pyrrolidines. Pyrrolidines are compounds containing a pyrrolidine ring, which is a five-membered saturated aliphatic heterocycle with one nitrogen atom and four carbon atoms. N-Nitroso-pyrrolidine has been detected, but not quantified, in several different foods, such as green bell peppers, orange bell peppers, pepper (c. annuum), red bell peppers, and yellow bell peppers. This could make N-nitroso-pyrrolidine a potential biomarker for the consumption of these foods. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3450 Found in fried bacon
Piperidine
Piperidine (Azinane after the Hantzsch Widman nomenclature) is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene units and one nitrogen atom. It is a colorless fuming liquid with an odor described as ammoniacal, pepper-like; the name comes from the genus name Piper, which is the Latin word for pepper. Piperidine is found in barley, black pepper (Piper nigrum). Piperidine has been found to be a microbial metabolite. Piperidine is a flavouring agent and it is also widely used as a building block and chemical reagent in the synthesis of organic compounds, including pharmaceuticals. Piperidine is a widely used secondary amine. It is used to convert ketones to enamines. Enamines derived from piperidine can be used in the Stork enamine alkylation reaction. Piperidine is used as a solvent and as a base. The same is true for certain derivatives: N-formylpiperidine is a polar aprotic solvent with better hydrocarbon solubility than other amide solvents, and 2,2,6,6-tetramethylpiperidine is highly sterically hindered base, useful because of its low nucleophilicity and high solubility in organic solvents. Acquisition and generation of the data is financially supported in part by CREST/JST. D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers Present in black pepper (Piper nigrum). Flavouring agent D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; INTERNAL_ID 8371 D049990 - Membrane Transport Modulators KEIO_ID P034
Chlorpropham
D006133 - Growth Substances > D010937 - Plant Growth Regulators CONFIDENCE standard compound; INTERNAL_ID 2623 CONFIDENCE standard compound; INTERNAL_ID 8450 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
5,6-dihydrouracil
Dihydrouracil belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Dihydrouracil is an intermediate breakdown product of uracil. Dihydrouracil exists in all living organisms, ranging from bacteria to plants to humans. Within humans, dihydrouracil participates in a number of enzymatic reactions. In particular, dihydrouracil can be biosynthesized from uracil; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. The breakdown of uracil is a multistep reaction that leads to the production of beta-alanine. The reaction process begins with the enzyme known as dihydropyrimidine dehydrogenase (DHP), which catalyzes the reduction of uracil into dihydrouracil. Then the enzyme known as dihydropyrimidinase hydrolyzes dihydrouracil into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. There is at least one metabolic disorder that is associated with altered levels of dihydrouracil. In particular, dihydropyrimidinase deficiency is an inborn metabolic disorder that leads to highly increased concentrations of dihydrouracil and 5,6-dihydrothymine, and moderately increased concentrations of uracil and thymine in urine. Dihydropyrimidinase deficiency can cause neurological and gastrointestinal problems in some affected individuals (OMIM: 222748). In particular, patients with dihydropyrimidinase deficiency exhibit a number of neurological abnormalities including intellectual disability, seizures, weak muscle tone (hypotonia), an abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. 3,4-dihydrouracil, also known as 2,4-dioxotetrahydropyrimidine or 5,6-dihydro-2,4-dihydroxypyrimidine, is a member of the class of compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 3,4-dihydrouracil is soluble (in water) and a very weakly acidic compound (based on its pKa). 3,4-dihydrouracil can be found in a number of food items such as colorado pinyon, rocket salad (sspecies), wax gourd, and boysenberry, which makes 3,4-dihydrouracil a potential biomarker for the consumption of these food products. 3,4-dihydrouracil can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as throughout most human tissues. 3,4-dihydrouracil exists in all living organisms, ranging from bacteria to humans. In humans, 3,4-dihydrouracil is involved in a couple of metabolic pathways, which include beta-alanine metabolism and pyrimidine metabolism. 3,4-dihydrouracil is also involved in several metabolic disorders, some of which include UMP synthase deficiency (orotic aciduria), dihydropyrimidinase deficiency, ureidopropionase deficiency, and carnosinuria, carnosinemia. Moreover, 3,4-dihydrouracil is found to be associated with dihydropyrimidine dehydrogenase deficiency and hypertension. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
Benzyl acetate
Benzyl acetate, also known as benzyl ethanoate or fema 2135, belongs to the class of organic compounds known as benzyloxycarbonyls. These are organic compounds containing a carbonyl group substituted with a benzyloxyl group. Benzyl acetate is a sweet, apple, and apricot tasting compound. Benzyl acetate is found, on average, in the highest concentration within sweet basils. Benzyl acetate has also been detected, but not quantified, in several different foods, such as figs, fruits, pomes, tea, and alcoholic beverages. On high concnetrations benzyl acetate is a potentially toxic compound. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. Occurs in jasmine, apple, cherry, guava fruit and peel, wine grape, white wine, tea, plum, cooked rice, Bourbon vanilla, naranjila fruit (Solanum quitoense), Chinese cabbage and quince. Flavouring agent Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1]. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1].
Lumazine
Lumazine, also known as pteridine-2,4-dione or 2,4(3h,8h)-pteridinedione, belongs to pteridines and derivatives class of compounds. Those are polycyclic aromatic compounds containing a pteridine moiety, which consists of a pyrimidine fused to a pyrazine ring to form pyrimido(4,5-b)pyrazine. Lumazine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Lumazine can be found in soy bean, which makes lumazine a potential biomarker for the consumption of this food product. KEIO_ID L024 Pteridine-2,4(1H,3H)-dione is an endogenous metabolite.
Rufloxacin
Rufloxacin belongs to the family of Phenylpiperazines. These are compounds containing a phenylpiperazine skeleton, which consists of a piperazine bound to a phenyl group. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors Same as: D02474
Glyceraldehyde
DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].
Methyl acetate
Methyl acetate belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Methyl acetate is present in apple, grape, banana and other fruits. Methyl acetate is a flavouring ingredient and it is an ester that, in the laboratory, is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature. Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants Methyl acetate is an ester that is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature.; Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. Methyl acetate is VOC exempt.; The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a flavouring agent and can be found in many foods, some of which are apple, grape, banana, orange mint, and ginger.
7alpha-Hydroxycholesterol
7alpha-Hydroxycholesterol is an oxysterol and can serve as a biomarker for lipid peroxidation (PMID: 17386651). Products of cholesterol oxidation accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery (PMID: 17364953). 7alpha-Hydroxycholesterol is a cholesterol oxide that has been described as a biomarker of oxidative stress in subjects with impaired glucose tolerance and diabetes (PMID: 16634125). 7alpha-Hydroxycholesterol has been identified in the human placenta (PMID: 32033212). 7alpha-hydroxycholesterol is an oxysterol and can serve as a biomarker for lipid peroxidation. (PMID: 17386651) Products of cholesterol oxidation accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery. (PMID: 17364953) 7α-Hydroxycholesterol is a cholesterol oxide and is formed by both enzymatic and non-enzymatic oxidation. 7α-Hydroxycholesterol can be used as a biomarker for lipid peroxidation[1][2].
(-)-2-Difluoromethylornithine
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D065108 - Ornithine Decarboxylase Inhibitors C471 - Enzyme Inhibitor > C2088 - Ornithine Decarboxylase Inhibitor D000970 - Antineoplastic Agents D - Dermatologicals KEIO_ID H097
Miltirone
Constituent of roots of Salvia miltiorrhiza (Chinese sage)and is) also present in leaves of rosemary (Rosmarinus officinalis). Antioxidant. Miltirone is found in herbs and spices, rosemary, and common sage. Miltirone is found in common sage. Miltirone is a constituent of roots of Salvia miltiorrhiza (Chinese sage). Also present in leaves of rosemary (Rosmarinus officinalis). Antioxidant Miltirone is an abietane diterpenoid. Miltirone is a natural product found in Salvia, Salvia miltiorrhiza, and other organisms with data available. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1]. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1]. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1].
Paeonol
A polyphenol metabolite detected in biological fluids [PhenolExplorer] Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.
Acteoside
The main hydroxycinnamic deriv. in olives. Acteoside is found in many foods, some of which are olive, lemon verbena, bitter gourd, and common verbena. Acteoside is found in bitter gourd. It is the main hydroxycinnamic derivative in olives Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.
Ergonovine
Ergonovine is only found in individuals that have used or taken this drug. It is an ergot alkaloid with uterine and vascular smooth muscle contractile properties. [PubChem]Ergonovine directly stimulates the uterine muscle to increase force and frequency of contractions. With usual doses, these contractions precede periods of relaxation; with larger doses, basal uterine tone is elevated and these relaxation periods will be decreased. Contraction of the uterine wall around bleeding vessels at the placental site produces hemostasis. Ergonovine also induces cervical contractions. The sensitivity of the uterus to the oxytocic effect is much greater toward the end of pregnancy. The oxytocic actions of ergonovine are greater than its vascular effects. Ergonovine, like other ergot alkaloids, produces arterial vasoconstriction by stimulation of alpha-adrenergic and serotonin receptors and inhibition of endothelial-derived relaxation factor release. It is a less potent vasoconstrictor than ergotamine. As a diagnostic aid (coronary vasospasm), ergonovine causes vasoconstriction of coronary arteries. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AB - Ergot alkaloids C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D012102 - Reproductive Control Agents > D010120 - Oxytocics
1-Methoxy-4-(2-propenyl)benzene
1-Methoxy-4-(2-propenyl)benzene, also known as methylchavicol or estragol, belongs to the class of organic compounds known as anisoles. These are organic compounds containing a methoxybenzene or a derivative thereof. 1-Methoxy-4-(2-propenyl)benzene is a sweet, alcohol, and anise tasting compound. 1-Methoxy-4-(2-propenyl)benzene is found, on average, in the highest concentration within a few different foods, such as anises, fennels, and sweet basils and in a lower concentration in cumins, tarragons, and parsley. 1-Methoxy-4-(2-propenyl)benzene has also been detected, but not quantified, in several different foods, such as citrus, chinese cinnamons, caraway, fats and oils, and cloves. This could make 1-methoxy-4-(2-propenyl)benzene a potential biomarker for the consumption of these foods. 1-Methoxy-4-(2-propenyl)benzene, with regard to humans, has been linked to the inborn metabolic disorder celiac disease. Constituent of many essential oils. Found in apple, bilberry and orange fruits and juices. Flavouring agent. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].
