Secoisolariciresinol (BioDeep_00000000962)
Secondary id: BioDeep_00000398758, BioDeep_00000860995
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
代谢物信息卡片
化学式: C20H26O6 (362.17292960000003)
中文名称: 开环异落叶松树脂酚, 异豆香脂素
谱图信息:
最多检出来源 Homo sapiens(feces) 0.15%
分子结构信息
SMILES: COC1=C(C=CC(=C1)CC(CO)C(CC2=CC(=C(C=C2)O)OC)CO)O
InChI: InChI=1S/C20H26O6/c1-25-19-9-13(3-5-17(19)23)7-15(11-21)16(12-22)8-14-4-6-18(24)20(10-14)26-2/h3-6,9-10,15-16,21-24H,7-8,11-12H2,1-2H3/t15-,16-/m0/s1
描述信息
Secoisolariciresinol, also known as knotolan or secoisolariciresinol, (r*,s*)-isomer, is a member of the class of compounds known as dibenzylbutanediol lignans. Dibenzylbutanediol lignans are lignan compounds containing a 2,3-dibenzylbutane-1,4-diol moiety. Secoisolariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Secoisolariciresinol can be found in a number of food items such as grape, saskatoon berry, asparagus, and sweet potato, which makes secoisolariciresinol a potential biomarker for the consumption of these food products. Secoisolariciresinol can be found primarily in urine. Secoisolariciresinol is a lignan, a type of phenylpropanoid. It is present in the water extract of silver fir wood, where its content is more than 5 \\\\% .
(-)-secoisolariciresinol is an enantiomer of secoisolariciresinol having (-)-(2R,3R)-configuration. It has a role as an antidepressant, a plant metabolite and a phytoestrogen. It is an enantiomer of a (+)-secoisolariciresinol.
Secoisolariciresinol has been used in trials studying the prevention of Breast Cancer.
Secoisolariciresinol is a natural product found in Fitzroya cupressoides, Crossosoma bigelovii, and other organisms with data available.
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens
Secoisolariciresinol is a lignan, a type of phenylpropanoids.
Secoisolariciresinol is a lignan, a type of phenylpropanoids.
Secoisolariciresinol is a lignan, a type of phenylpropanoids.
同义名列表
34 个代谢物同义名
1,4-Butanediol, 2,3-bis((4-hydroxy-3-methoxyphenyl)methyl)-, (R-(R*,R*))-; (R-(R*,R*))-2,3-Bis((4-hydroxy-3-methoxyphenyl)methyl)butane-1,4-diol; 1,4-Butanediol, 2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]-, (2R,3R)-; 1,4-Butanediol,2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]-, (2R,3R)-; (2R,3R)-2,3-bis[(3-methoxy-4-oxidanyl-phenyl)methyl]butane-1,4-diol; (2R,3R)-2,3-bis[(4-hydroxy-3-methoxy-phenyl)methyl]butane-1,4-diol; (2R,3R)-2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol; (2R*,3R*)-2,3-Bis(4-hydroxy-3-methoxybenzyl)-1,4-butanediol; 2,3-Bis[(4-hydroxy-3-methoxyphenyl)methyl]-1,4-butanediol; 2,3-bis((4-hydroxy-3-methoxyphenyl)methyl)-1,4-butanediol; (2R,3R)-2,3-bis(4-hydroxy-3-methoxybenzyl)butane-1,4-diol; 2,3-Bis(4-hydroxy-3-methoxybenzyl)-1,4-butanediol, (-); Secoisolariciresinol, >=95.0\\% (HPLC); 1,4-BUTANEDIOL, 2,3-DIVANILLYL-, (-)-; secoisolariciresinol, (R*,S*)-isomer; (8R,8’R)-(-)-Secoisolariciresinol; (8R,8R)-(-)-SECOISOLARICIRESINOL; 2,3-Divanillyl-1,4-butanediol; (8R,8R)-Secoisolariciresinol; PUETUDUXMCLALY-HOTGVXAUSA-N; 8R,8R-secoisolariciresinol; (+/-)-Secoisolariciresinol; SECOISOLARICIRESINOL, (-)-; secoisolariciresinol-(-); (-)-Secoisolariciresinol; (-) secoisolariciresinol; RR-secoisolariciresinol; seco-Isolariciresinol; Secoisolariciresinol; UNII-M8QRJ7JEJH; M8QRJ7JEJH; knotolan; GO6; Flaxseeds extract
数据库引用编号
21 个数据库交叉引用编号
- ChEBI: CHEBI:65004
- KEGG: C18167
- PubChem: 65373
- PubChem: 586372
- HMDB: HMDB0013692
- Metlin: METLIN72069
- DrugBank: DB12179
- ChEMBL: CHEMBL368347
- Wikipedia: Secoisolariciresinol
- MeSH: secoisolariciresinol
- ChemIDplus: 0029388598
- MetaCyc: CPD-8909
- KNApSAcK: C00000604
- foodb: FDB021314
- chemspider: 58845
- CAS: 29388-59-8
- medchemexpress: HY-N6071
- PMhub: MS000008594
- PubChem: 96024383
- PDB-CCD: GO6
- RefMet: Secoisolariciresinol
分类词条
相关代谢途径
Reactome(0)
代谢反应
116 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- matairesinol biosynthesis:
(-)-secoisolariciresinol + NAD+ ⟶ (3R,4R)-3,4-bis(4-hydroxy-3-methoxybenzyl)tetrahydro-2-furanol + H+ + NADH
- justicidin B biosynthesis:
NAD+ + collinusin ⟶ H+ + NADH + justicidin B
- matairesinol biosynthesis:
(+)-lariciresinol + H+ + NADPH ⟶ (-)-secoisolariciresinol + NADP+
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(113)
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
(-)-secoisolariciresinol + NADP+ ⟶ (+)-lariciresinol + H+ + NADPH
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
(-)-secoisolariciresinol + NADP+ ⟶ (+)-lariciresinol + H+ + NADPH
- justicidin B biosynthesis:
NAD+ + collinusin ⟶ H+ + NADH + justicidin B
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
(-)-secoisolariciresinol + NAD+ ⟶ (3R,4R)-3,4-bis(4-hydroxy-3-methoxybenzyl)tetrahydro-2-furanol + H+ + NADH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
156 个相关的物种来源信息
- 3625 - Actinidia chinensis:
- 2773062 - Ageratina areolaris: 10.1021/NP0402120
- 35875 - Allium fistulosum: 10.1016/J.FOODCHEM.2009.03.002
- 4682 - Allium sativum:
- 171929 - Anacardium occidentale: 10.1079/BJN20051371
- 4615 - Ananas comosus:
- 4045 - Apium graveolens: 10.1016/J.FOODCHEM.2009.03.002
- 3818 - Arachis hypogaea:
- 56992 - Araucaria angustifolia: 10.1016/S0031-9422(00)89347-4
- 4216 - Arctium: 10.1271/BBB.60.736
- 4217 - Arctium lappa:
- 3704 - Armoracia rusticana: 10.1079/BJN2002794
- 155124 - Aspalathus linearis: 10.1248/BPB.29.1271
- 4686 - Asparagus officinalis:
- 4498 - Avena sativa: 10.1021/JF051488W
- 211974 - Berberis koreana: 10.1016/J.BMCL.2011.02.104
- 1226760 - Berchemia floribunda: 10.1248/CPB.37.3311
- 1226761 - Berchemia racemosa: 10.1248/CPB.37.3311
- 161934 - Beta vulgaris: 10.1079/BJN2002794
- 308264 - Brassica fruticulosa: 10.1021/JF034644C
- 3708 - Brassica napus:
- 3712 - Brassica oleracea:
- 3715 - Brassica oleracea var. botrytis:
- 3716 - Brassica oleracea var. capitata:
- 36774 - Brassica oleracea var. italica:
- 1216010 - Brassica oleracea var. sabauda: 10.1016/J.FOODCHEM.2009.03.002
- 3713 - Brassica oleracea var. viridis:
- 3711 - Brassica rapa: 10.1016/J.FOODCHEM.2009.03.002
- 1835378 - Brosimum acutifolium: 10.1055/S-2002-32906
- 4442 - Camellia sinensis: 10.1207/S15327914NC5402_5
- 1108177 - Campylotropis hirtella: 10.1021/JF800476R
- 13394 - Capparis: 10.1021/NP9006298
- 65558 - Capparis spinosa: 10.1079/BJN2002794
- 4072 - Capsicum annuum:
- 3649 - Carica papaya: 10.1016/J.FOODCHEM.2009.03.002
- 32201 - Carya illinoinensis: 10.1207/S15327914NC5402_5
- 21019 - Castanea:
- 136894 - Catunaregam spinosa: 10.1002/CHIN.200844208
- 3827 - Cicer arietinum: 10.1016/J.FOODCHEM.2009.03.002
- 13427 - Cichorium intybus:
- 258907 - Cinnamomum osmophloeum: 10.1055/S-0029-1240634
- 3654 - Citrullus lanatus:
- 558547 - Citrus deliciosa:
- 85571 - Citrus reticulata:
- 231645 - Clematis delavayi: 10.3390/MOLECULES14114433
- 13442 - Coffea: 10.1207/S15327914NC5402_5
- 13450 - Corylus: 10.1207/S15327914NC5402_5
- 92908 - Cousinia: 10.1271/BBB.60.736
- 105808 - Crossosoma bigelovii: 10.1021/NP8006342
- 3656 - Cucumis melo:
- 2034236 - Cucumis melo var. dudaim: 10.1207/S15327914NC5402_5
- 3659 - Cucumis sativus:
- 3661 - Cucurbita maxima:
- 3663 - Cucurbita pepo:
- 36609 - Cydonia: 10.1016/J.FOODCHEM.2009.03.002
- 2753873 - Daphne feddei: 10.1021/NP8004166
- 1477590 - Daphne genkwa: 10.1021/NP8004166
- 329675 - Daphne odora: 10.1021/NP8004166
- 4039 - Daucus carota:
- 35925 - Diospyros kaki: 10.1016/J.FOODCHEM.2009.03.002
- 1351 - Enterococcus faecalis: 10.1248/CPB.51.508
- 180536 - Eruca vesicaria: 10.1079/BJN2002794
- 3617 - Fagopyrum esculentum: 10.1021/JF051488W
- 3494 - Ficus carica: 10.1016/J.FOODCHEM.2009.03.002
- 103972 - Fitzroya cupressoides: 10.3891/ACTA.CHEM.SCAND.23-2021
- 205692 - Forsythia koreana: 10.1074/JBC.271.46.29473
- 3746 - Fragaria:
- 3311 - Ginkgo biloba: 10.3389/FPLS.2019.00983
- 48119 - Glehnia littoralis: 10.1248/CPB.50.73
- 3846 - Glycine:
- 4232 - Helianthus annuus: 10.1079/BJN20051371
- 459149 - Homalolepis cuneata: 10.1016/0031-9422(92)80374-N
- 9606 - Homo sapiens: -
- 4513 - Hordeum vulgare: 10.1021/JF051488W
- 4120 - Ipomoea batatas: 10.1016/J.FOODCHEM.2009.03.002
- 51240 - Juglans regia: 10.1207/S15327914NC5402_5
- 859317 - Justicia procumbens: 10.1021/NP0101651
- 4236 - Lactuca sativa:
- 123599 - Larix gmelinii: 10.1021/NP058022S
- 193048 - Larix gmelinii var. gmelinii: 10.1021/NP058022S
- 188928 - Larix gmelinii var. olgensis: 10.1021/NP058022S
- 54800 - Larix kaempferi: 10.1021/NP058022S
- 62751 - Larix sibirica: 10.1021/NP058022S
- 191219 - Linum album:
- 4006 - Linum usitatissimum:
- 4006 - Linum usitatissimum: 10.1007/S00425-011-1492-Y
- 151069 - Litchi chinensis: 10.1016/J.FOODCHEM.2009.03.002
- 3750 - Malus domestica:
- 283210 - Malus pumila:
- 29780 - Mangifera indica: 10.1016/J.FOODCHEM.2009.03.002
- 4640 - Musa:
- 65948 - Nasturtium officinale: 10.1016/J.FOODCHEM.2009.03.002
- 39350 - Ocimum basilicum: 10.1079/BJN2002794
- 4146 - Olea europaea:
- 39352 - Origanum vulgare: 10.1079/BJN2002794
- 3468 - Papaver: 10.1079/BJN20051371
- 78168 - Passiflora edulis: 10.1016/J.FOODCHEM.2009.03.002
- 4041 - Pastinaca sativa: 10.1016/J.FOODCHEM.2009.03.002
- 3435 - Persea americana: 10.1016/J.FOODCHEM.2009.03.002
- 4043 - Petroselinum crispum: 10.1016/J.FOODCHEM.2009.03.002
- 3885 - Phaseolus vulgaris:
- 42345 - Phoenix dactylifera:
- 746496 - Phyllanthus angkorensis: 10.1021/NP050001A
- 796896 - Phyllanthus lawii: 10.1021/NP050001A
- 301008 - Phyllanthus polyphyllus: 10.1021/NP050001A
- 55513 - Pistacia vera: 10.1207/S15327914NC5402_5
- 3888 - Pisum sativum: 10.1016/J.FOODCHEM.2009.03.002
- 33090 - Plants: -
- 36596 - Prunus armeniaca:
- 3758 - Prunus domestica:
- 3755 - Prunus dulcis: 10.1207/S15327914NC5402_5
- 3760 - Prunus persica:
- 323851 - Prunus persica var. nucipersica:
- 22663 - Punica granatum:
- 23211 - Pyrus communis:
- 109996 - Raphanus raphanistrum:
- 3726 - Raphanus sativus:
- 240228 - Raphanus sativus var. sativus:
- 3620 - Rheum: 10.1016/J.FOODCHEM.2009.03.002
- 78511 - Ribes nigrum:
- 175228 - Ribes rubrum: 10.1016/J.FOODCHEM.2009.03.002
- 135518 - Ribes uva-crispa: 10.1016/J.FOODCHEM.2009.03.002
- 1650721 - Rubia yunnanensis:
- 1650721 - Rubia yunnanensis: 10.1021/NP2002918
- 57936 - Rubus chamaemorus: 10.1016/J.FOODCHEM.2012.03.133
- 35973 - Santalum: 10.1248/CPB.53.641
- 35974 - Santalum album:
- 50506 - Sargentodoxa cuneata: 10.3987/COM-03-9777
- 238930 - Saussurea amara: 10.1248/CPB.53.1416
- 137893 - Saussurea medusa:
- 4550 - Secale cereale: 10.1021/JF051488W
- 91146 - Sedum sarmentosum:
- 4182 - Sesamum indicum: 10.1079/BJN20051371
- 4111 - Solanum melongena:
- 4113 - Solanum tuberosum:
- 3562 - Spinacia oleracea:
- 1090621 - Stereospermum colais: 10.1021/NP058036Y
- 1401051 - Stereospermum tetragonum: 10.1021/NP058036Y
- 25629 - Taxus baccata:
- 147273 - Taxus wallichiana: 10.1016/J.BMC.2003.09.010
- 147275 - Taxus wallichiana var. wallichiana:
- 3641 - Theobroma cacao: 10.1079/BJN2002794
- 3316 - Thuja plicata: 10.1074/JBC.274.2.618
- 285591 - Tinospora crispa: 10.1055/S-2006-957466
- 4565 - Triticum aestivum:
- 3359 - Tsuga heterophylla: 10.1016/S0031-9422(00)00126-6
- 3501 - Urtica dioica: 10.1055/S-2006-957756
- 180763 - Vaccinium myrtillus: 10.1016/J.FOODCHEM.2012.03.133
- 180772 - Vaccinium vitis-idaea: 10.1016/J.FOODCHEM.2012.03.133
- 3906 - Vicia faba: 10.1016/J.FOODCHEM.2009.03.002
- 157791 - Vigna radiata: 10.1016/J.FOODCHEM.2009.03.002
- 413484 - Vitex rotundifolia: 10.1021/NP000307B
- 413484 - Vitex rotundifolia: 10.1021/NP9006298
- 29760 - Vitis vinifera:
- 4577 - Zea mays:
- 4650 - Zingiber: 10.1079/BJN2002794
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jing Chen, Hui Chen, Chengcheng Feng, Qiong Chen, Xiang Fang, Yong Wang, Ning Zhang. Anti-inflammatory effect of lignans from flaxseed after fermentation by lactiplantibacillus plantarum SCB0151 in vitro.
World journal of microbiology & biotechnology.
2024 Mar; 40(4):134. doi:
10.1007/s11274-024-03945-9
. [PMID: 38480613] - Zhiqiang Li, Haonan Zhang, Wanting Li, Min Yao, Huimin Yu, Mingzhen He, Yulin Feng, Zhifeng Li. Potential antioxidative components from Syringa oblata Lindl stems revealed by affinity ultrafiltration with multiple drug targets.
Bioorganic chemistry.
2023 May; 138(?):106604. doi:
10.1016/j.bioorg.2023.106604
. [PMID: 37178648] - U K Hussain Zaki, C Fryganas, L Trijsburg, E J M Feskens, E Capuano. Influence of different processing method on lignan content of selected Malaysian plant-based foods.
Food chemistry.
2023 Mar; 404(Pt A):134607. doi:
10.1016/j.foodchem.2022.134607
. [PMID: 36272303] - Xiumei Han, Leonid Akhov, Paula Ashe, Courteney Lewis, Leah Deibert, L Irina Zaharia, Lily Forseille, Daoquan Xiang, Raju Datla, Matthew Nosworthy, Carol Henry, Jitao Zou, Bianyun Yu, Nii Patterson. Comprehensive compositional assessment of bioactive compounds in diverse pea accessions.
Food research international (Ottawa, Ont.).
2023 03; 165(?):112455. doi:
10.1016/j.foodres.2022.112455
. [PMID: 36869474] - Joanda P R E Silva, Laiane C O Pereira, Lucas S Abreu, Francisca S V Lins, Thalisson A de Souza, Renan F do Espírito-Santo, Renata P C Barros, Cristiane F Villarreal, José I M de Melo, Marcus T Scotti, Vicente C de O Costa, Lucas H Martorano, Fernando M Dos Santos, Raimundo Braz Filho, Marcelo S da Silva, Josean F Tavares. Targeted Isolation of Anti-inflammatory Lignans from Justicia aequilabris by Molecular Networking Approach.
Journal of natural products.
2022 09; 85(9):2184-2191. doi:
10.1021/acs.jnatprod.2c00478
. [PMID: 35998343] - Xixian Feng, Fanjia Peng, Zujun Yin, Junjuan Wang, Yuexin Zhang, Hong Zhang, Yapeng Fan, Nan Xu, Hui Huang, Kesong Ni, Xiaoyu Liu, Yuqian Lei, Tiantian Jiang, Jing Wang, Cun Rui, Chao Chen, Shuai Wang, Xiugui Chen, Xuke Lu, Delong Wang, Lixue Guo, Lanjie Zhao, Yujun Li, Yongbo Wang, Wuwei Ye. Secondary metabolite pathway of SDG (secoisolariciresinol) was observed to trigger ROS scavenging system in response to Ca2+ stress in cotton.
Genomics.
2022 07; 114(4):110398. doi:
10.1016/j.ygeno.2022.110398
. [PMID: 35675878] - Sameh S Elhady, Elsayed A Ibrahim, Marwa S Goda, Mohamed S Nafie, Hanan Samir, Reem M Diri, Abdulrahman M Alahdal, Ama Kyeraa Thomford, Alaa El Gindy, Ghada M Hadad, Jihan M Badr, Reda F A Abdelhameed. GC-MS/MS Quantification of EGFR Inhibitors, β-Sitosterol, Betulinic Acid, (+) Eriodictyol, (+) Epipinoresinol, and Secoisolariciresinol, in Crude Extract and Ethyl Acetate Fraction of Thonningia sanguinea.
Molecules (Basel, Switzerland).
2022 Jun; 27(13):. doi:
10.3390/molecules27134109
. [PMID: 35807354] - Leyla Polat Kose, İlhami Gulcin. Evaluation of the Antioxidant and Antiradical Properties of Some Phyto and Mammalian Lignans.
Molecules (Basel, Switzerland).
2021 Nov; 26(23):. doi:
10.3390/molecules26237099
. [PMID: 34885681] - Bushra Asad, Taimoor Khan, Faiza Zareen Gul, Muhammad Asad Ullah, Samantha Drouet, Sara Mikac, Laurine Garros, Manon Ferrier, Shankhamala Bose, Thibaut Munsch, Duangjai Tungmunnithum, Arnaud Lanoue, Nathalie Giglioli-Guivarc'h, Christophe Hano, Bilal Haider Abbasi. Scarlet Flax Linum grandiflorum (L.) In Vitro Cultures as a New Source of Antioxidant and Anti-Inflammatory Lignans.
Molecules (Basel, Switzerland).
2021 Jul; 26(15):. doi:
10.3390/molecules26154511
. [PMID: 34361665] - Xiaolei Yang, Yajia Guo, Timothy J Tse, Sarah K Purdy, Rana Mustafa, Jianheng Shen, Jane Alcorn, Martin J T Reaney. Oral Pharmacokinetics of Enriched Secoisolariciresinol Diglucoside and Its Polymer in Rats.
Journal of natural products.
2021 06; 84(6):1816-1822. doi:
10.1021/acs.jnatprod.1c00335
. [PMID: 34043363] - Ying Xiao, Kai Shao, Jingwen Zhou, Lian Wang, Xueqi Ma, Di Wu, Yingbo Yang, Junfeng Chen, Jingxian Feng, Shi Qiu, Zongyou Lv, Lei Zhang, Peng Zhang, Wansheng Chen. Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reductases.
Nature communications.
2021 05; 12(1):2828. doi:
10.1038/s41467-021-23095-y
. [PMID: 33990581] - Karolina Dobrowolska, Bożena Regulska-Ilow. The legitimacy of using dietary supplement diglycoside secoisolariciresinol (SDG) from flaxseed in cancer.
Roczniki Panstwowego Zakladu Higieny.
2021; 72(1):9-20. doi:
10.32394/rpzh.2021.0144
. [PMID: 33882661] - Cong-Cong Zhuang, Xu Feng, Hai-Yan Xu, Li Zhang, Ling Liu, Gong Zhang, Zhong Zheng, Chao-Mei Ma. Technical note: Quantification of lignans in the urine, milk, and plasma of flaxseed cake-fed dairy sheep.
Journal of dairy science.
2021 Jan; 104(1):391-396. doi:
10.3168/jds.2020-18470
. [PMID: 33189295] - Bouchentouf Salim, Ghalem Said, Nadia Kambouche, Soumaya Kress. Identification of Phenolic Compounds from Nettle as New Candidate Inhibitors of Main Enzymes Responsible on Type-II Diabetes.
Current drug discovery technologies.
2020; 17(2):197-202. doi:
10.2174/1570163815666180829094831
. [PMID: 30156162] - Chen Cheng, Xiao Yu, David Julian McClements, Qingde Huang, Hu Tang, Kun Yu, Xia Xiang, Peng Chen, Xintian Wang, Qianchun Deng. Effect of flaxseed polyphenols on physical stability and oxidative stability of flaxseed oil-in-water nanoemulsions.
Food chemistry.
2019 Dec; 301(?):125207. doi:
10.1016/j.foodchem.2019.125207
. [PMID: 31377621] - Lucija Markulin, Cyrielle Corbin, Sullivan Renouard, Samantha Drouet, Laurent Gutierrez, Ivan Mateljak, Daniel Auguin, Christophe Hano, Elisabeth Fuss, Eric Lainé. Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants.
Planta.
2019 Jun; 249(6):1695-1714. doi:
10.1007/s00425-019-03137-y
. [PMID: 30895445] - Yingling Wu, Dawei Xing, Guoliang Ma, Xinlong Dai, Liping Gao, Tao Xia. A variable loop involved in the substrate selectivity of pinoresinol/lariciresinol reductase from Camellia sinensis.
Phytochemistry.
2019 Jun; 162(?):1-9. doi:
10.1016/j.phytochem.2019.02.003
. [PMID: 30844490] - Lucija Markulin, Samantha Drouet, Cyrielle Corbin, Cédric Decourtil, Laurine Garros, Sullivan Renouard, Tatiana Lopez, Gaëlle Mongelard, Laurent Gutierrez, Daniel Auguin, Eric Lainé, Christophe Hano. The control exerted by ABA on lignan biosynthesis in flax (Linum usitatissimum L.) is modulated by a Ca2+ signal transduction involving the calmodulin-like LuCML15b.
Journal of plant physiology.
2019 May; 236(?):74-87. doi:
10.1016/j.jplph.2019.03.005
. [PMID: 30928768] - Ahmed M M Gabr, Hoda B Mabrok, Emam A Abdel-Rahim, Mohamed K El-Bahr, Iryna Smetanska. Determination of lignans, phenolic acids and antioxidant capacity in transformed hairy root culture of Linum usitatissimum.
Natural product research.
2018 Aug; 32(15):1867-1871. doi:
10.1080/14786419.2017.1405405
. [PMID: 29156979] - Cyrielle Corbin, Samantha Drouet, Lucija Markulin, Daniel Auguin, Éric Lainé, Laurence B Davin, John R Cort, Norman G Lewis, Christophe Hano. A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation.
Plant molecular biology.
2018 May; 97(1-2):73-101. doi:
10.1007/s11103-018-0725-x
. [PMID: 29713868] - Pilar Gaya, Abel Sánchez-Jiménez, Ángela Peirotén, Margarita Medina, José Maria Landete. Incomplete metabolism of phytoestrogens by gut microbiota from children under the age of three.
International journal of food sciences and nutrition.
2018 May; 69(3):334-343. doi:
10.1080/09637486.2017.1353955
. [PMID: 28728453] - Yunyun Di, Jennifer Jones, Kerry Mansell, Susan Whiting, Sharyle Fowler, Lilian Thorpe, Jennifer Billinsky, Navita Viveky, Pui Chi Cheng, Ahmed Almousa, Thomas Hadjistavropoulos, Jane Alcorn. Influence of Flaxseed Lignan Supplementation to Older Adults on Biochemical and Functional Outcome Measures of Inflammation.
Journal of the American College of Nutrition.
2017 Nov; 36(8):646-653. doi:
10.1080/07315724.2017.1342213
. [PMID: 28922068] - Xiao Feng, Guozhu Su, Yunyun Ye, Ruifei Zhang, Xinyao Yang, Bingzhao Du, Bing Peng, Pengfei Tu, Xingyun Chai. Alashinols F and G, two lignans from stem bark of Syringa pinnatifolia.
Natural product research.
2017 Jul; 31(13):1555-1560. doi:
10.1080/14786419.2017.1283500
. [PMID: 28152612] - S Mattioli, S Ruggeri, B Sebastiani, G Brecchia, A Dal Bosco, A Cartoni Mancinelli, C Castellini. Performance and egg quality of laying hens fed flaxseed: highlights on n-3 fatty acids, cholesterol, lignans and isoflavones.
Animal : an international journal of animal bioscience.
2017 Apr; 11(4):705-712. doi:
10.1017/s175173111600207x
. [PMID: 27819218] - Bourlaye Fofana, Kaushik Ghose, Jason McCallum, Frank M You, Sylvie Cloutier. UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax.
BMC plant biology.
2017 02; 17(1):35. doi:
10.1186/s12870-017-0982-x
. [PMID: 28152982] - Saimi Tokunaga, Bruce R Woodin, John J Stegeman. Plant lignan secoisolariciresinol suppresses pericardial edema caused by dioxin-like compounds in developing zebrafish: Implications for suppression of morphological abnormalities.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2016 Oct; 96(?):160-6. doi:
10.1016/j.fct.2016.07.012
. [PMID: 27427306] - Andrea Quartieri, Rocío García-Villalba, Alberto Amaretti, Stefano Raimondi, Alan Leonardi, Maddalena Rossi, Francisco Tomàs-Barberàn. Detection of novel metabolites of flaxseed lignans in vitro and in vivo.
Molecular nutrition & food research.
2016 07; 60(7):1590-601. doi:
10.1002/mnfr.201500773
. [PMID: 26873880] - Yue-ping Jiang, Yu-feng Liu, Qing-lan Guo, Cheng-bo Xu, Sheng Lin, Cheng-gen Zhu, Yong-chun Yang, Jian-gong Shi. [Lignanoids from an aqueous extract of the roots of Codonopsis pilosula].
Yao xue xue bao = Acta pharmaceutica Sinica.
2016 04; 51(4):616-25. doi:
. [PMID: 29860746]
- J A Otero, V Miguel, L González-Lobato, R García-Villalba, J C Espín, J G Prieto, G Merino, A I Álvarez. Effect of bovine ABCG2 polymorphism Y581S SNP on secretion into milk of enterolactone, riboflavin and uric acid.
Animal : an international journal of animal bioscience.
2016 Feb; 10(2):238-47. doi:
10.1017/s1751731115002141
. [PMID: 26510964] - Mikhail Y Maslov, Tatiana M Plotnikova, Anna M Anishchenko, Oleg I Aliev, Nikolay E Nifantiev, Mark B Plotnikov. Hemorheological effects of secoisolariciresinol in ovariectomized rats.
Biorheology.
2016 01; 53(1):23-31. doi:
10.3233/bir-15066
. [PMID: 26756280] - Pei Hu, Qi-Yong Mei, Li Ma, Wu-Geng Cui, Wen-Hua Zhou, Dong-Sheng Zhou, Qing Zhao, Dong-Ying Xu, Xin Zhao, Qin Lu, Zhen-Yu Hu. Secoisolariciresinol diglycoside, a flaxseed lignan, exerts analgesic effects in a mouse model of type 1 diabetes: Engagement of antioxidant mechanism.
European journal of pharmacology.
2015 Nov; 767(?):183-92. doi:
10.1016/j.ejphar.2015.10.024
. [PMID: 26494631] - Doralyn S Dalisay, Kye Won Kim, Choonseok Lee, Hong Yang, Oliver Rübel, Benjamin P Bowen, Laurence B Davin, Norman G Lewis. Dirigent Protein-Mediated Lignan and Cyanogenic Glucoside Formation in Flax Seed: Integrated Omics and MALDI Mass Spectrometry Imaging.
Journal of natural products.
2015 Jun; 78(6):1231-42. doi:
10.1021/acs.jnatprod.5b00023
. [PMID: 25981198] - Jatinder Kaur Mukker, Ravi Shankar Prasad Singh, Alister D Muir, Ed S Krol, Jane Alcorn. Comparative pharmacokinetics of purified flaxseed and associated mammalian lignans in male Wistar rats.
The British journal of nutrition.
2015 Mar; 113(5):749-57. doi:
10.1017/s0007114514004371
. [PMID: 25716060] - Kaushik Ghose, Jason McCallum, Marva Sweeney-Nixon, Bourlaye Fofana. Histidine 352 (His352) and tryptophan 355 (Trp355) are essential for flax UGT74S1 glucosylation activity toward secoisolariciresinol.
PloS one.
2015; 10(2):e116248. doi:
10.1371/journal.pone.0116248
. [PMID: 25714779] - Sullivan Renouard, Marie-Aude Tribalatc, Frederic Lamblin, Gaëlle Mongelard, Ophélie Fliniaux, Cyrielle Corbin, Djurdjica Marosevic, Serge Pilard, Hervé Demailly, Laurent Gutierrez, Christophe Hano, François Mesnard, Eric Lainé. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation.
Journal of plant physiology.
2014 Sep; 171(15):1372-7. doi:
10.1016/j.jplph.2014.06.005
. [PMID: 25046758] - Yufeng Qin, Guizhen Du, Minjian Chen, Weiyue Hu, Chuncheng Lu, Wei Wu, Bo Hang, Zuomin Zhou, Xinru Wang, Yankai Xia. Combined effects of urinary phytoestrogens metabolites and polymorphisms in metabolic enzyme gene on idiopathic male infertility.
Archives of toxicology.
2014 Aug; 88(8):1527-36. doi:
10.1007/s00204-014-1205-y
. [PMID: 24488272] - T Kulik, M Buśko, A Pszczółkowska, J Perkowski, A Okorski. Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum.
Letters in applied microbiology.
2014 Jul; 59(1):99-107. doi:
10.1111/lam.12250
. [PMID: 24635164] - Eliana Spilioti, Bjarne Holmbom, Athanasios G Papavassiliou, Paraskevi Moutsatsou. Lignans 7-hydroxymatairesinol and 7-hydroxymatairesinol 2 exhibit anti-inflammatory activity in human aortic endothelial cells.
Molecular nutrition & food research.
2014 Apr; 58(4):749-59. doi:
10.1002/mnfr.201300318
. [PMID: 24311533] - Kaushik Ghose, Kumarakurubaran Selvaraj, Jason McCallum, Chris W Kirby, Marva Sweeney-Nixon, Sylvie J Cloutier, Michael Deyholos, Raju Datla, Bourlaye Fofana. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG).
BMC plant biology.
2014 Mar; 14(?):82. doi:
10.1186/1471-2229-14-82
. [PMID: 24678929] - Kenneth D R Setchell, Nadine M Brown, Linda Zimmer-Nechemias, Brian Wolfe, Pinky Jha, James E Heubi. Metabolism of secoisolariciresinol-diglycoside the dietary precursor to the intestinally derived lignan enterolactone in humans.
Food & function.
2014 Mar; 5(3):491-501. doi:
10.1039/c3fo60402k
. [PMID: 24429845] - Yankai Xia, Minjian Chen, Pengfei Zhu, Chuncheng Lu, Guangbo Fu, Xiaojin Zhou, Daozhen Chen, Honghua Wang, Bo Hang, Shoulin Wang, Zuomin Zhou, Jiahao Sha, Xinru Wang. Urinary phytoestrogen levels related to idiopathic male infertility in Chinese men.
Environment international.
2013 Sep; 59(?):161-7. doi:
10.1016/j.envint.2013.06.009
. [PMID: 23820060] - Julie Boberg, Karen Riiber Mandrup, Pernille Rosenskjold Jacobsen, Louise Krag Isling, Niels Hadrup, Line Berthelsen, Anders Elleby, Maria Kiersgaard, Anne Marie Vinggaard, Ulla Hass, Christine Nellemann. Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens.
Reproductive toxicology (Elmsford, N.Y.).
2013 Sep; 40(?):41-51. doi:
10.1016/j.reprotox.2013.05.014
. [PMID: 23770295] - Laila Meija, Paivi Söderholm, Adile Samaletdin, Gita Ignace, Inese Siksna, Rafaels Joffe, Aivars Lejnieks, Vilnis Lietuvietis, Indrikis Krams, Herman Adlercreutz. Dietary intake and major sources of plant lignans in Latvian men and women.
International journal of food sciences and nutrition.
2013 Aug; 64(5):535-43. doi:
10.3109/09637486.2013.765835
. [PMID: 23373826] - Christophe Hano, Sullivan Renouard, Roland Molinié, Cyrielle Corbin, Esmatullah Barakzoy, Joël Doussot, Frédéric Lamblin, Eric Lainé. Flaxseed (Linum usitatissimum L.) extract as well as (+)-secoisolariciresinol diglucoside and its mammalian derivatives are potent inhibitors of α-amylase activity.
Bioorganic & medicinal chemistry letters.
2013 May; 23(10):3007-12. doi:
10.1016/j.bmcl.2013.03.029
. [PMID: 23583514] - Cyrielle Corbin, Sullivan Renouard, Tatiana Lopez, Frédéric Lamblin, Eric Lainé, Christophe Hano. Identification and characterization of cis-acting elements involved in the regulation of ABA- and/or GA-mediated LuPLR1 gene expression and lignan biosynthesis in flax (Linum usitatissimum L.) cell cultures.
Journal of plant physiology.
2013 Mar; 170(5):516-22. doi:
10.1016/j.jplph.2012.11.003
. [PMID: 23273926] - Xing Ma, Rui Wang, Xin Zhao, Chong Zhang, Jiao Sun, Jianxin Li, Lu Zhang, Tuo Shao, Lina Ruan, Liang Chen, Ying Xu, Jianchun Pan. Antidepressant-like effect of flaxseed secoisolariciresinol diglycoside in ovariectomized mice subjected to unpredictable chronic stress.
Metabolic brain disease.
2013 Mar; 28(1):77-84. doi:
10.1007/s11011-012-9371-1
. [PMID: 23263992] - M-X Li, H-Y Zhu, D-H Yang, X-Q Ma, C-Z Wang, S-Q Cai, G-R Liu, B-S Ku, S-L Liu. Production of secoisolariciresinol from defatted flaxseed by bacterial biotransformation.
Journal of applied microbiology.
2012 Dec; 113(6):1352-61. doi:
10.1111/j.1365-2672.2012.05436.x
. [PMID: 22924993] - Alexandrine During, Céline Debouche, Thomas Raas, Yvan Larondelle. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells.
The Journal of nutrition.
2012 Oct; 142(10):1798-805. doi:
10.3945/jn.112.162453
. [PMID: 22955517] - Bo Liu, Mingtao Liu, Maoluo Gan, Feng Zhao, Xiuli Wu, Yang Yu, Zhenggang Yue, Sheng Lin, Sujuan Wang, Chenggen Zhu, Jiangong Shi. [Chemical constituents from roots of Machilus yaoshansis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2012 May; 37(9):1227-31. doi:
"
. [PMID: 22803365] - Sibylle Abarzua, Tatsuo Serikawa, Marlen Szewczyk, Dagmar-Ulrike Richter, Birgit Piechulla, Volker Briese. Antiproliferative activity of lignans against the breast carcinoma cell lines MCF 7 and BT 20.
Archives of gynecology and obstetrics.
2012 Apr; 285(4):1145-51. doi:
10.1007/s00404-011-2120-6
. [PMID: 22037685] - Shiori Tominaga, Kosuke Nishi, Sogo Nishimoto, Koichi Akiyama, Satoshi Yamauchi, Takuya Sugahara. (-)-Secoisolariciresinol attenuates high-fat diet-induced obesity in C57BL/6 mice.
Food & function.
2012 Jan; 3(1):76-82. doi:
10.1039/c1fo10166h
. [PMID: 22030618] - Nesma A Z Sarhan, Ezzeldein S El-Denshary, Nabila S Hassan, Ferial M Abu-Salem, Mosaad A Abdel-Wahhab. Isoflavones-Enriched Soy Protein Prevents CCL(4)-Induced Hepatotoxicity in Rats.
ISRN pharmacology.
2012; 2012(?):347930. doi:
10.5402/2012/347930
. [PMID: 22530140] - Zahra A Amin, Mehmet Bilgen, Mohammed A Alshawsh, Hapipah M Ali, A Hamid A Hadi, Mahmood A Abdulla. Protective Role of Phyllanthus niruri Extract against Thioacetamide-Induced Liver Cirrhosis in Rat Model.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):241583. doi:
10.1155/2012/241583
. [PMID: 22649471] - Mengyue Wang, Ke Li, Yuxiao Nie, Yingfang Wei, Xiaobo Li. Antirheumatoid Arthritis Activities and Chemical Compositions of Phenolic Compounds-Rich Fraction from Urtica atrichocaulis, an Endemic Plant to China.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):818230. doi:
10.1155/2012/818230
. [PMID: 21904564] - Sullivan Renouard, Cyrielle Corbin, Tatiana Lopez, Josiane Montguillon, Laurent Gutierrez, Frédéric Lamblin, Eric Lainé, Christophe Hano. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds.
Planta.
2012 Jan; 235(1):85-98. doi:
10.1007/s00425-011-1492-y
. [PMID: 21837520] - Lucia Roncaglia, Alberto Amaretti, Stefano Raimondi, Alan Leonardi, Maddalena Rossi. Role of bifidobacteria in the activation of the lignan secoisolariciresinol diglucoside.
Applied microbiology and biotechnology.
2011 Oct; 92(1):159-68. doi:
10.1007/s00253-011-3338-8
. [PMID: 21614502] - Sandra M Sacco, Lilian U Thompson, Bernhard Ganss, Wendy E Ward. Accessibility of ³H-secoisolariciresinol diglycoside lignan metabolites in skeletal tissue of ovariectomized rats.
Journal of medicinal food.
2011 Oct; 14(10):1208-14. doi:
10.1089/jmf.2010.0248
. [PMID: 21663478] - Agnieszka Kosińska, Kamila Penkacik, Wiesław Wiczkowski, Ryszard Amarowicz. Presence of caffeic acid in flaxseed lignan macromolecule.
Plant foods for human nutrition (Dordrecht, Netherlands).
2011 Sep; 66(3):270-4. doi:
10.1007/s11130-011-0245-1
. [PMID: 21766213] - Christian Freise, Martin Ruehl, Ulrike Erben, Ulf Neumann, Daniel Seehofer, Ki Young Kim, Wolfram Trowitzsch-Kienast, Thorsten Stroh, Martin Zeitz, Rajan Somasundaram. A hepatoprotective Lindera obtusiloba extract suppresses growth and attenuates insulin like growth factor-1 receptor signaling and NF-kappaB activity in human liver cancer cell lines.
BMC complementary and alternative medicine.
2011 May; 11(?):39. doi:
10.1186/1472-6882-11-39
. [PMID: 21569410] - Yeong Rhee, Ardith Brunt. Flaxseed supplementation improved insulin resistance in obese glucose intolerant people: a randomized crossover design.
Nutrition journal.
2011 May; 10(?):44. doi:
10.1186/1475-2891-10-44
. [PMID: 21554710] - Nikolai Scherbak, Anneli Ala-Häivälä, Mikael Brosché, Nathalie Böwer, Hilja Strid, John R Gittins, Elin Grahn, Leif A Eriksson, Åke Strid. The pea SAD short-chain dehydrogenase/reductase: quinone reduction, tissue distribution, and heterologous expression.
Plant physiology.
2011 Apr; 155(4):1839-50. doi:
10.1104/pp.111.173336
. [PMID: 21343423] - Sung-Hee Cho, Jeong-Hee Jang, Ji Young Yoon, Chi-Dong Han, Youngsun Choi, Sang-Won Choi. Effects of a safflower tea supplement on antioxidative status and bone markers in postmenopausal women.
Nutrition research and practice.
2011 Feb; 5(1):20-7. doi:
10.4162/nrp.2011.5.1.20
. [PMID: 21487492] - Magdalena Zuk, Anna Kulma, Lucyna Dymińska, Katarzyna Szołtysek, Anna Prescha, Jerzy Hanuza, Jan Szopa. Flavonoid engineering of flax potentiate its biotechnological application.
BMC biotechnology.
2011 Jan; 11(?):10. doi:
10.1186/1472-6750-11-10
. [PMID: 21276227] - Jacques Attoumbré, Christophe Bienaimé, Frédéric Dubois, Marc-André Fliniaux, Brigitte Chabbert, Sylvie Baltora-Rosset. Development of antibodies against secoisolariciresinol--application to the immunolocalization of lignans in Linum usitatissimum seeds.
Phytochemistry.
2010 Dec; 71(17-18):1979-87. doi:
10.1016/j.phytochem.2010.09.002
. [PMID: 20888604] - Liya Li, Navindra P Seeram. Maple syrup phytochemicals include lignans, coumarins, a stilbene, and other previously unreported antioxidant phenolic compounds.
Journal of agricultural and food chemistry.
2010 Nov; 58(22):11673-9. doi:
10.1021/jf1033398
. [PMID: 21033720] - Herman Adlercreutz. Can rye intake decrease risk of human breast cancer?.
Food & nutrition research.
2010 Nov; 54(?):. doi:
10.3402/fnr.v54i0.5231
. [PMID: 21311613] - Riitta Luoto, Elham Kharazmi, Niina M Saarinen, Annika I Smeds, Sari Mäkelä, Mahdi Fallah, Jani Raitanen, Leena Hilakivi-Clarke. Effect of dietary intervention on serum lignan levels in pregnant women - a controlled trial.
Reproductive health.
2010 Oct; 7(?):26. doi:
10.1186/1742-4755-7-26
. [PMID: 20932282] - Carol J Fabian, Bruce F Kimler, Carola M Zalles, Jennifer R Klemp, Brian K Petroff, Qamar J Khan, Priyanka Sharma, Kenneth D R Setchell, Xueheng Zhao, Teresa A Phillips, Trina Metheny, Jennifer R Hughes, Hung-Wen Yeh, Karen A Johnson. Reduction in Ki-67 in benign breast tissue of high-risk women with the lignan secoisolariciresinol diglycoside.
Cancer prevention research (Philadelphia, Pa.).
2010 Oct; 3(10):1342-50. doi:
10.1158/1940-6207.capr-10-0022
. [PMID: 20724470] - Niina M Saarinen, Lilian U Thompson. Prolonged administration of secoisolariciresinol diglycoside increases lignan excretion and alters lignan tissue distribution in adult male and female rats.
The British journal of nutrition.
2010 Sep; 104(6):833-41. doi:
10.1017/s0007114510001194
. [PMID: 20388250] - Abdelali Lehraiki, Jacques Attoumbré, Christophe Bienaimé, Fabrice Matifat, Lamine Bensaddek, Edmundo Nava-Saucedo, Marc-André Fliniaux, Halima Ouadid-Ahidouch, Sylvie Baltora-Rosset. Extraction of lignans from flaxseed and evaluation of their biological effects on breast cancer MCF-7 and MDA-MB-231 cell lines.
Journal of medicinal food.
2010 Aug; 13(4):834-41. doi:
10.1089/jmf.2009.0172
. [PMID: 20553186] - Kris Morreel, Oana Dima, Hoon Kim, Fachuang Lu, Claudiu Niculaes, Ruben Vanholme, Rebecca Dauwe, Geert Goeminne, Dirk Inzé, Eric Messens, John Ralph, Wout Boerjan. Mass spectrometry-based sequencing of lignin oligomers.
Plant physiology.
2010 Aug; 153(4):1464-78. doi:
10.1104/pp.110.156489
. [PMID: 20554692] - Katerina A Marinou, Katerina Georgopoulou, George Agrogiannis, Theodore Karatzas, Dimitrios Iliopoulos, Apostolos Papalois, Achilles Chatziioannou, Prokopios Magiatis, Maria Halabalaki, Nektaria Tsantila, Leandros A Skaltsounis, Efstratios Patsouris, Ismene A Dontas. Differential effect of Pistacia vera extracts on experimental atherosclerosis in the rabbit animal model: an experimental study.
Lipids in health and disease.
2010 Jul; 9(?):73. doi:
10.1186/1476-511x-9-73
. [PMID: 20633299] - Maria H Traka, Caroline A Spinks, Joanne F Doleman, Antonietta Melchini, Richard Y Ball, Robert D Mills, Richard F Mithen. The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer.
Molecular cancer.
2010 Jul; 9(?):189. doi:
10.1186/1476-4598-9-189
. [PMID: 20626841] - Anni Woting, Thomas Clavel, Gunnar Loh, Michael Blaut. Bacterial transformation of dietary lignans in gnotobiotic rats.
FEMS microbiology ecology.
2010 Jun; 72(3):507-14. doi:
10.1111/j.1574-6941.2010.00863.x
. [PMID: 20370826] - Cheng-Zhi Wang, Xiao-Qing Ma, Dong-Hui Yang, Zhi-Rong Guo, Gui-Rong Liu, Ge-Xin Zhao, Jie Tang, Ya-Nan Zhang, Miao Ma, Shao-Qing Cai, Bao-Shan Ku, Shu-Lin Liu. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria.
BMC microbiology.
2010 Apr; 10(?):115. doi:
10.1186/1471-2180-10-115
. [PMID: 20398397] - Ciska Wyns, Selin Bolca, Denis De Keukeleire, Arne Heyerick. Development of a high-throughput LC/APCI-MS method for the determination of thirteen phytoestrogens including gut microbial metabolites in human urine and serum.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2010 Apr; 878(13-14):949-56. doi:
10.1016/j.jchromb.2010.02.022
. [PMID: 20299290] - Jennifer L Adolphe, Susan J Whiting, Bernhard H J Juurlink, Lilian U Thorpe, Jane Alcorn. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside.
The British journal of nutrition.
2010 Apr; 103(7):929-38. doi:
10.1017/s0007114509992753
. [PMID: 20003621] - Tarja Nurmi, Jaakko Mursu, José L Peñalvo, Henrik E Poulsen, Sari Voutilainen. Dietary intake and urinary excretion of lignans in Finnish men.
The British journal of nutrition.
2010 Mar; 103(5):677-85. doi:
10.1017/s0007114509992261
. [PMID: 19811696] - Ki Yong Lee, Soon-Han Kim, Eun Ju Jeong, Jung Hyun Park, Seung Hyun Kim, Young Choong Kim, Sang Hyun Sung. New secoisolariciresinol derivatives from Lindera obtusiloba stems and their neuroprotective activities.
Planta medica.
2010 Feb; 76(3):294-7. doi:
10.1055/s-0029-1186053
. [PMID: 19708005] - Niina M Saarinen, Juhani Tuominen, Liisa Pylkkänen, Risto Santti. Assessment of information to substantiate a health claim on the prevention of prostate cancer by lignans.
Nutrients.
2010 02; 2(2):99-115. doi:
10.3390/nu2020099
. [PMID: 22254011] - N Pellegrini, S Valtueña, D Ardigò, F Brighenti, L Franzini, D Del Rio, F Scazzina, P M Piatti, I Zavaroni. Intake of the plant lignans matairesinol, secoisolariciresinol, pinoresinol, and lariciresinol in relation to vascular inflammation and endothelial dysfunction in middle age-elderly men and post-menopausal women living in Northern Italy.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2010 Jan; 20(1):64-71. doi:
10.1016/j.numecd.2009.02.003
. [PMID: 19361969] - Jong-Sik Jin, Masao Hattori. Human intestinal bacterium, strain END-2 is responsible for demethylation as well as lactonization during plant lignan metabolism.
Biological & pharmaceutical bulletin.
2010; 33(8):1443-7. doi:
10.1248/bpb.33.1443
. [PMID: 20686246] - Hyun Jung Kim, Eiichiro Ono, Kinuyo Morimoto, Tohru Yamagaki, Atsushi Okazawa, Akio Kobayashi, Honoo Satake. Metabolic engineering of lignan biosynthesis in Forsythia cell culture.
Plant & cell physiology.
2009 Dec; 50(12):2200-9. doi:
10.1093/pcp/pcp156
. [PMID: 19887541] - Kanti Bhooshan Pandey, Syed Ibrahim Rizvi. Plant polyphenols as dietary antioxidants in human health and disease.
Oxidative medicine and cellular longevity.
2009 Nov; 2(5):270-8. doi:
10.4161/oxim.2.5.9498
. [PMID: 20716914] - M A Felmlee, G Woo, E Simko, E S Krol, A D Muir, J Alcorn. Effects of the flaxseed lignans secoisolariciresinol diglucoside and its aglycone on serum and hepatic lipids in hyperlipidaemic rats.
The British journal of nutrition.
2009 Aug; 102(3):361-9. doi:
10.1017/s0007114508207488
. [PMID: 19216812] - Yuya Kawaguchi, Satoshi Yamauchi, Kenta Masuda, Hisashi Nishiwaki, Koichi Akiyama, Masafumi Maruyama, Takuya Sugahara, Taro Kishida, Yojiro Koba. Antimicrobial activity of stereoisomers of butane-type lignans.
Bioscience, biotechnology, and biochemistry.
2009 Aug; 73(8):1806-10. doi:
10.1271/bbb.90167
. [PMID: 19661689] - Qin-Long Zhu, Tie-Ying Guo, Shun-Zhao Sui, Guang-De Liu, Xing-Hua Lei, Li-Li Luo, Ming-Yang Li. Molecular cloning and characterization of a novel isoflavone reductase-like gene (FcIRL) from high flavonoids-producing callus of Fagopyrum cymosum.
Yao xue xue bao = Acta pharmaceutica Sinica.
2009 Jul; 44(7):809-19. doi:
. [PMID: 19806925]
- K Struijs, J-P Vincken, H Gruppen. Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol.
Journal of applied microbiology.
2009 Jul; 107(1):308-17. doi:
10.1111/j.1365-2672.2009.04209.x
. [PMID: 19302311] - Li Xu, Zhi-Shan Ding, Yun-Kai Zhou, Xue-Fen Tao. [Cloning and sequence analysis of full-length cDNA of secoisolariciresinol dehydrogenase of Dysosma versipellis].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2009 Jun; 32(6):852-6. doi:
"
. [PMID: 19764322] - Paul Klausmeyer, Qin Zhou, Dominic A Scudiero, Badarch Uranchimeg, Giovanni Melillo, John H Cardellina, Robert H Shoemaker, Ching-Jer Chang, Thomas G McCloud. Cytotoxic and HIF-1alpha inhibitory compounds from Crossosoma bigelovii.
Journal of natural products.
2009 May; 72(5):805-12. doi:
10.1021/np8006342
. [PMID: 19405508] - L S Velentzis, M M Cantwell, C Cardwell, M R Keshtgar, A J Leathem, J V Woodside. Lignans and breast cancer risk in pre- and post-menopausal women: meta-analyses of observational studies.
British journal of cancer.
2009 May; 100(9):1492-8. doi:
10.1038/sj.bjc.6605003
. [PMID: 19337250] - Shiori Tominaga, Takuya Sugahara, Sogo Nishimoto, Manami Yamawaki, Yuki Nakashima, Taro Kishida, Koichi Akiyama, Masafumi Maruyama, Satoshi Yamauchi. The Effect of Secoisolariciresinol on 3T3-L1 Adipocytes and the Relationship between Molecular Structure and Activity.
Bioscience, biotechnology, and biochemistry.
2009 Jan; 73(1):35-9. doi:
10.1271/bbb.80393
. [PMID: 19129664] - Sandra Gredel, Christine Grad, Gerhard Rechkemmer, Bernhard Watzl. Phytoestrogens and phytoestrogen metabolites differentially modulate immune parameters in human leukocytes.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2008 Dec; 46(12):3691-6. doi:
10.1016/j.fct.2008.09.047
. [PMID: 18929616] - Gunter G C Kuhnle, Caterina Dell'Aquila, Sue M Aspinall, Shirley A Runswick, Angela A Mulligan, Sheila A Bingham. Phytoestrogen content of foods of animal origin: dairy products, eggs, meat, fish, and seafood.
Journal of agricultural and food chemistry.
2008 Nov; 56(21):10099-104. doi:
10.1021/jf801344x
. [PMID: 18922017] - Shuang Liang, Yun-Heng Shen, Jun-Mian Tian, Zhi-Jun Wu, Hui-Zi Jin, Wei-Dong Zhang, Shi-Kai Yan. Phenylpropanoids from Daphne feddei and their inhibitory activities against NO production.
Journal of natural products.
2008 Nov; 71(11):1902-5. doi:
10.1021/np8004166
. [PMID: 18986199] - Li-li Wang, Wei-xue Kong, Zhong Yuan. [A new 8-O-4' neolignan from Glehnia littoralis].
Yao xue xue bao = Acta pharmaceutica Sinica.
2008 Oct; 43(10):1036-9. doi:
"
. [PMID: 19127868] - Hui-Ying Han, Xiang-Hong Wang, Nai-Li Wang, Ming-Tat Ling, Yong-Chuan Wong, Xin-Sheng Yao. Lignans isolated from Campylotropis hirtella (Franch.) Schindl. decreased prostate specific antigen and androgen receptor expression in LNCaP cells.
Journal of agricultural and food chemistry.
2008 Aug; 56(16):6928-35. doi:
10.1021/jf800476r
. [PMID: 18656936] - Guangchun Gao, Shuhua Qi, Si Zhang, Hao Yin, Zhihui Xiao, Minyi Li, Qingxin Li. Minor compounds from the stem bark of Chinese mangrove associate Catunaregam spinosa.
Die Pharmazie.
2008 Jul; 63(7):542-4. doi:
"
. [PMID: 18717492] - Ellen Eeckhaut, Karin Struijs, Sam Possemiers, Jean-Paul Vincken, Denis De Keukeleire, Willy Verstraete. Metabolism of the lignan macromolecule into enterolignans in the gastrointestinal lumen as determined in the simulator of the human intestinal microbial ecosystem.
Journal of agricultural and food chemistry.
2008 Jun; 56(12):4806-12. doi:
10.1021/jf800101s
. [PMID: 18494490]