Subcellular Location: cholinergic synapse

Found 237 associated metabolites.

14 associated genes. BRSK1, CHRM1, CHRM2, CHRNA10, CHRNA5, CHRNB2, CHRNB4, DAP3, DLGAP3, DLGAP4, GPR151, KCNB1, NEFL, PLD1

Germacrone

3,7-Cyclodecadien-1-one, 3,7-dimethyl-10-(1-methylethylidene)-, (E,E)-

C15H22O (218.1671)


(E,E)-germacrone is a germacrane sesquiterpenoid that has formula C15H22O. It is a natural product found in traditional medicinal plants of the family Zingiberaceae. The compound exhibits a range of pharmacological activities including anti-inflammatory, anticancer, antiviral, anti-androgenic, antioxidant, antimicrobial, antifungal, neuroprotective and insecticidal activities. It has a role as a volatile oil component, an antiviral agent, an insecticide, an anti-inflammatory agent, an antioxidant, an antineoplastic agent, an apoptosis inducer, an autophagy inducer, an antimicrobial agent, an androgen antagonist, a neuroprotective agent, a plant metabolite, an antifungal agent, an antitussive, an antifeedant and a hepatoprotective agent. It is a germacrane sesquiterpenoid and an olefinic compound. Germacrone is a natural product found in Rhododendron calostrotum, Rhododendron nivale, and other organisms with data available. A germacrane sesquiterpenoid that has formula C15H22O. It is a natural product found in traditional medicinal plants of the family Zingiberaceae. The compound exhibits a range of pharmacological activities including anti-inflammatory, anticancer, antiviral, anti-androgenic, antioxidant, antimicrobial, antifungal, neuroprotective and insecticidal activities. Germacrone is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrone is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Germacrone can be found in common thyme and turmeric, which makes germacrone a potential biomarker for the consumption of these food products. Germacrone is an antiviral isolate of Geranium macrorrhizum . Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1]. Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1].

   

Jatrorrhizine

2,9,10-Trimethoxy-5,6-dihydro-7lambda~5~-isoquino[3,2-a]isoquinolin-3-ol hydrochloride

C20H20NO4+ (338.1392)


Jatrorrhizine is an alkaloid.

   

Digitoxin

3-[(3S,5R,8R,9S,10S,13R,14S,17R)-3-[(2R,4S,5S,6R)-5-[(2S,4S,5S,6R)-5-[(2S,4S,5S,6R)-4,5-dihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-4-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-4-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C41H64O13 (764.4347)


Digitoxin appears as odorless white or pale buff microcrystalline powder. Used as a cardiotonic drug. (EPA, 1998) Digitoxin is a cardenolide glycoside in which the 3beta-hydroxy group of digitoxigenin carries a 2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl trisaccharide chain. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is functionally related to a digitoxigenin. It is a conjugate acid of a digitoxin(1-). A cardiac glycoside sometimes used in place of digoxin. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. (From Martindale, The Extra Pharmacopoeia, 30th ed, p665) Digitoxin is a natural product found in Digitalis obscura, Digitalis parviflora, and other organisms with data available. Digitoxin is a lipid soluble cardiac glycoside that inhibits the plasma membrane sodium potassium ATPase, leading to increased intracellular sodium and calcium levels and decreased intracellular potassium levels. In studies increased intracellular calcium precedes cell death and decreased intracellular potassium increase caspase activation and DNA fragmentation, causing apoptosis and inhibition of cancer cell growth. (NCI) Digitoxin is only found in individuals that have used or taken this drug. It is a cardiac glycoside sometimes used in place of digoxin. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. (From Martindale, The Extra Pharmacopoeia, 30th ed, p665)Digitoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digitoxin also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential. A cardiac glycoside sometimes used in place of DIGOXIN. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. (From Martindale, The Extra Pharmacopoeia, 30th ed, p665) See also: Acetyldigitoxin (is active moiety of). Digitoxin, also known as crystodigin or digitoxoside, belongs to cardenolide glycosides and derivatives class of compounds. Those are compounds containing a carbohydrate glycosidically bound to the cardenolide moiety. Thus, digitoxin is considered to be a sterol lipid molecule. Digitoxin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Digitoxin can be synthesized from digitoxigenin. Digitoxin can also be synthesized into 3-O-acetyldigitoxin. Digitoxin can be found in common bean, which makes digitoxin a potential biomarker for the consumption of this food product. Digitoxin can be found primarily in blood and urine. Digitoxin is a non-carcinogenic (not listed by IARC) potentially toxic compound. Digitoxin is a drug which is used for the treatment and management of congestive cardiac insufficiency, arrhythmias and heart failure. Digitoxin is a cardiac glycoside. It is a phytosteroid and is similar in structure and effects to digoxin (though the effects are longer-lasting). Unlike digoxin (which is eliminated from the body via the kidneys), it is eliminated via the liver, so could be used in patients with poor or erratic kidney function. However, it is now rarely used in current Western medical practice. While several controlled trials have shown digoxin to be effective in a proportion of patients treated for heart failure, the evidence base for digitoxin is not as strong, although it is presumed to be similarly effective . Digitoxin exhibits similar toxic effects to the more-commonly used digoxin, namely: anorexia, nausea, vomiting, diarrhoea, confusion, visual disturbances, and cardiac arrhythmias (DrugBank). Digitoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digitoxin also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential (T3DB). Digitoxin is a cardenolide glycoside in which the 3beta-hydroxy group of digitoxigenin carries a 2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl trisaccharide chain. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It derives from a digitoxigenin. It is a conjugate acid of a digitoxin(1-). Digitoxin appears as odorless white or pale buff microcrystalline powder. It is a cardiac glycoside sometimes used in place of digoxin. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. Digitoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digitoxin also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential. C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor Digitoxin is a potent Na+/K+-ATPase inhibitor with an EC50 value of 0.78 μM. Digitoxin is a potent Na+/K+-ATPase inhibitor with an EC50 value of 0.78 μM.

   

Nicotine

(S)-(-)-NICOTINE; 3-[(2S)-1-METHYL-2-PYRROLIDINYL] PYRIDINE

C10H14N2 (162.1157)


Nicotine is an alkaloid found in the nightshade family of plants (Solanaceae), predominantly in tobacco and in lower quantities in tomato, potato, eggplant (aubergine), and green pepper. Nicotine alkaloids are also found in the leaves of the coca plant. Nicotine constitutes 0.3 to 5\\\% of the tobacco plant by dry weight, with biosynthesis taking place in the root and accumulation in the leaves. It is a potent neurotoxin with particular specificity to insects; therefore nicotine was widely used as an insecticide in the past and nicotine derivatives such as imidacloprid continue to be widely used. It has been noted that the majority of people diagnosed with schizophrenia smoke tobacco. Estimates for the number of schizophrenics that smoke range from 75\\\% to 90\\\%. It was recently argued that the increased level of smoking in schizophrenia may be due to a desire to self-medicate with nicotine. More recent research has found the reverse: it is a risk factor without long-term benefit, used only for its short-term effects. However, research on nicotine as administered through a patch or gum is ongoing. As nicotine enters the body, it is distributed quickly through the bloodstream and can cross the blood-brain barrier. On average, it takes about seven seconds for the substance to reach the brain. The half-life of nicotine in the body is around 2 hours. The amount of nicotine inhaled with tobacco smoke is a fraction of the amount contained in the tobacco leaves (most of the substance is destroyed by the heat). The amount of nicotine absorbed by the body from smoking depends on many factors, including the type of tobacco, whether the smoke is inhaled, and whether a filter is used. For chewing tobacco, often called dip, snuff, or sinus, which is held in the mouth between the lip and gum, the amount released into the body tends to be much greater than smoked tobacco. The currently available literature indicates that nicotine, on its own, does not promote the development of cancer in healthy tissue and has no mutagenic properties. Its teratogenic properties have not yet been adequately researched, and while the likelihood of birth defects caused by nicotine is believed to be very small or nonexistent, nicotine replacement product manufacturers recommend consultation with a physician before using a nicotine patch or nicotine gum while pregnant or nursing. However, nicotine and the increased acetylcholinic activity it causes have been shown to impede apoptosis, which is one of the methods by which the body destroys unwanted cells (programmed cell death). Since apoptosis helps to remove mutated or damaged cells that may eventually become cancerous, the inhibitory actions of nicotine create a more favourable environment for cancer to develop. Thus, nicotine plays an indirect role in carcinogenesis. It is also important to note that its addictive properties are often the primary motivating factor for tobacco smoking, contributing to the proliferation of cancer. Nicotine is a highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a hygroscopic, oily liquid that is miscible with water in its base form. As a nitrogenous base, nicotine forms salts with acids that are usually solid and water soluble. Nicotine easily penetrates the skin. As shown by the physical data, free base nicotine will burn at a temperature below its boiling point, and its vapours will combust at 95 °C in the air despite a low vapour pressure. Because of this, most nicotine is burned when a cigarette is smoked; however, enough is inhaled to provide the desired effects. Nicotine is a stimulant drug that acts as an agonist at nicotinic acetylcholine receptors. These are ionotropic receptors composed of five homomeric or heteromeric subunits. In the brain, nicotine binds to nic... Nicotine appears as a colorless to light yellow or brown liquid. Combustible. Toxic by inhalation and by skin absorption. Produces toxic oxides of nitrogen during combustion. (S)-nicotine is a 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum. It has a role as a phytogenic insecticide, a teratogenic agent, a neurotoxin, an anxiolytic drug, a nicotinic acetylcholine receptor agonist, a biomarker, an immunomodulator, a mitogen, a peripheral nervous system drug, a psychotropic drug, a plant metabolite and a xenobiotic. It is a conjugate base of a (S)-nicotinium(1+). It is an enantiomer of a (R)-nicotine. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a Cholinergic Nicotinic Agonist. Nicotine is a natural alkyloid that is a major component of cigarettes and is used therapeutically to help with smoking cessation. Nicotine has not been associated with liver test abnormalities or with clinically apparent hepatotoxicity. Nicotine is a natural product found in Cyphanthera tasmanica, Nicotiana cavicola, and other organisms with data available. Nicotine is a plant alkaloid, found in the tobacco plant, and addictive central nervous system (CNS) stimulant that causes either ganglionic stimulation in low doses or ganglionic blockage in high doses. Nicotine acts as an agonist at the nicotinic cholinergic receptors in the autonomic ganglia, at neuromuscular junctions, and in the adrenal medulla and the brain. Nicotines CNS-stimulating activities may be mediated through the release of several neurotransmitters, including acetylcholine, beta-endorphin, dopamine, norepinephrine, serotonin, and ACTH. As a result, peripheral vasoconstriction, tachycardia, and elevated blood pressure may be observed with nicotine intake. This agent may also stimulate the chemoreceptor trigger zone, thereby inducing nausea and vomiting. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. See also: Tobacco Leaf (part of); Nicotine Polacrilex (related); Menthol; nicotine (component of) ... View More ... Alkaloid from Nicotiana tabacum and other Nicotiana subspecies, Asclepias syriaca, Lycopodium subspecies, and other subspecies (Solanaceae, Asclepiadaceae, Crassulaceae). Rare spread of occurrence between angiosperms and cryptogametes (CCD) A 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum.

   

gomisin B

2-Butenoic acid, 2-methyl-, 5,6,7,8-tetrahydro-6-hydroxy-1,2,3,13-tetramethoxy-6,7-dimethylbenzo(3,4)cycloocta(1,2-f)(1,3)benzodioxol-5-yl ester, (5S-(5.alpha.(Z),6.beta.,7.beta.))-

C28H34O9 (514.2203)


Gomisin B is a tannin. Schisantherin B is a natural product found in Kadsura angustifolia, Schisandra rubriflora, and other organisms with data available. See also: Schisandra chinensis fruit (part of). Schisantherin B (Gomisin-B; Wuweizi ester-B; Schisantherin-B) is a natural product. Schisantherin B (Gomisin-B; Wuweizi ester-B; Schisantherin-B) is a natural product.

   

Dauricine

Phenol, 4-((1,2,3,4-tetrahydro-6,7-dimethoxy-2-methyl-1-isoquinolinyl)methyl)-2-(4-((1,2,3,4-tetrahydro-6,7-dimethoxy-2-methyl-1-isoquinolinyl)methyl)phenoxy)-, (R-(R*,R*))-

C38H44N2O6 (624.3199)


Dauricine is a bisbenzylisoquinoline alkaloid resulting from the formal oxidative dimerisation of 4-{[(1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}phenol by attachment of the phenolic oxygen of one molecule to the benzene ring of the second (ortho to the phenolic hydroxy group of the latter). It has a role as a plant metabolite. It is a tertiary amino compound, a member of phenols, an aromatic ether, a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Dauricine is a natural product found in Nelumbo nucifera, Menispermum canadense, and Menispermum dauricum with data available. A bisbenzylisoquinoline alkaloid resulting from the formal oxidative dimerisation of 4-{[(1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}phenol by attachment of the phenolic oxygen of one molecule to the benzene ring of the second (ortho to the phenolic hydroxy group of the latter). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Dauricine, a bisbenzylisoquinoline alkaloid in Menispermum dauricum, possesses anti-inflammatory activity. Dauricine inhibits cell proliferation and invasion, and induces apoptosis by suppressing NF-κB activation in a dose- and time-dependent manner in colon cancer[1]. Dauricine, a bisbenzylisoquinoline alkaloid in Menispermum dauricum, possesses anti-inflammatory activity. Dauricine inhibits cell proliferation and invasion, and induces apoptosis by suppressing NF-κB activation in a dose- and time-dependent manner in colon cancer[1].

   

Homovanillate

Homovanillic Acid

C9H10O4 (182.0579)


CONFIDENCE standard compound; INTERNAL_ID 182 COVID info from PDB, Protein Data Bank KEIO_ID H059 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency. Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency.

   

Sakuranetin

4H-1-Benzopyran-4-one, 2,3-dihydro-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-, (2S)-

C16H14O5 (286.0841)


Sakuranetin is a flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as an antimycobacterial drug and a plant metabolite. It is a dihydroxyflavanone, a monomethoxyflavanone, a flavonoid phytoalexin, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Sakuranetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Sakuranetin is found in black walnut. Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae. A flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2]. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2].

   

Columbamine

2-Hydroxy-3,9,10-trimethoxy-5,6-dihydroisoquinolino[3,2-a]isoquinolin-7-ium

C20H20NO4+ (338.1392)


Columbamine is a berberine alkaloid and an organic heterotetracyclic compound. Columbamine is a natural product found in Thalictrum podocarpum, Berberis thunbergii, and other organisms with data available.

   

Vomicin

2H-6a,4-(Ethaniminomethano)indolo(3,2,1-i)oxepino(2,3,4-de)quinoline-6,12(2H)-dione, 4a,5,13,13a,13b,13c-hedahydro-10-hydroxy-16-methyl-, (4aR-(4aR*,6aS*,13aS*,13bR*,13cS*))-

C22H24N2O4 (380.1736)


Vomicine is a member of carbazoles. Vomicine is a natural product found in Strychnos icaja, Strychnos wallichiana, and Strychnos nux-vomica with data available. Vomicine, an alkaloid, shows antidiabetic activity[1]. Vomicine, an alkaloid, shows antidiabetic activity[1].

   

Valtrats

BUTANOIC ACID, 3-METHYL-, 4-((ACETYLOXY)METHYL)-6,7A-DIHYDROSPIRO(CYCLOPENTA-(C)PYRAN-7(1H),2-OXIRANE)-1,6-DIYL ESTER, (1S-(1-.ALPHA.,6-.ALPHA,,7- .BETA.,7A-.ALPHA.))-

C22H30O8 (422.1941)


Valtratum is a fatty acid ester. Valtrate is a natural product found in Valeriana pulchella, Valeriana alpestris, and other organisms with data available. See also: Viburnum opulus bark (part of). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic Valepotriate can be isolated from?Valeriana jatamansi?Jones, has anti-epileptic and anti-cancer activities[1][2]. Valepotriate can be isolated from?Valeriana jatamansi?Jones, has anti-epileptic and anti-cancer activities[1][2].

   

beta-Cryptoxanthin

(1R)-3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-3-en-1-ol

C40H56O (552.4331)


beta-Cryptoxanthin has been isolated from abalone, fish eggs, and many higher plants. beta-Cryptoxanthin is a major source of vitamin A, often second only to beta-carotene, and is present in fruits such as oranges, tangerines, and papayas (PMID: 8554331). Frequent intake of tropical fruits that are rich in beta-cryptoxanthin is associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents. Papaya intake was the best food predictor of plasma beta-cryptoxanthin concentrations. Subjects that frequently consumed (i.e. greater or equal to 3 times/day) tropical fruits with at least 50 micro g/100 g beta-cryptoxanthin (e.g. papaya, tangerine, orange, watermelon) had twofold the plasma beta-cryptoxanthin concentrations of those with intakes of less than 4 times/week (PMID: 12368412). A modest increase in beta-cryptoxanthin intake, equivalent to one glass of freshly squeezed orange juice per day, is associated with a reduced risk of developing inflammatory disorders such as rheumatoid arthritis (PMID: 16087992). Higher prediagnostic serum levels of total carotenoids and beta-cryptoxanthin were associated with lower smoking-related lung cancer risk in middle-aged and older men in Shanghai, China (PMID: 11440962). Consistent with inhibition of the lung cancer cell growth, beta-cryptoxanthin induced the mRNA levels of retinoic acid receptor beta (RAR-beta) in BEAS-2B cells, although this effect was less pronounced in A549 cells. Furthermore, beta-cryptoxanthin transactivated the RAR-mediated transcription activity of the retinoic acid response element. These findings suggest a mechanism of anti-proliferative action of beta-cryptoxanthin and indicate that beta-cryptoxanthin may be a promising chemopreventive agent against lung cancer (PMID: 16841329). Cryptoxanthin is a natural carotenoid pigment. It has been isolated from a variety of sources including the petals and flowers of plants in the genus Physalis, orange rind, papaya, egg yolk, butter, apples, and bovine blood serum. In a pure form, cryptoxanthin is a red crystalline solid with a metallic lustre. It is freely soluble in chloroform, benzene, pyridine, and carbon disulfide. In the human body, cryptoxanthin is converted into vitamin A (retinol) and is therefore considered a provitamin A. As with other carotenoids, cryptoxanthin is an antioxidant and may help prevent free radical damage to cells and DNA, as well as stimulate the repair of oxidative damage to DNA. Structurally, cryptoxanthin is closely related to beta-carotene, with only the addition of a hydroxyl group. It is a member of the class of carotenoids known as xanthophylls. Beta-cryptoxanthin is a carotenol that exhibits antioxidant activity. It has been isolated from fruits such as papaya and oranges. It has a role as a provitamin A, an antioxidant, a biomarker and a plant metabolite. It derives from a hydride of a beta-carotene. beta-Cryptoxanthin is a natural product found in Hibiscus syriacus, Cladonia gracilis, and other organisms with data available. A mono-hydroxylated xanthophyll that is a provitamin A precursor. See also: Corn (part of). A carotenol that exhibits antioxidant activity. It has been isolated from fruits such as papaya and oranges. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Cryptoxanthin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=472-70-8 (retrieved 2024-10-31) (CAS RN: 472-70-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cis-Hydroxyproline

cis-4-hydroxyproline;(2S)-4-hydroxypyrrolidine-2-carboxylic acid

C5H9NO3 (131.0582)


Cis 4-hydroxyproline, also known as L-allo-hydroxyproline or (2s,4s)-4-hydroxy-2-pyrrolidinecarboxylic acid, belongs to proline and derivatives class of compounds. Those are compounds containing proline or a derivative thereof resulting from reaction of proline at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Cis 4-hydroxyproline is soluble (in water) and a moderately acidic compound (based on its pKa). Cis 4-hydroxyproline can be found in a number of food items such as green bell pepper, wheat, nanking cherry, and oat, which makes cis 4-hydroxyproline a potential biomarker for the consumption of these food products. Cis-4-hydroxy-L-proline is l-Proline in which a hydrogen at the 4-position of the pyrrolidine ring is substituted by a hydroxy group (S-configuration). It has a role as a metabolite. It is a non-proteinogenic L-alpha-amino acid and a 4-hydroxyproline. It is a tautomer of a cis-4-hydroxy-L-proline zwitterion. A hydroxylated form of the imino acid proline. A deficiency in ASCORBIC ACID can result in impaired hydroxyproline formation. cis-4-Hydroxyproline is classified as a proline derivative. It is considered to be a soluble (in water), acidic compound. cis-4-Hydroxyproline can be found in numerous foods such as dills, green zucchinis, saskatoon berries, and Japanese pumpkins. L-Proline in which a hydrogen at the 4-position of the pyrrolidine ring is substituted by a hydroxy group (S-configuration). [Spectral] 4-Hydroxy-L-proline (exact mass = 131.05824) and L-Threonine (exact mass = 119.05824) and Taurine (exact mass = 125.01466) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. KEIO_ID H004 cis-4-Hydroxy-L-proline, a proline analogue, is an inhibitor of collagen production. cis-4-Hydroxy-L-proline could inhibit fibroblast growth by preventing the deposition of triple-helical collagen on the cell layer. cis-4-Hydroxy-L-proline also depresses the growth of primary N-nitrosomethylurea-induced rat mammary tumors[1][2][3][4]. cis-4-Hydroxy-L-proline, a proline analogue, is an inhibitor of collagen production. cis-4-Hydroxy-L-proline could inhibit fibroblast growth by preventing the deposition of triple-helical collagen on the cell layer. cis-4-Hydroxy-L-proline also depresses the growth of primary N-nitrosomethylurea-induced rat mammary tumors[1][2][3][4]. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.

   

LeachianoneG

Leachianone GLeucopelargonidin3-Deoxy-4-O-methylsappanolEpimedokoreanin BQingyangshengenin11-Deoxymogroside IIIE3-O-Acetyloleanolic acidLupulone CMbamiloside Ap-Hydroxyphenethyl trans-ferulate2-Hydroxyl emodin-1-methyl ether

C20H20O6 (356.126)


Leachianone G is a tetrahydroxyflavanone having the hydroxy groups at the 2-, 4-, 5- and 7-positions and a prenyl group at 8-position. It is a tetrahydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a leachianone G(1-). Leachianone G is a natural product found in Morus alba, Sophora flavescens, and Lespedeza cyrtobotrya with data available.

   

Isopimaric acid

1-Phenanthrenecarboxylic acid, 7-ethenyl-1,2,3,4,4a,4b,5,6,7,8,10,10a-dodecahydro-1,4a,7-trimethyl-, (1theta-(1alpha,4abeta,4balpha,7alpha,10aalpha))-

C20H30O2 (302.2246)


Isopimaric acid is a diterpenoid, a carbotricyclic compound and a monocarboxylic acid. It is a conjugate acid of an isopimarate. It derives from a hydride of an isopimara-7,15-diene. Isopimaric acid is a natural product found in Pinus brutia var. eldarica, Halocarpus bidwillii, and other organisms with data available. Isopimaric acid is isolated from Pinus palustris (pitch pine). D049990 - Membrane Transport Modulators D007476 - Ionophores Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.

   

Coclaurine

(1S)-1-[(4-hydroxyphenyl)methyl]-6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol

C17H19NO3 (285.1365)


(S)-coclaurine is the (S)-enantiomer of coclaurine. It is a conjugate base of a (S)-coclaurinium. It is an enantiomer of a (R)-coclaurine. Coclaurine is a natural product found in Delphinium pentagynum, Damburneya salicifolia, and other organisms with data available. Coclaurine, also known as (r,s)-coclaurine or machiline, is a member of the class of compounds known as benzylisoquinolines. Benzylisoquinolines are organic compounds containing an isoquinoline to which a benzyl group is attached. Coclaurine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Coclaurine can be found in custard apple and soursop, which makes coclaurine a potential biomarker for the consumption of these food products. Coclaurine is a nicotinic acetylcholine receptor antagonist which has been isolated from a variety of plant sources including Nelumbo nucifera, Sarcopetalum harveyanum, Ocotea duckei, and others. It belongs to the class of tetrahydroisoquinoline alkaloids. Dimerization of coclaurine leads to the biscoclaurine alkaloids such as cepharanthine .

   

Toralactone

9,10-Dihydroxy-7-methoxy-3-methyl-1H-naphtho[2,3-c]pyran-1-one, 9CI

C15H12O5 (272.0685)


Toralactone is an organic heterotricyclic compound that is 9,10-dihydroxy-1H-benzo[g]isochromen-1-one substituted at positions 3 and 7 by methyl and methoxy groups respectively. It has a role as a plant metabolite. It is an organic heterotricyclic compound, a lactone, a member of phenols, an aromatic ether, a polyketide and a naphtho-alpha-pyrone. It is functionally related to a nor-toralactone. Toralactone is a natural product found in Senna obtusifolia and Senna tora with data available. An organic heterotricyclic compound that is 9,10-dihydroxy-1H-benzo[g]isochromen-1-one substituted at positions 3 and 7 by methyl and methoxy groups respectively. Isolated from seeds of Cassia tora (charota). Toralactone is found in coffee and coffee products, herbs and spices, and pulses. Toralactone is found in coffee and coffee products. Toralactone is isolated from seeds of Cassia tora (charota). Toralactone, isolated from Cassia obtusifolia, mediates hepatoprotection via an Nrf2-dependent anti-oxidative mechanism[1]. Toralactone, isolated from Cassia obtusifolia, mediates hepatoprotection via an Nrf2-dependent anti-oxidative mechanism[1].

   

Lactupicrin

Benzeneacetic acid, 4-hydroxy-, 2,3,3a,4,5,7,9a,9b-octahydro-9-(hydroxymethyl)-6-methyl-3-methylene-2,7-dioxoazuleno(4,5-b)furan-4-yl ester, (3aR-(3aalpha,4alpha,9aalpha,9bbeta))-

C23H22O7 (410.1365)


Lactucopicrin is an azulenofuran, a cyclic terpene ketone, an enone, a member of phenols, a sesquiterpene lactone and a primary alcohol. It has a role as a plant metabolite, a sedative and an antimalarial. It is functionally related to a 4-hydroxyphenylacetic acid and a lactucin. Lactupicrin is a natural product found in Cichorium endivia, Cichorium spinosum, and other organisms with data available. Constituent of Lactuca sativa (lettuce), Cichorium intybus (chicory) and Cichorium endivia (endive). Lactupicrin is found in many foods, some of which are endive, romaine lettuce, chicory, and lettuce. Lactupicrin is found in chicory. Lactupicrin is a constituent of Lactuca sativa (lettuce), Cichorium intybus (chicory) and Cichorium endivia (endive) Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2]. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2].

   

Aposcopolamine

Hyoscine Hydrobromide Imp. C (EP); Hyoscine Imp. C (EP); (1R,2R,4S,5S,7s)-9-Methyl-3-oxa-9-azatricyclo[3.3.1.02,4]non-7-yl 2-Phenylprop-2-enoate; Apohyoscine; Hyoscine Hydrobromide Impurity C; Hyoscine Impurity C

C17H19NO3 (285.1365)


Aposcopolamine is an alkaloid that can be isolated from Datura ferox. Aposcopolamin can closely binds with ACHE, ADRA2A and CHRM2. Aposcopolamine can be used for the research of Alzheimer's disease[1]. Aposcopolamine is an alkaloid that can be isolated from Datura ferox. Aposcopolamin can closely binds with ACHE, ADRA2A and CHRM2. Aposcopolamine can be used for the research of Alzheimer's disease[1]. Aposcopolamine is an alkaloid that can be isolated from Datura ferox. Aposcopolamin can closely binds with ACHE, ADRA2A and CHRM2. Aposcopolamine can be used for the research of Alzheimer's disease[1].

   

Diethyltoluamide

N,N-Diethyl-2,5-dimethylbenzamide

C12H17NO (191.131)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents CONFIDENCE standard compound; EAWAG_UCHEM_ID 213 CONFIDENCE standard compound; INTERNAL_ID 3353 CONFIDENCE standard compound; INTERNAL_ID 4176 CONFIDENCE standard compound; INTERNAL_ID 8223 CONFIDENCE standard compound; INTERNAL_ID 8797 D020011 - Protective Agents D016573 - Agrochemicals Same as: D02379

   

L-Threoneopterin

2-amino-6-[(1S,2S)-1,2,3-trihydroxypropyl]-4,8-dihydropteridin-4-one

C9H11N5O4 (253.0811)


L-Threoneopterin is a catabolic product of GTP. It is synthesized by macrophages upon stimulation by interferon-gamma. It is used as a marker of HIV infection. It belongs to the chemical group known as pterins. Neopterin is a pteridine derivative present in body fluids; elevated levels result from immune system activation, malignant disease, allograft rejection, and viral infections (From Stedman, 26th ed). Neopterin also serves as a precursor in the biosynthesis of biopterin. Neopterin is a catabolic product of GTP. It is synthesised by macrophages upon stimulation with interferon-gamma. It is used as a marker of HIV infection. It belongs to the chemical group known as pterins.A pteridine derivative present in body fluids; elevated levels result from immune system activation, malignant disease, allograft rejection, and viral infections. (From Stedman, 26th ed) Neopterin also serves as a precursor in the biosynthesis of biopterin. [HMDB] Neopterin (D-(+)-Neopterin), a catabolic product of guanosine triphosphate (GTM), serves as a marker of cellular immune system activation.

   

1204-06-4

3-Indoleacrylic acid

C11H9NO2 (187.0633)


trans-3-Indoleacrylic acid is an endogenous metabolite.

   

L-2,4-diaminobutyric acid

2,4-Diaminobutyric acid monohydrochloride, (+-)-isomer

C4H10N2O2 (118.0742)


L-3-Amino-isobutanoic acid is a component of branched-chain amino acid biosynthesis and metabolism. It can also be used in pyrimidine metabolism. L-3-Amino-isobutanoic acid is produced from S-methylmalonate semialdehyde by the enzyme 4-aminobutyrate aminotransferase. KEIO_ID D038 L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.

   

L-Kynurenine

(AlphaS)-alpha,2-diamino-3-hydroxy-gamma-oxo-benzenebutanoic acid

C10H12N2O3 (208.0848)


Kynurenine is a metabolite of the amino acid tryptophan used in the production of niacin. L-Kynurenine is a central compound of the tryptophan metabolism pathway since it can change into the neuroprotective agent kynurenic acid or to the neurotoxic agent quinolinic acid. The break-up of these endogenous compounds balance can be observable in many disorders such as stroke, epilepsy, multiple sclerosis, and amyotrophic lateral sclerosis. It can also occur in neurodegenerative disorders such as Parkinsons disease, Huntingtons, and Alzheimers disease; and in mental disorders such as schizophrenia and depression. Kynurenine is a metabolite of the amino acid tryptophan used in the production of niacin. [Raw Data] CBA10_Kynurenine_pos_10eV_1-2_01_666.txt [Raw Data] CBA10_Kynurenine_pos_30eV_1-2_01_668.txt [Raw Data] CBA10_Kynurenine_pos_40eV_1-2_01_669.txt [Raw Data] CBA10_Kynurenine_pos_20eV_1-2_01_667.txt [Raw Data] CBA10_Kynurenine_pos_50eV_1-2_01_670.txt L-Kynurenine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2922-83-0 (retrieved 2024-07-01) (CAS RN: 2922-83-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite. L-Kynurenine is a metabolite of the amino acid L-tryptophan. L-Kynurenine is an aryl hydrocarbon receptor agonist.

   

Scopolamine

(1R,2R,4S,5S,7S)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0^{2,4}]nonan-7-yl (2S)-3-hydroxy-2-phenylpropanoate

C17H21NO4 (303.1471)


Scopolamine, also known as hyoscine, is a tropane alkaloid drug obtained from plants of the family Solanaceae (nightshades), such as henbane or jimson weed (Datura species). It is part of the secondary metabolites of plants. Scopolamine is used criminally as a date rape drug and as an aid to robbery, the most common act being the clandestine drugging of a victims drink. It is preferred because it induces retrograde amnesia, or an inability to recall events prior to its administration. Victims of this crime are often admitted to a hospital in police custody, under the assumption that the patient is experiencing a psychotic episode. A telltale sign is a fever accompanied by a lack of sweat. An alkaloid from Solanaceae, especially Datura metel L. and Scopola carniolica. Scopolamine and its quaternary derivatives act as antimuscarinics like atropine, but may have more central nervous system effects. Among the many uses are as an anesthetic premedication, in urinary incontinence, in motion sickness, as an antispasmodic, and as a mydriatic and cycloplegic. Scopolamine, also known as hyoscine, is a tropane alkaloid drug obtained from plants of the family Solanaceae (nightshades), such as henbane or jimson weed (Datura species). It is part of the secondary metabolites of plants. A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics C78283 - Agent Affecting Organs of Special Senses > C29706 - Mydriatic Agent N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents KEIO_ID S040; [MS2] KO009233 KEIO_ID S040

   

Bupropion

(+-)-1-(3-Chlorophenyl)-2-((1,1-dimethylethyl)amino)-1-propanone

C13H18ClNO (239.1077)


Bupropion is a selective catecholamine (norepinephrine and dopamine) reuptake inhibitor. It has only a small effect on serotonin reuptake. It does not inhibit MAO. The antidepressant effect of bupropion is considered to be mediated by its dopaminergic and noradrenergic action. Bupropion has also been shown to act as a competitive alpha-3-beta-4- nicotinic antagonist, the alpha-3-beta-4-antagonism has been shown to interrupt addiction in studies of other drugs such as ibogaine. This alpha-3-beta-4-antagonism correlates quite well with the observed effect of interrupting addiction. A unicyclic, aminoketone antidepressant. The mechanism of its therapeutic actions is not well understood, but it does appear to block dopamine uptake. The hydrochloride is available as an aid to smoking cessation treatment; Bupropion is a selective catecholamine (norepinephrine and dopamine) reuptake inhibitor. It has only a small effect on serotonin reuptake. It does not inhibit MAO. The antidepressant effect of bupropion is considered to be mediated by its dopaminergic and noradrenergic action. Bupropion has also been shown to act as a competitive alpha-3-beta-4-nicotinic antagonist, the alpha-3-beta-4-antagonism has been shown to interrupt addiction in studies of other drugs such as ibogaine. This alpha-3-beta-4-antagonism correlates quite well with the observed effect of interrupting addiction. Bupropion (amfebutamone) (brand names Wellbutrin and Zyban) is an antidepressant of the aminoketone class, chemically unrelated to tricyclics or selective serotonin reuptake inhibitors (SSRIs). It is similar in structure to the stimulant cathinone, and to phenethylamines in general. It is a chemical derivative of diethylpropion, an amphetamine-like substance used as an anorectic. Bupropion is both a dopamine reuptake inhibitor and a norepinephrine reuptake inhibitor. It is often used as a smoking cessation aid. CONFIDENCE standard compound; INTERNAL_ID 1321; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7029; ORIGINAL_PRECURSOR_SCAN_NO 7027 CONFIDENCE standard compound; INTERNAL_ID 1321; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7025; ORIGINAL_PRECURSOR_SCAN_NO 7023 CONFIDENCE standard compound; INTERNAL_ID 1321; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7006; ORIGINAL_PRECURSOR_SCAN_NO 7004 CONFIDENCE standard compound; INTERNAL_ID 1321; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7034; ORIGINAL_PRECURSOR_SCAN_NO 7030 CONFIDENCE standard compound; INTERNAL_ID 1321; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6997; ORIGINAL_PRECURSOR_SCAN_NO 6995 CONFIDENCE standard compound; INTERNAL_ID 1321; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7027; ORIGINAL_PRECURSOR_SCAN_NO 7025 D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE standard compound; INTERNAL_ID 2703 CONFIDENCE standard compound; INTERNAL_ID 8596 D049990 - Membrane Transport Modulators D000077444 - Smoking Cessation Agents

   

N-acetylaspartate (NAA)

N-Acetylaspartate, monopotassium salt

C6H9NO5 (175.0481)


N-Acetyl-L-Aspartic acid (NAA) or N-Acetylaspartic acid, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-alpha-Acetyl-L-aspartic acid can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyl-L-aspartic acid is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-aspartic acid. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylaspartate can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free aspartic acid can also occur. In particular, N-Acetyl-L-aspartic acid can be synthesized in neurons from the amino acid aspartate and acetyl coenzyme A (acetyl CoA). Specifically, the enzyme known as aspartate N-acetyltransferase (EC 2.3.1.17) catalyzes the transfer of the acetyl group of acetyl CoA to the amino group of aspartate. N-Acetyl-L-aspartic acid is the second most concentrated molecule in the brain after the amino acid glutamate. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include (1) acting as a neuronal osmolyte that is involved in fluid balance in the brain, (2) serving as a source of acetate for lipid and myelin synthesis in oligodendrocytes (the glial cells that myelinate neuronal axons), (3) serving as a precursor for the synthesis of the important dipeptide neurotransmitter N-acetylaspartylglutamate (NAAG), and (4) playing a potential role in energy production from the amino acid glutamate in neuronal mitochondria. High neurotransmitter (i.e. N-acetylaspartic acid) levels can lead to abnormal neural signaling, delayed or arrested intellectual development, and difficulties with general motor skills. When present in sufficiently high levels, N-acetylaspartic acid can be a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of N-acetylaspartic acid are associated with Canavan disease. Because N-acetylaspartic acid functions as an organic acid and high levels of organic acids can lead to a condition known... N-Acetylaspartic acid is a derivative of aspartic acid. It is the second most concentrated molecule in the brain after the amino acid glutamate. It is synthesized in neurons from the amino acid aspartate and acetyl coenzyme A. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include: Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID A142 N-Acetyl-L-aspartic acid is a derivative of aspartic acid.

   

Betaxolol

1-(4-(2-(Cyclopropylmethoxy)ethyl)phenoxy)-3-((1-methylethyl)amino)-2-propanol

C18H29NO3 (307.2147)


Betaxolol is only found in individuals that have used or taken this drug. It is a cardioselective beta-1-adrenergic antagonist with no partial agonist activity. [PubChem]Betaxolol selectively blocks catecholamine stimulation of beta(1)-adrenergic receptors in the heart and vascular smooth muscle. This results in a reduction of heart rate, cardiac output, systolic and diastolic blood pressure, and possibly reflex orthostatic hypotension. Betaxolol can also competitively block beta(2)-adrenergic responses in the bronchial and vascular smooth muscles, causing bronchospasm. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.

   

Valdecoxib

4-(5-methyl-3-phenyl-1,2-oxazol-4-yl)benzene-1-sulfonamide

C16H14N2O3S (314.0725)


Valdecoxib is a prescription drug used in the treatment of osteoarthritis, rheumatoid arthritis, and painful menstruation and menstrual symptoms. It is classified as a nonsteroidal anti-inflammatory drug, or NSAID, and should not be taken by anyone allergic to these types of medications. [HMDB] Valdecoxib is a prescription drug used in the treatment of osteoarthritis, rheumatoid arthritis, and painful menstruation and menstrual symptoms. It is classified as a nonsteroidal anti-inflammatory drug, or NSAID, and should not be taken by anyone allergic to these types of medications. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AH - Coxibs D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents

   

Disopyramide

alpha-(2-(Diisopropylamino)ethyl)-alpha-phenyl-2-pyridineacetamide

C21H29N3O (339.2311)


A class I anti-arrhythmic agent (one that interferes directly with the depolarization of the cardiac membrane and thus serves as a membrane-stabilizing agent) with a depressant action on the heart similar to that of guanidine. It also possesses some anticholinergic and local anesthetic properties. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Flecainide

N-(piperidin-2-ylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide

C17H20F6N2O3 (414.1378)


A potent anti-arrhythmia agent, effective in a wide range of ventricular and atrial arrhythmias and tachycardias. Paradoxically, however, in myocardial infarct patients with either symptomatic or asymptomatic arrhythmia, flecainide exacerbates the arrhythmia and is not recommended for use in these patients. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3020 CONFIDENCE standard compound; INTERNAL_ID 2276 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Tacrine

Parke davis brand OF tacrine hydrochloride

C13H14N2 (198.1157)


Tacrine is only found in individuals that have used or taken this drug. It is a centerally active cholinesterase inhibitor that has been used to counter the effects of muscle relaxants, as a respiratory stimulant, and in the treatment of Alzheimers disease and other central nervous system disorders. [PubChem]The mechanism of tacrine is not fully known, but it is suggested that the drug is an anticholinesterase agent which reversibly binds with and inactivates cholinesterases. This inhibits the hydrolysis of acetylcholine released from functioning cholinergic neurons, thus leading to an accumulation of acetylcholine at cholinergic synapses. The result is a prolonged effect of acetylcholine. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06D - Anti-dementia drugs > N06DA - Anticholinesterases D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors KEIO_ID A123

   

Methotrexate

(2S)-2-[(4-{[(2,4-diaminopteridin-6-yl)methyl](methyl)amino}phenyl)formamido]pentanedioic acid

C20H22N8O5 (454.1713)


Methotrexate is only found in individuals that have used or taken this drug. It is an antineoplastic antimetabolite with immunosuppressant properties. It is an inhibitor of tetrahydrofolate dehydrogenase and prevents the formation of tetrahydrofolate, necessary for synthesis of thymidylate, an essential component of DNA. [PubChem]Methotrexate anti-tumor activity is a result of the inhibition of folic acid reductase, leading to inhibition of DNA synthesis and inhibition of cellular replication. The mechanism involved in its activity against rheumatoid arthritis is not known. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BA - Folic acid analogues L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists CONFIDENCE standard compound; INTERNAL_ID 2730 D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents D003879 - Dermatologic Agents Corona-virus KEIO_ID M048 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Protriptyline

methyl(3-{tricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,9,11,13-heptaen-2-yl}propyl)amine

C19H21N (263.1674)


Protriptyline hydrochloride is a dibenzocycloheptene-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, protriptyline does not affect mood or arousal, but may cause sedation. In depressed individuals, protriptyline exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. In addition, TCAs down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. See toxicity section below for a complete listing of side effects. Protriptyline may be used for the treatment of depression. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators

   

Propafenone

1-(2-(2-Hydroxy-3-(propylamino)propoxy)phenyl)-3-phenyl-1-propanone

C21H27NO3 (341.1991)


Propafenone is only found in individuals that have used or taken this drug. It is an antiarrhythmia agent that is particularly effective in ventricular arrhythmias. It also has weak beta-blocking activity. The drug is generally well tolerated. [PubChem]The electrophysiological effect of propafenone manifests itself in a reduction of upstroke velocity (Phase 0) of the monophasic action potential. In Purkinje fibers, and to a lesser extent myocardial fibers, propafenone reduces the fast inward current carried by sodium ions, which is responsible for the drugs antiarrhythmic actions. Diastolic excitability threshold is increased and effective refractory period prolonged. Propafenone reduces spontaneous automaticity and depresses triggered activity. At very high concentrations in vitro, propafenone can inhibit the slow inward current carried by calcium but this calcium antagonist effect probably does not contribute to antiarrhythmic efficacy. C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; INTERNAL_ID 2285 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Propafenone (SA-79), a sodium-channel blocker, acts an antiarrhythmic agent. Propafenone also has high affinity for the β receptor (IC50=32 nM)[1]. Propafenone blocks the transient outward current (Ito) and the sustained delayed rectifier K current (Isus) with IC50 values of 4.9?μm and 8.6?μm, respectively[2]. Propafenone suppresses esophageal cancer proliferation through inducing mitochondrial dysfunction and induce apoptosis[3].

   

Pimozide

1-{1-[4,4-bis(4-fluorophenyl)butyl]piperidin-4-yl}-2,3-dihydro-1H-1,3-benzodiazol-2-one

C28H29F2N3O (461.2279)


A diphenylbutylpiperidine that is effective as an antipsychotic agent and as an alternative to haloperidol for the suppression of vocal and motor tics in patients with Tourette syndrome. Although the precise mechanism of action is unknown, blockade of postsynaptic dopamine receptors has been postulated. (From AMA Drug Evaluations Annual, 1994, p403) D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AG - Diphenylbutylpiperidine derivatives D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pimozide is a dopamine receptor antagonist, with Kis of 1.4 nM, 2.5 nM and 588 nM for dopamine D2, D3 and D1 receptors, respectively, and also has affinity at α1-adrenoceptor, with a Ki of 39 nM; Pimozide also inhibits STAT3 and STAT5.

   

Penconazole

1-(2,4-dichloro-beta-Propylphenethyl)-1H-1,2,4-triazole

C13H15Cl2N3 (283.0643)


CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9666; ORIGINAL_PRECURSOR_SCAN_NO 9664 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9722; ORIGINAL_PRECURSOR_SCAN_NO 9721 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9751; ORIGINAL_PRECURSOR_SCAN_NO 9750 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9670; ORIGINAL_PRECURSOR_SCAN_NO 9668 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9676; ORIGINAL_PRECURSOR_SCAN_NO 9675 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9793; ORIGINAL_PRECURSOR_SCAN_NO 9792 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3107 D016573 - Agrochemicals D010575 - Pesticides

   

Clemastine

(+)-(2R)-2-(2-(((R)-p-Chloro-alpha-methyl-alpha-phenylbenzyl)oxy)ethyl)-1-methylpyrrolidine

C21H26ClNO (343.1703)


Clemastine is only found in individuals that have used or taken this drug. It is an ethanolamine-derivative, first generation histamine H1 antagonist used in hay fever, rhinitis, allergic skin conditions, and pruritus. It causes drowsiness. [PubChem]Clemastine is a selective histamine H1 antagonist and binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents

   

Fludioxonil

4-(2,2-difluoro-2H-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile

C12H6F2N2O2 (248.0397)


CONFIDENCE standard compound; INTERNAL_ID 49; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4715; ORIGINAL_PRECURSOR_SCAN_NO 4711 CONFIDENCE standard compound; INTERNAL_ID 49; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4759; ORIGINAL_PRECURSOR_SCAN_NO 4755 CONFIDENCE standard compound; INTERNAL_ID 49; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4745; ORIGINAL_PRECURSOR_SCAN_NO 4740 CONFIDENCE standard compound; INTERNAL_ID 49; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4750; ORIGINAL_PRECURSOR_SCAN_NO 4747 CONFIDENCE standard compound; INTERNAL_ID 49; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4753; ORIGINAL_PRECURSOR_SCAN_NO 4751 CONFIDENCE standard compound; INTERNAL_ID 49; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4731; ORIGINAL_PRECURSOR_SCAN_NO 4728

   

AICAR

{[(2R,3S,4R,5R)-5-(5-amino-4-carbamoyl-1H-imidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H15N4O8P (338.0627)


Aicar, also known as 5-phosphoribosyl-5-amino-4-imidazolecarboxamide or 5-aminoimidazole-4-carboxamide ribotide, is a member of the class of compounds known as 1-ribosyl-imidazolecarboxamides. 1-ribosyl-imidazolecarboxamides are organic compounds containing the imidazole ring linked to a ribose ring through a 1-2 bond. Aicar is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Aicar can be found in a number of food items such as safflower, greenthread tea, common pea, and wild leek, which makes aicar a potential biomarker for the consumption of these food products. Aicar can be found primarily in saliva, as well as in human skeletal muscle tissue. Aicar exists in all living species, ranging from bacteria to humans. In humans, aicar is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. Aicar is also involved in several metabolic disorders, some of which include mitochondrial DNA depletion syndrome, purine nucleoside phosphorylase deficiency, xanthinuria type II, and gout or kelley-seegmiller syndrome. AICAR also known as ZMP is an analog of AMP that is capable of stimulating AMP-dependent protein kinase activity(AMPK). AICAR is an intermediate in the generation of inosine monophosphate. AICAR is being clinically used to treat and protect against cardiac ischemic injury. AICAR can enter cardiac cells to inhibit adenosine kinase and adenosine deaminase. It enhances the rate of nucleotide re-synthesis increasing adenosine generation from adenosine monophosphate only during conditions of myocardial ischemia. AICAR increases glucose uptake by inducing translocation of GLUT4 and/or by activating the p38 MAPK pathway. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map D007004 - Hypoglycemic Agents Corona-virus KEIO_ID A133 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Nornicotine

Nornicotine tartrate, (S)-(R-(r*,r*))-isomer

C9H12N2 (148.1)


Nornicotine is an alkaloid extracted from tobacco and related to nicotine but having a lower toxicity: used as an agricultural and horticultural insecticide. An alkaloid extracted from tobacco and related to nicotine but having a lower toxicity: used as an agricultural and horticultural insecticide. [HMDB] CONFIDENCE standard compound; EAWAG_UCHEM_ID 3280 CONFIDENCE standard compound; INTERNAL_ID 2228 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Dicyclomine

2-(Diethylamino)ethyl 1-cyclohexylcyclohexanecarboxylic acid

C19H35NO2 (309.2668)


Dicyclomine is only found in individuals that have used or taken this drug. It is a muscarinic antagonist used as an antispasmodic and in urinary incontinence. It has little effect on glandular secretion or the cardiovascular system. It does have some local anesthetic properties and is used in gastrointestinal, biliary, and urinary tract spasms. [PubChem]Action is achieved via a dual mechanism: (1) a specific anticholinergic effect (antimuscarinic) at the acetylcholine-receptor sites and (2) a direct effect upon smooth muscle (musculotropic). A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AA - Synthetic anticholinergics, esters with tertiary amino group C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Propoxur

2-(1-Methylethoxy)phenyl methylcarbamic acid

C11H15NO3 (209.1052)


CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7950; ORIGINAL_PRECURSOR_SCAN_NO 7947 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7933; ORIGINAL_PRECURSOR_SCAN_NO 7930 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7922; ORIGINAL_PRECURSOR_SCAN_NO 7920 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7940; ORIGINAL_PRECURSOR_SCAN_NO 7937 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7982; ORIGINAL_PRECURSOR_SCAN_NO 7979 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7967; ORIGINAL_PRECURSOR_SCAN_NO 7964 D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Doxepin

dimethyl(3-{9-oxatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene}propyl)amine

C19H21NO (279.1623)


Doxepin hydrochloride is a dibenzoxepin-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, doxepin does not affect mood or arousal, but may cause sedation. In depressed individuals, doxepin exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. Tertiary amine TCAs, such as doxepin and amitriptyline, are more potent inhibitors of serotonin reuptake than secondary amine TCAs, such as nortriptyline and desipramine. TCAs also down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. Doxepin has less sedative and anticholinergic effects than amitriptyline. See toxicity section below for a complete listing of side effects. Doxepin may be used to treat depression and insomnia. Unlabeled indications include chronic and neuropathic pain, and anxiety. Doxepin may also be used as a second line agent to treat idiopathic urticaria. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists EAWAG_UCHEM_ID 3676; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 3676

   

Oxybutynin

Benzeneacetic acid, alpha-cyclohexyl-alpha-hydroxy-, 4-(diethylamino)-2-butynyl ester

C22H31NO3 (357.2304)


Oxybutynin is an anticholinergic medication used to relieve urinary and bladder difficulties, including frequent urination and inability to control urination, by decreasing muscle spasms of the bladder. It competitively antagonizes the M1, M2, and M3 subtypes of the muscarinic acetylcholine receptor. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3025 Oxybutynin is an anticholinergic agent, which inhibits vascular Kv channels in a concentration-dependent manner, with an IC50 of 11.51 μM[1]. Oxybutynin is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Permethrin

(3-Phenoxyphenyl)methyl (+-)-cis,trans-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylic acid

C21H20Cl2O3 (390.0789)


Permethrin is only found in individuals that have used or taken this drug. It is a pyrethroid insecticide commonly used in the treatment of lice infestations and scabies. It is a yellow to light orange-brown, low melt-ing solid or viscous liquid.Permethrin acts on the nerve cell membrane to disrupt the sodium channel current by which the polarization of the membrane is regulated. Delayed repolarization and paralysis of the pests are the consequences of this disturbance. P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AC - Pyrethrines, incl. synthetic compounds D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

(-)-Maackiain

(1R,12R)-5,7,11,19-tetraoxapentacyclo[10.8.0.02,10.04,8.013,18]icosa-2,4(8),9,13(18),14,16-hexaen-16-ol

C16H12O5 (284.0685)


(-)-maackiain is the (-)-enantiomer of maackiain. It is an enantiomer of a (+)-maackiain. Maackiain is a natural product found in Tephrosia virginiana, Leptolobium bijugum, and other organisms with data available. (-)-Maackiain. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2035-15-6 (retrieved 2024-07-09) (CAS RN: 2035-15-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].

   

Propyzamide

3,5-Dichloro-N-(1,1-dimethyl-2-propyn-1-yl)benzamide

C12H11Cl2NO (255.0218)


CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4824; ORIGINAL_PRECURSOR_SCAN_NO 4823 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4820; ORIGINAL_PRECURSOR_SCAN_NO 4819 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9401; ORIGINAL_PRECURSOR_SCAN_NO 9399 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4852; ORIGINAL_PRECURSOR_SCAN_NO 4849 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9371; ORIGINAL_PRECURSOR_SCAN_NO 9366 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4851; ORIGINAL_PRECURSOR_SCAN_NO 4850 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4792; ORIGINAL_PRECURSOR_SCAN_NO 4790 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3175 CONFIDENCE standard compound; INTERNAL_ID 2321 CONFIDENCE standard compound; INTERNAL_ID 8467

   

Rottlerin

(2E) -1- [ 6- [ (3-Acetyl-2,4,6-trihydroxy-5-methylphenyl) methyl ] -5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl ] -3-phenyl-2-propene-1-one

C30H28O8 (516.1784)


Rottlerin is a chromenol that is 2,2-dimethyl-2H-chromene substituted by hydroxy groups at positions 5 and 7, a 3-acetyl-2,4,6-trihydroxy-5-methylbenzyl group at position 6 and a (1E)-3-oxo-1-phenylprop-1-en-3-yl group at position 8. A potassium channel opener, it is isolated from Mallotus philippensis. It has a role as an antineoplastic agent, an apoptosis inducer, a metabolite, a K-ATP channel agonist, an antihypertensive agent and an anti-allergic agent. It is an enone, a chromenol, a benzenetriol, a methyl ketone and an aromatic ketone. Rottlerin is a natural product found in Mallotus philippensis with data available. A chromenol that is 2,2-dimethyl-2H-chromene substituted by hydroxy groups at positions 5 and 7, a 3-acetyl-2,4,6-trihydroxy-5-methylbenzyl group at position 6 and a (1E)-3-oxo-1-phenylprop-1-en-3-yl group at position 8. A potassium channel opener, it is isolated from Mallotus philippensis. D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 1.546 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.549 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.548 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.550 Rottlerin, a natural product purified from Mallotus Philippinensis, is a specific PKC inhibitor, with IC50 values for PKCδ of 3-6 μM, PKCα,β,γ of 30-42 μM, PKCε,η,ζ of 80-100 μM. Rottlerin acts as a direct mitochondrial uncoupler, and stimulates autophagy by targeting a signaling cascade upstream of mTORC1. Rottlerin induces apoptosis via caspase 3 activation[1][2][3]. Rottlerin inhibits HIV-1 integration and Rabies virus (RABV) infection[4][5]. Rottlerin, a natural product purified from Mallotus Philippinensis, is a specific PKC inhibitor, with IC50 values for PKCδ of 3-6 μM, PKCα,β,γ of 30-42 μM, PKCε,η,ζ of 80-100 μM. Rottlerin acts as a direct mitochondrial uncoupler, and stimulates autophagy by targeting a signaling cascade upstream of mTORC1. Rottlerin induces apoptosis via caspase 3 activation[1][2][3]. Rottlerin inhibits HIV-1 integration and Rabies virus (RABV) infection[4][5].

   

Arecoline

1-methyl-3,6-dihydro-2H-pyridine-5-carboxylic acid methyl ester;hydrobromide

C8H13NO2 (155.0946)


Arecoline is a tetrahydropyridine that is 1,2,5,6-tetrahydropyridine with a methyl group at position 1, and a methoxycarbonyl group at position 3. An alkaloid found in the areca nut, it acts as an agonist of muscarinic acetylcholine. It has a role as a muscarinic agonist and a metabolite. It is a tetrahydropyridine, an enoate ester, a pyridine alkaloid and a methyl ester. An alkaloid obtained from the betel nut (Areca catechu), fruit of a palm tree. It is an agonist at both muscarinic and nicotinic acetylcholine receptors. It is used in the form of various salts as a ganglionic stimulant, a parasympathomimetic, and a vermifuge, especially in veterinary practice. It has been used as a euphoriant in the Pacific Islands. Arecoline is a natural product found in Piper betle and Areca catechu with data available. Arecoline is found in nuts. Arecoline is isolated from betel nuts Arecoline is an alkaloid natural product found in the areca nut, the fruit of the areca palm (Areca catechu). It is an oily liquid that is soluble in water, alcohols, and ether. Owing to its muscarinic and nicotinic agonist properties, arecoline has shown improvement in the learning ability of healthy volunteers. Since one of the hallmarks of Alzheimers disease is a cognitive decline, arecoline was suggested as a treatment to slow down this process and arecoline administered via i.v. route did indeed show modest verbal and spatial memory improvement in Alzheimers patients, though due to arecolines possible carcinogenic properties, it is not the first drug of choice for this degenerative disease. Arecoline has been shown to exhibit apoptotic, excitant and steroidogenic functions (A7876, A7878, A7879). Arecoline belongs to the family of Alkaloids and Derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. An alkaloid obtained from the betel nut (Areca catechu), fruit of a palm tree. It is an agonist at both muscarinic and nicotinic acetylcholine receptors. It is used in the form of various salts as a ganglionic stimulant, a parasympathomimetic, and a vermifuge, especially in veterinary practice. It has been used as a euphoriant in the Pacific Islands. Arecoline is found in nuts. Arecoline is isolated from betel nuts Arecoline is an alkaloid natural product found in the areca nut, the fruit of the areca palm (Areca catechu). It is an oily liquid that is soluble in water, alcohols, and ether. Owing to its muscarinic and nicotinic agonist properties, arecoline has shown improvement in the learning ability of healthy volunteers. Since one of the hallmarks of Alzheimers disease is a cognitive decline, arecoline was suggested as a treatment to slow down this process and arecoline administered via i.v. route did indeed show modest verbal and spatial memory improvement in Alzheimers patients, though due to arecolines possible carcinogenic properties, it is not the first drug of choice for this degenerative disease A tetrahydropyridine that is 1,2,5,6-tetrahydropyridine with a methyl group at position 1, and a methoxycarbonyl group at position 3. An alkaloid found in the areca nut, it acts as an agonist of muscarinic acetylcholine. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist

   

Gambogic acid

(2Z)-4-[12-hydroxy-8,21,21-trimethyl-5-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl)-14,18-dioxo-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4,6(11),9,12,15-pentaen-19-yl]-2-methylbut-2-enoic acid

C38H44O8 (628.3036)


Isolated from Gamboge resin (exudate of Garcinia morella). Gambogic acid is found in herbs and spices and fruits. Gambogic acid is found in fruits. Gambogic acid is isolated from Gamboge resin (exudate of Garcinia morella). Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM. Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM.

   

Vindoline

Methyl (1S,9S,10R,11S,12S,19S)-11-acetyloxy-12-ethyl-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.01,9.02,7.016,19]nonadeca-2(7),3,5,13-tetraene-10-carboxylate

C25H32N2O6 (456.226)


Vindoline is a vinca alkaloid, an alkaloid ester, an organic heteropentacyclic compound, a methyl ester, an acetate ester, a tertiary amino compound and a tertiary alcohol. It is a conjugate base of a vindolinium(1+). Vindoline is a natural product found in Catharanthus ovalis, Catharanthus trichophyllus, and other organisms with data available. Vindoline is an indole alkaloid that exhibits antimitotic activity by inhibiting microtubule assembly. (NCI) D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids C1744 - Multidrug Resistance Modulator Vindoline, a vinca alkaloid extracted from the leaves of Catharanthus roseus, weakly inhibits tubulin self-assembly[1]. Vindoline, a vinca alkaloid extracted from the leaves of Catharanthus roseus, weakly inhibits tubulin self-assembly[1].

   

Epibatidine

(+/-)-epibatidine

C11H13ClN2 (208.0767)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Methyl 2-hydroxybenzoate

Methyl salicylate, Pharmaceutical Secondary Standard; Certified Reference Material

C8H8O3 (152.0473)


Methyl salicylate appears as colorless yellowish or reddish liquid with odor of wintergreen. (USCG, 1999) Methyl salicylate is a benzoate ester that is the methyl ester of salicylic acid. It has a role as a flavouring agent, a metabolite and an insect attractant. It is a benzoate ester, a member of salicylates and a methyl ester. It is functionally related to a salicylic acid. Methyl salicylate (oil of wintergreen or wintergreen oil) is an organic ester naturally produced by many species of plants, particularly wintergreens. The compound was first extracted and isolated from plant species Gaultheria procumbens in 1843. It can be manufactured synthetically and it used as a fragrance, in foods, beverages, and liniments. It forms a colorless to yellow or reddish liquid and exhibits a characteristic odor and taste of wintergreen. For acute joint and muscular pain, methyl salicylate is used as a rubefacient and analgesic in deep heating liniments. It is used as a flavoring agent in chewing gums and mints in small concentrations and added as antiseptic in mouthwash solutions. Methyl Salicylate is a natural product found in Nepeta nepetella, Eupatorium cannabinum, and other organisms with data available. Methyl 2-hydroxybenzoate is found in beverages. Methyl 2-hydroxybenzoate is present in white wine, tea, porcini mushroom Boletus edulis, Bourbon vanilla, clary sage, red sage and fruits including cherry, apple, raspberry, papaya and plum. Methyl 2-hydroxybenzoate is found in leaves of Gaultheria procumbens (wintergreen). Methyl 2-hydroxybenzoate is a flavouring agent. Methyl 2-hydroxy benzoate is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Salicylic Acid (has active moiety); Clove Oil (part of); LIDOCAINE; MENTHOL; Methyl Salicylate (component of) ... View More ... Methyl 2-hydroxybenzoate, also known as methyl salicylate, 2-(methoxycarbonyl)phenol or 2-carbomethoxyphenol, belongs to the class of organic compounds known as o-hydroxybenzoic acid esters. These are benzoic acid esters where the benzene ring is ortho-substituted with a hydroxy group. Methyl 2-hydroxybenzoate is a mint, peppermint, and wintergreen tasting compound. Methyl 2-hydroxybenzoate is found, on average, in the highest concentration within hyssops and bilberries. Methyl 2-hydroxybenzoate has also been detected, but not quantified, in several different foods, such as chinese cinnamons, tamarinds, tea, mushrooms, and roselles. Minor metabolism may occur in various tissues but hepatic metabolism constitutes the majority of metabolic processes of absorbed methyl salicylate. Methyl 2-hydroxybenzoate is a potentially toxic compound. Present in white wine, tea, porcini mushroom Boletus edulis, Bourbon vanilla, clary sage, red sage and fruits including cherry, apple, raspberry, papaya and plum. For acute joint and muscular pain, Methyl 2-hydroxybenzoate is used as a rubefacient and analgesic in deep heating liniments. This is thought to mask the underlying musculoskeletal pain and discomfort. Severe toxicity can result in acute lung injury, lethargy, coma, seizures, cerebral edema, and death. Counter-irritation is believed to cause a soothing sensation of warmth. Methyl salicylate plays a role as a signaling molecule in plants. Present in white wine, tea, porcini mushroom Boletus edulis, Bourbon vanilla, clary sage, red sage and fruits including cherry, apple, raspberry, papaya and plum. Found in leaves of Gaultheria procumbens (wintergreen). Flavouring agent. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic A benzoate ester that is the methyl ester of salicylic acid. D018501 - Antirheumatic Agents D005404 - Fixatives Same as: D01087 Acquisition and generation of the data is financially supported in part by CREST/JST. Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4]. Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4].

   

Medrysone

(1S,2R,8S,10S,11S,14S,15S,17S)-14-acetyl-17-hydroxy-2,8,15-trimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C22H32O3 (344.2351)


Medrysone is only found in individuals that have used or taken this drug. It is a corticosteroid used in ophthalmology. [Wikipedia]There is no generally accepted explanation for the mechanism of action of ocular corticosteroids. However, corticosteroids are thought to act by the induction of phospholipase A2 inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor, arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Initially, the drug binds to the glucocorticoid receptor in the cytosol. This migrates to the nucleus and binds to genetic elements which cause activation and repression of the involved genes in the inflammatory pathway. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid Same as: D02289

   

Phenylacetylglutamine

(2S)-5-amino-5-oxo-2-[(2-phenylacetyl)amino]pentanoic acid

C13H16N2O4 (264.111)


Phenylacetylglutamine is a product formed from the conjugation of phenylacetate and glutamine. Technically, it is the amino acid acetylation product of phenylacetate (or phenylbutyrate after beta-oxidation). Phenylacetylglutamine is a normal constituent of human urine, but other mammals such as the dog, cat, rat, monkey, sheep, and horse do not excrete this compound. Phenylacetyl-CoA and L-glutamine react to form phenylacetylglutamine and coenzyme A. The enzyme (glutamine N-acetyl transferase) that catalyzes this reaction has been purified from human liver mitochondria and shown to be a polypeptide species distinct from glycine-N-acyltransferase. Phenylacetylglutamine is a major nitrogenous metabolite that accumulates in uremia (PMID: 2791363, 8972626). It has been shown that over 50\\\% of urine phenylacetylglutamine may be derived from kidney conjugation of free plasma phenylacetic acid and/or from the kidneys preferential filtration of conjugated phenylacetic acid (PMID: 6420430). Phenylacetylglutamine is a microbial metabolite found in Christensenellaceae, Lachnospiraceae and Ruminococcaceae (PMID: 26241311). Phenylacetylglutamine is a product formed by the conjugation of phenylacetate and glutamine. Technically it is the amino acid acetylation product of phenylacetate (or phenylbutyrate after beta-oxidation). Phenylacetylglutamine is a normal constituent of human urine, but other mammals including the dog, cat, rat, monkey, sheep and horse do not excrete this compound. Phenylacetyl CoA and glutamine react to form phenylacetyl glutamine and Coenzyme A. The enzyme (Glutamine N-acetyl transferase) that catalyzes this reaction has been purified from human liver mitochondria and shown to be a distinct polypeptide species from glycine-N-acyltransferase. Phenylacetylglutamine is a major nitrogenous metabolite that accumulates in uremia. (PMID: 2791363; PMID: 8972626). It has been shown that over 50\\\% of urine phenylacetylglutamine may be derived from kidney conjugation of free plasma phenylacetic acid and/or from the kidneys preferential filtration of conjugated phenylacetic acid (PMID: 6420430) Phenylacetylglutamine is a colonic microbial metabolite from amino acid fermentation.

   

Ipratropium bromide

(endo,Syn)-(+-)-3-(3-hydroxy-1-oxo-2-phenylpropoxy)-8-methyl-8-(1-methylethyl)-8-azoniabicyclo[3.2.1]octane bromide

C20H30NO3+ (332.2226)


Ipratropium bromide is only found in individuals that have used or taken this drug. It is a muscarinic antagonist structurally related to atropine but often considered safer and more effective for inhalation use. It is used for various bronchial disorders, in rhinitis, and as an antiarrhythmic. [PubChem]Ipratropium bromide is an anticholinergic agent. It blocks muscarinic cholinergic receptors, without specificity for subtypes, resulting in a decrease in the formation of cyclic guanosine monophosphate (cGMP). Most likely due to actions of cGMP on intracellular calcium, this results in decreased contractility of smooth muscle. D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

Clofilium

Clofilium

C21H37ClN+ (338.2614)


C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators

   

Choline

(2-hydroxyethyl)trimethylazanium

[C5H14NO]+ (104.1075)


Choline is a basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Choline is now considered to be an essential vitamin. While humans can synthesize small amounts (by converting phosphatidylethanolamine to phosphatidylcholine), it must be consumed in the diet to maintain health. Required levels are between 425 mg/day (female) and 550 mg/day (male). Milk, eggs, liver, and peanuts are especially rich in choline. Most choline is found in phospholipids, namely phosphatidylcholine or lecithin. Choline can be oxidized to form betaine, which is a methyl source for many reactions (i.e. conversion of homocysteine into methionine). Lack of sufficient amounts of choline in the diet can lead to a fatty liver condition and general liver damage. This arises from the lack of VLDL, which is necessary to transport fats away from the liver. Choline deficiency also leads to elevated serum levels of alanine amino transferase and is associated with increased incidence of liver cancer. Nutritional supplement. Occurs free and combined in many animal and vegetable foods with highest concentrations found in egg yolk, meat, fish, milk, cereaks and legumes Choline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=62-49-7 (retrieved 2024-06-29) (CAS RN: 62-49-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Hexachlorophene

3,4,6-trichloro-2-[(2,3,5-trichloro-6-hydroxyphenyl)methyl]phenol

C13H6Cl6O2 (403.8499)


A chlorinated bisphenol antiseptic with a bacteriostatic action against Gram-positive organisms, but much less effective against Gram-negative organisms. It is mainly used in soaps and creams and is an ingredient of various preparations used for skin disorders. (From Martindale, The Extra Pharmacopoeia, 30th ed, p797) CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5466; ORIGINAL_PRECURSOR_SCAN_NO 5464 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5477; ORIGINAL_PRECURSOR_SCAN_NO 5475 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5465; ORIGINAL_PRECURSOR_SCAN_NO 5464 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5448; ORIGINAL_PRECURSOR_SCAN_NO 5447 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5472; ORIGINAL_PRECURSOR_SCAN_NO 5470 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5445; ORIGINAL_PRECURSOR_SCAN_NO 5443 D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8355 D000890 - Anti-Infective Agents

   

Brucine

(8ξ,12ξ)-2,3-dimethoxystrychnidin-10-one

C23H26N2O4 (394.1892)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D007155 - Immunologic Factors CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2329 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.545 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.540 ORIGINAL_ACQUISITION_NO 5860; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; ORIGINAL_PRECURSOR_SCAN_NO 5859 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5850; ORIGINAL_PRECURSOR_SCAN_NO 5847 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5870; ORIGINAL_PRECURSOR_SCAN_NO 5868 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5860; ORIGINAL_PRECURSOR_SCAN_NO 5859 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5841; ORIGINAL_PRECURSOR_SCAN_NO 5839 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5876; ORIGINAL_PRECURSOR_SCAN_NO 5873 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5855; ORIGINAL_PRECURSOR_SCAN_NO 5853 [Raw Data] CBA35_Brucine_pos_40eV_1-3_01_1629.txt [Raw Data] CBA35_Brucine_pos_10eV_1-3_01_1618.txt [Raw Data] CBA35_Brucine_pos_30eV_1-3_01_1628.txt [Raw Data] CBA35_Brucine_pos_20eV_1-3_01_1627.txt [Raw Data] CBA35_Brucine_pos_50eV_1-3_01_1630.txt

   

Dofetilide

N-[4-(2-{[2-(4-methanesulfonamidophenyl)ethyl](methyl)amino}ethoxy)phenyl]methanesulfonamide

C19H27N3O5S2 (441.1392)


Dofetilide is a class III antiarrhythmic agent that is approved by the Food and Drug Administration (FDA) for the maintenance of sinus rhythm in individuals prone to the formation of atrial fibrillation and flutter, and for the chemical cardioversion to sinus rhythm from atrial fibrillation and flutter. [Wikipedia] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Linopirdine

1-phenyl-3,3-bis[(pyridin-4-yl)methyl]-2,3-dihydro-1H-indol-2-one

C26H21N3O (391.1685)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker D020011 - Protective Agents Same as: D04741

   

Phenelzine

Warner chilcott brand OF phenelzine sulfate

C8H12N2 (136.1)


Phenelzine is only found in individuals that have used or taken this drug. It is an irreversible non-selective inhibitor of monoamine oxidase. May be used to treat major depressive disorder.Although the exact mechanism of action has not been determined, it appears that the irreversible, nonselective inhibition of MAO by phenelzine relieves depressive symptoms by causing an increase in the levels of serotonin, norepinephrine, and dopamine in the neuron. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor

   

Riluzole

6-(trifluoromethoxy)-1,3-benzothiazol-2-amine

C8H5F3N2OS (234.0075)


Riluzole is only found in individuals that have used or taken this drug. It is a glutamate antagonist (receptors, glutamate) used as an anticonvulsant (anticonvulsants) and to prolong the survival of patients with amyotrophic lateral sclerosis. [PubChem]The mode of action of riluzole is unknown. Its pharmacological properties include the following, some of which may be related to its effect: 1) an inhibitory effect on glutamate release (activation of glutamate reuptake), 2) inactivation of voltage-dependent sodium channels, and 3) ability to interfere with intracellular events that follow transmitter binding at excitatory amino acid receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents N - Nervous system Riluzole is an anticonvulsant agent and belongs to the family of use-dependent Na+ channel blocker which can also inhibit GABA uptake with an IC50 of 43 μM.

   

Tocainide

AstraZeneca brand OF tocainide hydrochloride

C11H16N2O (192.1263)


Tocainide is only found in individuals that have used or taken this drug. It is an antiarrhythmic agent which exerts a potential- and frequency-dependent block of sodium channels. [PubChem]Tocainide acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. Tocainide binds preferentially to the inactive state of the sodium channels.The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Tolterodine

2-[(1R)-3-[bis(propan-2-yl)amino]-1-phenylpropyl]-4-methylphenol

C22H31NO (325.2406)


Tolterodine is only found in individuals that have used or taken this drug. It is an antimuscarinic drug that is used to treat urinary incontinence. Tolterodine acts on M2 and M3 subtypes of muscarinic receptors.Both tolterodine and its active metabolite, 5-hydroxymethyltolterodine, act as competitive antagonists at muscarinic receptors. This antagonism results in inhibition of bladder contraction, decrease in detrusor pressure, and an incomplete emptying of the bladder. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tolterodine(PNU-200583) is a potent muscarinic receptor antagonists that show selectivity for the urinary bladder over salivary glands in vivo. IC50 Value: Target: mAChR in vitro: Carbachol-induced contractions of isolated guinea pig bladder were effectively inhibited by tolterodine (IC50 14 nM) and 5-HM (IC50 5.7 nM). The IC50 values were in the microM range and the antimuscarinic potency of tolterodine was 27, 200 and 370-485 times higher, respectively, than its potency in blocking histamine receptors, alpha-adrenoceptors and calcium channels. The active metabolite, 5-HM, was >900 times less potent at these sites than at bladder muscarinic receptors [1]. in vivo: Tolterodine was extensively metabolized in vivo [2]. In the passive-avoidance test, tolterodine at 1 or 3 mg/kg had no effect on memory; the latency to cross and percentage of animals crossing were comparable to controls. In contrast, scopolamine induced a memory deficit; the latency to cross was decreased, and the number of animals crossing was increased [3].

   

Dichloroacetate

2,2-dichloroacetic acid

C2H2Cl2O2 (127.9432)


An organochlorine compound comprising acetic acid carrying two chloro substituents at the 2-position. It occurs in nature in seaweed, Asparagopsis taxiformis. KEIO_ID D160 KEIO_ID D034

   

15-KETE

(5Z,8Z,11Z,13E)-15-Ketoeicosa-5,8,11,13-tetraenoic acid

C20H30O3 (318.2195)


15-OxoETE or 15-KETE is a keto-containing leukotriene derivative produced by oxidation of the 15-hydroxyl of 15-HETE. [HMDB] 15-OxoETE or 15-KETE is a keto-containing leukotriene derivative produced by oxidation of the 15-hydroxyl of 15-HETE.

   

Pimaric acid

Dextropimaric acid

C20H30O2 (302.2246)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.561 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.568 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.560

   

Himbacine

(+)-Himbacine

C22H35NO2 (345.2668)


A piperidine alkaloid that is decahydronaphtho[2,3-c]furan-1(3H)-one substituted by a methyl group at position 3 and a 2-[(2R,6S)-1,6-dimethylpiperidin-2-yl]ethenyl group at position 4. It has been isolated from the bark of Australian magnolias. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.814 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.809

   

Sennoside A

(9R)-9-[(9R)-2-carboxy-4-hydroxy-10-oxo-5-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dihydroanthracen-9-yl]-4-hydroxy-10-oxo-5-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dihydroanthracene-2-carboxylic acid

C42H38O20 (862.1956)


Senna (powdered) is a yellow-brown powder with a slight odor and taste. (NTP, 1992) Sennoside A is a member of the class of sennosides that is rel-(9R,9R)-9,9,10,10-tetrahydro-9,9-bianthracene-2,2-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4, by beta-D-glucopyranosyloxy groups at positions 5 and 5, and by oxo groups at positions 10 and 10. The exact stereochemisty at positions 9 and 9 is not known - it may be R,R (as shown) or S,S. It is a member of sennosides and an oxo dicarboxylic acid. Senna (Cassia species) is a popular herbal laxative that is available without prescription. Senna is generally safe and well tolerated, but can cause adverse events including clinically apparent liver injury when used in high doses for longer than recommended periods. Sennoside A is a natural product found in Rheum officinale, Rheum palmatum, and other organisms with data available. Preparations of SENNA PLANT. They contain sennosides, which are anthraquinone type CATHARTICS and are used in many different preparations as laxatives. A member of the class of sennosides that is rel-(9R,9R)-9,9,10,10-tetrahydro-9,9-bianthracene-2,2-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4, by beta-D-glucopyranosyloxy groups at positions 5 and 5, and by oxo groups at positions 10 and 10. The exact stereochemisty at positions 9 and 9 is not known - it may be R,R (as shown) or S,S. Cathartic principle from rhubarb. Sennoside A is found in green vegetables and garden rhubarb. Sennoside A is found in garden rhubarb. Cathartic principle from rhubar D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].

   

Paeonol

1-(2-hydroxy-4-methoxyphenyl)ethan-1-one

C9H10O3 (166.063)


A polyphenol metabolite detected in biological fluids [PhenolExplorer] Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.

   

5alpha-Cholestane

(1S,2S,7R,10R,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecane

C27H48 (372.3756)


5alpha-Cholestane is found in potato. Cholestane is a saturated 27-carbon steroid precursor which serves as the basis for many organic molecules. (Wikipedia). Cholestane is a saturated 27-carbon steroid precursor which serves as the basis for many organic molecules. 5alpha-Cholestane is found in potato.

   

Phyllanthin

4-[(2S,3S)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-1,2-dimethoxy-benzene

C24H34O6 (418.2355)


Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].

   

Prenol

3-Methyl-2-butenyl alcohol

C5H10O (86.0732)


Prenol is found in blackcurrant. Prenol is a constituent of ylang-ylang and hop oils. Prenol is found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Prenol is a flavouring ingredient Constituent of ylang-ylang and hop oils. Found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Flavouring ingredient. 3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

penitrem A

NCGC00163403-03_C37H44ClNO6_(2R,3S,3aR,4aS,4bS,6aR,7S,7dR,8S,9aR,14bS,14cR,16aS)-12-Chloro-2-isopropenyl-14b,14c,17,17-tetramethyl-10-methylene-3,3a,6,6a,7,8,9,9a,10,11,14,14b,14c,15,16,16a-hexadecahydro-2H,4bH-7,8-(epoxymethano)cyclobuta[5,6]benzo[1,2-e]oxireno[4,4a]chromeno[5,6:6,7]indeno[1,2-b]indole-3,4b,7d(5H)-triol

C37H44ClNO6 (633.2857)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1) Penitrem A is an indole diterpene neurotoxic alkaloid produced by Penicillium, acts as a selective BK channel antagonist with antiproliferative and anti-invasive activities against multiple malignancies. Penitrem A increases the spontaneous release of endogenous glutamate, gamma-aminobutyric acid (GABA) and aspartate from cerebrocortical synaptosomes, and induces tremorgenic syndromes in animals[1][2].

   

5,6-Epoxy-8,11,14-eicosatrienoic acid

5,6-Epoxy-8,11,14-eicosatrienoic acid, (2alpha,3alpha(2Z,5Z,8Z))-isomer

C20H32O3 (320.2351)


5,6-Epoxy-8,11,14-eicosatrienoic acid is an Epoxyeicosatrienoic acid (EET), a metabolite of arachidonic acid. The epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113) [HMDB] 5,6-Epoxy-8,11,14-eicosatrienoic acid is an Epoxyeicosatrienoic acid (EET), a metabolite of arachidonic acid. The epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113).

   

1-Butanol

Alcohol, N-butyl

C4H10O (74.0732)


1-butanol, also known as 1-butyl alcohol or 1-hydroxybutane, is a member of the class of compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, 1-butanol is considered to be a fatty alcohol lipid molecule. 1-butanol is soluble (in water) and an extremely weak acidic compound (based on its pKa). 1-butanol can be found in a number of food items such as sugar apple, kumquat, cherry tomato, and angelica, which makes 1-butanol a potential biomarker for the consumption of these food products. 1-butanol can be found primarily in blood, feces, and saliva, as well as throughout most human tissues. 1-butanol exists in all eukaryotes, ranging from yeast to humans. Moreover, 1-butanol is found to be associated with diabetes mellitus type 2. The largest use of n-butanol is as an industrial intermediate, particularly for the manufacture of butyl acetate (itself an artificial flavorant and industrial solvent). It is a petrochemical, manufactured from propylene and usually used close to the point of manufacture. Estimated production figures for 1997 are: United States 784,000 tonnes; Western Europe 575,000 tonnes; Japan 225,000 tonnes . 1-Butanol, which is also known as n-butanol or 1-butanol or butyl alcohol (sometimes also called biobutanol when produced biologically), is an alcohol with a 4 carbon structure and the molecular formula of C4H10O. It is primarily used as a solvent, as an intermediate in chemical synthesis, and as a fuel. There are four isomeric structures for butanol. The straight chain isomer with the alcohol at an internal carbon is sec-butanol or 2-butanol. The branched isomer with the alcohol at a terminal carbon is isobutanol, and the branched isomer with the alcohol at the internal carbon is tert-butanol. 1-Butanol is produced in small amounts by gut microbial fermenetation through the butanoate metabolic pathway. It has been found in Bacillus, Clostridium, Escherichia, Lactobacillus, Pseudomonas, Saccharomyces, Synechococcus and Thermoanaerobacterium.

   

Potassium

Liver regeneration factor 1

K+ (38.9637)


Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675) [HMDB]. Potassium is found in many foods, some of which are half-highbush blueberry, liquor, grouper, and squashberry. Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675).

   

Nopaline

N-[(1S)-4-carbamimidamido-1-carboxybutyl]-D-glutamic acid

C11H20N4O6 (304.1383)


   

GTPgammaS

5-Guanosine-diphosphate-monothiophosphate

C10H16N5O13P3S (538.9678)


   

METHYLAZOXYMETHANOL

METHYLAZOXYMETHANOL

C2H6N2O2 (90.0429)


D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens

   

stylopine

6,7,12b,13e-Tetrahydro-4H-bis[1,3]benzodioxolo[5,6-a:4,5- g]quinolizine

C19H17NO4 (323.1158)


   

Vanylglycol

1-(4-hydroxy-3-methoxyphenyl)ethane-1,2-diol

C9H12O4 (184.0736)


Vanylglycol, also known as 3-Methoxy-4-hydroxyphenylethyleneglycol (MHPG), belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is synthesized from endogenous epinephrine and norepinephrine in vivo. It is found in brain, blood, CSF, and urine, where its concentrations are used to measure catecholamine turnover. Catecholamines play an important role in platelet activation and aggregation, epinephrine being the most potent one. Vanylglycol and pyrocatechol can be biosynthesized from 3,4-dihydroxyphenylglycol and guaiacol; which is catalyzed by the enzyme catechol O-methyltransferase. Vanylglycol is a O-methylated metabolite of normetanephrine. In humans, vanylglycol is involved in the metabolic disorder called tyrosinemia in newborns. Alcohol consumption increases the level of vanylglycol in urine and CSF. Vanylglycol is found normally in urine, in plasma and cerebrospinal fluid. Outside of the human body, vanylglycol has been detected, but not quantified in several different foods, such as blackcurrants, chinese bayberries, elderberries, oriental wheats, and poppies.

   

Bretylium

2-Bromo-N-ethyl-N,N-dimethylbenzenemethanaminium

C11H17BrN+ (242.0544)


Bretylium blocks the release of noradrenaline from the peripheral sympathetic nervous system, and is used in emergency medicine, cardiology, and other specialties for the acute management of ventricular tachycardia and ventricular fibrillation. The primary mode of action for bretylium is thought to be inhibition of voltage-gated K(+) channels. Recent evidence has shown that bretylium may also inhibit the Na,K-ATPase by binding to the extracellular K-site. C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

   

Diphenidol

SmithKline beecham brand OF diphenidol hydrochloride

C21H27NO (309.2093)


Diphenidol is only found in individuals that have used or taken this drug. It is an antiemetic agent used in the treatment of vomiting and vertigo. Diphenidol overdose may result in serious toxicity in children.The mechanism by which diphenidol exerts its antiemetic and antivertigo effects is not precisely known. It is thought to diminish vestibular stimulation and depress labyrinthine function and as an antimuscarinic agent. An action on the medullary chemoreceptive trigger zone may also be involved in the antiemetic effect. Diphenidol has no significant sedative, tranquilizing, or antihistaminic action. It has a weak peripheral anticholinergic effect. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents

   

m-Xylene

1,3-Dimethylbenzene

C8H10 (106.0782)


M-xylene, also known as 1,3-dimethylbenzene or M-xylol, is a member of the class of compounds known as M-xylenes. M-xylenes are aromatic compounds that contain a m-xylene moiety, which is a monocyclic benzene carrying exactly two methyl groups at the 1- and 3-positions. M-xylene is a plastic tasting compound found in black walnut, parsley, and safflower, which makes M-xylene a potential biomarker for the consumption of these food products. M-xylene can be found primarily in blood and feces. M-xylene exists in all eukaryotes, ranging from yeast to humans. M-xylene is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. m-Xylene (meta-xylene) is an aromatic hydrocarbon. It is one of the three isomers of dimethylbenzene known collectively as xylenes. The m- stands for meta-, indicating that the two methyl groups in m-xylene occupy positions 1 and 3 on a benzene ring. It is in the positions of the two methyl groups, their arene substitution pattern, that it differs from the other isomers, o-xylene and p-xylene. All have the same chemical formula C6H4(CH3)2. All xylene isomers are colorless and highly flammable . If the compound has been ingested, rapid gastric lavage should be performed using 5\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). m-Xylene, also known as 1,3-xylene or m-dimethylbenzene, belongs to the class of organic compounds known as m-xylenes. These are aromatic compounds that contain a m-xylene moiety, which is a monocyclic benzene carrying exactly two methyl groups at the 1- and 3-positions. The conversion m-xylene to isophthalic acid entails catalytic oxidation. m-Xylene (meta-xylene) is an aromatic hydrocarbon. m-Xylene is possibly neutral. m-Xylene is a plastic tasting compound. m-xylene is found, on average, in the highest concentration in safflowers. m-xylene has also been detected, but not quantified, in black walnuts and parsley. This could make m-xylene a potential biomarker for the consumption of these foods. Xylenes are not acutely toxic, for example the LD50 (rat, oral) is 4300 mg/kg. m-Xylene is a potentially toxic compound. Concerns with xylenes focus on narcotic effects. The m- stands for meta-, indicating that the two methyl groups in m-xylene occupy positions 1 and 3 on a benzene ring. All xylene isomers are colorless and highly flammable. Petroleum contains about 1 weight percent xylenes.

   

(2S,4R,5S)-Muscarine

Trimethyl(tetrahydro-4-hydroxy-5-methylfurfuryl)-ammonium

C9H20NO2+ (174.1494)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists Main toxic constituent of the fly fungus Amanita muscaria and various Inocybe specie

   

Oxotremorine

1-[4-(pyrrolidin-1-yl)but-2-yn-1-yl]pyrrolidin-2-one

C12H18N2O (206.1419)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists

   

Pirenzepine

2-[2-(4-methylpiperazin-1-yl)acetyl]-2,4,9-triazatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3(8),4,6,11,13-hexaen-10-one

C19H21N5O2 (351.1695)


An antimuscarinic agent that inhibits gastric secretion at lower doses than are required to affect gastrointestinal motility, salivary, central nervous system, cardiovascular, ocular, and urinary function. It promotes the healing of duodenal ulcers and due to its cytoprotective action is beneficial in the prevention of duodenal ulcer recurrence. It also potentiates the effect of other antiulcer agents such as cimetidine and ranitidine. It is generally well tolerated by patients. [PubChem] A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents

   

Diacetylmonoxime

3-hydroxyiminobutan-2-one

C4H7NO2 (101.0477)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004793 - Enzyme Reactivators D004791 - Enzyme Inhibitors D004396 - Coloring Agents

   

hexamethonium

hexamethonium

C12H30N2+2 (202.2409)


C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D006584 - Hexamethonium Compounds D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Tetraethylammonium

Tetraethylammonium

C8H20N+ (130.1596)


D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators

   

Sertindole

1-(2-(4-(5-Chloro-1-(4-fluorophenyl)-1H-indol-3-yl)-1-piperidinyl)ethyl)-2-imidazolidinone

C24H26ClFN4O (440.1779)


Sertindole, a neuroleptic, is one of the newer antipsychotic medications available. Serdolect is developed by the Danish pharmaceutical company H. Lundbeck. Like the other atypical antipsychotics, it has activity at dopamine and serotonin receptors in the brain. It is used in the treatment of schizophrenia. It is classified chemically as a phenylindole derivative. It was first marketed in 1996 in several European countries before being withdrawn two years later because of numerous cardiac adverse effects. It has once again been approved and should soon be available on the French and Australian market. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AE - Indole derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist Sertindole (Lu 23-174) is an orally active 5-HT2A, 5-HT2C, dopamine D2, and αl-adrenergic receptors antagonist. Sertindole shows antipsychotic activity and anti-proliferative activity to multiple cancer cells[1][2][3].

   

Phenformin

1-carbamimidamido-N-(2-phenylethyl)methanimidamide

C10H15N5 (205.1327)


A biguanide hypoglycemic agent with actions and uses similar to those of metformin. Although it is generally considered to be associated with an unacceptably high incidence of lactic acidosis, often fatal, it is still available in some countries. (From Martindale, The Extra Pharmacopoeia, 30th ed, p290) A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides

   

24,25-Dihydroxyvitamin D

(6R)-6-[(1R,3aS,4E,7aR)-4-{2-[(1Z,5R)-5-hydroxy-2-methylidenecyclohexylidene]ethylidene}-7a-methyl-octahydro-1H-inden-1-yl]-2-methylheptane-2,3-diol

C27H44O3 (416.329)


24,25-Dihydroxyvitamin D (24R,25(OH)2D3) circulates in blood at concentrations about 1000 times higher than 1alpha,25(OH)2D3. 24-Hydroxylase is present in the proximal convoluted tubule cells of the kidney and in virtual all target cells of 1alpha,25(OH)2D3. Interestingly, 1alpha,25(OH)2D3 is a very strong inducer of 24-hydroxylase activity and 24R,25(OH)2D3 formation. Also parathyroid hormone (PTH) regulates 24-hydroxylase activity but in a tissue specific manner, i.e. inhibitory in the kidney while a synergistic effect together with 1alpha,25(OH)2D3 is observed in osteoblasts. Generally, 24-hydroxylation has been considered the first step in the degradation pathway of 1alpha,25(OH)2D3 and 25-(OH)D3. However, through the past decades data have accumulated that 24R,25(OH)2D3 is not merely a degradation product but has effects on its own. Classic studies have demonstrated the significance of 24R,25(OH)2D3 for normal chicken egg hatchability and calcium and phosphorus homeostasis. More recently it became apparent that 24R,25(OH)2D3 also has distinct effects on cartilage in particular the resting zone cells. 24R,25(OH)2D3 stimulates osteocalcin synthesis in human osteoblasts. 24R,25(OH)2D3 plays a role in bone metabolism but that it acts in concert with 1alpha,25(OH)2D3 to obtain an optimal effect. (PMID: 11179746). D018977 - Micronutrients > D014815 - Vitamins > D004100 - Dihydroxycholecalciferols D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols D000077264 - Calcium-Regulating Hormones and Agents D050071 - Bone Density Conservation Agents

   
   

beta-Selinene

(+)-beta-selinene;(4aR,7R,8aS)-7-isopropenyl-4a-methyl-1-methylenedecahydronaphthalene;[4aR-(4aalpha,7alpha,8abeta)]-decahydro-4a-methyl-1-methylene-7-(1-methylethenyl)-naphthalene

C15H24 (204.1878)


Constituent of celery oiland is) also from Cyperus rotundus (nutgrass) and Humulus lupulus (hops). beta-Selinene is found in many foods, some of which are safflower, star anise, chinese cinnamon, and allspice. beta-Selinene is found in alcoholic beverages. beta-Selinene is a constituent of celery oil. Also from Cyperus rotundus (nutgrass) and Humulus lupulus (hops)

   

Selagine

(13Z)-1-amino-13-ethylidene-11-methyl-6-azatricyclo[7.3.1.02,7]trideca-2(7),3,11-trien-5-one

C15H18N2O (242.1419)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents D004791 - Enzyme Inhibitors (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (±)-Huperzine A, an active Lycopodium alkaloid extracted from traditional Chinese herb, is a potent, selective and reversible acetylcholinesterase (AChE) inhibitor and has been widely used in China for the treatment of Alzheimer's disease (AD). IC50 value: Target: AChE (±)-Huperzine A exhibited protective effects against d-gal-induced hepatotoxicity and inflamm-aging by inhibiting AChE activity and via the activation of the cholinergic anti-inflammatory pathway. The (±)-Huperzine A mechanism might be involved in the inhibition of DAMPs-mediated NF-κB nuclear localization and activation. (±)-Huperzine A is a potential therapeutic agent for Alzheimer's disease. (±)-Huperzine A, an active Lycopodium alkaloid extracted from traditional Chinese herb, is a potent, selective and reversible acetylcholinesterase (AChE) inhibitor and has been widely used in China for the treatment of Alzheimer's disease (AD). IC50 value: Target: AChE (±)-Huperzine A exhibited protective effects against d-gal-induced hepatotoxicity and inflamm-aging by inhibiting AChE activity and via the activation of the cholinergic anti-inflammatory pathway. The (±)-Huperzine A mechanism might be involved in the inhibition of DAMPs-mediated NF-κB nuclear localization and activation. (±)-Huperzine A is a potential therapeutic agent for Alzheimer's disease.

   

Carpaine

13,26-dimethyl-2,15-dioxa-12,25-diazatricyclo[22.2.2.2¹¹,¹⁴]triacontane-3,16-dione

C28H50N2O4 (478.377)


Pseudocarpaine is found in fruits. Minor alkaloid from leaves of Carica papaya (papaya Alkaloid from leaves of Carica papaya (papaya)

   

beta-Cyfluthrin

(R,S)-alpha-Cyano-4-fluoro-3-phenoxybenzyl-(1R,S)-cis,trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid

C22H18Cl2FNO3 (433.0648)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents > P03BA - Pyrethrines D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals Same as: D07761

   

Cyhalothrin

Cyclopropanecarboxylicacid, 3-[(1Z)-2-chloro-3,3,3-trifluoro-1-propen-1-yl]-2,2-dimethyl-,(S)-cyano(3-phenoxyphenyl)methyl ester, (1R,3R)-

C23H19ClF3NO3 (449.1005)


D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals Same as: D07762

   

3,3',4,4'-Tetrachlorobiphenyl

3,4,3,4-Tetra coplanar polychlorinated biphenyl

C12H6Cl4 (289.9224)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

SARIN

methyl(propan-2-yloxy)phosphinoyl fluoride

C4H10FO2P (140.0402)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents D004791 - Enzyme Inhibitors

   

Xanomeline tartrate

5-[4-(hexyloxy)-1,2,5-thiadiazol-3-yl]-1-methyl-1,2,3,6-tetrahydropyridine

C14H23N3OS (281.1562)


Same as: D06330 Xanomeline, as an effective and selective muscarinic type 1 and type 4 (M1/M4) receptor agonist, increases neuronal excitability. Xanomeline can be used for the research of neurological disorders, such as schizophrenia[1][2].

   

2-Amino-9,10-epoxy-8-oxodecanoic acid

2-amino-8-oxo-9,10-epoxy-decanoic acid

C10H17NO4 (215.1158)


   

3,5-dihydroxyphenylglyoxylic acid

2-(3,5-Dihydroxyphenyl)-2-oxoacetic acid

C8H6O5 (182.0215)


   

Pyrrolnitrin

Pyrrolnitrin;3-Chloro-4-(3-chloro-2-nitrophenyl)pyrrole_HCD50

C10H6Cl2N2O2 (255.9806)


A member of the class of pyrroles carrying chloro and 3-chloro-2-nitrophenyl substituents at positions 3 and 4 respectively. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D01094

   

Nedaplatin

Nedaplatin

C2H8N2O3Pt (303.0183)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent > C1450 - Platinum Compound D000970 - Antineoplastic Agents Same as: D01416

   

24-Hydroxycholesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5S)-5-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C27H46O2 (402.3498)


24-Hydroxycholesterol (24OHC) is almost exclusively formed in the brain. The enzymatic conversion of CNS cholesterol to 24OHC, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level as cholesterol 24-hydroxylase (EC 1.14.13.98, CYP46) and is mainly located in neurons. Like other oxysterols, 24OHC is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24OHC in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimers disease. Patients with active demyelinating diseases had increased levels of 24OHC in cerebrospinal fluid (CSF). Patients with Alzheimers disease have slightly increased levels of 24OHC in CSF. Patients with multiple sclerosis have a tendency to have higher levels of 24OHC during active periods. (PMID: 15061359, 14574622). 24-Hydroxycholesterol has been found to accumulate in hereditary hypercholesterolemia, an inborn error of metabolism. 24-Hydroxycholesterol (24OHC) is almost exclusively formed in the brain. The enzymatic conversion of CNS cholesterol to 24OHC, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level as cholesterol 24-hydroxylase (EC 1.14.13.98, CYP46) and is mainly located in neurons. Like other oxysterols, 24OHC is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24OHC in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimers disease. Patients with active demyelinating diseases had increased levels of 24OHC in cerebrospinal fluid (CSF). Patients with Alzheimers disease have slightly increased levels of 24OHC in CSF. Patients with multiple sclerosis have a tendency to have higher levels of 24OHC during active periods. (PMID: 15061359, 14574622) [HMDB] 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3]. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3].

   

Adenophostin A

Adenophostin A

C16H26N5O18P3 (669.0486)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Fampridine

4-aminopyridine

C5H6N2 (94.0531)


D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker N - Nervous system Same as: D04127

   

Phenamil

3,5-Diamino-6-chloro-N-(N-phenylcarbamimidoyl)pyrazine-2-carboximidate

C12H12ClN7O (305.0792)


   

10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one

10,10-bis[(pyridin-4-yl)methyl]-9,10-dihydroanthracen-9-one

C26H20N2O (376.1576)


   

TRAM-34

1-((2-chlorophenyl)diphenylmethyl)-1H-pyrazole

C22H17ClN2 (344.108)


   

tetrapentylammonium

tetrapentylammonium

C20H44N+ (298.3474)


   

Retigabine

Ethyl N-(2-amino-4-(4-fluorobenzylamino)phenyl)carbamate hydrochloride

C16H18FN3O2 (303.1383)


C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D049990 - Membrane Transport Modulators Same as: D09569

   

1-EBIO

1-Ethyl-1,3-dihydro-2H-benzimidazol-2-one

C9H10N2O (162.0793)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   
   

Correolide

Correolide

C40H52O16 (788.3255)


D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators

   

2-Ethoxyethanol

Ether monoethylique de lethylene-glycol

C4H10O2 (90.0681)


2-Ethoxyethanol is a diluent in colour additive mixtures for marking food. 2-Ethoxyethanol, also known by the trademark Cellosolve or ethyl cellosolve, is a solvent used widely in commercial and industrial applications. It is a clear, colorless, nearly odorless liquid that is miscible with water, ethanol, diethyl ether, acetone, and ethyl acetate. As with other glycol ethers, 2-ethoxyethanol has the useful property of being able to dissolve chemically diverse compounds. It will dissolve oils, resins, grease, waxes, nitrocellulose, and lacquers. This is an ideal property as a multi-purpose cleaner and therefore 2-ethoxyethanol is used in products such as varnish removers and degreasing solutions

   

HC Toxin

(6R,9S,14aR)-3,6R-dimethyl-9S-(7-((S)-oxiran-2-yl)-7-oxoheptyl)decahydropyrrolo[1,2-a][1,4,7,10]tetraazacyclododecine-1,4,7,10-tetranone

C21H32N4O6 (436.2322)


A homodetic cyclic tetrapeptide made up from L-alanyl, D-alanyl, L-prolyl and 2-amino-8-oxo-9,10-epoxydecanoyl residues.

   

N'-nitrosonornicotine

3-(1-nitrosopyrrolidin-2-yl)pyridine

C9H11N3O (177.0902)


N-nitrosonornicotine belongs to the family of Pyrrolidinylpyridines. These are compounds containing a pyrrolidinylpyridine ring system, which consists of a pyrrolidine ring linked to a pyridine ring. D009676 - Noxae > D002273 - Carcinogens

   

Sarcostin

MS000026072

C21H34O6 (382.2355)


   

D-Kynurenine

(2R)-6-methoxy-2-phenyl-2,3-dihydrochromen-4-one

C10H12N2O3 (208.0848)


Kynurenine, also known as 3-anthraniloylalanine, is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Kynurenine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Kynurenine can be found in a number of food items such as yellow zucchini, carrot, spinach, and broccoli, which makes kynurenine a potential biomarker for the consumption of these food products. Kynurenine is synthesized by the enzyme tryptophan dioxygenase, which is made primarily but not exclusively in the liver, and indoleamine 2,3-dioxygenase, which is made in many tissues in response to immune activation. Kynurenine and its further breakdown products carry out diverse biological functions, including dilating blood vessels during inflammation and regulating the immune response. Some cancers increase kynurenine production, which increases tumor growth . 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite.

   

XANOMELINE

XANOMELINE

C14H23N3OS (281.1562)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs Same as: D06330 Xanomeline, as an effective and selective muscarinic type 1 and type 4 (M1/M4) receptor agonist, increases neuronal excitability. Xanomeline can be used for the research of neurological disorders, such as schizophrenia[1][2].

   

Permethrin

(-)-trans-Permethrin

C21H20Cl2O3 (390.0789)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AC - Pyrethrines, incl. synthetic compounds D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3074

   

Senna

(9S)-9-[(9R)-2-carboxy-4-hydroxy-10-oxo-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-9H-anthracen-9-yl]-4-hydroxy-10-oxo-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-9H-anthracene-2-carboxylic acid

C42H38O20 (862.1956)


Sennosides (also known as senna glycoside or senna) is a medication used to treat constipation and empty the large intestine before surgery. The medication is taken by mouth or via the rectum. It typically begins working in minutes when given by rectum and within twelve hours when given by mouth. It is a weaker laxative than bisacodyl or castor oil. Sennoside A, one of the sennosides present in the laxative medication, has recently proven effective in inhibiting the ribonuclease H (RNase H) activity of human immunodeficiency virus (HIV) reverse transcriptase. Sennosides is anthraquinone glycosides found in senna plant, usually referring to the sennosides A and B, with laxative activity. Sennosides act on and irritate the lining of the intestine wall, thereby causing increased intestinal muscle contractions leading to vigorous bowel movement. Medications derived from SENNA EXTRACT that are used to treat CONSTIPATION. A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].

   

Paeonol

2 inverted exclamation mark -Hydroxy-4 inverted exclamation mark -methoxyacetophenone

C9H10O3 (166.063)


Paeonol is a member of phenols and a member of methoxybenzenes. It has a role as a metabolite. Paeonol is a natural product found in Vincetoxicum paniculatum, Vincetoxicum glaucescens, and other organisms with data available. See also: Paeonia lactiflora root (part of); Paeonia X suffruticosa root (part of). A natural product found in Paeonia rockii subspeciesrockii. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.

   

Homovanillic acid (HVA)

4-Hydroxy-3-methoxyphenylacetic acid;Vanillacetic acid;2-(4-Hydroxy-3-methoxyphenyl)acetic acid

C9H10O4 (182.0579)


Homovanillic acid (HVA), also known as homovanillate, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. HVA is also classified as a catechol. HVA is a major catecholamine metabolite that is produced by a consecutive action of monoamine oxidase and catechol-O-methyltransferase on dopamine. HVA is typically elevated in patients with catecholamine-secreting tumors (such as neuroblastoma, pheochromocytoma, and other neural crest tumors). HVA levels are also used in monitoring patients who have been treated for these kinds tumors. HVA levels may also be altered in disorders of catecholamine metabolism such as monoamine oxidase-A (MOA) deficiency. MOA deficiency can cause decreased urinary HVA values, while a deficiency of dopamine beta-hydrolase (the enzyme that converts dopamine to norepinephrine) can cause elevated urinary HVA values. Within humans, HVA participates in a number of enzymatic reactions. In particular, HVA and pyrocatechol can be biosynthesized from 3,4-dihydroxybenzeneacetic acid and guaiacol. This reaction is catalyzed by the enzyme known as catechol O-methyltransferase. In addition, HVA can be biosynthesized from homovanillin through the action of the enzyme known aldehyde dehydrogenase. HVA has recently been found in a number of beers and appears to arise from the fermentation process (https://doi.org/10.1006/fstl.1999.0593). HVA is also a metabolite of Bifidobacterium (PMID: 24958563) and the bacterial breakdown of dietary flavonoids. Dietary flavonols commonly found in tomatoes, onions, and tea, can lead to significantly elevated levels of urinary HVA (PMID: 20933512). Likewise, the microbial digestion of hydroxytyrosol (found in olive oil) can also lead to elevated levels of HVA in humans (PMID: 11929304). Homovanillic acid is a monocarboxylic acid that is the 3-O-methyl ether of (3,4-dihydroxyphenyl)acetic acid. It is a catecholamine metabolite. It has a role as a human metabolite and a mouse metabolite. It is a member of guaiacols and a monocarboxylic acid. It is functionally related to a (3,4-dihydroxyphenyl)acetic acid. It is a conjugate acid of a homovanillate. Homovanillic acid is a natural product found in Aloe africana, Ginkgo biloba, and other organisms with data available. Homovanillic Acid is a monocarboxylic acid that is a catecholamine metabolite. Homovanillic acid may be used a marker for metabolic stress, tobacco usage or the presence of a catecholamine secreting tumor, such as neuroblastoma or pheochromocytoma. Homovanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A 3-O-methyl ETHER of (3,4-dihydroxyphenyl)acetic acid. See also: Ipomoea aquatica leaf (part of). Homovanillic acid is a major catecholamine metabolite. 3-Methoxy-4-hydroxyphenylacetic acid is found in beer, olive, and avocado. A monocarboxylic acid that is the 3-O-methyl ether of (3,4-dihydroxyphenyl)acetic acid. It is a catecholamine metabolite. Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency. Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency.

   

2,4-Diaminobutyric acid

2,4-Diaminobutyric acid monohydrochloride, (+-)-isomer

C4H10N2O2 (118.0742)


2,4-Diaminobutyric acid, also known as 2,4-diaminobutanoate or Dbu, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). 2,4-Diaminobutyric acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2,4-Diaminobutyric acid exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 2,4-Diaminobutyric acid has been detected, but not quantified in cow milk. This could make 2,4-diaminobutyric acid a potential biomarker for the consumption of these foods. 2,4-Diaminobutyric acid is a non-physiological, cationic amino acid analogue that is transported into cells by System A with potent antitumoral activity in vitro against human glioma cells, the result of the pronounced concentrated uptake of DAB in glioma cells to the extent that a cellular lysis could occur due to osmotic reasons. 2,4-Diaminobutyric acid is a non-physiological, cationic amino acid analogue that is transported into cells by System A with potent antitumoral activity in vitro against human glioma cells, the result of the pronounced concentrated uptake of DAB in glioma cells to the extent that a cellular lysis could occur due to osmotic reasons. (PMID: 1561943) [HMDB] L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.

   

Indoleacrylic acid

(2E)-3-(1H-indol-3-yl)prop-2-enoic acid

C11H9NO2 (187.0633)


Indoleacrylic acid (CAS: 1204-06-4), also known as indoleacrylate, IA, and IAcrA, is a member of the class of compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of pyrrole ring fused to benzene to form 2,3-benzopyrrole. Indoleacrylic acid is practically insoluble (in water) and a weak acidic compound (based on its pKa). Within the cell, indoleacrylic acid is primarily located in the membrane (predicted from logP). Indoleacrylic acid is best known as a plant growth hormone (a natural auxin), whereas its biological role in animals is still unknown. A two-stage production of this compound is likely: intestinal microorganisms catabolize tryptophan to indole derivatives which are then absorbed and converted into indoleacrylic acid and its glycine conjugate, indolylacryloylglycine (IAcrGly). Indolylacryloylglycine excretion in urine is especially pronounced in some myopathies, namely in boys with Duchenne muscular dystrophy (PMID: 10707769). It has been recently found that indoleacrylic acid promotes intestinal epithelial barrier function and mitigates inflammatory responses. Stimulating indoleacrylic acid production could promote anti-inflammatory responses and have therapeutic benefits (PMID: 28704649). Urinary Indole-3-acrylate is produced by Clostridium sporogenes (PMID: 29168502). Indoleacrylic acid is also a metabolite of Peptostreptococcus (PMID: 28704649, 29168502). trans-3-Indoleacrylic acid is an endogenous metabolite.

   

(+)-Epibatidine

2-(6-chloropyridin-3-yl)-7-azabicyclo[2.2.1]heptane

C11H13ClN2 (208.0767)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

penitrem A

21-chloro-15,16,33,33-tetramethyl-24-methylidene-10-(prop-1-en-2-yl)-7,11,32-trioxa-18-azadecacyclo[25.4.2.0²,¹⁶.0⁵,¹⁵.0⁶,⁸.0⁶,¹².0¹⁷,³¹.0¹⁹,³⁰.0²²,²⁹.0²⁵,²⁸]tritriaconta-17(31),19,21,29-tetraene-5,9,28-triol

C37H44ClNO6 (633.2857)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Penitrem A is an indole diterpene neurotoxic alkaloid produced by Penicillium, acts as a selective BK channel antagonist with antiproliferative and anti-invasive activities against multiple malignancies. Penitrem A increases the spontaneous release of endogenous glutamate, gamma-aminobutyric acid (GABA) and aspartate from cerebrocortical synaptosomes, and induces tremorgenic syndromes in animals[1][2].

   

Himbacine

4-[2-(1,6-dimethylpiperidin-2-yl)ethenyl]-3-methyl-decahydro-3H-naphtho[2,3-c]furan-1-one

C22H35NO2 (345.2668)


   

rebamipide

2-[(4-chlorophenyl)formamido]-3-(2-hydroxyquinolin-4-yl)propanoic acid

C19H15ClN2O4 (370.072)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D020011 - Protective Agents > D000975 - Antioxidants D004791 - Enzyme Inhibitors

   

Choline

Choline

[C5H14NO]+ (104.1075)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   

Nicotine

L-(-)-Nicotine

C10H14N2 (162.1157)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005731 - Ganglionic Stimulants C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; EAWAG_UCHEM_ID 3008 D000077444 - Smoking Cessation Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

bupropion

bupropion

C13H18ClNO (239.1077)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2803 D049990 - Membrane Transport Modulators D000077444 - Smoking Cessation Agents

   

Scopolamine

BENZENEACETIC ACID, .ALPHA.(HYDROXYMETHYL)-,(1.ALPHA.,2.BETA.,4.BETA.,5.ALPHA.,7.BETA.)-9-METHYL-3-OXA-9-AZATRICYCLO(3.3.1.02,4)NON-7-YL ESTER, (.ALPHA.S)-

C17H21NO4 (303.1471)


A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Scopolamine hydrobromide appears as colorless crystals or white powder or solid. Has no odor. pH (of 5\\% solution): 4-5.5. Slightly efflorescent in dry air. Bitter, acrid taste. (NTP, 1992) Scopolamine is a tropane alkaloid that is the (S)-tropic acid ester of 6beta,7beta-epoxy-1alphaH,5alphaH-tropan-3alpha-ol. It has a role as a muscarinic antagonist, an antiemetic, an adjuvant, a mydriatic agent, an antispasmodic drug, an anaesthesia adjuvant, an antidepressant and a metabolite. It is a propanoate ester, an epoxide, a tertiary amino compound and a tropane alkaloid. It is functionally related to a (S)-tropic acid. It is a conjugate base of a scopolamine(1+). Scopolamine is a tropane alkaloid isolated from members of the Solanaceae family of plants, similar to [atropine] and [hyoscyamine], all of which structurally mimic the natural neurotransmitter [acetylcholine]. Scopolamine was first synthesized in 1959, but to date, synthesis remains less efficient than extracting scopolamine from plants. As an acetylcholine analogue, scopolamine can antagonize muscarinic acetylcholine receptors (mAChRs) in the central nervous system and throughout the body, inducing several therapeutic and adverse effects related to alteration of parasympathetic nervous system and cholinergic signalling. Due to its dose-dependent adverse effects, scopolamine was the first drug to be offered commercially as a transdermal delivery system, Scopoderm TTS®, in 1981. As a result of its anticholinergic effects, scopolamine is being investigated for diverse therapeutic applications; currently, it is approved for the prevention of nausea and vomiting associated with motion sickness and surgical procedures. Scopolamine was first approved by the FDA on December 31, 1979, and is currently available as both oral tablets and a transdermal delivery system. Scopolamine is an Anticholinergic. The mechanism of action of scopolamine is as a Cholinergic Antagonist. Hyoscine is a natural product found in Duboisia leichhardtii, Duboisia myoporoides, and other organisms with data available. Scopolamine is a tropane alkaloid derived from plants of the nightshade family (Solanaceae), specifically Hyoscyamus niger and Atropa belladonna, with anticholinergic, antiemetic and antivertigo properties. Structurally similar to acetylcholine, scopolamine antagonizes acetylcholine activity mediated by muscarinic receptors located on structures innervated by postganglionic cholinergic nerves as well as on smooth muscles that respond to acetylcholine but lack cholinergic innervation. The agent is used to cause mydriasis, cycloplegia, to control the secretion of saliva and gastric acid, to slow gut motility, and prevent vomiting. An alkaloid from SOLANACEAE, especially DATURA and SCOPOLIA. Scopolamine and its quaternary derivatives act as antimuscarinics like ATROPINE, but may have more central nervous system effects. Its many uses include an anesthetic premedication, the treatment of URINARY INCONTINENCE and MOTION SICKNESS, an antispasmodic, and a mydriatic and cycloplegic. A tropane alkaloid that is the (S)-tropic acid ester of 6beta,7beta-epoxy-1alphaH,5alphaH-tropan-3alpha-ol. C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent C78283 - Agent Affecting Organs of Special Senses > C29706 - Mydriatic Agent CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5225; ORIGINAL_PRECURSOR_SCAN_NO 5222 CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5230; ORIGINAL_PRECURSOR_SCAN_NO 5228 CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5252; ORIGINAL_PRECURSOR_SCAN_NO 5251 CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5243; ORIGINAL_PRECURSOR_SCAN_NO 5241 CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5254; ORIGINAL_PRECURSOR_SCAN_NO 5252 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2318 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.290 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.274 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.276

   

3-Indoleacrylic acid

Indole-3-acrylic acid

C11H9NO2 (187.0633)


trans-3-Indoleacrylic acid is an endogenous metabolite.

   

4-hydroxyproline

cis-4-Hydroxy-L-proline

C5H9NO3 (131.0582)


A monohydroxyproline where the hydroxy group is located at the 4-position. It is found in fibrillar collagen. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; PMMYEEVYMWASQN_STSL_0115_4-Hydroxyproline_8000fmol_180430_S2_LC02_MS02_67; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. cis-4-Hydroxy-L-proline, a proline analogue, is an inhibitor of collagen production. cis-4-Hydroxy-L-proline could inhibit fibroblast growth by preventing the deposition of triple-helical collagen on the cell layer. cis-4-Hydroxy-L-proline also depresses the growth of primary N-nitrosomethylurea-induced rat mammary tumors[1][2][3][4]. cis-4-Hydroxy-L-proline, a proline analogue, is an inhibitor of collagen production. cis-4-Hydroxy-L-proline could inhibit fibroblast growth by preventing the deposition of triple-helical collagen on the cell layer. cis-4-Hydroxy-L-proline also depresses the growth of primary N-nitrosomethylurea-induced rat mammary tumors[1][2][3][4]. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.

   

Senna

Senna, Cassia obovata, ext.

C42H38O20 (862.1956)


D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].

   

Brucin

InChI=1\C23H26N2O4\c1-27-16-8-14-15(9-17(16)28-2)25-20(26)10-18-21-13-7-19-23(14,22(21)25)4-5-24(19)11-12(13)3-6-29-18\h3,8-9,13,18-19,21-22H,4-7,10-11H2,1-2H

C23H26N2O4 (394.1892)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D007155 - Immunologic Factors

   

rebamipide

rebamipide

C19H15ClN2O4 (370.072)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D020011 - Protective Agents > D000975 - Antioxidants D004791 - Enzyme Inhibitors

   

75O1TFF47Z

4-[(2S,3S)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-1,2-dimethoxy-benzene

C24H34O6 (418.2355)


Phyllanthin is a lignan. Phyllanthin is a natural product found in Phyllanthus debilis, Phyllanthus amarus, and other organisms with data available. See also: Phyllanthus amarus top (part of). Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].

   

doxepin

Cidoxepin

C19H21NO (279.1623)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists CONFIDENCE standard compound; INTERNAL_ID 1532

   

Fludioxonil

Pesticide4_Fludioxinil_C12H6F2N2O2_4-(2,2-Difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile

C12H6F2N2O2 (248.0397)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 162

   

Diethyltoluamide

N,N-Diethyl-3-methylbenzamide

C12H17NO (191.131)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents D020011 - Protective Agents D016573 - Agrochemicals Same as: D02379 CONFIDENCE Reference Standard (Level 1)

   

Choline

Choline chloride

[C5H14NO]+ (104.1075)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OEYIOHPDSNJKLS_STSL_0152_Choline_0125fmol_180430_S2_LC02_MS02_80; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents IPB_RECORD: 922; CONFIDENCE confident structure D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   

betaxolol

betaxolol

C18H29NO3 (307.2147)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.

   

Kynurenine

(2R)-6-methoxy-2-phenyl-2,3-dihydrochromen-4-one

C10H12N2O3 (208.0848)


A ketone that is alanine in which one of the methyl hydrogens is substituted by a 2-aminobenzoyl group. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.060 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite. L-Kynurenine is a metabolite of the amino acid L-tryptophan. L-Kynurenine is an aryl hydrocarbon receptor agonist.

   

Nicotine

(S)-(-)-NICOTINE, 3-[(2S)-1-METHYL-2-PYRROLIDINYL] PYRIDINE

C10H14N2 (162.1157)


An N-alkylpyrrolidine that consists of N-methylpyrrolidine bearing a pyridin-3-yl substituent at position 2. It has been isolated from Nicotiana tabacum. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005731 - Ganglionic Stimulants C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000077444 - Smoking Cessation Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2264 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053

   

riluzole

Riluzole (Rilutek)

C8H5F3N2OS (234.0075)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents N - Nervous system Riluzole is an anticonvulsant agent and belongs to the family of use-dependent Na+ channel blocker which can also inhibit GABA uptake with an IC50 of 43 μM.

   

Dofetilide

Dofetilide (Tikosyn)

C19H27N3O5S2 (441.1392)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Oxybutynin

Oxybutynin (Ditropan)

C22H31NO3 (357.2304)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents CONFIDENCE standard compound; INTERNAL_ID 2516 CONFIDENCE standard compound; INTERNAL_ID 8497 Oxybutynin is an anticholinergic agent, which inhibits vascular Kv channels in a concentration-dependent manner, with an IC50 of 11.51 μM[1]. Oxybutynin is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Valdecoxib

Valdecoxib

C16H14N2O3S (314.0725)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AH - Coxibs D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents

   

N-acetyl-L-aspartic acid

N-acetyl-L-aspartic acid

C6H9NO5 (175.0481)


An N-acyl-L-aspartic acid in which the acyl group is specified as acetyl. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OTCCIMWXFLJLIA-BYPYZUCNSA-N_STSL_0218_N-Acetyl-L-aspartic acid_2000fmol_190326_S2_LC02MS02_065; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. N-Acetyl-L-aspartic acid is a derivative of aspartic acid.

   

Aica ribonucleotide

5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5-monophosphate

C9H15N4O8P (338.0627)


A 1-(phosphoribosyl)imidazolecarboxamide that is acadesine in which the hydroxy group at the 5 position has been converted to its monophosphate derivative. COVID info from COVID-19 Disease Map D007004 - Hypoglycemic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

hexachlorophene

hexachlorophene

C13H6Cl6O2 (403.8499)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents CONFIDENCE Identification confirmed with Reference Standard (Level 1); Source 402_8423_MSMS.txt

   

Phenylacetylglutamine

N-[(4-Hydroxyphenyl)acetyl]glutamic acid

C13H16N2O4 (264.111)


Phenylacetylglutamine is a colonic microbial metabolite from amino acid fermentation.

   

propoxur

Pesticide3_Propoxur_C11H15NO3_Baygon

C11H15NO3 (209.1052)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Vanylglycol

Vanylglycol

C9H12O4 (184.0736)


   

bupropion

bupropion

C13H18ClNO (239.1077)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators D000077444 - Smoking Cessation Agents Bupropion is a selective catecholamine (norepinephrine and dopamine) reuptake inhibitor. It has only a small effect on serotonin reuptake. It does not inhibit MAO. The antidepressant effect of bupropion is considered to be mediated by its dopaminergic and noradrenergic action. Bupropion has also been shown to act as a competitive alpha-3-beta-4- nicotinic antagonist, the alpha-3-beta-4-antagonism has been shown to interrupt addiction in studies of other drugs such as ibogaine. This alpha-3-beta-4-antagonism correlates quite well with the observed effect of interrupting addiction.; A unicyclic, aminoketone antidepressant. The mechanism of its therapeutic actions is not well understood, but it does appear to block dopamine uptake. The hydrochloride is available as an aid to smoking cessation treatment; Bupropion is a selective catecholamine (norepinephrine and dopamine) reuptake inhibitor. It has only a small effect on serotonin reuptake. It does not inhibit MAO. The antidepressant effect of bupropion is considered to be mediated by its dopaminergic and noradrenergic action. Bupropion has also been shown to act as a competitive alpha-3-beta-4-nicotinic antagonist, the alpha-3-beta-4-antagonism has been shown to interrupt addiction in studies of other drugs such as ibogaine. This alpha-3-beta-4-antagonism correlates quite well with the observed effect of interrupting addiction. Bupropion (amfebutamone) (brand names Wellbutrin and Zyban) is an antidepressant of the aminoketone class, chemically unrelated to tricyclics or selective serotonin reuptake inhibitors (SSRIs). It is similar in structure to the stimulant cathinone, and to phenethylamines in general. It is a chemical derivative of diethylpropion, an amphetamine-like substance used as an anorectic. Bupropion is both a dopamine reuptake inhibitor and a norepinephrine reuptake inhibitor. It is often used as a smoking cessation aid. [HMDB]. Bupropion is found in many foods, some of which are cardoon, mung bean, salmonberry, and climbing bean.

   

Linopirdine

Linopirdine(DuP-996)

C26H21N3O (391.1685)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker D020011 - Protective Agents Same as: D04741

   

Phenelzine

Phenelzine

C8H12N2 (136.1)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor

   

Tacrine

Tacrine

C13H14N2 (198.1157)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06D - Anti-dementia drugs > N06DA - Anticholinesterases D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 499; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6299; ORIGINAL_PRECURSOR_SCAN_NO 6297 CONFIDENCE standard compound; INTERNAL_ID 499; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6327; ORIGINAL_PRECURSOR_SCAN_NO 6325 CONFIDENCE standard compound; INTERNAL_ID 499; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6332; ORIGINAL_PRECURSOR_SCAN_NO 6331 CONFIDENCE standard compound; INTERNAL_ID 499; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6338; ORIGINAL_PRECURSOR_SCAN_NO 6337 CONFIDENCE standard compound; INTERNAL_ID 499; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6352; ORIGINAL_PRECURSOR_SCAN_NO 6351 CONFIDENCE standard compound; INTERNAL_ID 499; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6355; ORIGINAL_PRECURSOR_SCAN_NO 6351

   

tocainide

tocainide

C11H16N2O (192.1263)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Tolterodine

Tolterodine-L-tartrate

C22H31NO (325.2406)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tolterodine(PNU-200583) is a potent muscarinic receptor antagonists that show selectivity for the urinary bladder over salivary glands in vivo. IC50 Value: Target: mAChR in vitro: Carbachol-induced contractions of isolated guinea pig bladder were effectively inhibited by tolterodine (IC50 14 nM) and 5-HM (IC50 5.7 nM). The IC50 values were in the microM range and the antimuscarinic potency of tolterodine was 27, 200 and 370-485 times higher, respectively, than its potency in blocking histamine receptors, alpha-adrenoceptors and calcium channels. The active metabolite, 5-HM, was >900 times less potent at these sites than at bladder muscarinic receptors [1]. in vivo: Tolterodine was extensively metabolized in vivo [2]. In the passive-avoidance test, tolterodine at 1 or 3 mg/kg had no effect on memory; the latency to cross and percentage of animals crossing were comparable to controls. In contrast, scopolamine induced a memory deficit; the latency to cross was decreased, and the number of animals crossing was increased [3].

   

Prenol

4-01-00-02129 (Beilstein Handbook Reference)

C5H10O (86.0732)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

protriptyline

protriptyline

C19H21N (263.1674)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators

   

propafenone

propafenone

C21H27NO3 (341.1991)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Propafenone (SA-79), a sodium-channel blocker, acts an antiarrhythmic agent. Propafenone also has high affinity for the β receptor (IC50=32 nM)[1]. Propafenone blocks the transient outward current (Ito) and the sustained delayed rectifier K current (Isus) with IC50 values of 4.9?μm and 8.6?μm, respectively[2]. Propafenone suppresses esophageal cancer proliferation through inducing mitochondrial dysfunction and induce apoptosis[3].

   

flecainide

flecainide

C17H20F6N2O3 (414.1378)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

disopyramide

disopyramide

C21H29N3O (339.2311)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Bretylium

Bretylium

[C11H17BrN]+ (242.0544)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

   

pimozide

pimozide

C28H29F2N3O (461.2279)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AG - Diphenylbutylpiperidine derivatives D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 205; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3862; ORIGINAL_PRECURSOR_SCAN_NO 3860 CONFIDENCE standard compound; INTERNAL_ID 205; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3823; ORIGINAL_PRECURSOR_SCAN_NO 3820 CONFIDENCE standard compound; INTERNAL_ID 205; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3854; ORIGINAL_PRECURSOR_SCAN_NO 3850 CONFIDENCE standard compound; INTERNAL_ID 205; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8187; ORIGINAL_PRECURSOR_SCAN_NO 8184 CONFIDENCE standard compound; INTERNAL_ID 205; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8258; ORIGINAL_PRECURSOR_SCAN_NO 8257 CONFIDENCE standard compound; INTERNAL_ID 205; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8218; ORIGINAL_PRECURSOR_SCAN_NO 8216 CONFIDENCE standard compound; INTERNAL_ID 205; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8255; ORIGINAL_PRECURSOR_SCAN_NO 8253 CONFIDENCE standard compound; INTERNAL_ID 205; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8237; ORIGINAL_PRECURSOR_SCAN_NO 8235 CONFIDENCE standard compound; INTERNAL_ID 205; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8257; ORIGINAL_PRECURSOR_SCAN_NO 8255 Pimozide is a dopamine receptor antagonist, with Kis of 1.4 nM, 2.5 nM and 588 nM for dopamine D2, D3 and D1 receptors, respectively, and also has affinity at α1-adrenoceptor, with a Ki of 39 nM; Pimozide also inhibits STAT3 and STAT5.

   

Atroscine

[(4R)-9-methyl-3-oxa-9-azatricyclo[3.3.1.02,4]nonan-7-yl] 3-hydroxy-2-phenylpropanoate

C17H21NO4 (303.1471)


A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Tropane alkaloids

   

PHENFORMIN

PHENFORMIN

C10H15N5 (205.1327)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5226; ORIGINAL_PRECURSOR_SCAN_NO 5225 ORIGINAL_ACQUISITION_NO 5226; CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 5225 CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5228; ORIGINAL_PRECURSOR_SCAN_NO 5227 CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5267; ORIGINAL_PRECURSOR_SCAN_NO 5265 CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5263; ORIGINAL_PRECURSOR_SCAN_NO 5262 CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5259; ORIGINAL_PRECURSOR_SCAN_NO 5258 CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5264; ORIGINAL_PRECURSOR_SCAN_NO 5262

   

Choline

Choline Hydroxide

C5H14NO+ (104.1075)


A choline that is the parent compound of the cholines class, consisting of ethanolamine having three methyl substituents attached to the amino function. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   

Penconazole

Pesticide6_Penconazole_C13H15Cl2N3_1H-1,2,4-Triazole, 1-[2-(2,4-dichlorophenyl)pentyl]-

C13H15Cl2N3 (283.0643)


D016573 - Agrochemicals D010575 - Pesticides

   

Maackiain

(-)-Maackiain

C16H12O5 (284.0685)


Widespread in the Leguminosae subfamily. Constituent of Trifolium pratense (red clover). (-)-Maackiain is found in many foods, some of which are nectarine, chickpea, alaska blueberry, and adzuki bean. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].

   

7-isopropenyl-4a-methyl-1-methylenedecahydronaphthalene

(5xi,7xi,10xi)-eudesma-4(14),11-diene 4a-methyl-1-methylidene-7-(prop-1-en-2-yl)decahydronaphthalene

C15H24 (204.1878)


   

FA 20:5;O

(5Z,8Z,11Z,14Z)-(17R,18S)-17,18-Epoxyicosa-5,8,11,14-tetraenoic acid

C20H30O3 (318.2195)


A 17(18)-EpETE in which the epoxy group has (17R,18S)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Amino-9,10-epoxy-8-oxodecanoic acid

2-amino-8-oxo-9,10-epoxy-decanoic acid

C10H17NO4 (215.1158)


   

FOH 5:1

3-METHYL-3-BUTEN-1-OL

C5H10O (86.0732)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

beta-selinene

(+)-beta-selinene;(4aR,7R,8aS)-7-isopropenyl-4a-methyl-1-methylenedecahydronaphthalene;[4aR-(4aalpha,7alpha,8abeta)]-decahydro-4a-methyl-1-methylene-7-(1-methylethenyl)-naphthalene

C15H24 (204.1878)


An optically active form of beta-selinene having (+)-(4aR,7R,8aS)-configuration.

   

Dalfampridine

4-aminopyridine

C5H6N2 (94.0531)


D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker N - Nervous system Same as: D04127

   

birch-me

Methyl Salicylate

C8H8O3 (152.0473)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018501 - Antirheumatic Agents D005404 - Fixatives Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4]. Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4].

   

Retigabine

Retigabine

C16H18FN3O2 (303.1383)


C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D049990 - Membrane Transport Modulators

   

Medrysone

11beta-Hydroxy-6alpha-methylpregn-4-ene-3,20-dione

C22H32O3 (344.2351)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid Same as: D02289

   

17066-67-0

(3R,4aS,8aR)-8a-methyl-5-methylidene-3-prop-1-en-2-yl-1,2,3,4,4a,6,7,8-octahydronaphthalene

C15H24 (204.1878)


   

Betula

InChI=1\C8H8O3\c1-11-8(10)6-4-2-3-5-7(6)9\h2-5,9H,1H

C8H8O3 (152.0473)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018501 - Antirheumatic Agents D005404 - Fixatives Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4]. Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4].

   

jatrorrizine

Jatrorrhizine

C20H20NO4+ (338.1392)


   

peonol

InChI=1\C9H10O3\c1-6(10)8-4-3-7(12-2)5-9(8)11\h3-5,11H,1-2H

C9H10O3 (166.063)


Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.

   

germacron

3,7-Cyclodecadien-1-one, 3,7-dimethyl-10-(1-methylethylidene)-, (E,E)-

C15H22O (218.1671)


Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1]. Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1].

   

m-Xylol

Xylene mixture (60\\% m-xylene, 9\\% o-xylene, 14\\% p-xylene, 17\\% ethylbenzene)

C8H10 (106.0782)


   

I6783_SIGMA

(1R,4aR,4bS,7S,10aR)-7-ethenyl-1,4a,7-trimethyl-3,4,4b,5,6,8,10,10a-octahydro-2H-phenanthrene-1-carboxylic acid

C20H30O2 (302.2246)


D049990 - Membrane Transport Modulators D007476 - Ionophores Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.

   

Toralactone

9,10-Dihydroxy-7-methoxy-3-methyl-1H-naphtho(2,3-c)pyran-1-one

C15H12O5 (272.0685)


Toralactone, isolated from Cassia obtusifolia, mediates hepatoprotection via an Nrf2-dependent anti-oxidative mechanism[1]. Toralactone, isolated from Cassia obtusifolia, mediates hepatoprotection via an Nrf2-dependent anti-oxidative mechanism[1].

   

Butanol

Butyric or normal primary butyl alcohol

C4H10O (74.0732)


   

Bolfo

Carbamic acid, methyl-, o-isopropoxyphenyl ester

C11H15NO3 (209.1052)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Arecolin

3-Pyridinecarboxylic acid, 1,2,5,6-tetrahydro-1-methyl-, methyl ester

C8H13NO2 (155.0946)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist

   

24 25-Dihydroxy VD3

24,25-Dihydroxyvitamin D3

C27H44O3 (416.329)


24,25-Dihydroxyvitamin D (24R,25(OH)2D3) circulates in blood at concentrations about 1000 times higher than 1alpha,25(OH)2D3. 24-Hydroxylase is present in the proximal convoluted tubule cells of the kidney and in virtual all target cells of 1alpha,25(OH)2D3. Interestingly, 1alpha,25(OH)2D3 is a very strong inducer of 24-hydroxylase activity and 24R,25(OH)2D3 formationand is) also parathyroid hormone (PTH) regulates 24-hydroxylase activity but in a tissue specific manner, i.e. inhibitory in the kidney while a synergistic effect together with 1alpha,25(OH)2D3 is observed in osteoblasts. Generally, 24-hydroxylation has been considered the first step in the degradation pathway of 1alpha,25(OH)2D3 and 25-(OH)D3. However, through the past decades data have accumulated that 24R,25(OH)2D3 is not merely a degradation product but has effects on its own. Classic studies have demonstrated the significance of 24R,25(OH)2D3 for normal chicken egg hatchability and calcium and phosphorus homeostasis. More recently it became apparent that 24R,25(OH)2D3 also has distinct effects on cartilage in particular the resting zone cells. 24R,25(OH)2D3 stimulates osteocalcin synthesis in human osteoblasts. 24R,25(OH)2D3 plays a role in bone metabolism but that it acts in concert with 1alpha,25(OH)2D3 to obtain an optimal effect. (PMID: 11179746 ) [HMDB]

   

H-Dab.HBr

L-2,4-Diaminobutyric acid

C4H10N2O2 (118.0742)


A 2,4-diaminobutyric acid that has S-configuration. 2,4-diaminobutyric acid, also known as L-2,4-diaminobutanoate or alpha,gamma-diaminobutyrate, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. 2,4-diaminobutyric acid is soluble (in water) and a moderately acidic compound (based on its pKa). 2,4-diaminobutyric acid can be synthesized from butyric acid. 2,4-diaminobutyric acid is also a parent compound for other transformation products, including but not limited to, N(4)-acetyl-L-2,4-diaminobutyric acid, (2S)-2-acetamido-4-aminobutanoic acid, and L-alpha-amino-gamma-oxalylaminobutyric acid. 2,4-diaminobutyric acid can be found in a number of food items such as caraway, chia, atlantic herring, and chayote, which makes 2,4-diaminobutyric acid a potential biomarker for the consumption of these food products. 2,4-diaminobutyric acid can be found primarily in blood and urine. Moreover, 2,4-diaminobutyric acid is found to be associated with alzheimers disease. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.

   

(+)-Himbacine

(+)-Himbacine

C22H35NO2 (345.2668)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics

   

Diacetyl monoxime

3-(hydroxyimino)butan-2-one

C4H7NO2 (101.0477)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004793 - Enzyme Reactivators D004791 - Enzyme Inhibitors D004396 - Coloring Agents

   

LeachianoneG

Leachianone GLeucopelargonidin3-Deoxy-4-O-methylsappanolEpimedokoreanin BQingyangshengenin11-Deoxymogroside IIIE3-O-Acetyloleanolic acidLupulone CMbamiloside Ap-Hydroxyphenethyl trans-ferulate2-Hydroxyl emodin-1-methyl ether

C20H20O6 (356.126)


Leachianone G is a tetrahydroxyflavanone having the hydroxy groups at the 2-, 4-, 5- and 7-positions and a prenyl group at 8-position. It is a tetrahydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a leachianone G(1-). Leachianone G is a natural product found in Morus alba, Sophora flavescens, and Lespedeza cyrtobotrya with data available. A tetrahydroxyflavanone having the hydroxy groups at the 2-, 4-, 5- and 7-positions and a prenyl group at 8-position.

   

Lactopicrin

Benzeneacetic acid, 4-hydroxy-, 2,3,3a,4,5,7,9a,9b-octahydro-9-(hydroxymethyl)-6-methyl-3-methylene-2,7-dioxoazuleno(4,5-b)furan-4-yl ester, (3aR-(3aalpha,4alpha,9aalpha,9bbeta))-

C23H22O7 (410.1365)


Lactucopicrin is an azulenofuran, a cyclic terpene ketone, an enone, a member of phenols, a sesquiterpene lactone and a primary alcohol. It has a role as a plant metabolite, a sedative and an antimalarial. It is functionally related to a 4-hydroxyphenylacetic acid and a lactucin. Lactupicrin is a natural product found in Cichorium endivia, Cichorium spinosum, and other organisms with data available. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2]. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2].

   

M-XYLENE

M-XYLENE

C8H10 (106.0782)


   

dicyclomine

dicyclomine

C19H35NO2 (309.2668)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AA - Synthetic anticholinergics, esters with tertiary amino group C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

3-METHYL-2-BUTEN-1-OL

3-METHYL-2-BUTEN-1-OL

C5H10O (86.0732)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

SERTINDOLE

SERTINDOLE

C24H26ClFN4O (440.1779)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AE - Indole derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist Sertindole (Lu 23-174) is an orally active 5-HT2A, 5-HT2C, dopamine D2, and αl-adrenergic receptors antagonist. Sertindole shows antipsychotic activity and anti-proliferative activity to multiple cancer cells[1][2][3].

   

Bretylium

Bretylium

C11H17BrN+ (242.0544)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

   

Difenidol

DIPHENIDOL

C21H27NO (309.2093)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents

   

pirenzepine

pirenzepine

C19H21N5O2 (351.1695)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents

   

Oxotremorine

Oxotremorine

C12H18N2O (206.1419)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists

   

Potassium cation

Potassium cation

K+ (38.9637)


   

ipratropium

ipratropium

C20H30NO3+ (332.2226)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

15-Oxo-ETE

15-Oxo-ETE

C20H30O3 (318.2195)


An oxoicosatetraenoic acid having (5Z,8Z,11Z,13E) double bond stereochemistry, and an oxo group in position 15.

   

Muscarine

Muscarine

C9H20NO2+ (174.1494)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists

   

Carpaine

Carpaine

C28H50N2O4 (478.377)


An alkaloid that forms a major component of the papaya leaves and has been shown to exhibit cardiovascular effects.

   

Cholesten

Cholesten

C27H48 (372.3756)


   

(1-Benzyl-1H-quinolin-4-ylidene)-pentyl-amine

(1-Benzyl-1H-quinolin-4-ylidene)-pentyl-amine

C21H24N2 (304.1939)


   

2-(3,5-Dihydroxyphenyl)-2-oxoacetic acid

2-(3,5-Dihydroxyphenyl)-2-oxoacetic acid

C8H6O5 (182.0215)


   

2-Ethoxyethanol

2-Ethoxyethanol

C4H10O2 (90.0681)


   

Cyfluthrin

cis-Cyfluthrin

C22H18Cl2FNO3 (433.0648)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents > P03BA - Pyrethrines D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals Same as: D07761

   

D-23129

N-(2-Amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester

C16H18FN3O2 (303.1383)


C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D049990 - Membrane Transport Modulators Same as: D09569

   

Clemastine

Clemastine

C21H26ClNO (343.1703)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents

   

N-Nitrosonornicotine

3-(1-nitrosopyrrolidin-2-yl)pyridine

C9H11N3O (177.0902)


D009676 - Noxae > D002273 - Carcinogens

   

Cerebrosterol

(24S)-Cholest-5-ene-3beta,24-diol

C27H46O2 (402.3498)


A 24-hydroxycholesterol that has S configuration at position 24. It is the major metabolic breakdown product of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3]. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3].

   

5,6-EET

(8Z,11Z,14Z)-5,6-Epoxyeicosa-8,11,14-trienoic acid

C20H32O3 (320.2351)


An EET obtained by formal epoxidation of the 5,6-double bond of arachidonic acid.

   
   

SARIN

SARIN

C4H10FO2P (140.0402)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents D004791 - Enzyme Inhibitors

   

PCB 77

3,4,3,4-Tetrachlorobiphenyl

C12H6Cl4 (289.9224)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

XE991

10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one

C26H20N2O (376.1576)


   
   

λ-Cyhalothrin

Cyclopropanecarboxylicacid, 3-[(1Z)-2-chloro-3,3,3-trifluoro-1-propen-1-yl]-2,2-dimethyl-,(S)-cyano(3-phenoxyphenyl)methyl ester, (1R,3R)-

C23H19ClF3NO3 (449.1005)


D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals