farnesoic acid (BioDeep_00000011225)

   

natural product


代谢物信息卡片


trans,trans-Farnesoic acid

化学式: C15H24O2 (236.1776)
中文名称: 3,7,11-三甲基十二烷-2,6,10-三烯酸
谱图信息: 最多检出来源 Homo sapiens(plant) 18.97%

分子结构信息

SMILES: CC(=CCCC(=CCCC(=CC(=O)O)C)C)C
InChI: InChI=1S/C15H24O2/c1-12(2)7-5-8-13(3)9-6-10-14(4)11-15(16)17/h7,9,11H,5-6,8,10H2,1-4H3,(H,16,17)

描述信息

A methyl-branched, trienoic fatty acid consisting of dodeca-2,6,10-trienoic acid having three methyl substituents at the 3-, 7- and 11-positions.

同义名列表

6 个代谢物同义名

farnesoic acid; trans,trans-Farnesoic acid; (2E,6E)-farnesoate; UNII-98SID9VM1V; Farnesoic acid; 3,7,11-Trimethyldodeca-2,6,10-trienoic acid



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

16 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 AKR1C3, ALDH3A1, ALDH3A2, CLEC7A, FDPS, MVD, MVK, SP1, TLR2
Peripheral membrane protein 2 CTSL, CYP1B1
Endoplasmic reticulum membrane 4 ACAT1, ALDH3A2, CYP1B1, FDFT1
Nucleus 3 AKR1C3, CTSL, SP1
cytosol 9 AKR1B10, AKR1C3, ALDH3A1, ALDH3A2, FDPS, MVD, MVK, PMVK, PRKCQ
nucleoplasm 2 FDPS, SP1
Cell membrane 1 CLEC7A
Cytoplasmic side 1 ALDH3A2
Multi-pass membrane protein 2 ACAT1, FDFT1
cell surface 2 CLEC7A, TLR2
Golgi apparatus 2 CTSL, TLR2
Golgi membrane 1 INS
Cytoplasm, cytosol 1 PMVK
Lysosome 2 AKR1B10, CTSL
plasma membrane 5 ALDH3A1, CLEC7A, CTSL, PRKCQ, TLR2
Membrane 8 ACAT1, ALDH3A2, CLEC7A, CYP1B1, FDFT1, FDPS, PMVK, TLR2
apical plasma membrane 1 CTSL
extracellular exosome 4 ACAT1, AKR1C3, CTSL, PMVK
endoplasmic reticulum 3 ACAT1, ALDH3A1, FDFT1
extracellular space 7 ALDH3A1, CTSL, IL10, IL6, INS, MSTN, SP1
lysosomal lumen 1 CTSL
mitochondrion 3 ACAT1, AKR1B10, CYP1B1
intracellular membrane-bounded organelle 4 ALDH3A2, CTSL, CYP1B1, MVK
Microsome membrane 2 ALDH3A2, CYP1B1
Single-pass type I membrane protein 1 TLR2
Secreted 7 AKR1B10, CTSL, IL10, IL6, INS, MSTN, SP1
extracellular region 6 AKR1B10, CTSL, IL10, IL6, INS, SP1
Single-pass membrane protein 1 ALDH3A2
mitochondrial matrix 2 ACAT1, FDPS
Extracellular side 1 CTSL
centriolar satellite 1 PRKCQ
multivesicular body 1 CTSL
Single-pass type II membrane protein 1 CLEC7A
Apical cell membrane 1 CTSL
Membrane raft 1 TLR2
Peroxisome 4 ALDH3A2, FDPS, MVK, PMVK
peroxisomal membrane 1 ALDH3A2
collagen-containing extracellular matrix 1 CTSL
receptor complex 1 TLR2
chromatin 1 SP1
Cytoplasmic vesicle, phagosome membrane 1 TLR2
cell projection 1 TLR2
phagocytic vesicle membrane 1 TLR2
[Isoform 5]: Cytoplasm 1 CLEC7A
Secreted, extracellular space 1 CTSL
endosome lumen 1 INS
euchromatin 1 SP1
cell body 1 TLR2
secretory granule lumen 1 INS
secretory granule membrane 1 TLR2
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 IL6, INS
transcription repressor complex 1 SP1
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
[Isoform 2]: Nucleus 1 CTSL
protein-DNA complex 1 SP1
Toll-like receptor 1-Toll-like receptor 2 protein complex 1 TLR2
Toll-like receptor 2-Toll-like receptor 6 protein complex 1 TLR2
[Isoform 7]: Cytoplasm 1 CLEC7A
endocytic vesicle lumen 1 CTSL
interleukin-6 receptor complex 1 IL6
Cytoplasmic vesicle, secretory vesicle, chromaffin granule 1 CTSL
chromaffin granule 1 CTSL
endolysosome lumen 1 CTSL
[Isoform 6]: Cytoplasm 1 CLEC7A


文献列表

  • Md Abdullah Al Baki, Dae-Weon Lee, Jin Kyo Jung, Yonggyun Kim. Insulin signaling mediates previtellogenic development and enhances juvenile hormone-mediated vitellogenesis in a lepidopteran insect, Maruca vitrata. BMC developmental biology. 2019 07; 19(1):14. doi: 10.1186/s12861-019-0194-8. [PMID: 31277577]
  • Soo Rin Lee, Ji-Hyun Lee, Ah Ran Kim, Sanghee Kim, Hyun Park, Hea Ja Baek, Hyun-Woo Kim. Three cDNAs encoding vitellogenin homologs from Antarctic copepod, Tigriopus kingsejongensis: Cloning and transcriptional analysis in different maturation stages, temperatures, and putative reproductive hormones. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 2016 Feb; 192(?):38-48. doi: 10.1016/j.cbpb.2015.11.008. [PMID: 26627129]
  • Danny W-K Ng, Changqing Zhang, Marisa Miller, Gregory Palmer, Marvin Whiteley, Dorothea Tholl, Z Jeffrey Chen. cis- and trans-Regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. The Plant cell. 2011 May; 23(5):1729-40. doi: 10.1105/tpc.111.083915. [PMID: 21602291]
  • Anna V Kuballa, Timothy A Holton, Brian Paterson, Abigail Elizur. Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus. BMC genomics. 2011 Mar; 12(?):147. doi: 10.1186/1471-2164-12-147. [PMID: 21396120]
  • Nadav Sorek, Orit Gutman, Einat Bar, Mohamad Abu-Abied, Xuehui Feng, Mark P Running, Efraim Lewinsohn, Naomi Ori, Einat Sadot, Yoav I Henis, Shaul Yalovsky. Differential effects of prenylation and s-acylation on type I and II ROPS membrane interaction and function. Plant physiology. 2011 Feb; 155(2):706-20. doi: 10.1104/pp.110.166850. [PMID: 21139084]
  • Santosh Nigam, Roberto Ciccoli, Igor Ivanov, Marco Sczepanski, Rupal Deva. On mechanism of quorum sensing in Candida albicans by 3(R)-hydroxy-tetradecaenoic acid. Current microbiology. 2011 Jan; 62(1):55-63. doi: 10.1007/s00284-010-9666-6. [PMID: 20509029]
  • Arti T Navare, Jaime G Mayoral, Marcela Nouzova, Fernando G Noriega, Facundo M Fernández. Rapid direct analysis in real time (DART) mass spectrometric detection of juvenile hormone III and its terpene precursors. Analytical and bioanalytical chemistry. 2010 Dec; 398(7-8):3005-13. doi: 10.1007/s00216-010-4269-4. [PMID: 20936260]
  • Shao H Yang, Sandy Y Chang, Douglas A Andres, H Peter Spielmann, Stephen G Young, Loren G Fong. Assessing the efficacy of protein farnesyltransferase inhibitors in mouse models of progeria. Journal of lipid research. 2010 Feb; 51(2):400-5. doi: 10.1194/jlr.m002808. [PMID: 19965595]
  • Shuhua Liu, Chengwei Zhang, Baojun Yang, Jianhua Gu, Zewen Liu. Cloning and characterization of a putative farnesoic acid O-methyltransferase gene from the brown planthopper, Nilaparvata lugens. Journal of insect science (Online). 2010; 10(?):103. doi: 10.1673/031.010.10301. [PMID: 20874390]
  • Ian M Prosser, Racheal J Adams, Michael H Beale, Nathan D Hawkins, Andrew L Phillips, John A Pickett, Linda M Field. Cloning and functional characterisation of a cis-muuroladiene synthase from black peppermint (Menthaxpiperita) and direct evidence for a chemotype unable to synthesise farnesene. Phytochemistry. 2006 Aug; 67(15):1564-71. doi: 10.1016/j.phytochem.2005.06.012. [PMID: 16083926]
  • Joshua S Yuan, Ann Reed, Feng Chen, C Neal Stewart. Statistical analysis of real-time PCR data. BMC bioinformatics. 2006 Feb; 7(?):85. doi: 10.1186/1471-2105-7-85. [PMID: 16504059]
  • Yoshihiro Shidoji, Hiroko Ogawa. Natural occurrence of cancer-preventive geranylgeranoic acid in medicinal herbs. Journal of lipid research. 2004 Jun; 45(6):1092-103. doi: 10.1194/jlr.m300502-jlr200. [PMID: 15060084]
  • Toshio Morikawa, Hisashi Matsuda, Yasuko Sakamoto, Kazuho Ueda, Masayuki Yoshikawa. New farnesane-type sesquiterpenes, hedychiols A and B 8,9-diacetate, and inhibitors of degranulation in RBL-2H3 cells from the rhizome of Hedychium coronarium. Chemical & pharmaceutical bulletin. 2002 Aug; 50(8):1045-9. doi: 10.1248/cpb.50.1045. [PMID: 12192135]
  • Y I N Silva Gunawardene, S S Tobe, W G Bendena, B K C Chow, K J Yagi, S-M Chan. Function and cellular localization of farnesoic acid O-methyltransferase (FAMeT) in the shrimp, Metapenaeus ensis. European journal of biochemistry. 2002 Jul; 269(14):3587-95. doi: 10.1046/j.1432-1033.2002.03048.x. [PMID: 12135499]
  • J E Hirschman, D D Jenness. Dual lipid modification of the yeast ggamma subunit Ste18p determines membrane localization of Gbetagamma. Molecular and cellular biology. 1999 Nov; 19(11):7705-11. doi: 10.1128/mcb.19.11.7705. [PMID: 10523659]
  • S J Fliesler, G J Schroepfer. Metabolism of mevalonic acid in cell-free homogenates of bovine retinas. Formation of novel isoprenoid acids. The Journal of biological chemistry. 1983 Dec; 258(24):15062-70. doi: . [PMID: 6654904]
  • . . . . doi: . [PMID: 16165084]