2-Ethylhexanol (BioDeep_00001867656)

Main id: BioDeep_00000629771

 

natural product


代谢物信息卡片


2-Ethylhexan-1-ol

化学式: C8H18O (130.1358)
中文名称: 异辛醇, 2-乙基己醇
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCCC(CC)CO
InChI: InChI=1S/C8H18O/c1-3-5-6-8(4-2)7-9/h8-9H,3-7H2,1-2H3

描述信息

A primary alcohol that is hexan-1-ol substituted by an ethyl group at position 2.

同义名列表

4 个代谢物同义名

2-Ethylhexan-1-ol; 2-Ethylhexanol; 2-Ethylhexan-1-ol; 2-Ethylhexanol



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

90 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 AIF1, CAT, CKAP2, HPGDS, TH
Peripheral membrane protein 3 AIF1, CRAT, GBA1
Endoplasmic reticulum membrane 1 CD4
Nucleus 4 AIF1, BRD3, PPARA, TH
cytosol 9 AIF1, CAT, CRAT, GPT, HPGDS, LIPE, MTTP, PRKCQ, TH
dendrite 1 TH
trans-Golgi network 1 GBA1
centrosome 1 CKAP2
nucleoplasm 2 HPGDS, PPARA
Cell membrane 5 CD4, CD8A, LIPE, TRPA1, TRPV1
Cytoplasmic side 1 AIF1
lamellipodium 1 AIF1
ruffle membrane 1 AIF1
Cell projection, axon 1 TH
Multi-pass membrane protein 2 TRPA1, TRPV1
Synapse 1 TAC1
Golgi apparatus 3 ATRN, GBA1, MTTP
lysosomal membrane 1 GBA1
mitochondrial inner membrane 1 CRAT
neuronal cell body 2 TAC1, TRPV1
smooth endoplasmic reticulum 1 TH
synaptic vesicle 1 TH
Cytoplasm, cytosol 1 LIPE
Lysosome 1 GBA1
plasma membrane 6 ATRN, CD4, CD8A, PRKCQ, TRPA1, TRPV1
terminal bouton 1 TH
Membrane 4 CAT, LIPE, TRPA1, TRPV1
axon 2 TAC1, TH
basolateral plasma membrane 1 MTTP
caveola 1 LIPE
extracellular exosome 4 ATRN, CAT, GBA1, GPT
Lysosome membrane 1 GBA1
Lumenal side 1 GBA1
endoplasmic reticulum 3 CRAT, GBA1, MTTP
extracellular space 3 ATRN, IL2, TAC1
lysosomal lumen 1 GBA1
perinuclear region of cytoplasm 2 AIF1, TH
mitochondrion 3 CAT, CRAT, TH
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 2 CAT, HPGDS
Single-pass type I membrane protein 3 ATRN, CD4, CD8A
Secreted 1 IL2
extracellular region 4 CAT, CD8A, IL2, TAC1
cytoplasmic side of plasma membrane 1 TH
[Isoform 2]: Secreted 2 ATRN, CD8A
mitochondrial matrix 1 CAT
centriolar satellite 1 PRKCQ
external side of plasma membrane 3 CD4, CD8A, TRPV1
perikaryon 1 TH
cytoplasmic vesicle 1 TH
microtubule cytoskeleton 1 CKAP2
Melanosome membrane 1 TH
Early endosome 1 CD4
vesicle 1 MTTP
postsynaptic membrane 1 TRPV1
Cell projection, ruffle membrane 1 AIF1
Cytoplasm, perinuclear region 1 TH
Mitochondrion inner membrane 1 CRAT
Matrix side 1 CRAT
Membrane raft 1 CD4
Cytoplasm, cytoskeleton 2 AIF1, CKAP2
focal adhesion 1 CAT
microtubule 1 CKAP2
GABA-ergic synapse 1 TRPV1
Peroxisome 2 CAT, CRAT
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, CRAT
peroxisomal membrane 1 CAT
Postsynaptic cell membrane 1 TRPV1
ruffle 1 AIF1
receptor complex 2 CD8A, MTTP
Cell projection, neuron projection 1 TRPV1
neuron projection 1 TH
chromatin 2 BRD3, PPARA
stereocilium bundle 1 TRPA1
Cell projection, phagocytic cup 1 AIF1
phagocytic cup 1 AIF1
mitotic spindle 1 CKAP2
Chromosome 1 BRD3
[Isoform 1]: Mitochondrion 1 CRAT
brush border membrane 1 MTTP
spindle pole 1 CKAP2
actin filament 1 AIF1
microvillus membrane 1 MTTP
[Isoform 3]: Secreted 1 ATRN
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
plasma membrane raft 1 CD8A
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 2 CD4, MTTP
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
clathrin-coated endocytic vesicle membrane 1 CD4
[Isoform 1]: Cell membrane 2 ATRN, CD8A
Cell projection, dendritic spine membrane 1 TRPV1
dendritic spine membrane 1 TRPV1
glial cell projection 1 AIF1
T cell receptor complex 2 CD4, CD8A
catalase complex 1 CAT
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 TH
[Isoform 2]: Peroxisome 1 CRAT


文献列表

  • Pierre-Alain van Griethuysen, Kelly R Redeker, Stuart A MacFarlane, Roy Neilson, Sue E Hartley. Virus-induced changes in root volatiles attract soil nematode vectors to infected plants. The New phytologist. 2024 Mar; 241(5):2275-2286. doi: 10.1111/nph.19518. [PMID: 38327027]
  • Qian Zhao, Jianmin Cao, Xianjie Cai, Jie Wang, Fanyu Kong, Dongkun Wang, Jing Wang. Antagonistic Activity of Volatile Organic Compounds Produced by Acid-Tolerant Pseudomonas protegens CLP-6 as Biological Fumigants To Control Tobacco Bacterial Wilt Caused by Ralstonia solanacearum. Applied and environmental microbiology. 2023 Feb; ?(?):e0189222. doi: 10.1128/aem.01892-22. [PMID: 36722969]
  • Takanari Wakayama, Yuki Ito, Mio Miyake, Karin Nomasa, Kiyoshi Sakai, Naoko Oya, Hirotaka Sato, Hiroyuki Ohno, Michihiro Kamijima. Inhalation exposure to 2-ethyl-1-hexanol causes hepatomegaly and transient lipid accumulation without induction of peroxisome proliferator-activated receptor alpha in mice. Industrial health. 2021 Nov; 59(6):383-392. doi: 10.2486/indhealth.2020-0252. [PMID: 34588381]
  • Christopher M Ranger, Marek Dzurenko, Jenny Barnett, Ruchika Geedi, Louela Castrillo, Matthew Ethington, Matthew Ginzel, Karla Addesso, Michael E Reding. Electrophysiological and Behavioral Responses of an Ambrosia Beetle to Volatiles of its Nutritional Fungal Symbiont. Journal of chemical ecology. 2021 May; 47(4-5):463-475. doi: 10.1007/s10886-021-01263-0. [PMID: 33761047]
  • Saied Saeed Hosseiny Davarani, Ahmad Pourahadi, Peivand Ghasemzadeh. Quantification of controlled release leuprolide and triptorelin in rabbit plasma using electromembrane extraction coupled with HPLC-UV. Electrophoresis. 2019 04; 40(7):1074-1081. doi: 10.1002/elps.201800481. [PMID: 30653693]
  • Atyeh Rahimi, Saeed Nojavan. Electromembrane extraction of verapamil and riluzole from urine and wastewater samples using a mixture of organic solvents as a supported liquid membrane: Study on electric current variations. Journal of separation science. 2019 Jan; 42(2):566-573. doi: 10.1002/jssc.201800741. [PMID: 30371989]
  • Timothy R Fennell, James M Mathews, Rodney W Snyder, Yan Hong, Scott L Watson, Sherry R Black, Barry S McIntyre, Suramya Waidyanatha. Metabolism and disposition of 2-ethylhexyl-p-methoxycinnamate following oral gavage and dermal exposure in Harlan Sprague Dawley rats and B6C3F1/N mice and in hepatocytes in vitro. Xenobiotica; the fate of foreign compounds in biological systems. 2018 Nov; 48(11):1142-1156. doi: 10.1080/00498254.2017.1400129. [PMID: 29111853]
  • Vanessa Hörmann, Klaus-Reinhard Brenske, Christian Ulrichs. Assessment of filtration efficiency and physiological responses of selected plant species to indoor air pollutants (toluene and 2-ethylhexanol) under chamber conditions. Environmental science and pollution research international. 2018 Jan; 25(1):447-458. doi: 10.1007/s11356-017-0453-9. [PMID: 29043589]
  • Kuo-Chuan Huang, Ying Li, Chia-Hung Kuo, Yawo-Kuo Twu, Chwen-Jen Shieh. Highly Efficient Synthesis of an Emerging Lipophilic Antioxidant: 2-Ethylhexyl Ferulate. Molecules (Basel, Switzerland). 2016 Apr; 21(4):478. doi: 10.3390/molecules21040478. [PMID: 27077838]
  • Nor Saiful Hafiz Abdul Habib, Robiah Yunus, Umer Rashid, Yun H Taufiq-Yap, Zurina Zainal Abidin, Azhari Muhammad Syam, Sonny Irawan. Transesterification reaction for synthesis of palm-based ethylhexyl ester and formulation as base oil for synthetic drilling fluid. Journal of oleo science. 2014; 63(5):497-506. doi: 10.5650/jos.ess13220. [PMID: 24717547]
  • Andre F Cruz, Chantal Hamel, Chao Yang, Tomoko Matsubara, Yantai Gan, Asheesh K Singh, Kousaku Kuwada, Takaaki Ishii. Phytochemicals to suppress Fusarium head blight in wheat-chickpea rotation. Phytochemistry. 2012 Jun; 78(?):72-80. doi: 10.1016/j.phytochem.2012.03.003. [PMID: 22520499]
  • Yosuke Hanai, Ken Shimono, Hiroaki Oka, Yoshinobu Baba, Kunio Yamazaki, Gary K Beauchamp. Analysis of volatile organic compounds released from human lung cancer cells and from the urine of tumor-bearing mice. Cancer cell international. 2012 Feb; 12(1):7. doi: 10.1186/1475-2867-12-7. [PMID: 22364569]
  • Nora C Lawo, Georg J F Weingart, Rainer Schuhmacher, Astrid Forneck. The volatile metabolome of grapevine roots: first insights into the metabolic response upon phylloxera attack. Plant physiology and biochemistry : PPB. 2011 Sep; 49(9):1059-63. doi: 10.1016/j.plaphy.2011.06.008. [PMID: 21764593]
  • Shao-Hua Gu, Wei-Xuan Wang, Gui-Rong Wang, Xue-Ying Zhang, Yu-Yuan Guo, Ziding Zhang, Jing-Jiang Zhou, Yong-Jun Zhang. Functional characterization and immunolocalization of odorant binding protein 1 in the lucerne plant bug, Adelphocoris lineolatus (GOEZE). Archives of insect biochemistry and physiology. 2011 Jun; 77(2):81-99. doi: 10.1002/arch.20427. [PMID: 21541988]
  • M M Ramírez-Rodrigues, M O Balaban, M R Marshall, R L Rouseff. Hot and cold water infusion aroma profiles of Hibiscus sabdariffa: fresh compared with dried. Journal of food science. 2011 Mar; 76(2):C212-7. doi: 10.1111/j.1750-3841.2010.01989.x. [PMID: 21535737]
  • Samantha Perez-Miller, Qin Zou, Milos V Novotny, Thomas D Hurley. High resolution X-ray structures of mouse major urinary protein nasal isoform in complex with pheromones. Protein science : a publication of the Protein Society. 2010 Aug; 19(8):1469-79. doi: 10.1002/pro.426. [PMID: 20509168]
  • Yuwen Wu, Qiuhong Pan, Wenjun Qu, Changqing Duan. Comparison of volatile profiles of nine litchi (Litchi chinensis Sonn.) cultivars from Southern China. Journal of agricultural and food chemistry. 2009 Oct; 57(20):9676-81. doi: 10.1021/jf902144c. [PMID: 19803519]
  • Laila H Ribeiro, Ana M Costa Freitas, Marco D R Gomes da Silva. The use of headspace solid phase microextraction for the characterization of volatile compounds in olive oil matrices. Talanta. 2008 Oct; 77(1):110-7. doi: 10.1016/j.talanta.2008.05.051. [PMID: 18804607]
  • Martin Heil, Ulrich Lion, Wilhelm Boland. Defense-inducing volatiles: in search of the active motif. Journal of chemical ecology. 2008 May; 34(5):601-4. doi: 10.1007/s10886-008-9464-9. [PMID: 18408973]
  • Shu Wei, Ira Marton, Mara Dekel, Dror Shalitin, Efraim Lewinsohn, Ben-Ami Bravdo, Oded Shoseyov. Manipulating volatile emission in tobacco leaves by expressing Aspergillus nigerbeta-glucosidase in different subcellular compartments. Plant biotechnology journal. 2004 Jul; 2(4):341-50. doi: 10.1111/j.1467-7652.2004.00077.x. [PMID: 17134395]
  • Mario Estévez, David Morcuende, Sonia Ventanas, Ramón Cava. Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME-GC-MS. Journal of agricultural and food chemistry. 2003 May; 51(11):3429-35. doi: 10.1021/jf026218h. [PMID: 12744679]
  • Tsutomu Fukuwatari, Yuko Suzuki, Etsuro Sugimoto, Katsumi Shibata. Identification of a toxic mechanism of the plasticizers, phtahlic acid esters, which are putative endocrine disrupters: time-dependent increase in quinolinic acid and its metabolites in rats fed di(2-ethylhexyl)phthalate. Bioscience, biotechnology, and biochemistry. 2002 Dec; 66(12):2687-91. doi: 10.1271/bbb.66.2687. [PMID: 12596868]
  • R Drake, R Dunn, D C Sherrington, S J Thomson. Optimisation of polystyrene resin-supported Pt catalysts in room temperature, solvent-less, oct-l-ene hydrosilylation using methyldichlorosilane. Combinatorial chemistry & high throughput screening. 2002 May; 5(3):201-9. doi: 10.2174/1386207024607293. [PMID: 11966428]
  • L H Li, W F Jester, A L Laslett, J M Orth. A single dose of Di-(2-ethylhexyl) phthalate in neonatal rats alters gonocytes, reduces sertoli cell proliferation, and decreases cyclin D2 expression. Toxicology and applied pharmacology. 2000 Aug; 166(3):222-9. doi: 10.1006/taap.2000.8972. [PMID: 10906286]
  • K P Rothenbacher, R Kimmel, S Hildenbrand, F W Schmahl, P C Dartsch. Nephrotoxic effects of di-(2-ethylhexyl)-phthalate (DEHP) hydrolysis products on cultured kidney epithelial cells. Human & experimental toxicology. 1998 Jun; 17(6):336-42. doi: 10.1177/096032719801700609. [PMID: 9688358]
  • L M Bui, M W Taubeneck, J F Commisso, J Y Uriu-Hare, W D Faber, C L Keen. Altered zinc metabolism contributes to the developmental toxicity of 2-ethylhexanoic acid, 2-ethylhexanol and valproic acid. Toxicology. 1998 Feb; 126(1):9-21. doi: 10.1016/s0300-483x(97)00171-6. [PMID: 9585088]
  • T Mettang, S Thomas, T Kiefer, F P Fischer, U Kuhlmann, R Wodarz, A W Rettenmeier. Uraemic pruritus and exposure to di(2-ethylhexyl) phthalate (DEHP) in haemodialysis patients. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 1996 Dec; 11(12):2439-43. doi: 10.1093/oxfordjournals.ndt.a027211. [PMID: 9017619]
  • B D Astill, R Gingell, D Guest, J Hellwig, J R Hodgson, K Kuettler, W Mellert, S R Murphy, R L Sielken, T R Tyler. Oncogenicity testing of 2-ethylhexanol in Fischer 344 rats and B6C3F1 mice. Fundamental and applied toxicology : official journal of the Society of Toxicology. 1996 May; 31(1):29-41. doi: 10.1006/faat.1996.0073. [PMID: 8998951]
  • B D Astill, K Deckardt, C Gembardt, R Gingell, D Guest, J R Hodgson, W Mellert, S R Murphy, T R Tyler. Prechronic toxicity studies on 2-ethylhexanol in F334 rats and B6C3F1 mice. Fundamental and applied toxicology : official journal of the Society of Toxicology. 1996 Jan; 29(1):31-9. doi: 10.1006/faat.1996.0003. [PMID: 8838637]
  • T Mettang, S Thomas, T Kiefer, F P Fischer, U Kuhlmann, R Wodarz, A W Rettenmeier. The fate of leached di(2-ethylhexyl)phthalate in patients undergoing CAPD treatment. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis. 1996 Jan; 16(1):58-62. doi: . [PMID: 8616175]
  • E D Barber, J A Fox, C J Giordano. Hydrolysis, absorption and metabolism of di(2-ethylhexyl) terephthalate in the rat. Xenobiotica; the fate of foreign compounds in biological systems. 1994 May; 24(5):441-50. doi: 10.3109/00498259409043247. [PMID: 8079503]
  • P J Deisinger, R J Boatman, D Guest. Metabolism of 2-ethylhexanol administered orally and dermally to the female Fischer 344 rat. Xenobiotica; the fate of foreign compounds in biological systems. 1994 May; 24(5):429-40. doi: 10.3109/00498259409043246. [PMID: 8079502]
  • R W Tyl, L C Fisher, M F Kubena, M A Vrbanic, R Gingell, D Guest, J R Hodgson, S R Murphy, T R Tyler, B D Astill. The developmental toxicity of 2-ethylhexanol applied dermally to pregnant Fischer 344 rats. Fundamental and applied toxicology : official journal of the Society of Toxicology. 1992 Aug; 19(2):176-85. doi: 10.1016/0272-0590(92)90149-c. [PMID: 1516773]
  • Y Keith, M C Cornu, P M Canning, J Foster, J C Lhuguenot, C R Elcombe. Peroxisome proliferation due to di (2-ethylhexyl) adipate, 2-ethylhexanol and 2-ethylhexanoic acid. Archives of toxicology. 1992; 66(5):321-6. doi: 10.1007/bf01973626. [PMID: 1610294]
  • M Z Badr, J A Handler, M Whittaker, F C Kauffman, R G Thurman. Interactions between plasticizers and fatty acid metabolism in the perfused rat liver and in vivo. Inhibition of ketogenesis by 2-ethylhexanol. Biochemical pharmacology. 1990 Feb; 39(4):715-21. doi: 10.1016/0006-2952(90)90150-j. [PMID: 2306279]
  • G D DiVincenzo, M L Hamilton, K R Mueller, W H Donish, E D Barber. Bacterial mutagenicity testing of urine from rats dosed with 2-ethylhexanol derived plasticizers. Toxicology. 1985 Mar; 34(3):247-59. doi: 10.1016/0300-483x(85)90175-1. [PMID: 3883574]
  • D L Wood, J Bitman. The effect of feeding di-(2-ethylhexyl) phthalate and related compounds on lipids in the laying hen. Poultry science. 1984 Mar; 63(3):469-77. doi: 10.3382/ps.0630469. [PMID: 6718301]
  • D E Moody, J K Reddy. Serum triglyceride and cholesterol contents in male rats receiving diets containing plasticizers and analogues of the ester 2-ethylhexanol. Toxicology letters. 1982 Mar; 10(4):379-83. doi: 10.1016/0378-4274(82)90233-8. [PMID: 7089991]
  • I A KAMIL, J N SMITH, R T WILLIAMS. Studies in detoxication. XLVII. The formation of ester glucuronides of aliphatic acids during the metabolism of 2-ethylbutanol and 2-ethylhexanol. The Biochemical journal. 1953 Jan; 53(1):137-40. doi: 10.1042/bj0530137. [PMID: 13032045]