Sinensetin
Sinensetin is a pentamethoxyflavone that is flavone substituted by methoxy groups at positions 5, 6, 7, 3 and 4 respectively. It has a role as a plant metabolite. It is functionally related to a flavone. Sinensetin is a natural product found in Citrus tankan, Citrus keraji, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). A pentamethoxyflavone that is flavone substituted by methoxy groups at positions 5, 6, 7, 3 and 4 respectively. Sinensetin is found in citrus. Sinensetin is found in orange peel and other plant sources. Found in orange peel and other plant sources Sinensetin is a methylated flavonoid found in fruits that has strong anti-vascular and anti-inflammatory properties. Sinensetin is a methylated flavonoid found in fruits that has strong anti-vascular and anti-inflammatory properties.
Matrine
Matrine is an alkaloid. Matrine is a natural product found in Daphniphyllum oldhamii, Sophora viciifolia, and other organisms with data available. Matrine is an alkaloid found in plants from the Sophora genus. It has a variety of pharmacological effects, including anti-cancer effects, and action as a kappa opioid receptor and μ-receptor agonist. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. See also: Matrine; salicylic acid (component of). Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.230 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.224 Sophoridine is a natural product found in Sophora viciifolia, Leontice leontopetalum, and other organisms with data available. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. INTERNAL_ID 2268; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2268 Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1].
CE(18:1(9Z))
Cholesteryl oleate is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl esters, formed by the esterification of cholesterol with long-chain fatty acids, on one hand, are the means by which cholesterol is transported through the blood by lipoproteins, on the other, the way cholesterol itself can be accumulated in the cells. (PMID: 15939411) [HMDB] Cholesteryl oleate is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl esters, formed by the esterification of cholesterol with long-chain fatty acids, on one hand, are the means by which cholesterol is transported through the blood by lipoproteins, on the other, the way cholesterol itself can be accumulated in the cells. (PMID: 15939411). Cholesteryl oleate is an esterified form of Cholesterol. Cholesteryl oleate can be used in the generation of solid lipid nanoparticle (SLN, a nanoparticle-based method for gene therapy)[1][2].
Pyrimidine
Pyrimidine is a heterocyclic aromatic organic compound similar to benzene and pyridine, containing two nitrogen atoms at positions 1 and 3 of the six-member ring. Pyrimidines are heterocyclic, six-membered, nitrogen-containing carbon ring structures, with uracil, cytosine and thymine being the basal structures of ribose-containing nucleosides (uridine, cytidine and thymidine respectively), or deoxyribose-containing deoxynucleosides, and their corresponding ribonucleotides or deoxyribonucleotides. Pyrimidines serve essential functions in human metabolism as ribonucleotide bases in RNA (uracil and cytosine), and as deoxyribonucleotide bases in DNA (cytosine and thymine), and are linked by phosphodiester bridges to purine nucleotides in double-stranded DNA, in both the nucleus and the mitochondria. Pyrimidine activated sugars are also involved in polysaccharide and phospholipid synthesis, glucuronidation in detoxification processes, glycosylation of proteins and lipids and in the recently identified novel endothelium-derived vasoactive dinucleotides. Pyrimidines are synthesized de novo from simple precursors. Synthesis occurs in six steps, with cellular compartmentalization of specific steps in the cytosol or mitochondria, enabling changes in metabolic rate with need. Pyrimidine synthesis differs from purine synthesis, in that the single pyrimidine ring is assembled first and is then linked to ribose phosphate to form UMP. The enzymes that catalyse UMP synthesis, CAD [carbamoylphosphate synthetase II (CPSII), aspartate transcarbamoylase (ATCasea) and dihydroorotase (DHOase)], dihydroorotate dehydrogenase (DHODH) and uridine monophosphate synthase (UMPS), are encoded by only three genes - CAD, DHODH and UMPS (chromosomal locations 2p21, 16q22 and 3q13, respectively). (PMID:16098809). Pyrimidine is a heterocyclic aromatic organic compound similar to benzene and pyridine, containing two nitrogen atoms at positions 1 and 3 of the six-member ring. Pyrimidines are heterocyclic, six-membered, nitrogen-containing carbon ring structures, with uracil, cytosine and thymine being the basal structures of ribose-containing nucleosides (uridine, cytidine and thymidine respectively), or deoxyribose-containing deoxynucleosides, and their corresponding ribonucleotides or deoxyribonucleotides. Pyrimidines serve essential functions in human metabolism as ribonucleotide bases in RNA (uracil and cytosine), and as deoxyribonucleotide bases in DNA (cytosine and thymine), and are linked by phosphodiester bridges to purine nucleotides in double-stranded DNA, in both the nucleus and the mitochondria. Pyrimidine activated sugars are also involved in polysaccharide and phospholipid synthesis, glucuronidation in detoxification processes, glycosylation of proteins and lipids and in the recently identified novel endothelium-derived vasoactive dinucleotides. Pyrimidine is an endogenous metabolite.
Naphthalene-1,2-diol
This compound belongs to the family of Naphthols and Derivatives. These are hydroxylated naphthalenes.
1-Pentanol
1-Pentanol, also known as butylcarbinol or 1-pentyl alcohol, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, 1-pentanol is considered to be a fatty alcohol lipid molecule. 1-Pentanol is an organic compound with the formula C5H12O. 1-Pentanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. All eight isomers of 1-Pentanol are known:; It is a colourless liquid of density 0.8247 g/cm3 (0 oC), boiling at 131.6 oC, slightly soluble in water, easily soluble in organic solvents. 1-Pentanol exists in all eukaryotes, ranging from yeast to humans. 1-Pentanol is a sweet, balsamic, and fusel tasting compound. 1-Pentanol can be found in a few different foods, such as black walnuts, common thymes, and tea and in a lower concentration in safflowers, highbush blueberries, and kohlrabis. 1-Pentanol has also been detected, but not quantified, in several different foods, such as corns, garden tomato (var.), allspices, cherry tomato, and evergreen blackberries. It possesses a characteristic strong smell and a sharp burning taste. The other amyl alcohols may be obtained synthetically. It is a solid that melts at 48 to 50 °C and boils at 112.3 °C. On passing its vapour through a red-hot tube, it decomposes with production of acetylene, ethylene, propylene, and other compounds. Of these, tertiary 1-Pentanol has been the most difficult to obtain, its synthesis having first been reported in 1891, by L. Tissier (Comptes Rendus, 1891, 112, p. 1065) by the reduction of a mixture of trimethyl acetic acid and trimethylacetyl chloride with sodium amalgam. It is oxidized by chromic acid to isovaleraldehyde, and it forms crystalline addition compounds with calcium chloride and tin(IV) chloride. When pure, it is nontoxic, while the impure product is toxic. Widely distributed in plant sources, e.g. peppermint oil, tomatoes, tea, potatoes. Flavouring ingredient
xi-2-Ethyl-1-hexanol
Xi-2-ethyl-1-hexanol, also known as 2-ethylhexyl alcohol or octyl alcohol, is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. Thus, xi-2-ethyl-1-hexanol is considered to be a fatty alcohol lipid molecule. Xi-2-ethyl-1-hexanol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Xi-2-ethyl-1-hexanol can be found in a number of food items such as tea, cereals and cereal products, fats and oils, and alcoholic beverages, which makes xi-2-ethyl-1-hexanol a potential biomarker for the consumption of these food products. Xi-2-ethyl-1-hexanol can be found primarily in feces and saliva. Xi-2-ethyl-1-hexanol exists in all eukaryotes, ranging from yeast to humans. 2-Ethyl-1-hexanol, also known as 2-ethylhexyl alcohol, is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. Thus, 2-ethyl-1-hexanol is considered to be a fatty alcohol lipid molecule. 2-ethyl-1-hexanol is practically insoluble in water. 2-Ethyl-1-hexanol can be found in a number of food items such as tea, cereals and cereal products, fats and oils, and alcoholic beverages. 2-Ethyl-1-hexanol exists in all eukaryotes, ranging from yeast to humans and in mammals it can be found primarily in feces and saliva.
Nitrite
Nitrite is a nitrite compound is either a salt or an ester of nitrous acid. Sodium nitrite is used for the curing of meat because it prevents bacterial growth and, in a reaction with the meats myoglobin, gives the product a desirable dark red color. Nitrite can be reduced to nitric oxide or ammonia by many species of bacteria. Under hypoxic conditions, nitrite may release nitric oxide, which causes potent vasodilation. Several mechanisms for nitrite conversion to NO have been described including enzymatic reduction by xanthine oxidoreductase, the mitochondria, and NO synthase (NOS), as well as nonenzymatic acidic disproportionation. -- Wikipedia. A nitrite compound is either a salt or an ester of nitrous acid. Sodium nitrite is used for the curing of meat because it prevents bacterial growth and, in a reaction with the meats myoglobin, gives the product a desirable dark red color. Nitrite can be reduced to nitric oxide or ammonia by many species of bacteria.
6-O-Glucosylmaltose
alpha-D-Galactopyranosyl-(1->6)-[beta-D-mannopyranosyl-(1->4)]-D-mannose is isolated from partial acid hydrolysates of sickle senna Cassia tora and Lucerne (Medicago sativa) from enzymatic hydrolysates of guar (Cyamopsis tetragonoloba), carob (Ceratonia siliqua) galactomannans. Isolated from the partial acid hydrolysate of amylopectin (waxy rice starch). 6-O-Glucosylmaltose is found in cereals and cereal products. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
7,8-Dihydropteroic acid
In the mammalian host, dihydrofolate biosynthesis occurs via the reduction of folic acid, whereas in plasmodia (e.g. Plasmodium berghei, a malaria parasite) the biosynthesis of 7,8-dihydropteroate, an intermediate product in dihydrofolate synthesis, occurs via the enzymic catalysis of the reaction of 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine pyrophosphate with p-aminobenzoate. Malaria parasites synthesize their folate cofactors de novo and the antimalarial action of sulfonamides is due to their inhibiting the plasmodial dihydropteroate synthesis. The enzymes 6-hydroxymethylpterin pyrophosphokinase (EC 2.7.6.3, HPPK) and dihydropteroate synthase (EC 2.5.1.15, DHPS) catalyze sequential steps in folate biosynthesis. They are present in microorganisms but absent in mammals and therefore are especially suitable targets for antimicrobials. Sulfa drugs (sulfonamides and sulfones) currently are used as antimicrobials targeting DHPS, although resistance to these drugs is increasing. An NADPH-coupled microplate photometric assay could be used for rapid screening of chemical libraries for novel inhibitors of folate biosynthesis as the first step in developing new antimicrobial drugs targeting the folate biosynthetic pathway; in the microplate, the product of the DHPS reaction, 7,8-dihydropteroic acid, is reduced to tetrahydropteroate by excess dihydrofolate reductase (DHFR) using the cofactor NADPH (PMID: 17134675, 4354403, 3546688). 7,8-dihydropteroic acid, also known as dihydropteroinsaeure or h2pte, belongs to pterins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a pterin moiety, which consist of a pteridine ring bearing a ketone and an amine group to form 2-aminopteridin-4(3H)-one. 7,8-dihydropteroic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 7,8-dihydropteroic acid can be synthesized from pteroic acid. 7,8-dihydropteroic acid can also be synthesized into 2-hydroxy-7,8-dihydropteroic acid. 7,8-dihydropteroic acid can be found in a number of food items such as rice, towel gourd, cauliflower, and silver linden, which makes 7,8-dihydropteroic acid a potential biomarker for the consumption of these food products. 7,8-dihydropteroic acid exists in all living species, ranging from bacteria to humans. In humans, 7,8-dihydropteroic acid is involved in the pterine biosynthesis.
3,5-Cyclic IMP
A 3,5-cyclic purine nucleotide having hypoxanthine as the nucleobase.
dXTP
L-Dopachrome
Dopachrome is a cyclization product of L-DOPA and is an intermediate in the biosynthesis of melanin. Dopaquinone has an ortho-quinone ring, which is known to be neurotoxic and highly reactive with many other compounds (PMID: 413870). Dopachrome spontaneously gives rise to 5,6-dihydroxyindole (DHI) or it can be enzymatically metabolized by dopachrome tautomerase to give 5,6-dihydroxyindole-2-carboxylic acid (DHICA). DHI and its oxidation products are also toxic to cells. Many Parkinsons patients are treated with L-DOPA. However, long-term treatment with L-DOPA may actually worsen symptoms or may result in neurotic and psychotic symptoms. These may be due to dopachrome and dopaquinone accumulating in the brain of L-DOPA treated patients (PMID: 19131041, PMID: 12373519). The non-decarboxylative tautomerization of L-dopachrome to 5,6-dihydroxyindole-2-carboxylic acid in the melanin biosynthetic pathway is catalyzed by Tyrosinase-related protein-2, a melanocyte-specific enzyme. (PMID 11095412) [HMDB]
Perillyl aldehyde
(s)-perillaldehyde, also known as P-mentha-1,8-dien-7-al, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (s)-perillaldehyde is considered to be an isoprenoid lipid molecule (s)-perillaldehyde is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (s)-perillaldehyde is a cherry, fat, and fatty tasting compound found in herbs and spices, which makes (s)-perillaldehyde a potential biomarker for the consumption of this food product (s)-perillaldehyde can be found primarily in saliva. Perillaldehyde, or perilla aldehyde, is a natural organic compound found most abundantly in the perennial herb perilla, but also in a wide variety of other plants and essential oils. It is a monoterpenoid containing an aldehyde functional group.
Adenosine tetraphosphate
Adenosine 5 tetraphosphate, Ap4, is a natural nucleotide present in many biological systems. This nucleotide has been found as a constituent of the nucleotide pool present in the aqueous humor of a number of mammals and appears to act as a regulator of intraocular pressure (PMID: 14600249). AP4 may also play a significant role in the physiological regulation of vascular tone (PMID: 8599250). The plasma concentration of AP4 is in the nanomolar range. Technically adenosine tetraphosphate is condensation product of adenosine with tetraphosphoric acid at the 5 position. Acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5-tetraphosphate (P4A) and adenosine 5-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4). [HMDB] Adenosine 5 tetraphosphate, Ap4, is a natural nucleotide present in many biological systems. This nucleotide has been found as a constituent of the nucleotide pool present in the aqueous humor of a number of mammals and appears to act as a regulator of intraocular pressure (PMID: 14600249). AP4 may also play a significant role in the physiological regulation of vascular tone (PMID: 8599250). The plasma concentration of AP4 is in the nanomolar range. Technically adenosine tetraphosphate is condensation product of adenosine with tetraphosphoric acid at the 5 position. Acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5-tetraphosphate (P4A) and adenosine 5-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4).
5,6-Dihydroxyindole-2-carboxylic acid
5,6-Dihydroxyindole-2-carboxylic acid is an intermediate in the metabolism of Tyrosine. It is a substrate for Dopachrome tautomerase. [HMDB] 5,6-Dihydroxyindole-2-carboxylic acid is an intermediate in the metabolism of Tyrosine. It is a substrate for Dopachrome tautomerase.
5,6-Dihydroxyindole
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D004791 - Enzyme Inhibitors > D065098 - Catechol O-Methyltransferase Inhibitors 5,6-Dihydroxyindole is a substrate for Tyrosinase. [HMDB] 5,6-Dihydroxyindole is a substrate for Tyrosinase.
Selenocystine
Selenocystine, also known as 3,3-diselenodialanine, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxyl group (alpha carbon). More specifically, selenocystine is a diselenide consisting of two selenoamino acids that are attached together at their selenium atoms. This particular selenoamino acid is selenocysteine, the selenium analogue to cysteine (selenium being the element directly beneath sulphur in the periodic table); likewise, selenocystine is the selenium analogue to cystine. Since each constituent amino acid has a stereocentre, there are three different stereoisomers of selenocystine: D-selenocystine, L-selenocystine, and meso-selenocystine, the first two of which are optically active. Like other amino acids, L-selenocystine is the most common form within organisms; however, the D- and meso- forms have also been found (PMID: 30920149). Selenocystine is a solid that is moderately soluble in water. Due to the reactivity of selenocysteine, it is rarely encountered; rather, cells store selenium in the less reactive oxidized form of selenocystine or in a methylated form, such as selenomethionine (DOI: 10.1007/978-3-319-92405-2_3). When cells are grown in the absence of selenium, translation of selenoproteins terminates at the UGA codon, resulting in a truncated, non-functional enzyme. Unlike other amino acids present in biological proteins, selenocysteine is not coded for directly in the genetic code. Rather, the tRNA-bound seryl residue is converted to a selenocysteine residue by the pyridoxal phosphate-containing enzyme selenocysteine synthase (PMID: 17194211). Kurt Franke et al. indicated that there was evidence that selenium was in a form similar to that of cysteine, predating Thressa Stadtman’s discovery of the 21st amino acid by four decades (PMID: 26949981; J. Biol. Chem. 111:643). Selenocysteine may be denoted by the short forms Sec, U, or SeCys (Cys is used for cysteine), whereas selenocystine may be denoted by SeCys2. However, the literature sometimes uses SeCys for selenocystine and may cause confusion. Selenocystine has been found in animals, plants, and bacteria. It is being researched as treatment for cancer and for its antioxidant properties (PMID: 24763048, 24030774). Selenium, in its various forms such as selenocystine, is essential for many species, including humans, yet it is also toxic to all organisms; hence, it has come to be referred to as the “essential poison” (PMID: 26949981; 6679541). Selenocystine is a substrate for glutathione peroxidase 1. [HMDB] D000890 - Anti-Infective Agents > D000998 - Antiviral Agents L-Selenocystine is a diselenide-bridged amino acid. L-Selenocystine is a redox-active selenium compound that has both anti- and pro-oxidant actions. L-Selenocystine induces an unfolded protein response, ER stress, and large cytoplasmic vacuolization in HeLa cells and has cytostatic effects in a range of cancer cell types[1].
FAPy-adenine
Fapy-adenine is an oxidized DNA base. Oxidized nucleosides are biochemical markers for tumors, aging, and neurodegenerative diseases (PMID 15116424). Oxidative stress damage to DNA bases may contribute to neuronal loss in Alzheimers disease (AD). Increased levels were observed in parietal, temporal, occipital, and frontal lobe, superior temporal gyrus, and hippocampus areas of the brain in patients with AD. (PMID 9109533). Fapy-adenine is an oxidized DNA base. Oxidized nucleosides are biochemical markers for tumors, aging, and neurodegenerative diseases. (PMID 15116424) FAPy-adenine is an oxidized DNA base. Fapy-adenine shows an increased trend levels in the Alzheimer's disease brain. Oxidized nucleosides are biochemical markers for tumors, aging, and neurodegenerative diseases[1][2][3].
Amphotericin B
Amphotericin B shows a high order of in vitro activity against many species of fungi. Histoplasma capsulatum, Coccidioides immitis, Candida species, Blastomyces dermatitidis, Rhodotorula, Cryptococcus neoformans, Sporothrix schenckii, Mucor mucedo, and Aspergillus fumigatus are all inhibited by concentrations of amphotericin B ranging from 0.03 to 1.0 mcg/mL in vitro. While Candida albicans is generally quite susceptible to amphotericin B, non-albicans species may be less susceptible. Pseudallescheria boydii and Fusarium sp. are often resistant to amphotericin B. The antibiotic is without effect on bacteria, rickettsiae, and viruses. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics J - Antiinfectives for systemic use > J02 - Antimycotics for systemic use > J02A - Antimycotics for systemic use > J02AA - Antibiotics D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Amphotericin B is a polyene antifungal agent against a wide variety of fungal pathogens. It binds irreversibly to ergosterol, resulting in disruption of membrane integrity and ultimately cell death.
1,3-Dichloropropene
1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. [HMDB] 1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
p-Xylene
P-xylene, also known as para-xylene or 1,4-dimethylbenzene, is a member of the class of compounds known as P-xylenes. P-xylenes are aromatic compounds that contain a p-xylene moiety, which is a monocyclic benzene carrying exactly two methyl groups at the 1- and 4-positions. P-xylene can be found in a number of food items such as black walnut, yellow bell pepper, green bell pepper, and parsley, which makes P-xylene a potential biomarker for the consumption of these food products. P-xylene can be found primarily in feces and saliva. P-xylene is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. p-Xylene (para-xylene) is an aromatic hydrocarbon. It is one of the three isomers of dimethylbenzene known collectively as xylenes. The p- stands for para-, indicating that the two methyl groups in p-xylene occupy the diametrically opposite substituent positions 1 and 4. It is in the positions of the two methyl groups, their arene substitution pattern, that it differs from the other isomers, o-xylene and m-xylene. All have the same chemical formula C6H4(CH3)2. All xylene isomers are colorless and highly flammable. The odor threshold of p-xylene is 0.62 parts per million (ppm) . If the compound has been ingested, rapid gastric lavage should be performed using 5\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). p-Xylene is an aromatic hydrocarbon based on benzene with two methyl substituents with the chemical formula C8H10 or C6H4(CH3)2. The “p” stands for para, identifying the location of the methyl groups as across from one another. (Wikipedia)
Perchloroethylene
Animal studies and a study of 99 twins by Dr. Samuel Goldman and researchers at the Parkinsons Institute in Sunnyvale, California determined there is a lot of circumstantial evidence that exposure to tetrachloroethene increases the risk of developing Parkinsons disease ninefold. Larger population studies are planned. Tetrachloroethene is a common soil contaminant. With a specific gravity greater than 1, tetrachloroethylene will be present as a dense nonaqueous phase liquid if sufficient quantities of liquid are spilled in the environment. Because of its mobility in groundwater, its toxicity at low levels, and its density (which causes it to sink below the water table), cleanup activities are more difficult than for oil spills. Recent research has focused on the in place remediation of soil and ground water pollution by tetrachloroethylene. Instead of excavation or extraction for above-ground treatment or disposal, tetrachloroethylene contamination has been successfully remediated by chemical treatment or bioremediation. Bioremediation has been successful under anaerobic conditions by reductive dechlorination by Dehalococcoides sp. and under aerobic conditions by cometabolism by Pseudomonas sp. Partial degradation daughter products include trichloroethylene, cis-1,2-dichloroethene and vinyl chloride; full degradation converts tetrachloroethylene to ethene and hydrogen chloride dissolved in water. Tetrachloroethylene is an excellent solvent for organic materials. Otherwise it is volatile, highly stable, and nonflammable. For these reasons, it is widely used in dry cleaning. Usually as a mixture with other chlorocarbons, it is also used to degrease metal parts in the automotive and other metalworking industries. It appears in a few consumer products including paint strippers and spot removers. Tetrachloroethylene, also known under the systematic name tetrachloroethene, or perchloroethylene (perc), and many other names, is a chlorocarbon with the formula Cl2C=CCl2. It is a colorless liquid widely used for dry cleaning of fabrics, hence it is sometimes called dry-cleaning fluid. It has a sweet odor detectable by most people at a concentration of 1 part per million (1 ppm). Worldwide production was about one million metric tons in 1985. The International Agency for Research on Cancer has classified tetrachloroethene as a Group 2A carcinogen, which means that it is probably carcinogenic to humans. Like many chlorinated hydrocarbons, tetrachloroethene is a central nervous system depressant and can enter the body through respiratory or dermal exposure. Tetrachloroethene dissolves fats from the skin, potentially resulting in skin irritation. This reaction can be catalyzed by a mixture of potassium chloride and aluminium chloride or by activated carbon. Trichloroethylene is a major byproduct, which is separated by distillation. D009676 - Noxae > D002273 - Carcinogens D004785 - Environmental Pollutants D012997 - Solvents
Delavirdine
Delavirdine is only found in individuals that have used or taken this drug. It is a potent, non-nucleoside reverse transcriptase inhibitor with activity specific for HIV-1. [PubChem]Delavirdine binds directly to viral reverse transcriptase (RT) and blocks the RNA-dependent and DNA-dependent DNA polymerase activities by disrupting the enzymes catalytic site. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AG - Non-nucleoside reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97453 - Non-nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent
Ethylbenzene
Ethyl benzene, also known as ethylbenzol or alpha-methyltoluene, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. Ethyl benzene can be found in black walnut and safflower, which makes ethyl benzene a potential biomarker for the consumption of these food products. Ethyl benzene can be found primarily in blood and feces. Ethyl benzene exists in all eukaryotes, ranging from yeast to humans. Ethyl benzene is formally rated as possibly a carcinogenic (IARC 2B) potentially toxic compound. Ethyl benzene is an organic compound with the formula C6H5CH2CH3. It is a highly flammable, colorless liquid with an odor similar to that of gasoline. This monocyclic aromatic hydrocarbon is important in the petrochemical industry as an intermediate in the production of styrene, the precursor to polystyrene, a common plastic material. In 2012, more than 99\\% of ethylbenzene produced was consumed in the production of styrene. Ethyl benzene is also used to make other chemicals, in fuel, and as a solvent in inks, rubber adhesives, varnishes, and paints. Ethyl benzene exposure can be determined by testing for the breakdown products in urine . Following oral exposure, a gastric lavage is recommended. Protect airway by placement in Trendelenburg and left lateral decubitus position or by endotracheal intubation. Control any seizures first. Following inhalation, move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Following eye exposure, irrigate exposed eyes with copious amounts of room temperature water for at least 15 minutes. In case of dermal exposure, remove contaminated clothing and wash exposed area thoroughly with soap and water. Treat dermal irritation or burns with standard topical therapy. Patients developing dermal hypersensitivity reactions may require treatment with systemic or topical corticosteroids or antihistamines. Some chemicals can produce systemic poisoning by absorption through intact skin. Carefully observe patients with dermal exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary (T36) (T3DB). Ethylbenzene belongs to the family of Substituted Benzenes. These are aromatic compounds containing a benzene substituted at one or more positions.
m-Xylene
M-xylene, also known as 1,3-dimethylbenzene or M-xylol, is a member of the class of compounds known as M-xylenes. M-xylenes are aromatic compounds that contain a m-xylene moiety, which is a monocyclic benzene carrying exactly two methyl groups at the 1- and 3-positions. M-xylene is a plastic tasting compound found in black walnut, parsley, and safflower, which makes M-xylene a potential biomarker for the consumption of these food products. M-xylene can be found primarily in blood and feces. M-xylene exists in all eukaryotes, ranging from yeast to humans. M-xylene is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. m-Xylene (meta-xylene) is an aromatic hydrocarbon. It is one of the three isomers of dimethylbenzene known collectively as xylenes. The m- stands for meta-, indicating that the two methyl groups in m-xylene occupy positions 1 and 3 on a benzene ring. It is in the positions of the two methyl groups, their arene substitution pattern, that it differs from the other isomers, o-xylene and p-xylene. All have the same chemical formula C6H4(CH3)2. All xylene isomers are colorless and highly flammable . If the compound has been ingested, rapid gastric lavage should be performed using 5\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). m-Xylene, also known as 1,3-xylene or m-dimethylbenzene, belongs to the class of organic compounds known as m-xylenes. These are aromatic compounds that contain a m-xylene moiety, which is a monocyclic benzene carrying exactly two methyl groups at the 1- and 3-positions. The conversion m-xylene to isophthalic acid entails catalytic oxidation. m-Xylene (meta-xylene) is an aromatic hydrocarbon. m-Xylene is possibly neutral. m-Xylene is a plastic tasting compound. m-xylene is found, on average, in the highest concentration in safflowers. m-xylene has also been detected, but not quantified, in black walnuts and parsley. This could make m-xylene a potential biomarker for the consumption of these foods. Xylenes are not acutely toxic, for example the LD50 (rat, oral) is 4300 mg/kg. m-Xylene is a potentially toxic compound. Concerns with xylenes focus on narcotic effects. The m- stands for meta-, indicating that the two methyl groups in m-xylene occupy positions 1 and 3 on a benzene ring. All xylene isomers are colorless and highly flammable. Petroleum contains about 1 weight percent xylenes.
Proparacaine
Proparacaine is only found in individuals that have used or taken this drug. It is a topical anesthetic drug of the amino ester group. It is available as its hydrochloride salt in ophthalmic solutions at a concentration of 0.5\\%. [Wikipedia]The exact mechanism whereby proparacaine and other local anesthetics influence the permeability of the cell membrane is unknown; however, several studies indicate that local anesthetics may limit sodium ion permeability through the lipid layer of the nerve cell membrane. Proparacaine may alter epithelial sodium channels through interaction with channel protein residues. This limitation prevents the fundamental change necessary for the generation of the action potential. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Fluphenazine decanoate
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Fluphenazine decanoate is a dopamine D2 receptor inhibitor, is a long-acting phenothiazine neuroleptic. Fluphenazine can be used for schizophrenia research[1][2][3].
Tirofiban
Tirofiban prevents the blood from clotting during episodes of chest pain or a heart attack, or while the patient is undergoing a procedure to treat a blocked coronary artery. It is a non-peptide reversible antagonist of the platelet glycoprotein (GP) IIb/IIIa receptor, and inhibits platelet aggregation. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Methylprednisolone acetate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents
Doxercalciferol
H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols D050071 - Bone Density Conservation Agents
Scillaren A
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides
1'-Acetoxychavicol
1-Acetoxychavicol is found in herbs and spices. 1-Acetoxychavicol is a constituent of Acorus calamus (sweet flag). Constituent of Acorus calamus (sweet flag). 1-Acetoxychavicol is found in herbs and spices and root vegetables.
Cyclopamine
Cyclopamine is a member of piperidines. It has a role as a glioma-associated oncogene inhibitor. Cyclopamine is a natural product found in Veratrum grandiflorum, Veratrum dahuricum, and Veratrum californicum with data available. Cyclopamine is a naturally occurring chemical that belongs to the group of steroidal jerveratrum alkaloids. It is a teratogen isolated from the corn lily (Veratrum californicum) that causes usually fatal birth defects. It can prevent the fetal brain from dividing into two lobes (holoprosencephaly) and cause the development of a single eye (cyclopia). It does so by inhibiting the hedgehog signaling pathway (Hh). Cyclopamine is useful in studying the role of Hh in normal development, and as a potential treatment for certain cancers in which Hh is overexpressed. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7995; ORIGINAL_PRECURSOR_SCAN_NO 7993 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8002; ORIGINAL_PRECURSOR_SCAN_NO 8001 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8041; ORIGINAL_PRECURSOR_SCAN_NO 8038 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8047; ORIGINAL_PRECURSOR_SCAN_NO 8046 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8048; ORIGINAL_PRECURSOR_SCAN_NO 8045 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7958; ORIGINAL_PRECURSOR_SCAN_NO 7956 Data obtained from a cyclopamine standard purchased from Logan Natural Products, Logan, Utah USA. Cyclopamine is a Hedgehog (Hh) pathway antagonist with an IC50 of 46 nM in the Hh cell assay. Cyclopamine is also a selective Smo inhibitor. Cyclopamine is a Hedgehog (Hh) pathway antagonist with an IC50 of 46 nM in the Hh cell assay. Cyclopamine is also a selective Smo inhibitor.
Isofenphos
Isofenphos is an Agricultural insecticide with contact and stomach actio C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Sulbenicillin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams A penicillin antibiotic having a 6beta-[phenyl(sulfo)acetamido] side-chain. Same as: D08534 C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Methyl-tert-butyl ether
Methyl-tert-butyl ether, also known as tert-butyl methyl ether, methyl t-butyl ether or MTBE, is classified as a member of the dialkyl ethers. Dialkyl ethers are organic compounds containing the dialkyl ether functional group, with the formula ROR, where R and R are alkyl groups. Methyl-tert-butyl ether is considered to be soluble (in water) and basic. It is used as a gasoline additive. Exposure may occur by breathing air contaminated with auto exhaust or gasoline fumes while refueling autos. Respiratory irritation, dizziness, and disorientation have been reported by some motorists and occupationally exposed workers. Acute (short-term) exposure of humans to methyl tert-butyl ether also has occurred during its use as a medical treatment to dissolve cholesterol gallstones. Chronic (long-term) inhalation exposure to methyl-tert-butyl ether has resulted in central nervous system (CNS) effects, respiratory irritation, liver and kidney effects, and decreased body weight gain in animals. United States Environmental Protection Agency has not classified methyl-tert-butyl ether with respect to potential carcinogenicity. (ChemoSummarizer) D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D002273 - Carcinogens
CB3717
D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D000970 - Antineoplastic Agents
Plicamycin
Plicamycin is only found in individuals that have used or taken this drug. It is an antineoplastic antibiotic produced by Streptomyces plicatus. It has been used in the treatment of testicular cancer, Pagets disease of bone, and, rarely, the management of hypercalcemia. The manufacturer discontinued plicamycin in 2000. Plicamycin is presumed to inhibit cellular and enzymic RNA synthesis by forming a complex with DNA. Plicamycin may also lower calcium serum levels by inhibiting the effect of parathyroid hormone upon osteoclasts or by blocking the hypercalcemic action of pharmacologic doses of vitamin D. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes D000077264 - Calcium-Regulating Hormones and Agents D000970 - Antineoplastic Agents Same as: D00468
Bropirimine
D007155 - Immunologic Factors > D007369 - Interferon Inducers C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D000970 - Antineoplastic Agents Same as: D01666
Sodium sulfate
A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D005765 - Gastrointestinal Agents > D002400 - Cathartics Acidity regulator Same as: D01732
Potassium nitrate (KNO3)
Preservative for cod roe, cured red meat and poultry products. Potassium nitrate (KNO3) is found in fishes, animal foods, and common sage. D053834 - Explosive Agents Same as: D02051
MG(20:4(5Z,8Z,11Z,14Z)/0:0/0:0)
MG(20:4(5Z,8Z,11Z,14Z)/0:0/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well.
1,2-Dichlorobenzene
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Tetramethylscutellarein
Tetramethylscutellarein, also known as 4,5,6,7-tetramethoxyflavone or 5-methoxysalvigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, tetramethylscutellarein is considered to be a flavonoid lipid molecule. Tetramethylscutellarein is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, tetramethylscutellarein is found, on average, in the highest concentration within sweet oranges. Tetramethylscutellarein has also been detected, but not quantified, in herbs, spices, tea. This could make tetramethylscutellarein a potential biomarker for the consumption of these foods. Tetramethylscutellarein is isolated from Salvia officinalis (sage) leaves. Isolated from Salvia officinalis (sage) leaves. Tetramethylscutellarein is found in tea, sweet orange, and herbs and spices. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3].
Phenol-formaldehyde, cross-linked, tetraethylenepentamine activated
Phenol-formaldehyde, cross-linked, tetraethylenepentamine activated is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
4-(8-Methyl-9H-1,3-dioxolo(4,5-h)(2,3)benzodiazepin-5-yl)benzenamine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents
(Z)-3-Hexenal
(Z)-3-Hexenal is found in fruits. (Z)-3-Hexenal is a flavouring ingredient. (Z)-3-Hexenal is present in apple, cucumber, grape, banana, raspberry, strawberry, black tea and tomat (Z)-3-Hexenal is a flavouring ingredient. It is found in many foods, some of which are: apple, cucumber, grape, banana, raspberry, strawberry, black tea and tomato. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
farnesoic acid
A methyl-branched, trienoic fatty acid consisting of dodeca-2,6,10-trienoic acid having three methyl substituents at the 3-, 7- and 11-positions.
Cinobufotalin
Cinobufotalin is a natural product found in Bufo and Bufo bufo with data available. Cinobufotalin is a bufadienolide isolated from toad venom and utilized in traditional Chinese medicine (TCM) for its cardiotonic, diuretic and hemostatic effects, with potential cytotoxic and antineoplastic activities. Upon administration and although the exact mechanism of action(s) (MoAs) through which this agent exerts its effects have yet to be fully discovered, cinobufotalin causes DNA fragmentation, decreases mitochondrial membrane potential (MMP), increases intracellular calcium (Ca2+) ion concentrations and reactive oxygen species (ROS) production, upregulates Fas protein and activates cytochrome C, various caspases, Bid and Bax. This causes cell cycle arrest, induces apoptosis and inhibits tumor cell growth and survival. In addition, cinobufotalin inhibits the activity of sphingosine kinase 1 (SphK1) and induces pro-apoptotic ceramide production, which further promotes tumor cell apoptosis. Cinobufotalin also induces mitochondrial protein cyclophilin D (Cyp-D)-dependent opening of the mitochondrial permeability transition pore (mPTP), which may contribute to cinobufotalin-induced non-apoptotic death of certain tumor cells. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Cinobufotalin is a cardiotonic steroids or bufadienolides, is extracted from the skin secretions of the giant toads. Cinobufotalin has been used as a cardiotonic, diuretic and a hemostatic agent, Cinobufotalin is also a potential anti-lung cancer agent[1].
Cytarabine
Cytarabine, or cytosine arabinoside, a pyrimidine nucleoside analog, is found in mushrooms. Cytarabine is isolated from the mushroom Xerocomus nigromaculatus of unknown palatability. Cytarabine is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute myelogenous leukemia and meningeal leukemia. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. Its actions are specific for the S phase of the cell cycle to stop normal cell development and division. Cytarabine is metabolized intracellularly into its active triphosphate form (cytosine arabinoside triphosphate). This metabolite then damages DNA by multiple mechanisms, including the inhibition of alpha-DNA polymerase, inhibition of DNA repair through an effect on beta-DNA polymerase, and incorporation into DNA. The latter mechanism is probably the most important. Cytotoxicity is highly specific for the S phase of the cell cycle. Cytarabine is a chemotherapy agent used mainly in the treatment of hematological malignancies such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It is also known as ara C. Cytosine arabinoside is an antimetabolic agent with the chemical name of 1 -arabinofuranosylcytosine. Its mode of action is due to its rapid conversion into cytosine arabinoside triphosphate, which damages DNA when the cell cycle holds in the S phase (synthesis of DNA). Rapidly dividing cells, which require DNA replication for mitosis, are therefore most affected. Cytosine arabinoside also inhibits both DNA and RNA polymerases and nucleotide reductase enzymes needed for DNA synthesis L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map D000970 - Antineoplastic Agents KEIO_ID C119; [MS2] KO008896 KEIO_ID C119 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity. Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity.
3-amino-3-(4-hydroxyphenyl)propanoic acid
A beta-amino acid comprising propionic acid having amino and 4-hydroxyphenyl groups attached at the 3-position.
Alliin
Alliin, also known as (S)-S-allyl-L-cysteine sulfoxide or (S)-3-(allylsulphinyl)-L-alanine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Alliin is soluble (in water) and a moderately acidic compound (based on its pKa). Alliin can be found in a number of food items such as red rice, mandarin orange (clementine, tangerine), ceylon cinnamon, and olive, which makes alliin a potential biomarker for the consumption of these food products. Garlic has been used since antiquity as a therapeutic remedy for certain conditions now associated with oxygen toxicity, and, when this was investigated, garlic did indeed show strong antioxidant and hydroxyl radical-scavenging properties, it is presumed owing to the alliin contained within. Alliin has also been found to affect immune responses in blood . 3-(Allylsulphinyl)-L-alanine is a L-alpha-amino acid. Alliin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=556-27-4 (retrieved 2024-07-01) (CAS RN: 556-27-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Alliin is the main active component of garlic. (±)-Alliin is a putative inhibitor of the main protease of SARS-CoV-2 (Mpro)[1]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].
Paeonol
Paeonol is a member of phenols and a member of methoxybenzenes. It has a role as a metabolite. Paeonol is a natural product found in Vincetoxicum paniculatum, Vincetoxicum glaucescens, and other organisms with data available. See also: Paeonia lactiflora root (part of); Paeonia X suffruticosa root (part of). A natural product found in Paeonia rockii subspeciesrockii. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.
7,8-Dihydroneopterin
7,8-Dihydroneopterin, also known as dihydroneopterin, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. They are synthesized in several parts of the body, including the pineal gland. 7,8-Dihydroneopterin is a strong basic compound (based on its pKa). Within humans, 7,8-dihydroneopterin participates in a number of enzymatic reactions. In particular, 7,8-dihydroneopterin can be biosynthesized from sepiapterin; which is catalyzed by the enzyme sepiapterin reductase or carbonyl reductase [NADPH] 1. In humans, 7,8-dihydroneopterin is involved in the metabolic disorder called hyperphenylalaninemia due to 6-pyruvoyltetrahydropterin synthase (PTPS) deficiency. 7,8-Dihydroneopterin is produced by human monocyte-derived macrophages upon stimulation with interferon-gamma. Increased amounts of 7,8-dihydroneopterin in human body fluids are found in many disorders, including viral infections and autoimmune diseases (PMID: 12804528). 7,8-dihydroneopterin, also known as npr, belongs to biopterins and derivatives class of compounds. Those are coenzymes containing a 2-amino-pteridine-4-one derivative. They are mainly synthesized in several parts of the body, including the pineal gland. 7,8-dihydroneopterin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 7,8-dihydroneopterin can be found in a number of food items such as prickly pear, star anise, cocoa bean, and black salsify, which makes 7,8-dihydroneopterin a potential biomarker for the consumption of these food products. 7,8-dihydroneopterin exists in all living organisms, ranging from bacteria to humans. In humans, 7,8-dihydroneopterin is involved in the pterine biosynthesis. 7,8-dihydroneopterin is also involved in several metabolic disorders, some of which include hyperphenylalaninemia due to dhpr-deficiency, sepiapterin reductase deficiency, dopa-responsive dystonia, and hyperphenylalaniemia due to guanosine triphosphate cyclohydrolase deficiency. 7,8-Dihydroneopterin, an inflammation marker, induces cellular apoptosis in astrocytes and neurons via enhancement of nitric oxide synthase (iNOS) expression. 7,8-Dihydroneopterin can be used in the research of neurodegenerative diseases[1].
Fungizone
pimaricin
Verbascoside
(E)-Butylidene phthalide
(e)-butylidene phthalide, also known as 3-butylidene-1(3h)-isobenzofuranone, is a member of the class of compounds known as isobenzofuranones. Isobenzofuranones are compounds containing a 2-benzofuran moiety that carries an oxo group at the 1 position (e)-butylidene phthalide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (e)-butylidene phthalide can be found in wild celery, which makes (e)-butylidene phthalide a potential biomarker for the consumption of this food product. 3-Butylidenephthalide (Butylidenephthalide) is a phthalic anhydride derivative identified in Ligusticum chuanxiong Hort, and has larvicidal activity (LC50 of 1.56 mg/g for Spodoptera litura larvae)[1]. 3-Butylidenephthalide (Butylidenephthalide) is a phthalic anhydride derivative identified in Ligusticum chuanxiong Hort, and has larvicidal activity (LC50 of 1.56 mg/g for Spodoptera litura larvae)[1].
L-Cysteic acid
Cysteinesulfonic acid, also known as (2r)-2-amino-3-sulfopropanoic acid or 3-sulfoalanine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Cysteinesulfonic acid is soluble (in water) and an extremely strong acidic compound (based on its pKa). Cysteinesulfonic acid can be found in a number of food items such as roman camomile, pili nut, chicory, and garden tomato, which makes cysteinesulfonic acid a potential biomarker for the consumption of these food products.
Inosine
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].
Xanthine
COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3]. Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3]. Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3].
hypoxanthine
C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C62554 - Poly (ADP-Ribose) Polymerase Inhibitor COVID info from COVID-19 Disease Map C471 - Enzyme Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia.
Urocanic acid
An alpha,beta-unsaturated monocarboxylic acid that is prop-2-enoic acid substituted by a 1H-imidazol-4-yl group at position 3. It is a metabolite of hidtidine. Urocanic acid is an intermediate in the catabolism of L-histidine.; Urocanic is a breakdown (deamination) product of histidine. In the liver, urocanic acid is an intermediate in the conversion of histidine to glutamic acid, whereas in the epidermis, it accumulates and may be both a UV protectant and an immunoregulator. Urocanic acid (UA) exists as a trans isomer (t-UA, approximately 30 mg/cm2) in the uppermost layer of the skin (stratum corneum). t-UA is formed as the cells of the second layer of skin become metabolically inactive. During this process, proteins and membranes degrade, histidine is released, and histidase (histidine ammonia lyase) catalyzes the deamination of histidine to form t-UA. t-UA accumulates in the epidermis until removal by either the monthly skin renewal cycle or sweat. Upon absorption of UV light, the naturally occurring t-UA isomerizes to its cis form, c-UA. Because DNA lesions (e.g., pyrimidine dimers) in the lower epidermis can result from UV-B absorption, initial research proposed that t-UA acted as a natural sunscreen absorbing UV-B in the stratum corneum before the damaging rays could penetrate into lower epidermal zones. Researchers have found that c-UA also suppresses contact hypersensitivity and delayed hypersensitivity, reduces the Langerhans cell count in the epidermis, prolongs skin-graft survival time, and affects natural killer cell activity. Urocanic acid is found in mung bean. C308 - Immunotherapeutic Agent relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 Urocanic acid, produced in the upper layers of mammalian skin, is a major absorber of ultraviolet radiation (UVR). Urocanic acid, produced in the upper layers of mammalian skin, is a major absorber of ultraviolet radiation (UVR).
dihydrouracil
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
Sinensetin
Sinensetin is a methylated flavonoid found in fruits that has strong anti-vascular and anti-inflammatory properties. Sinensetin is a methylated flavonoid found in fruits that has strong anti-vascular and anti-inflammatory properties.
olanzapine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 1517 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3697 Olanzapine (LY170053) is a selective, orally active monoaminergic antagonist with high affinity binding to serotonin H1, 5HT2A/2C, 5HT3, 5HT6 (Ki=7, 4, 11, 57, and 5 nM, respectively), dopamine D1-4 (Ki=11 to 31 nM), muscarinic M1-5 (Ki=1.9-25 nM), and adrenergic α1 receptor (Ki=19 nM). Olanzapine is an atypical antipsychotic[1][2].
sulfasalazine
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D005765 - Gastrointestinal Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4230; ORIGINAL_PRECURSOR_SCAN_NO 4229 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4221; ORIGINAL_PRECURSOR_SCAN_NO 4220 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4107; ORIGINAL_PRECURSOR_SCAN_NO 4106 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4144; ORIGINAL_PRECURSOR_SCAN_NO 4143 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4237; ORIGINAL_PRECURSOR_SCAN_NO 4236 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4245; ORIGINAL_PRECURSOR_SCAN_NO 4244 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8819; ORIGINAL_PRECURSOR_SCAN_NO 8816 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8829; ORIGINAL_PRECURSOR_SCAN_NO 8824 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8833; ORIGINAL_PRECURSOR_SCAN_NO 8830 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8842; ORIGINAL_PRECURSOR_SCAN_NO 8838 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8867; ORIGINAL_PRECURSOR_SCAN_NO 8863 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8846; ORIGINAL_PRECURSOR_SCAN_NO 8844
3-Butylidene-1(3H)-isobenzofuranone
(Z)-3-Butylidene-1(3H)-isobenzofuranone is found in herbs and spices. (Z)-3-Butylidene-1(3H)-isobenzofuranone is a constituent of Angelica glauca Flavouring ingredient. 3-Butylidene-1(3H)-isobenzofuranone is found in wild celery and lovage. 3-Butylidenephthalide (Butylidenephthalide) is a phthalic anhydride derivative identified in Ligusticum chuanxiong Hort, and has larvicidal activity (LC50 of 1.56 mg/g for Spodoptera litura larvae)[1]. 3-Butylidenephthalide (Butylidenephthalide) is a phthalic anhydride derivative identified in Ligusticum chuanxiong Hort, and has larvicidal activity (LC50 of 1.56 mg/g for Spodoptera litura larvae)[1].
Cucurbitacin E
Cucurbitacin e is a member of the class of compounds known as cucurbitacins. Cucurbitacins are polycyclic compounds containing the tetracyclic cucurbitane nucleus skeleton, 19-(10->9b)-abeo-10alanost-5-ene (also known as 9b-methyl-19-nor lanosta-5-ene), with a variety of oxygenation functionalities at different positions. Cucurbitacin e is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cucurbitacin e is a bitter tasting compound found in cucumber, muskmelon, and watermelon, which makes cucurbitacin e a potential biomarker for the consumption of these food products. Cucurbitacin E is a natural compound which from Cucurbitaceae plants. Cucurbitacin E significantly suppresses the activity of the cyclin B1/CDC2 complex. Cucurbitacin E is a natural compound which from Cucurbitaceae plants. Cucurbitacin E significantly suppresses the activity of the cyclin B1/CDC2 complex.
Tetramethylscutellarein
Tetramethylscutellarein, also known as 4,5,6,7-tetramethoxyflavone or 5-methoxysalvigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, tetramethylscutellarein is considered to be a flavonoid lipid molecule. Tetramethylscutellarein is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, tetramethylscutellarein is found, on average, in the highest concentration within sweet oranges. Tetramethylscutellarein has also been detected, but not quantified, in herbs, spices, tea. This could make tetramethylscutellarein a potential biomarker for the consumption of these foods. Tetramethylscutellarein is isolated from Salvia officinalis (sage) leaves. 4,5,6,7-tetramethoxyflavone is a tetramethoxyflavone that is the tetra-O-methyl derivative of scutellarein. It has a role as an antimutagen and a plant metabolite. It is functionally related to a scutellarein. 4,5,6,7-Tetramethoxyflavone is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). Isolated from Salvia officinalis (sage) leaves. Tetramethylscutellarein is found in tea, sweet orange, and herbs and spices. A tetramethoxyflavone that is the tetra-O-methyl derivative of scutellarein. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3].
1-Methoxy-4-(2-propenyl)benzene
1-Methoxy-4-(2-propenyl)benzene, also known as methylchavicol or estragol, belongs to the class of organic compounds known as anisoles. These are organic compounds containing a methoxybenzene or a derivative thereof. 1-Methoxy-4-(2-propenyl)benzene is a sweet, alcohol, and anise tasting compound. 1-Methoxy-4-(2-propenyl)benzene is found, on average, in the highest concentration within a few different foods, such as anises, fennels, and sweet basils and in a lower concentration in cumins, tarragons, and parsley. 1-Methoxy-4-(2-propenyl)benzene has also been detected, but not quantified, in several different foods, such as citrus, chinese cinnamons, caraway, fats and oils, and cloves. This could make 1-methoxy-4-(2-propenyl)benzene a potential biomarker for the consumption of these foods. 1-Methoxy-4-(2-propenyl)benzene, with regard to humans, has been linked to the inborn metabolic disorder celiac disease. Estragole is a colorless liquid with odor of anise. Insoluble in water. Isolated from rind of persea gratissima grath. and from oil of estragon. Found in oils of Russian anise, basil, fennel turpentine, tarragon oil, anise bark oil. (NTP, 1992) Estragole is a phenylpropanoid that is chavicol in which the hydroxy group is replaced by a methoxy group. It has a role as a flavouring agent, an insect attractant, a plant metabolite, a genotoxin and a carcinogenic agent. It is an alkenylbenzene, a monomethoxybenzene and a phenylpropanoid. It is functionally related to a chavicol. Estragole is a natural product found in Vitis rotundifolia, Chaerophyllum macrospermum, and other organisms with data available. See also: Anise Oil (part of). Constituent of many essential oils. Found in apple, bilberry and orange fruits and juices. Flavouring agent. A phenylpropanoid that is chavicol in which the hydroxy group is replaced by a methoxy group. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].
Benzyl acetate
The acetate ester of benzyl alcohol. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1]. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1].
Paliperidone
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics CONFIDENCE standard compound; INTERNAL_ID 1568 Paliperidone (9-Hydroxyrisperidone), the major active metabolite of Risperidone, is a dopamine D2 antagonist and 5-HT2A antagonist. Paliperidone is also active as an antagonist at α1 and α2 adrenergic receptors and H1-histaminergic receptors. Paliperidone, a antipsychotic agent, shows efficacy against schizophrenia[1]. Paliperidone (9-Hydroxyrisperidone), the major active metabolite of Risperidone, is a dopamine D2 antagonist and 5-HT2A antagonist. Paliperidone is also active as an antagonist at α1 and α2 adrenergic receptors and H1-histaminergic receptors. Paliperidone, a antipsychotic agent, shows efficacy against schizophrenia[1].
fluconazole
J - Antiinfectives for systemic use > J02 - Antimycotics for systemic use > J02A - Antimycotics for systemic use > J02AC - Triazole and tetrazole derivatives D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065689 - Cytochrome P-450 CYP2C19 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058888 - 14-alpha Demethylase Inhibitors COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 542; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3238; ORIGINAL_PRECURSOR_SCAN_NO 3236 CONFIDENCE standard compound; INTERNAL_ID 542; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3247; ORIGINAL_PRECURSOR_SCAN_NO 3245 CONFIDENCE standard compound; INTERNAL_ID 542; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3228; ORIGINAL_PRECURSOR_SCAN_NO 3225 CONFIDENCE standard compound; INTERNAL_ID 542; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3241; ORIGINAL_PRECURSOR_SCAN_NO 3237 CONFIDENCE standard compound; INTERNAL_ID 542; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3236; ORIGINAL_PRECURSOR_SCAN_NO 3231 CONFIDENCE standard compound; INTERNAL_ID 542; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3230; ORIGINAL_PRECURSOR_SCAN_NO 3229 CONFIDENCE standard compound; INTERNAL_ID 542; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6761; ORIGINAL_PRECURSOR_SCAN_NO 6759 CONFIDENCE standard compound; INTERNAL_ID 542; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6801; ORIGINAL_PRECURSOR_SCAN_NO 6798 CONFIDENCE standard compound; INTERNAL_ID 542; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6803; ORIGINAL_PRECURSOR_SCAN_NO 6800 CONFIDENCE standard compound; INTERNAL_ID 542; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6824; ORIGINAL_PRECURSOR_SCAN_NO 6823 CONFIDENCE standard compound; INTERNAL_ID 542; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6831; ORIGINAL_PRECURSOR_SCAN_NO 6829 CONFIDENCE standard compound; INTERNAL_ID 542; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6836; ORIGINAL_PRECURSOR_SCAN_NO 6832 CONFIDENCE standard compound; INTERNAL_ID 2352 CONFIDENCE Parent Substance (Level 1); INTERNAL_ID 2300 CONFIDENCE standard compound; INTERNAL_ID 8598 INTERNAL_ID 8598; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 328 EAWAG_UCHEM_ID 328; CONFIDENCE standard compound
CAPTAN
D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; EAWAG_UCHEM_ID 3039
fludrocortisone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; EAWAG_UCHEM_ID 3240 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Psoralen
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.856 D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.851 Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1]. Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1].
2-Deoxyadenosine
A purine 2-deoxyribonucleoside having adenine as the nucleobase. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents COVID info from COVID-19 Disease Map D009676 - Noxae > D009153 - Mutagens Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C10H13N5O3; Bottle Name:2-Deoxyadenosine monohydrate; PRIME Parent Name:2-Deoxyadenosine; PRIME in-house No.:0140, Purines relative retention time with respect to 9-anthracene Carboxylic Acid is 0.265 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.269 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.261 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.263 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA. 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA. 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA.
2-Deoxycytidine
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite A pyrimidine 2-deoxyribonucleoside having cytosine as the nucleobase. C26170 - Protective Agent > C2459 - Chemoprotective Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 2'-Deoxycytidine, a deoxyribonucleoside, can inhibit biological effects of Bromodeoxyuridine (Brdu). 2'-Deoxycytidine is essential for the synthesis of nucleic acids, that can be used for the research of cancer[1][2]. 2'-Deoxycytidine, a deoxyribonucleoside, could inhibit biological effects of Bromodeoxyuridine (Brdu).
Ergonovine
A monocarboxylic acid amide that is lysergamide in which one of the hydrogens attached to the amide nitrogen is substituted by a 1-hydroxypropan-2-yl group (S-configuration). An ergot alkaloid that has a particularly powerful action on the uterus, its maleate (and formerly tartrate) salt is used in the active management of the third stage of labour, and to prevent or treat postpartum of postabortal haemorrhage caused by uterine atony: by maintaining uterine contraction and tone, blood vessels in the uterine wall are compressed and blood flow reduced. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AB - Ergot alkaloids C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D012102 - Reproductive Control Agents > D010120 - Oxytocics CONFIDENCE Claviceps purpurea sclerotia relative retention time with respect to 9-anthracene Carboxylic Acid is 0.382 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.380 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.373 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.375
Inosine
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals Formula(Parent): C10H12N4O5; Bottle Name:Inosine; PRIME Parent Name:Inosine; PRIME in-house No.:0256, Purines COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; UGQMRVRMYYASKQ_STSL_0164_Inosine_2000fmol_180430_S2_LC02_MS02_125; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].
Xanthosine
A purine nucleoside in which xanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056 Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1].
Secoisolariciresinol
Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 0.816 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.813 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.806 Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.
Adenine
COVID info from PDB, Protein Data Bank, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2357 INTERNAL_ID 2357; CONFIDENCE Reference Standard (Level 1) MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GFFGJBXGBJISGV_STSL_0142_Adenine_0125fmol_180430_S2_LC02_MS02_16; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].
hypoxanthine
C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C62554 - Poly (ADP-Ribose) Polymerase Inhibitor A purine nucleobase that consists of purine bearing an oxo substituent at position 6. COVID info from COVID-19 Disease Map C471 - Enzyme Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; FDGQSTZJBFJUBT_STSL_0163_Hypoxanthine_0125fmol_180430_S2_LC02_MS02_115; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia.
2,2'-Dihydroxydiethylamine
A member of the class of ethanolamines that is ethanolamine having a N-hydroxyethyl substituent. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ZBCBWPMODOFKDW-UHFFFAOYSA-N_STSL_0222_Diethanolamine_0002fmol_190114_S2_LC02MS02_004; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Diethanolamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=111-42-2 (retrieved 2024-11-05) (CAS RN: 111-42-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Cytosine
(2S)-2-{[(2S)-2-{[(2R)-2-{[(2S)-2-amino-1-hydroxy-3-(C-hydroxycarbonimidoyl)propylidene]amino}-1-hydroxy-3-selanylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-4-methylpentanoic acid is a member of the class of compounds known as oligopeptides. Oligopeptides are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds (2S)-2-{[(2S)-2-{[(2R)-2-{[(2S)-2-amino-1-hydroxy-3-(C-hydroxycarbonimidoyl)propylidene]amino}-1-hydroxy-3-selanylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-4-methylpentanoic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OPTASPLRGRRNAP_STSL_0157_Cytosine_0125fmol_180430_S2_LC02_MS02_96; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2].
Xanthine
COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; LRFVTYWOQMYALW_STSL_0180_Xanthine_0500fmol_180506_S2_LC02_MS02_265; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3]. Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3]. Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3].
Uracil
A common and naturally occurring pyrimidine nucleobase in which the pyrimidine ring is substituted with two oxo groups at positions 2 and 4. Found in RNA, it base pairs with adenine and replaces thymine during DNA transcription. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ISAKRJDGNUQOIC_STSL_0177_Uracil_8000fmol_180430_S2_LC02_MS02_198; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.
5-Hydroxymethyluracil
A primary alcohol that is uracil bearing a hydroxymethyl substituent at the 5-position. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D007155 - Immunologic Factors 5-Hydroxymethyluracil is a product of oxidative DNA damage. 5-Hydroxymethyluracil can be used as a potential epigenetic mark enhancing or inhibiting transcription with bacterial RNA polymerase. 5-Hydroxymethyluracil is a product of oxidative DNA damage. 5-Hydroxymethyluracil can be used as a potential epigenetic mark enhancing or inhibiting transcription with bacterial RNA polymerase.
Piperidine
An azacycloalkane that is cyclohexane in which one of the carbons is replaced by a nitrogen. It is a metabolite of cadaverine, a polyamine found in the human intestine. D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators
thymine
A pyrimidine nucleobase that is uracil in which the hydrogen at position 5 is replaced by a methyl group. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RWQNBRDOKXIBIV_STSL_0176_Thymine_2000fmol_180506_S2_LC02_MS02_138; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.
Mesalamine
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents CONFIDENCE standard compound; INTERNAL_ID 8621
Miltiron
Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1]. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1]. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1].
Flufenoxuron
PYRIMIDINE
The parent compound of the pyrimidines; a diazine having the two nitrogens at the 1- and 3-positions. Pyrimidine is an endogenous metabolite.
Selenocystine
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
FAPy-adenine
FAPy-adenine is an oxidized DNA base. Fapy-adenine shows an increased trend levels in the Alzheimer's disease brain. Oxidized nucleosides are biochemical markers for tumors, aging, and neurodegenerative diseases[1][2][3].
quetiapine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quetiapine (ICI204636) is a 5-HT receptors agonist with a pEC50 of 4.77 for human 5-HT1A receptor. Quetiapine is a dopamine receptor antagonist with a pIC50 of 6.33 for human D2 receptor. Quetiapine has moderate to high affinity for the human D2, HT1A, 5-HT2A, 5-HT2C receptor with pKis of 7.25, 5.74, 7.54, 5.55. Antidepressant and anxiolytic effects[1].
Rufloxacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors Same as: D02474
Piceatannol
C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4]. Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].
2-deoxyuridine
A pyrimidine 2-deoxyribonucleoside having uracil as the nucleobase. D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.
Didanosine
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent Didanosine (2',3'-Dideoxyinosine; ddI) is a a potent and orally active dideoxynucleoside analogue, and also is a potent nucleoside reverse transcriptase inhibitor. Didanosine shows antiretroviral activity for HIV[1][2][3].
Azulene
One micro litter of the liquid sample was dropped in a 10 mL glass vial. The vial was placed under the DART ion source.; Direct analysis in real time (DART) is a method of atmospheric pressure chemical ionization (APCI). Protons, H+, generated by glow discharge ionization of the He gas in the ionization chamber, DART-SVP (IonSense Inc., MA, USA), were major reactant ions for the chemical ionization of samples.; The interface introducing the product ions to the mass spectrometer was Vapur Interface (AMR. Inc., Tokyo, Japan). The pressure in the interface was 710 Torr (96.3 kPa).; 1 mg of azulene was placed on glass capillary. The capillary was placed in the gas flow that ran from the ion source.; Azulene was purchased from TCI A0634.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].
7α-hydroxycholesterol
The 7alpha-hydroxy derivative of cholesterol. 7α-Hydroxycholesterol is a cholesterol oxide and is formed by both enzymatic and non-enzymatic oxidation. 7α-Hydroxycholesterol can be used as a biomarker for lipid peroxidation[1][2].
carob galactomannan
FOH 8:0
D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].
Aureusidin
Aureusidin is a hydroxyaurone that is aurone substituted by hydroxy groups at positions 4, 6, 3 and 4 respectively. It has a role as a plant metabolite. It is functionally related to an aurone. It is a conjugate acid of an aureusidin-6-olate. Aureusidin is a natural product found in Eleocharis dulcis, Eleocharis pallens, and other organisms with data available. A hydroxyaurone that is aurone substituted by hydroxy groups at positions 4, 6, 3 and 4 respectively. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1]. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1]. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1].
10-Propargyl-5,8-dideazafolic acid
D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D000970 - Antineoplastic Agents
thiram
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AA - Sulfur containing products D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals D010575 - Pesticides Same as: D06114
Sodium sulfate
A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D005765 - Gastrointestinal Agents > D002400 - Cathartics
chlorpropham
D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
AIDS-224739
Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.
peonol
Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.
azulen
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].
Pirod
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.
Adenin
COVID info from PDB, Protein Data Bank, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].
Arbo 8
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.
Ficusin
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D003879 - Dermatologic Agents Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1]. Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1].
Esdragon
Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].
AI3-01996
Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1]. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1].
FR-0140
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
Galactomannan
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
AIDS-113822
D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.
Thymin
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.
AI3-26172
Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].
Zytosin
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2].
Xanthin
COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3]. Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3]. Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3].
Ligusticum lactone
(Z)-3-butylidenephthalide is a gamma-lactone that is phthalide substituted by a butylidene group at position 3. Isolated from Ligusticum porteri, it exhibits hypoglycemic activity. It has a role as a metabolite, a hypoglycemic agent and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a member of 2-benzofurans and a gamma-lactone. It is functionally related to a 2-benzofuran-1(3H)-one. Butylidenephthalide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. A gamma-lactone that is phthalide substituted by a butylidene group at position 3. Isolated from Ligusticum porteri, it exhibits hypoglycemic activity. 3-Butylidenephthalide (Butylidenephthalide) is a phthalic anhydride derivative identified in Ligusticum chuanxiong Hort, and has larvicidal activity (LC50 of 1.56 mg/g for Spodoptera litura larvae)[1]. 3-Butylidenephthalide (Butylidenephthalide) is a phthalic anhydride derivative identified in Ligusticum chuanxiong Hort, and has larvicidal activity (LC50 of 1.56 mg/g for Spodoptera litura larvae)[1].
TETRACHLOROETHYLENE
D009676 - Noxae > D002273 - Carcinogens D004785 - Environmental Pollutants D012997 - Solvents
2-Ethylhexanol
A primary alcohol that is hexan-1-ol substituted by an ethyl group at position 2.
trans-1,3-Dichloropropene
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
carprofen
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D003879 - Dermatologic Agents Carprofen is a nonsteroid anti-inflammatory agent, acts as a multi-target FAAH/COX inhibitor, with IC50s of 3.9 μM, 22.3 μM and 78.6 μM for COX-2, COX-1 and FAAH, respectively.
EFLORNITHINE
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D065108 - Ornithine Decarboxylase Inhibitors C471 - Enzyme Inhibitor > C2088 - Ornithine Decarboxylase Inhibitor D000970 - Antineoplastic Agents D - Dermatologicals
DIBUTYL SUCCINATE
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents
enoxacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic
Tirofiban
B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
lomefloxacin
A fluoroquinolone antibiotic, used (generally as the hydrochloride salt) to treat bacterial infections including bronchitis and urinary tract infections. It is also used to prevent urinary tract infections prior to surgery. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
proparacaine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Fludrocortisone acetate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
5,6-Dihydroxyindole
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D004791 - Enzyme Inhibitors > D065098 - Catechol O-Methyltransferase Inhibitors
Delavirdine
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AG - Non-nucleoside reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97453 - Non-nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent
2-Deoxyinosine
A purine 2-deoxyribonucleoside that is inosine in which the hydroxy group at position 2 is replaced by a hydrogen. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.
Fluphenazine decanoate
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Fluphenazine decanoate is a dopamine D2 receptor inhibitor, is a long-acting phenothiazine neuroleptic. Fluphenazine can be used for schizophrenia research[1][2][3].
THYMIDINE-5-triphosphATE
A thymidine phosphate having a triphosphate group at the 5-position.
Taurolithocholic acid 3-sulfate
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
Pimafucin
A macrolide antibiotic that has formula C33H47NO13, produced by several Streptomyces species including Streptomyces natalensis. It exhibits broad spectrum antifungal activity and used in eye drops, and as a food preservative, and also as a postharvest biofungicide for citrus and other fruit crops. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Natamycin (Pimaricin) is a macrolide antibiotic agent produced by several Streptomyces strains. Natamycin inhibits the growth of fungi via inhibition of amino acid and glucose transport across the plasma membrane. Natamycin is a food preservative, an antifungal agent in agriculture, and is widely used for fungal keratitis research[1][2].
5,6-dihydroxyindole-2-carboxylic acid
A dihydroxyindole that is indole-2-carboxylic acid substituted by hydroxy groups at positions 5 and 6.
7,8-Dihydroneopterin
A neopterin where positions C-7 and C-8 have been hydrogenated. 7,8-Dihydroneopterin, an inflammation marker, induces cellular apoptosis in astrocytes and neurons via enhancement of nitric oxide synthase (iNOS) expression. 7,8-Dihydroneopterin can be used in the research of neurodegenerative diseases[1].
dihydropteroate
A pteroic acid derivative arising from formal hydrogenation of the 7,8-double bond of pteroic acid.
2-Deoxyinosine triphosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
[[(2R,3S,5R)-5-(2,6-dioxo-3H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate
dichlorobenzene
A dichlorobenzene carrying chloro substituents at positions 1 and 2. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Sodium sulfate
A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D005765 - Gastrointestinal Agents > D002400 - Cathartics Same as: D01732
Methyl tert-butyl ether
An ether having methyl and tert-butyl as the two alkyl components. D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D002273 - Carcinogens
Cholesteryl oleate
The (Z)-stereoisomer of cholesteryl octadec-9-enoate. Cholesteryl oleate is an esterified form of Cholesterol. Cholesteryl oleate can be used in the generation of solid lipid nanoparticle (SLN, a nanoparticle-based method for gene therapy)[1][2].
Thiophanate-methyl
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D016573 - Agrochemicals D010575 - Pesticides
UNII:0514MAW53A
C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
1-HYDROXYPYRENE
D009676 - Noxae > D009153 - Mutagens 1-Hydroxypyrene, a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs), is analyzed in urine samples. 1-Hydroxypyrene is the major biomarker of exposure to pyrenes[1].
3-(Allylsulfinyl)-L-alanine
D000970 - Antineoplastic Agents D007004 - Hypoglycemic Agents Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].
Galangal acetate
An acetate ester that is chavicol acetate substituted by an acetoxy group at position 1.
GYKI 52466
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents