Sakuranetin (BioDeep_00000000483)

 

Secondary id: BioDeep_00000270710

natural product human metabolite PANOMIX_OTCML-2023 Endogenous Chemicals and Drugs


代谢物信息卡片


4H-1-Benzopyran-4-one, 2,3-dihydro-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-, (2S)-

化学式: C16H14O5 (286.0841)
中文名称: 樱花亭, 樱花精, 5-羟基-2-(4-羟基苯基)-7-甲氧基苯并吡喃-4-酮, 樱花素
谱图信息: 最多检出来源 Homo sapiens(plant) 13.85%

分子结构信息

SMILES: c1(cc(c2c(c1)O[C@@H](CC2=O)c1ccc(cc1)O)O)OC
InChI: InChI=1S/C16H14O5/c1-20-11-6-12(18)16-13(19)8-14(21-15(16)7-11)9-2-4-10(17)5-3-9/h2-7,14,17-18H,8H2,1H3

描述信息

Sakuranetin is a flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as an antimycobacterial drug and a plant metabolite. It is a dihydroxyflavanone, a monomethoxyflavanone, a flavonoid phytoalexin, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin.
Sakuranetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available.
Sakuranetin is found in black walnut. Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae
Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae.
A flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group.
Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2].
Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2].

同义名列表

31 个代谢物同义名

4H-1-Benzopyran-4-one, 2,3-dihydro-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-, (2S)-; 4H-1-Benzopyran-4-one, 2,3-dihydro-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-, (S)-; (2S)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-3,4-dihydro-2H-1-benzopyran-4-one; (S)-2,3-dihydro-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-1-benzopyran-4-one; (2S)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-2,3-dihydro-4H-chromen-4-one; (2S)--5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-2,3-dihydrochromen-4-one; (2S)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-chroman-4-one; (2S)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxychroman-4-one; (S)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxychroman-4-one; 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-chroman-4-one; Flavanone, 4,5-dihydroxy-7-methoxy-, (S)-(-)-; (S)-(-)-4,5-dihydroxy-7-methoxyflavanone; (2S)-5,4-dihydroxy-7-methoxyflavan-4-one; (2S)-4,5-dihydroxy-7-methoxyflavanone; 5,4-Dihydroxy-7-methoxyflavanone; 4,5-Dihydroxy-7-methoxyflavanone; Sakuranetin, analytical standard; 5,4-dihydroxy-7-methoxyflavanone; Naringenin 7-O-methyl ether; naringenin 7-methyl ether; 7-O-Methylnaringenin; (2S)-sakuranetin; SAKURANETIN [MI]; UNII-3O38P61299; Sakuranetin; 3O38P61299; 3d04; 5-Hydroxy-2-(4-hydroxyphenyl)-7-methoxychroman-4-one; 4,5-Dihydroxy-7-methoxyflavone; Sakuranetin; 5-Hydroxy-2-(4-hydroxyphenyl)-7-methoxychroman-4-one



数据库引用编号

35 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

16 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(15)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

373 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 CEBPB, ELANE, MAPK14, MAPK8, PIK3CA, PTGS2, STAT3, TYRP1, XDH
Peripheral membrane protein 1 PTGS2
Endosome membrane 1 TYRP1
Endoplasmic reticulum membrane 1 PTGS2
Nucleus 6 CEBPB, FOS, MAPK14, MAPK8, MPO, STAT3
cytosol 7 ELANE, FOS, MAPK14, MAPK8, PIK3CA, STAT3, XDH
phagocytic vesicle 1 ELANE
nucleoplasm 6 CEBPB, FOS, MAPK14, MAPK8, MPO, STAT3
RNA polymerase II transcription regulator complex 3 CEBPB, FOS, STAT3
Cell membrane 3 CD86, IL1R1, TNF
lamellipodium 1 PIK3CA
Synapse 1 MAPK8
cell surface 4 CD40, CD86, ELANE, TNF
glutamatergic synapse 1 MAPK14
neuronal cell body 2 CD40, TNF
Lysosome 1 MPO
plasma membrane 8 CD40, CD86, IFNLR1, IGHE, IL1R1, PIK3CA, STAT3, TNF
Membrane 4 CD40, CD86, IFNLR1, IL1R1
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 4 CD40, CD86, ELANE, MPO
endoplasmic reticulum 2 FOS, PTGS2
extracellular space 9 CD40, CXCL8, ELANE, IGHE, IL10, IL6, MPO, TNF, XDH
perinuclear region of cytoplasm 1 PIK3CA
intercalated disc 1 PIK3CA
mitochondrion 1 MAPK14
protein-containing complex 1 PTGS2
intracellular membrane-bounded organelle 2 CD40, MPO
Microsome membrane 1 PTGS2
Single-pass type I membrane protein 6 CD40, CD86, IFNLR1, IGHE, IL1R1, TYRP1
Secreted 4 CXCL8, IL10, IL1R1, IL6
extracellular region 9 CXCL8, ELANE, IGHE, IL10, IL1R1, IL6, MAPK14, MPO, TNF
transcription regulator complex 1 STAT3
centriolar satellite 1 CD86
CD40 receptor complex 1 CD40
external side of plasma membrane 4 CD40, CD86, IL1R1, TNF
varicosity 1 CD40
Melanosome membrane 1 TYRP1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
Peroxisome 1 XDH
intracellular vesicle 1 TYRP1
sarcoplasmic reticulum 1 XDH
collagen-containing extracellular matrix 1 ELANE
secretory granule 2 ELANE, MPO
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
chromatin 3 CEBPB, FOS, STAT3
IgE immunoglobulin complex 1 IGHE
phagocytic cup 1 TNF
spindle pole 1 MAPK14
condensed chromosome, centromeric region 1 CEBPB
[Isoform 2]: Cell membrane 1 IGHE
Melanosome 1 TYRP1
azurophil granule 1 MPO
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 2 IL6, PTGS2
nuclear matrix 2 CEBPB, FOS
transcription repressor complex 1 ELANE
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
specific granule lumen 1 ELANE
azurophil granule lumen 2 ELANE, MPO
clathrin-coated endocytic vesicle membrane 1 TYRP1
phagocytic vesicle lumen 1 MPO
protein-DNA complex 1 FOS
basal dendrite 1 MAPK8
Cytoplasmic vesicle, phagosome 1 ELANE
[Isoform 3]: Cell membrane 1 IGHE
transcription factor AP-1 complex 1 FOS
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Isoform 1]: Secreted 1 IGHE
IgE B cell receptor complex 1 IGHE
immunoglobulin complex, circulating 1 IGHE
interleukin-6 receptor complex 1 IL6
C/EBP complex 1 CEBPB
CHOP-C/EBP complex 1 CEBPB
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Lihui Jiang, Xiaoyan Zhang, Yiting Zhao, Haiyan Zhu, Qijing Fu, Xinqi Lu, Wuying Huang, Xinyue Yang, Xuan Zhou, Lixia Wu, Ao Yang, Xie He, Man Dong, Ziai Peng, Jing Yang, Liwei Guo, Jiancheng Wen, Huichuan Huang, Yong Xie, Shusheng Zhu, Chengyun Li, Xiahong He, Youyong Zhu, Jiří Friml, Yunlong Du. Phytoalexin sakuranetin attenuates endocytosis and enhances resistance to rice blast. Nature communications. 2024 Apr; 15(1):3437. doi: 10.1038/s41467-024-47746-y. [PMID: 38653755]
  • Yao Zhao, Xueying Zhang, Zhuoliang Lang, Chi Zhang, Linying Li, Yuqing He, Na Liu, Ying Zhu, Gaojie Hong. Comparison of Nutritional Diversity in Five Fresh Legumes Using Flavonoids Metabolomics and Postharvest Botrytis cinerea Defense Analysis of Peas Mediated by Sakuranetin. Journal of agricultural and food chemistry. 2024 Mar; 72(11):6053-6063. doi: 10.1021/acs.jafc.3c08968. [PMID: 38452150]
  • Matheus Lima de Souza, André Campos Machado, Henrique Barbosa, João Henrique Ghilardi Lago, Luciano Caseli. Interaction of sakuranetin with unsaturated lipids forming Langmuir monolayers at the air-water interface: A biomembrane model. Colloids and surfaces. B, Biointerfaces. 2024 Jan; 234(?):113747. doi: 10.1016/j.colsurfb.2024.113747. [PMID: 38219639]
  • Álvaro Pérez-Valero, Suhui Ye, Patricia Magadán-Corpas, Claudio J Villar, Felipe Lombó. Metabolic engineering in Streptomyces albidoflavus for the biosynthesis of the methylated flavonoids sakuranetin, acacetin, and genkwanin. Microbial cell factories. 2023 Nov; 22(1):234. doi: 10.1186/s12934-023-02247-3. [PMID: 37964284]
  • Anish Kundu. Antimicrobial to anti-herbivore: Sakuranetin in rice efficiently inhibits brown planthopper by targeting their beneficial endosymbionts. Physiologia plantarum. 2023 Nov; 175(6):e14110. doi: 10.1111/ppl.14110. [PMID: 38148222]
  • Sarfaraz Ahmed, Mohammad K Parvez, Mohammed S Al-Dosari, Mazin A S Abdelwahid, Tawfeq A Alhowiriny, Adnan J Al-Rehaily. Novel anti‑hepatitis B virus flavonoids sakuranetin and velutin from Rhus retinorrhoea. Molecular medicine reports. 2023 Sep; 28(3):. doi: 10.3892/mmr.2023.13063. [PMID: 37539729]
  • Mengyu Liu, Gaojie Hong, Huijing Li, Xiaoli Bing, Yumeng Chen, Xiangfeng Jing, Jonathan Gershenzon, Yonggen Lou, Ian T Baldwin, Ran Li. Sakuranetin protects rice from brown planthopper attack by depleting its beneficial endosymbionts. Proceedings of the National Academy of Sciences of the United States of America. 2023 Jun; 120(23):e2305007120. doi: 10.1073/pnas.2305007120. [PMID: 37256931]
  • Shuai Tu, Feng Xiao, Chengyu Mei, Shuang Li, Pei Qiao, Ziyan Huang, Yan He, Zhixing Gong, Weihong Zhong. De novo biosynthesis of sakuranetin from glucose by engineered Saccharomyces cerevisiae. Applied microbiology and biotechnology. 2023 May; ?(?):. doi: 10.1007/s00253-023-12564-7. [PMID: 37148336]
  • Guilherme Henrique da Cruz Ramos Pires, Vitor Torres Freire, Rafael Guimarães Pereira, Leonardo José Amaral de Siqueira, Eric Umehara, João Henrique Ghilardi Lago, Luciano Caseli. Sakuranetin interacting with cell membranes models: Surface chemistry combined with molecular simulation. Colloids and surfaces. B, Biointerfaces. 2022 Aug; 216(?):112546. doi: 10.1016/j.colsurfb.2022.112546. [PMID: 35588685]
  • Zhongyan Yang, Nana Li, Takashige Kitano, Ping Li, Jennifer E Spindel, Lishuo Wang, Genxiang Bai, Yiying Xiao, Susan R McCouch, Atsushi Ishihara, Jili Zhang, Xin Yang, Zepeng Chen, Jianyu Wei, Honghua Ge, Georg Jander, Jian Yan. Genetic mapping identifies a rice naringenin O-glucosyltransferase that influences insect resistance. The Plant journal : for cell and molecular biology. 2021 06; 106(5):1401-1413. doi: 10.1111/tpj.15244. [PMID: 33745166]
  • InWha Park, Hee Sun Byun, Gang Min Hur, MinKyun Na. Tulipiferamide A, an Alkamide from Liriodendron tulipifera, Exhibits an Anti-Inflammatory Effect via Targeting IKKβ Phosphorylation. Journal of natural products. 2021 05; 84(5):1598-1606. doi: 10.1021/acs.jnatprod.1c00146. [PMID: 33939429]
  • Xiaonan Wang, Zhenghong Li, Lizelle Policarpio, Mattheos A G Koffas, Haoran Zhang. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering. Applied microbiology and biotechnology. 2020 Jun; 104(11):4849-4861. doi: 10.1007/s00253-020-10576-1. [PMID: 32285175]
  • Hye Lin Park, Youngchul Yoo, Seong Hee Bhoo, Tae-Hoon Lee, Sang-Won Lee, Man-Ho Cho. Two Chalcone Synthase Isozymes Participate Redundantly in UV-Induced Sakuranetin Synthesis in Rice. International journal of molecular sciences. 2020 May; 21(11):. doi: 10.3390/ijms21113777. [PMID: 32471084]
  • Ramiro Quintanilla-Licea, Javier Vargas-Villarreal, María Julia Verde-Star, Verónica Mayela Rivas-Galindo, Ángel David Torres-Hernández. Antiprotozoal Activity against Entamoeba histolytica of Flavonoids Isolated from Lippia graveolens Kunth. Molecules (Basel, Switzerland). 2020 May; 25(11):. doi: 10.3390/molecules25112464. [PMID: 32466359]
  • Koichi Murata, Takashige Kitano, Riko Yoshimoto, Ryo Takata, Naoki Ube, Kotomi Ueno, Makoto Ueno, Yukinori Yabuta, Masayoshi Teraishi, Cynthia K Holland, Georg Jander, Yutaka Okumoto, Naoki Mori, Atsushi Ishihara. Natural variation in the expression and catalytic activity of a naringenin 7-O-methyltransferase influences antifungal defenses in diverse rice cultivars. The Plant journal : for cell and molecular biology. 2020 03; 101(5):1103-1117. doi: 10.1111/tpj.14577. [PMID: 31630460]
  • Chen Li, Chunting Hu, Ruili Wang, Hui Wang, Qiaoya Ma, Songsheng Chen, Ya He. Protective effect of sakuranetin in brain cells of dementia model rats. Cellular and molecular biology (Noisy-le-Grand, France). 2019 Jun; 65(5):54-58. doi: . [PMID: 31304907]
  • Yuko Yamauchi, Tetsuya Okuyama, Toshinari Ishii, Tadayoshi Okumura, Yukinobu Ikeya, Mikio Nishizawa. Sakuranetin downregulates inducible nitric oxide synthase expression by affecting interleukin-1 receptor and CCAAT/enhancer-binding protein β. Journal of natural medicines. 2019 Mar; 73(2):353-368. doi: 10.1007/s11418-018-1267-x. [PMID: 30467676]
  • Fernanda P R Santana, Rafael C da Silva, Simone Dos S Grecco, Aruanã J M C R Pinheiro, Luciana C Caperuto, Fernanda M Arantes-Costa, Samuel R Claudio, Kelly Yoshizaki, Mariângela Macchione, Daniel A Ribeiro, Iolanda F L C Tibério, Lídio G Lima-Neto, João H G Lago, Carla M Prado. Inhibition of MAPK and STAT3-SOCS3 by Sakuranetin Attenuated Chronic Allergic Airway Inflammation in Mice. Mediators of inflammation. 2019; 2019(?):1356356. doi: 10.1155/2019/1356356. [PMID: 31565031]
  • Dur-Han Kwon, Jeong-Hun Ji, Soon-Ho Yim, Byoung-Soo Kim, Hwa-Jung Choi. Suppression of influenza B virus replication by sakuranetin and mode of its action. Phytotherapy research : PTR. 2018 Dec; 32(12):2475-2479. doi: 10.1002/ptr.6186. [PMID: 30187587]
  • Hyesoo Jeong, Jimin Lee, Soolin Kim, Yoo Yeon Yeo, Hyunyoung So, Honghua Wu, Yun Seon Song, Chang-Young Jang, Hee-Doo Kim, Min Jung Kim, Minsun Chang. Hepatic Metabolism of Sakuranetin and Its Modulating Effects on Cytochrome P450s and UDP-Glucuronosyltransferases. Molecules (Basel, Switzerland). 2018 Jun; 23(7):. doi: 10.3390/molecules23071542. [PMID: 29949932]
  • Perwez Alam, Mohammad Khalid Parvez, Ahmed Hassan Arbab, Nasir Ali Siddiqui, Mohammed Salem Al-Dosary, Adnan Jathlan Al-Rehaily, Sarfaraz Ahmed, Mohd Abul Kalam, Mohammad Shamim Ahmad. Inter-species comparative antioxidant assay and HPTLC analysis of sakuranetin in the chloroform and ethanol extracts of aerial parts of Rhus retinorrhoea and Rhus tripartita. Pharmaceutical biology. 2017 Dec; 55(1):1450-1457. doi: 10.1080/13880209.2017.1304428. [PMID: 28345446]
  • Shun Katsumata, Kazuho Hamana, Kiyotaka Horie, Hiroaki Toshima, Morifumi Hasegawa. Identification of Sternbin and Naringenin as Detoxified Metabolites from the Rice Flavanone Phytoalexin Sakuranetin by Pyricularia oryzae. Chemistry & biodiversity. 2017 Feb; 14(2):. doi: 10.1002/cbdv.201600240. [PMID: 27647729]
  • Yelin Kang, Bong-Gyu Kim, Sunghoon Kim, Youngshim Lee, Youngdae Yoon. Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain. Bioorganic & medicinal chemistry letters. 2017 02; 27(3):420-426. doi: 10.1016/j.bmcl.2016.12.051. [PMID: 28049590]
  • Satoshi Ogawa, Koji Miyamoto, Keiichirou Nemoto, Tatsuya Sawasaki, Hisakazu Yamane, Hideaki Nojiri, Kazunori Okada. OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Scientific reports. 2017 01; 7(?):40175. doi: 10.1038/srep40175. [PMID: 28067270]
  • Alfredo Aires, Carla Dias, Rosa Carvalho, Maria José Saavedra. Analysis of glycosylated flavonoids extracted from sweet-cherry stems, as antibacterial agents against pathogenic Escherichia coli isolates. Acta biochimica Polonica. 2017; 64(2):265-271. doi: 10.18388/abp.2016_1374. [PMID: 28411365]
  • Riadh Drira, Kazuichi Sakamoto. Sakuranetin Induces Melanogenesis in B16BL6 Melanoma Cells through Inhibition of ERK and PI3K/AKT Signaling Pathways. Phytotherapy research : PTR. 2016 Jun; 30(6):997-1002. doi: 10.1002/ptr.5606. [PMID: 27000529]
  • Sileshi G Wubshet, Yousof Tahtah, Allison M Heskes, Kenneth T Kongstad, Irini Pateraki, Björn Hamberger, Birger L Møller, Dan Staerk. Identification of PTP1B and α-Glucosidase Inhibitory Serrulatanes from Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α-Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR. Journal of natural products. 2016 Apr; 79(4):1063-72. doi: 10.1021/acs.jnatprod.5b01128. [PMID: 26960032]
  • Ilenia Siciliano, Greice Amaral Carneiro, Davide Spadaro, Angelo Garibaldi, Maria Lodovica Gullino. Jasmonic Acid, Abscisic Acid, and Salicylic Acid Are Involved in the Phytoalexin Responses of Rice to Fusarium fujikuroi, a High Gibberellin Producer Pathogen. Journal of agricultural and food chemistry. 2015 Sep; 63(37):8134-42. doi: 10.1021/acs.jafc.5b03018. [PMID: 26323788]
  • Laura Taguchi, Nathalia M Pinheiro, Clarice R Olivo, Alessandra Choqueta-Toledo, Simone S Grecco, Fernanda D T Q S Lopes, Luciana C Caperuto, Mílton A Martins, Iolanda F L C Tiberio, Niels O Câmara, João Henrique G Lago, Carla M Prado. A flavanone from Baccharis retusa (Asteraceae) prevents elastase-induced emphysema in mice by regulating NF-κB, oxidative stress and metalloproteinases. Respiratory research. 2015 Jun; 16(?):79. doi: 10.1186/s12931-015-0233-3. [PMID: 26122092]
  • L Hong, S-h Ying. Ethanol extract and isolated constituents from artemisia dracunculus inhibit esophageal squamous cell carcinoma and induce apoptotic cell death. Drug research. 2015 Feb; 65(2):101-6. doi: 10.1055/s-0034-1372647. [PMID: 25076224]
  • Joseph A Lutz, Manish Kulshrestha, Dennis T Rogers, John M Littleton. A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia. Fitoterapia. 2014 Oct; 98(?):11-21. doi: 10.1016/j.fitote.2014.06.012. [PMID: 24972350]
  • Morifumi Hasegawa, Ichiro Mitsuhara, Shigemi Seo, Kazunori Okada, Hisakazu Yamane, Takayoshi Iwai, Yuko Ohashi. Analysis on blast fungus-responsive characters of a flavonoid phytoalexin sakuranetin; accumulation in infected rice leaves, antifungal activity and detoxification by fungus. Molecules (Basel, Switzerland). 2014 Aug; 19(8):11404-18. doi: 10.3390/molecules190811404. [PMID: 25093982]
  • Hye Lin Park, Sang-Won Lee, Ki-Hong Jung, Tae-Ryong Hahn, Man-Ho Cho. Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. Phytochemistry. 2013 Dec; 96(?):57-71. doi: 10.1016/j.phytochem.2013.08.012. [PMID: 24035516]
  • Hisakazu Yamane. Biosynthesis of phytoalexins and regulatory mechanisms of it in rice. Bioscience, biotechnology, and biochemistry. 2013; 77(6):1141-8. doi: 10.1271/bbb.130109. [PMID: 23748776]
  • Takafumi Shimizu, Fengqiu Lin, Morifumi Hasegawa, Hideaki Nojiri, Hisakazu Yamane, Kazunori Okada. The potential bioproduction of the pharmaceutical agent sakuranetin, a flavonoid phytoalexin in rice. Bioengineered. 2012 Nov; 3(6):352-7. doi: 10.4161/bioe.21546. [PMID: 22895058]
  • Takafumi Shimizu, Fengqiu Lin, Morifumi Hasegawa, Kazunori Okada, Hideaki Nojiri, Hisakazu Yamane. Purification and identification of naringenin 7-O-methyltransferase, a key enzyme in biosynthesis of flavonoid phytoalexin sakuranetin in rice. The Journal of biological chemistry. 2012 Jun; 287(23):19315-25. doi: 10.1074/jbc.m112.351270. [PMID: 22493492]
  • Haiping Liu, Zhimao Chao, Xiaoyi Wu, Zhigao Tan, Chun Wang, Wen Sun. [Chemical constituents contained in Populus tomentosa]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2012 May; 37(10):1422-5. doi: . [PMID: 22860454]
  • Lai-Bin Zhang, Jun Ji, Chun Lei, He-Yao Wang, Qin-Shi Zhao, Ai-Jun Hou. Isoprenylated flavonoid and adipogenesis-promoting constituents of Dodonaea viscosa. Journal of natural products. 2012 Apr; 75(4):699-706. doi: 10.1021/np2009797. [PMID: 22512738]
  • Simone dos S Grecco, Juliana Q Reimão, André G Tempone, Patricia Sartorelli, Rodrigo L O R Cunha, Paulete Romoff, Marcelo J P Ferreira, Oriana A Fávero, João Henrique G Lago. In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae). Experimental parasitology. 2012 Feb; 130(2):141-5. doi: 10.1016/j.exppara.2011.11.002. [PMID: 22143090]
  • Hongbo Liu, Xianghua Li, Jinghua Xiao, Shiping Wang. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction. Plant methods. 2012 Jan; 8(1):2. doi: 10.1186/1746-4811-8-2. [PMID: 22243810]
  • Mansoor Ahmad, Noor Muhammad, Mehjabeen, Noor Jahan, Manzoor Ahmad, Obaidullah, Mahmood Qureshi, Syed Umar Jan. Spasmolytic effects of Scrophularia nodosa extract on isolated rabbit intestine. Pakistan journal of pharmaceutical sciences. 2012 Jan; 25(1):267-75. doi: . [PMID: 22186340]
  • Joshua N Fletcher, A Douglas Kinghorn, Jay P Slack, T Scott McCluskey, Amy Odley, Zhonghua Jia. In vitro evaluation of flavonoids from Eriodictyon californicum for antagonist activity against the bitterness receptor hTAS2R31. Journal of agricultural and food chemistry. 2011 Dec; 59(24):13117-21. doi: 10.1021/jf204359q. [PMID: 22059530]
  • Su-Ling Wong, Hsun-Shuo Chang, Guei-Jane Wang, Michael Y Chiang, Hung-Yi Huang, Chu-Huang Chen, Shiow-Chwen Tsai, Chu-Hung Lin, Ih-Sheng Chen. Secondary metabolites from the roots of Neolitsea daibuensis and their anti-inflammatory activity. Journal of natural products. 2011 Dec; 74(12):2489-96. doi: 10.1021/np100874f. [PMID: 22148193]
  • Cristiano Soleo Funari, Thais Gaban Passalacqua, Daniel Rinaldo, Assunta Napolitano, Michela Festa, Anna Capasso, Sonia Piacente, Cosimo Pizza, Maria Claudia Marx Young, Giselda Durigan, Dulce Helena Siqueira Silva. Interconverting flavanone glucosides and other phenolic compounds in Lippia salviaefolia Cham. ethanol extracts. Phytochemistry. 2011 Nov; 72(16):2052-61. doi: 10.1016/j.phytochem.2011.07.004. [PMID: 21871644]
  • Sasha W Eisenman, Alexander Poulev, Lena Struwe, Ilya Raskin, David M Ribnicky. Qualitative variation of anti-diabetic compounds in different tarragon (Artemisia dracunculus L.) cytotypes. Fitoterapia. 2011 Oct; 82(7):1062-74. doi: 10.1016/j.fitote.2011.07.003. [PMID: 21798321]
  • Shigemi Seo, Ichiro Mitsuhara, Jiao Feng, Takayoshi Iwai, Morifumi Hasegawa, Yuko Ohashi. Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant physiology. 2011 Jan; 155(1):502-14. doi: 10.1104/pp.110.162412. [PMID: 21075959]
  • Mitsuko Kishi-Kaboshi, Kazunori Okada, Leona Kurimoto, Shinya Murakami, Toshiaki Umezawa, Naoto Shibuya, Hisakazu Yamane, Akio Miyao, Hiroshi Takatsuji, Akira Takahashi, Hirohiko Hirochika. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. The Plant journal : for cell and molecular biology. 2010 Aug; 63(4):599-612. doi: 10.1111/j.1365-313x.2010.04264.x. [PMID: 20525005]
  • Hiromi Tohno, Chikafumi Horii, Takafumi Fuse, Akira Okonogi, Satoshi Yomoda. Evaluation of estrogen receptor Beta binding of pruni cortex and its constituents. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2010 07; 130(7):989-97. doi: 10.1248/yakushi.130.989. [PMID: 20606380]
  • Simon R Ellwood, Zhaohui Liu, Rob A Syme, Zhibing Lai, James K Hane, Felicity Keiper, Caroline S Moffat, Richard P Oliver, Timothy L Friesen. A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres. Genome biology. 2010; 11(11):R109. doi: 10.1186/gb-2010-11-11-r109. [PMID: 21067574]
  • J Molnár, H Engi, J Hohmann, P Molnár, J Deli, O Wesolowska, K Michalak, Q Wang. Reversal of multidrug resitance by natural substances from plants. Current topics in medicinal chemistry. 2010; 10(17):1757-68. doi: 10.2174/156802610792928103. [PMID: 20645919]
  • Cindy E Morris, Marc Bardin, Linda L Kinkel, Benoit Moury, Philippe C Nicot, David C Sands. Expanding the paradigms of plant pathogen life history and evolution of parasitic fitness beyond agricultural boundaries. PLoS pathogens. 2009 Dec; 5(12):e1000693. doi: 10.1371/journal.ppat.1000693. [PMID: 20041212]
  • Rocío González-Lamothe, Gabriel Mitchell, Mariza Gattuso, Moussa S Diarra, François Malouin, Kamal Bouarab. Plant antimicrobial agents and their effects on plant and human pathogens. International journal of molecular sciences. 2009 Jul; 10(8):3400-3419. doi: 10.3390/ijms10083400. [PMID: 20111686]
  • Marica Medić-Sarić, Vesna Rastija, Mirza Bojić, Zeljan Males. From functional food to medicinal product: systematic approach in analysis of polyphenolics from propolis and wine. Nutrition journal. 2009 Jul; 8(?):33. doi: 10.1186/1475-2891-8-33. [PMID: 19624827]
  • Randeep Rakwal, Ganesh Kumar Agrawal, Junko Shibato, Tetsuji Imanaka, Satoshi Fukutani, Shigeru Tamogami, Satoru Endo, Sarata Kumar Sahoo Sahoo, Yoshinori Masuo, Shinzo Kimura. Ultra low-dose radiation: stress responses and impacts using rice as a grass model. International journal of molecular sciences. 2009 Mar; 10(3):1215-1225. doi: 10.3390/ijms10031215. [PMID: 19399245]
  • A Teisseyre, N Duarte, M-J U Ferreira, K Michalak. Influence of the multidrug transporter inhibitors on the activity of Kv1.3 voltage-gated potassium channels. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2009 Mar; 60(1):69-76. doi: . [PMID: 19439809]
  • Bruno B Silva, Pedro L Rosalen, Jaime A Cury, Masaharu Ikegaki, Vinícius C Souza, Alessandro Esteves, Severino M Alencar. Chemical composition and botanical origin of red propolis, a new type of brazilian propolis. Evidence-based complementary and alternative medicine : eCAM. 2008 Sep; 5(3):313-6. doi: 10.1093/ecam/nem059. [PMID: 18830449]
  • Takeshi Saito, Daigo Abe, Keizo Sekiya. Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARgamma2. Biochemical and biophysical research communications. 2008 Aug; 372(4):835-9. doi: 10.1016/j.bbrc.2008.05.146. [PMID: 18522800]
  • Jih-Jung Chen, Chang-Syun Yang, Chien-Fang Peng, Ih-Sheng Chen, Chang-Ling Miaw. Dihydroagarofuranoid sesquiterpenes, a lignan derivative, a benzenoid, and antitubercular constituents from the stem of Microtropis japonica. Journal of natural products. 2008 Jun; 71(6):1016-21. doi: 10.1021/np800097t. [PMID: 18471021]
  • Adriana del V Pacciaroni, María de los Angeles Gette, Marcos Derita, Luis Ariza-Espinar, Roberto R Gil, Susana A Zacchino, Gloria L Silva. Antifungal activity of Heterothalamus alienus metabolites. Phytotherapy research : PTR. 2008 Apr; 22(4):524-8. doi: 10.1002/ptr.2380. [PMID: 18386258]
  • Yeonyee Oh, Nicole Donofrio, Huaqin Pan, Sean Coughlan, Douglas E Brown, Shaowu Meng, Thomas Mitchell, Ralph A Dean. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome biology. 2008; 9(5):R85. doi: 10.1186/gb-2008-9-5-r85. [PMID: 18492280]
  • Emi Sudo, Misao Itouga, Kayo Yoshida-Hatanaka, Yoshiro Ono, Hitoshi Sakakibara. Gene expression and sensitivity in response to copper stress in rice leaves. Journal of experimental botany. 2008; 59(12):3465-74. doi: 10.1093/jxb/ern196. [PMID: 18676621]
  • Masaki Mori, Chikako Tomita, Kazuhiko Sugimoto, Morifumi Hasegawa, Nagao Hayashi, Joseph G Dubouzet, Hirokazu Ochiai, Hitoshi Sekimoto, Hirohiko Hirochika, Shoshi Kikuchi. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant molecular biology. 2007 Apr; 63(6):847-60. doi: 10.1007/s11103-006-9130-y. [PMID: 17273822]
  • Yuko Ogawa, Hisae Oku, Emiko Iwaoka, Munekazu Iinuma, Kyoko Ishiguro. Allergy-preventive flavonoids from Xanthorrhoea hastilis. Chemical & pharmaceutical bulletin. 2007 Apr; 55(4):675-8. doi: 10.1248/cpb.55.675. [PMID: 17409571]
  • XinFeng Zhang, Tran Manh Hung, Phuong Thien Phuong, Tran Minh Ngoc, Byung-Sun Min, Kyung-Sik Song, Yeon Hee Seong, KiHwan Bae. Anti-inflammatory activity of flavonoids from Populus davidiana. Archives of pharmacal research. 2006 Dec; 29(12):1102-8. doi: 10.1007/bf02969299. [PMID: 17225458]
  • Young-Ho Jung, Randeep Rakwal, Ganesh Kumar Agrawal, Junko Shibato, Jung-A Kim, Mi Ok Lee, Pil-Kyu Choi, Seung-Hee Jung, So Hee Kim, Hee-Jong Koh, Masami Yonekura, Hitoshi Iwahashi, Nam-Soo Jwa. Differential expression of defense/stress-related marker proteins in leaves of a unique rice blast lesion mimic mutant (blm). Journal of proteome research. 2006 Oct; 5(10):2586-98. doi: 10.1021/pr060092c. [PMID: 17022630]
  • Isabel Rivero-Cruz, Laura Acevedo, José A Guerrero, Sergio Martínez, Robert Bye, Rogelio Pereda-Miranda, Scott Franzblau, Barbara N Timmermann, Rachel Mata. Antimycobacterial agents from selected Mexican medicinal plants. The Journal of pharmacy and pharmacology. 2005 Sep; 57(9):1117-26. doi: 10.1211/jpp.57.9.0007. [PMID: 16105233]
  • João Henrique G Lago, Clécio Sousa Ramos, Diego Campos C Casanova, Andreia de A Morandim, Debora Cristina B Bergamo, Alberto J Cavalheiro, Vanderlan da S Bolzani, Maysa Furlan, Elsie F Guimarães, Maria Claudia M Young, Massuo J Kato. Benzoic acid derivatives from Piper species and their fungitoxic activity against Cladosporium cladosporioides and C. sphaerospermum. Journal of natural products. 2004 Nov; 67(11):1783-8. doi: 10.1021/np030530j. [PMID: 15568762]
  • S Moro, A M van Rhee, L H Sanders, K A Jacobson. Flavonoid derivatives as adenosine receptor antagonists: a comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model. Journal of medicinal chemistry. 1998 Jan; 41(1):46-52. doi: 10.1021/jm970446z. [PMID: 9438021]
  • Y Karton, J L Jiang, X D Ji, N Melman, M E Olah, G L Stiles, K A Jacobson. Synthesis and biological activities of flavonoid derivatives as A3 adenosine receptor antagonists. Journal of medicinal chemistry. 1996 Jun; 39(12):2293-301. doi: 10.1021/jm950923i. [PMID: 8691424]
  • X D Ji, N Melman, K A Jacobson. Interactions of flavonoids and other phytochemicals with adenosine receptors. Journal of medicinal chemistry. 1996 Feb; 39(3):781-8. doi: 10.1021/jm950661k. [PMID: 8576921]
  • J Orjala, A D Wright, H Behrends, G Folkers, O Sticher, H Rüegger, T Rali. Cytotoxic and antibacterial dihydrochalcones from Piper aduncum. Journal of natural products. 1994 Jan; 57(1):18-26. doi: 10.1021/np50103a003. [PMID: 8158163]
  • J Metzner, H Bekemeier, M Paintz, E Schneidewind. [On the antimicrobial activity of propolis and propolis constituents (author's transl)]. Die Pharmazie. 1979; 34(2):97-102. doi: . [PMID: 108687]
  • . . . . doi: . [PMID: 12943774]
  • . . . . doi: . [PMID: 10803956]
  • . . . . doi: . [PMID: 12596847]
  • . . . . doi: . [PMID: 8651913]
  • . . . . doi: . [PMID: 15907692]