beta-Cryptoxanthin (BioDeep_00000000619)
Secondary id: BioDeep_00000402943
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite natural product
代谢物信息卡片
化学式: C40H56O (552.4331)
中文名称: 隐黄质, β-隐黄质
谱图信息:
最多检出来源 Homo sapiens(blood) 27.38%
Last reviewed on 2024-10-31.
Cite this Page
beta-Cryptoxanthin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/beta-cryptoxanthin (retrieved
2024-12-27) (BioDeep RN: BioDeep_00000000619). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1(/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(\C)/C=C/C=C(\C)/C=C/C2=C(C)CCCC2(C)C)=C(C)C[C@@H](O)CC1(C)C
InChI: InChI=1S/C40H56O/c1-30(18-13-20-32(3)23-25-37-34(5)22-15-27-39(37,7)8)16-11-12-17-31(2)19-14-21-33(4)24-26-38-35(6)28-36(41)29-40(38,9)10/h11-14,16-21,23-26,36,41H,15,22,27-29H2,1-10H3/b12-11+,18-13+,19-14+,25-23+,26-24+,30-16+,31-17+,32-20+,33-21+/t36-/m1/s1
描述信息
beta-Cryptoxanthin has been isolated from abalone, fish eggs, and many higher plants. beta-Cryptoxanthin is a major source of vitamin A, often second only to beta-carotene, and is present in fruits such as oranges, tangerines, and papayas (PMID: 8554331). Frequent intake of tropical fruits that are rich in beta-cryptoxanthin is associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents. Papaya intake was the best food predictor of plasma beta-cryptoxanthin concentrations. Subjects that frequently consumed (i.e. greater or equal to 3 times/day) tropical fruits with at least 50 micro g/100 g beta-cryptoxanthin (e.g. papaya, tangerine, orange, watermelon) had twofold the plasma beta-cryptoxanthin concentrations of those with intakes of less than 4 times/week (PMID: 12368412). A modest increase in beta-cryptoxanthin intake, equivalent to one glass of freshly squeezed orange juice per day, is associated with a reduced risk of developing inflammatory disorders such as rheumatoid arthritis (PMID: 16087992). Higher prediagnostic serum levels of total carotenoids and beta-cryptoxanthin were associated with lower smoking-related lung cancer risk in middle-aged and older men in Shanghai, China (PMID: 11440962). Consistent with inhibition of the lung cancer cell growth, beta-cryptoxanthin induced the mRNA levels of retinoic acid receptor beta (RAR-beta) in BEAS-2B cells, although this effect was less pronounced in A549 cells. Furthermore, beta-cryptoxanthin transactivated the RAR-mediated transcription activity of the retinoic acid response element. These findings suggest a mechanism of anti-proliferative action of beta-cryptoxanthin and indicate that beta-cryptoxanthin may be a promising chemopreventive agent against lung cancer (PMID: 16841329). Cryptoxanthin is a natural carotenoid pigment. It has been isolated from a variety of sources including the petals and flowers of plants in the genus Physalis, orange rind, papaya, egg yolk, butter, apples, and bovine blood serum. In a pure form, cryptoxanthin is a red crystalline solid with a metallic lustre. It is freely soluble in chloroform, benzene, pyridine, and carbon disulfide. In the human body, cryptoxanthin is converted into vitamin A (retinol) and is therefore considered a provitamin A. As with other carotenoids, cryptoxanthin is an antioxidant and may help prevent free radical damage to cells and DNA, as well as stimulate the repair of oxidative damage to DNA. Structurally, cryptoxanthin is closely related to beta-carotene, with only the addition of a hydroxyl group. It is a member of the class of carotenoids known as xanthophylls.
Beta-cryptoxanthin is a carotenol that exhibits antioxidant activity. It has been isolated from fruits such as papaya and oranges. It has a role as a provitamin A, an antioxidant, a biomarker and a plant metabolite. It derives from a hydride of a beta-carotene.
beta-Cryptoxanthin is a natural product found in Hibiscus syriacus, Cladonia gracilis, and other organisms with data available.
A mono-hydroxylated xanthophyll that is a provitamin A precursor.
See also: Corn (part of).
A carotenol that exhibits antioxidant activity. It has been isolated from fruits such as papaya and oranges.
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins
Cryptoxanthin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=472-70-8 (retrieved 2024-10-31) (CAS RN: 472-70-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
68 个代谢物同义名
(1R)-3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-3-en-1-ol; (1R)-3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexen-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]cyclohex-3-en-1-ol; BETA-CRYPTOXANTHINE (CONSTITUENT OF SPIRULINA) [DSC]; BETA-CRYPTOXANTHINE (CONSTITUENT OF SPIRULINA); 5-AMINOMETHYL-2-HYDROXY-BENZOICACIDMETHYLESTER; .BETA.-CAROTEN-3-OL, (R)-ALL-TRANS-; .beta.,.beta.-Caroten-3-ol, (3R)-; beta-CAROTEN-3-OL, (R)-ALL-TRANS-; beta-Cryptoxanthin, >=97\\% (TLC); (R)-all-trans-beta-Caroten-3-ol; ALL-TRANS-.BETA.-CRYPTOXANTHIN; beta,beta-Caroten-3-ol, (3R)-; all-trans-beta-Cryptoxanthin; (R)-all-trans-Β-caroten-3-ol; (3R)-beta,beta-caroten-3-ol; DMASLKHVQRHNES-FKKUPVFPSA-N; all-trans-Neocryptoxanthin; all-trans-Neocryptoxanthol; all-trans-Β-cryptoxanthin; beta-Cryptoxanthin - 97\\%; 3-HYDROXY-.BETA.-CAROTENE; NEO-.BETA.-CRYPTOXANTHIN; (3R)-beta-Cryptoxanthin; all-trans-Cryptoxanthin; 3-Hydroxy-beta-carotene; beta,beta-carotene-3-ol; trans-beta-Crytoxanthin; all-trans-Cryptoxanthol; Neo-beta-cryptoxanthin; CRYPTOXANTHIN [WHO-DD]; Hydroxy-beta-carotene; (3R)-Β,β-caroten-3-ol; (3R)-Β-cryptoxanthin; 3-Hydroxy-b-carotene; .BETA.-CRYPTOXANTHIN; 3-Hydroxy-β-carotene; trans-Β-crytoxanthin; beta -Cryptoxanthin; Neo-β-cryptoxanthin; BETA-CRYPTOXANTHINE; trans-Cryptoxanthin; .BETA.-CAROTEN-3-OL; Beta Cryptoxanthin; (3R)-Cryptoxanthin; CRYPTOXANTHIN [MI]; beta-Cryptoxanthin; beta-Caroten-3-ol; Beta Caroten 3 ol; Neocryptoxanthin; ??-Cryptoxanthin; b,b-Caroten-3-ol; β-Cryptoxanthin; B-CRYPTOXANTHIN; UNII-6ZIB13GI33; Cryptoxanthine; Β-caroten-3-ol; Xanthrophyll 1; Cryptoxanthins; b-Krypoxanthin; Cryptoxanthin; Kryptoxanthin; Caricaxanthin; Cryptoxanthol; 6ZIB13GI33; Cryptoxanthin-beta; Hydroxy-β-carotene; β-Cryptoxanthin; beta-Cryptoxanthin
数据库引用编号
25 个数据库交叉引用编号
- ChEBI: CHEBI:10362
- KEGG: C08591
- PubChem: 5281235
- PubChem: 182237
- HMDB: HMDB0033844
- Metlin: METLIN3593
- DrugBank: DB15914
- Wikipedia: Cryptoxanthin
- LipidMAPS: LMPR01070269
- MeSH: Beta-Cryptoxanthin
- ChemIDplus: 0000472708
- MetaCyc: CPD-7409
- KNApSAcK: C00000920
- foodb: FDB097255
- chemspider: 4444647
- CAS: 472-70-8
- medchemexpress: HY-108059
- PMhub: MS000010948
- MetaboLights: MTBLC10362
- PDB-CCD: RRX
- 3DMET: B02248
- NIKKAJI: J5.952H
- PubChem: 10784
- KNApSAcK: 10362
- LOTUS: LTS0132646
分类词条
相关代谢途径
Reactome(0)
BioCyc(4)
PlantCyc(2)
代谢反应
260 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(9)
- echinenone and zeaxanthin biosynthesis (Synechocystis):
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- astaxanthin biosynthesis (bacteria, fungi, algae):
β-carotene + A(H2) + O2 ⟶ A + H2O + echinenone
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- zeaxanthin biosynthesis:
all-trans-β-carotene + H+ + NADH + O2 ⟶ β-cryptoxanthin + H2O + NAD+
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
all-trans-β-carotene + H+ + NADH + O2 ⟶ β-cryptoxanthin + H2O + NAD+
- superpathway of carotenoid biosynthesis:
all-trans-β-carotene + H+ + NADH + O2 ⟶ β-cryptoxanthin + H2O + NAD+
- zeaxanthin biosynthesis:
all-trans-β-carotene + H+ + NADH + O2 ⟶ β-cryptoxanthin + H2O + NAD+
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Carotenoid biosynthesis:
Oxygen + beta-cryptoxanthin + hydrogen donor ⟶ H2O + hydrogen acceptor + zeaxanthin
INOH(0)
PlantCyc(248)
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- astaxanthin biosynthesis (bacteria, fungi, algae):
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- astaxanthin biosynthesis (bacteria, fungi, algae):
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- astaxanthin biosynthesis (bacteria, fungi, algae):
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
15-cis-phytoene + a plastoquinone ⟶ 15,9'-di-cis-phytofluene + a plastoquinol
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
prephytoene diphosphate ⟶ 15-cis-phytoene + diphosphate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
638 个相关的物种来源信息
- 183218 - Abelmoschus: LTS0132646
- 455045 - Abelmoschus esculentus: 10.1111/J.1365-2621.1986.TB10851.X
- 455045 - Abelmoschus esculentus: LTS0132646
- 385023 - Acanthophora: LTS0132646
- 385024 - Acanthophora spicifera: 10.1016/S0031-9422(00)90896-3
- 385024 - Acanthophora spicifera: LTS0132646
- 186623 - Actinopteri: LTS0132646
- 7898 - Actinopterygii: LTS0132646
- 13817 - Adiantum: LTS0132646
- 13818 - Adiantum capillus-veneris: 10.1016/0305-1978(85)90030-4
- 13818 - Adiantum capillus-veneris: LTS0132646
- 911566 - Adiantum formosum: 10.1016/0305-1978(85)90030-4
- 911566 - Adiantum formosum: LTS0132646
- 29590 - Adiantum pedatum: 10.1016/0305-1978(85)90030-4
- 29590 - Adiantum pedatum: LTS0132646
- 272680 - Aglaomorpha sparsisora: 10.1016/0305-1978(85)90030-4
- 111638 - Alectoria: LTS0132646
- 3563 - Amaranthaceae: LTS0132646
- 4011 - Anacardiaceae: LTS0132646
- 6340 - Annelida: LTS0132646
- 4037 - Apiaceae: LTS0132646
- 6499 - Aplysia: LTS0132646
- 76186 - Aplysia depilans: 10.1016/0305-0491(84)90180-9
- 76186 - Aplysia depilans: LTS0132646
- 144767 - Aplysia fasciata: 10.1016/0305-0491(84)90180-9
- 144767 - Aplysia fasciata: LTS0132646
- 6498 - Aplysiidae: LTS0132646
- 124739 - Arctocetraria: LTS0132646
- 326049 - Arctocetraria andrejevii: LTS0132646
- 4246 - Arnica: LTS0132646
- 436207 - Arnica montana: 10.1055/S-0028-1099449
- 436207 - Arnica montana: LTS0132646
- 193297 - Aronia: LTS0132646
- 661339 - Aronia melanocarpa: 10.1111/J.1365-2621.1989.TB04709.X
- 661339 - Aronia melanocarpa: LTS0132646
- 4890 - Ascomycota: LTS0132646
- 40552 - Asparagaceae: LTS0132646
- 4685 - Asparagus: LTS0132646
- 4686 - Asparagus officinalis: 10.1111/J.1365-2621.1986.TB10851.X
- 4686 - Asparagus officinalis: LTS0132646
- 51383 - Asphodelaceae: LTS0132646
- 41972 - Aspleniaceae: 10.1016/0305-1978(85)90030-4
- 41972 - Aspleniaceae: LTS0132646
- 32071 - Asplenium: 10.1016/0305-1978(85)90030-4
- 32071 - Asplenium: LTS0132646
- 78367 - Asplenium australasicum: 10.1016/0305-1978(85)90030-4
- 78367 - Asplenium australasicum: LTS0132646
- 147945 - Asplenium ceterach: LTS0132646
- 29642 - Asplenium nidus: 10.1016/0305-1978(85)90030-4
- 29642 - Asplenium nidus: LTS0132646
- 41964 - Asplenium scolopendrium: LTS0132646
- 2959658 - Asplenium scolopendrium var. scolopendrium: LTS0132646
- 78464 - Asplenium trichomanes: 10.1016/0305-1978(85)90030-4
- 78464 - Asplenium trichomanes: LTS0132646
- 4210 - Asteraceae: LTS0132646
- 7600 - Asteriidae: LTS0132646
- 7588 - Asteroidea: LTS0132646
- 1203520 - Athyriaceae: LTS0132646
- 32109 - Athyrium: LTS0132646
- 32110 - Athyrium filix-femina: 10.1016/0305-1978(85)90030-4
- 32110 - Athyrium filix-femina: LTS0132646
- 21563 - Averrhoa: LTS0132646
- 28974 - Averrhoa carambola: 10.1016/S0031-9422(00)84040-6
- 28974 - Averrhoa carambola: LTS0132646
- 39630 - Azolla: LTS0132646
- 84609 - Azolla filiculoides: 10.1016/0305-1978(85)90030-4
- 84609 - Azolla filiculoides: LTS0132646
- 336972 - Azolla microphylla: 10.1016/0305-1978(85)90030-4
- 336972 - Azolla microphylla: LTS0132646
- 2 - Bacteria: LTS0132646
- 3554 - Beta: LTS0132646
- 161934 - Beta vulgaris: 10.1111/J.1365-2621.1986.TB10851.X
- 161934 - Beta vulgaris: LTS0132646
- 3555 - Beta vulgaris subsp. vulgaris: 10.1111/J.1365-2621.1986.TB10851.X
- 3555 - Beta vulgaris subsp. vulgaris: LTS0132646
- 29600 - Blechnaceae: LTS0132646
- 29605 - Blechnum: LTS0132646
- 3705 - Brassica: LTS0132646
- 3712 - Brassica oleracea:
- 3712 - Brassica oleracea: 10.1021/JF00023A019
- 3712 - Brassica oleracea: 10.1111/J.1365-2621.1986.TB10851.X
- 3712 - Brassica oleracea: LTS0132646
- 3700 - Brassicaceae: LTS0132646
- 4441 - Camellia: LTS0132646
- 385388 - Camellia oleifera: 10.1007/BF00607557
- 385388 - Camellia oleifera: LTS0132646
- 182300 - Camellia sasanqua: 10.1007/BF00607557
- 182300 - Camellia sasanqua: LTS0132646
- 4071 - Capsicum: LTS0132646
- 4072 - Capsicum annuum:
- 4072 - Capsicum annuum: LTS0132646
- 4305 - Celastraceae: LTS0132646
- 85180 - Celastrus: LTS0132646
- 85181 - Celastrus orbiculatus: 10.1016/J.PHYTOCHEM.2009.04.018
- 85181 - Celastrus orbiculatus: LTS0132646
- 78063 - Cetraria: LTS0132646
- 78064 - Cetraria islandica: 10.1016/0305-1978(87)90002-0
- 78064 - Cetraria islandica: LTS0132646
- 95628 - Cetraria islandica subsp. islandica: 10.1016/0305-1978(87)90002-0
- 95628 - Cetraria islandica subsp. islandica: LTS0132646
- 124737 - Cetraria nigricans: 10.1016/0305-1978(87)90002-0
- 124737 - Cetraria nigricans: LTS0132646
- 115237 - Cetrariella: LTS0132646
- 115238 - Cetrariella delisei: 10.1016/0305-1978(87)90002-0
- 115238 - Cetrariella delisei: LTS0132646
- 1804623 - Chenopodiaceae: LTS0132646
- 7711 - Chordata: LTS0132646
- 173869 - Christella: LTS0132646
- 714463 - Christella parasitica: LTS0132646
- 2706 - Citrus: LTS0132646
- 43166 - Citrus aurantium: 10.1021/JF00087A017
- 43166 - Citrus aurantium: 10.1111/J.1365-2621.1986.TB10851.X
- 558547 - Citrus deliciosa:
- 171249 - Citrus limonia: LTS0132646
- 109792 - Citrus natsudaidai: 10.1006/ABBI.1995.0052
- 109792 - Citrus natsudaidai: LTS0132646
- 85571 - Citrus reticulata:
- 85571 - Citrus reticulata: 10.1002/1097-0215(20001001)88:1<146::AID-IJC23>3.0.CO;2-I
- 85571 - Citrus reticulata: 10.1016/0031-9422(83)83012-X
- 85571 - Citrus reticulata: 10.1111/J.1349-7006.1999.TB00677.X
- 85571 - Citrus reticulata: LTS0132646
- 2711 - Citrus sinensis: 10.1111/J.1365-2621.1986.TB10851.X
- 2711 - Citrus sinensis: LTS0132646
- 55188 - Citrus unshiu:
- 55188 - Citrus unshiu: 10.1002/1097-0215(20001001)88:1<146::AID-IJC23>3.0.CO;2-I
- 55188 - Citrus unshiu: 10.1111/J.1349-7006.1999.TB00677.X
- 55188 - Citrus unshiu: LTS0132646
- 37656 - Citrus × paradisi: 10.1021/JF00087A017
- 37656 - Citrus × paradisi: 10.1111/J.1365-2621.1986.TB10851.X
- 5199 - Cladonia: 10.1016/0305-1978(87)90002-0
- 5199 - Cladonia: 10.1016/0305-1978(88)90082-8
- 5199 - Cladonia: LTS0132646
- 174044 - Cladonia arbuscula: LTS0132646
- 197103 - Cladonia cariosa: 10.1016/0305-1978(85)90064-X
- 197103 - Cladonia cariosa: LTS0132646
- 174050 - Cladonia cenotea: 10.1016/0305-1978(85)90064-X
- 174050 - Cladonia cenotea: LTS0132646
- 174051 - Cladonia cervicornis: LTS0132646
- 184202 - Cladonia cervicornis subsp. cervicornis: 10.1016/0305-1978(85)90064-X
- 184202 - Cladonia cervicornis subsp. cervicornis: LTS0132646
- 197022 - Cladonia ciliata: LTS0132646
- 1156959 - Cladonia ciliata var. tenuis: 10.1016/0305-1978(85)90064-X
- 1156959 - Cladonia ciliata var. tenuis: LTS0132646
- 174053 - Cladonia coccifera: 10.1016/0305-1978(85)90064-X
- 174053 - Cladonia coccifera: LTS0132646
- 184094 - Cladonia cornuta: 10.1016/0305-1978(85)90064-X
- 184094 - Cladonia cornuta: LTS0132646
- 174054 - Cladonia crispata: LTS0132646
- 184097 - Cladonia deformis: 10.1016/0305-1978(85)90064-X
- 184097 - Cladonia deformis: LTS0132646
- 195763 - Cladonia digitata: 10.1016/0305-1978(85)90064-X
- 195763 - Cladonia digitata: LTS0132646
- 184098 - Cladonia ecmocyna: 10.1016/0305-1978(87)90002-0
- 184098 - Cladonia ecmocyna: LTS0132646
- 174058 - Cladonia fimbriata: 10.1016/0305-1978(85)90064-X
- 174058 - Cladonia fimbriata: LTS0132646
- 553796 - Cladonia firma: 10.1016/0305-1978(88)90082-8
- 553796 - Cladonia firma: LTS0132646
- 184101 - Cladonia foliacea: 10.1016/0305-1978(88)90082-8
- 184101 - Cladonia foliacea: LTS0132646
- 174060 - Cladonia furcata: 10.1016/0305-1978(85)90064-X
- 174060 - Cladonia furcata: LTS0132646
- 174061 - Cladonia glauca: 10.1016/0305-1978(85)90064-X
- 174061 - Cladonia glauca: LTS0132646
- 111668 - Cladonia gracilis:
- 111668 - Cladonia gracilis: 10.1016/0305-1978(85)90064-X
- 111668 - Cladonia gracilis: 10.1016/0305-1978(87)90002-0
- 111668 - Cladonia gracilis: LTS0132646
- 196765 - Cladonia macilenta: 10.1016/0305-1978(85)90064-X
- 196765 - Cladonia macilenta: LTS0132646
- 195774 - Cladonia mitis:
- 195774 - Cladonia mitis: 10.1016/0305-1978(85)90064-X
- 195774 - Cladonia mitis: 10.1016/0305-1978(87)90002-0
- 195774 - Cladonia mitis: LTS0132646
- 174062 - Cladonia ochrochlora: 10.1016/0305-1978(85)90064-X
- 174062 - Cladonia ochrochlora: LTS0132646
- 184109 - Cladonia phyllophora: 10.1016/0305-1978(85)90064-X
- 184109 - Cladonia phyllophora: LTS0132646
- 174065 - Cladonia pleurota: 10.1016/0305-1978(85)90064-X
- 174065 - Cladonia pleurota: LTS0132646
- 50943 - Cladonia portentosa: 10.1016/0305-1978(85)90064-X
- 50943 - Cladonia portentosa: LTS0132646
- 2031061 - Cladonia ramulosa: 10.1016/0305-1978(85)90064-X
- 2031061 - Cladonia ramulosa: LTS0132646
- 111670 - Cladonia rangiferina:
- 111670 - Cladonia rangiferina: 10.1016/0305-1978(85)90064-X
- 111670 - Cladonia rangiferina: 10.1016/0305-1978(87)90002-0
- 111670 - Cladonia rangiferina: LTS0132646
- 174071 - Cladonia scabriuscula: 10.1016/0305-1978(85)90064-X
- 174071 - Cladonia scabriuscula: LTS0132646
- 174045 - Cladonia stellaris: 10.1016/0305-1978(85)90064-X
- 174045 - Cladonia stellaris: LTS0132646
- 174079 - Cladonia turgida: 10.1016/0305-1978(85)90064-X
- 174079 - Cladonia turgida: LTS0132646
- 5198 - Cladoniaceae: LTS0132646
- 41218 - Colchicaceae: LTS0132646
- 3954 - Combretaceae: LTS0132646
- 930023 - Compsopogonophyceae: LTS0132646
- 29597 - Coniogramme: LTS0132646
- 29598 - Coniogramme japonica: 10.1016/0305-1978(85)90030-4
- 29598 - Coniogramme japonica: LTS0132646
- 4118 - Convolvulaceae: LTS0132646
- 60564 - Coscinasterias: LTS0132646
- 72676 - Coscinasterias tenuispina: 10.1016/0305-0491(84)90180-9
- 72676 - Coscinasterias tenuispina: LTS0132646
- 3655 - Cucumis: LTS0132646
- 3656 - Cucumis melo: 10.1111/J.1365-2621.1986.TB10851.X
- 3656 - Cucumis melo: LTS0132646
- 3660 - Cucurbita: 10.1111/J.1365-2621.1986.TB10851.X
- 3660 - Cucurbita: LTS0132646
- 3661 - Cucurbita maxima: 10.1016/S0031-9422(00)83753-X
- 3661 - Cucurbita maxima: LTS0132646
- 3663 - Cucurbita pepo: 10.1021/JF00023A019
- 3663 - Cucurbita pepo: LTS0132646
- 3650 - Cucurbitaceae: LTS0132646
- 3367 - Cupressaceae: LTS0132646
- 3028117 - Cyanophyceae: LTS0132646
- 32180 - Cyclosorus: LTS0132646
- 714463 - Cyclosorus parasiticus: 10.1016/0305-1978(85)90030-4
- 84613 - Cyrtomium: LTS0132646
- 84614 - Cyrtomium falcatum: 10.1016/0305-1978(85)90030-4
- 84614 - Cyrtomium falcatum: LTS0132646
- 1203500 - Cystopteridaceae: LTS0132646
- 32111 - Cystopteris: LTS0132646
- 1328777 - Cystopteris bulbifera: 10.1016/0305-1978(85)90030-4
- 1328777 - Cystopteris bulbifera: LTS0132646
- 872508 - Cystopteris sudetica: 10.1016/0305-1978(85)90030-4
- 872508 - Cystopteris sudetica: LTS0132646
- 4038 - Daucus: LTS0132646
- 4039 - Daucus carota: 10.1111/J.1365-2621.1986.TB10851.X
- 4039 - Daucus carota: LTS0132646
- 6042 - Demospongiae: LTS0132646
- 32084 - Dennstaedtiaceae: LTS0132646
- 146293 - Dermatocarpon: LTS0132646
- 172328 - Dermatocarpon miniatum: LTS0132646
- 172331 - Dermatocarpon miniatum var. miniatum: 10.1016/0305-1978(87)90002-0
- 172331 - Dermatocarpon miniatum var. miniatum: LTS0132646
- 13492 - Diospyros: LTS0132646
- 35925 - Diospyros kaki:
- 35925 - Diospyros kaki: 10.1007/BF00575777
- 35925 - Diospyros kaki: 10.1007/BF00597795
- 35925 - Diospyros kaki: 10.1007/BF00597870
- 35925 - Diospyros kaki: 10.1016/S0031-9422(00)80801-8
- 35925 - Diospyros kaki: LTS0132646
- 455304 - Diphasiastrum: LTS0132646
- 34168 - Diphasiastrum complanatum: LTS0132646
- 37432 - Diphasiastrum tristachyum: 10.1016/0305-1978(85)90030-4
- 37432 - Diphasiastrum tristachyum: LTS0132646
- 29614 - Diplazium: LTS0132646
- 86695 - Diplazium sibiricum: 10.1016/0305-1978(85)90030-4
- 86695 - Diplazium sibiricum: LTS0132646
- 72452 - Dovyalis: 10.1021/JF071316U
- 72452 - Dovyalis: LTS0132646
- 187348 - Drynaria: LTS0132646
- 29607 - Dryopteridaceae: LTS0132646
- 3287 - Dryopteris: LTS0132646
- 239547 - Dryopteris affinis: 10.1016/0305-1978(85)90030-4
- 239548 - Dryopteris borreri: 10.1016/0305-1978(85)90030-4
- 239548 - Dryopteris borreri: LTS0132646
- 239555 - Dryopteris carthusiana: 10.1016/0305-1978(85)90030-4
- 239555 - Dryopteris carthusiana: LTS0132646
- 239561 - Dryopteris dilatata: 10.1016/0305-1978(85)90030-4
- 239561 - Dryopteris dilatata: LTS0132646
- 239563 - Dryopteris expansa: 10.1016/0305-1978(85)90030-4
- 239563 - Dryopteris expansa: LTS0132646
- 3289 - Dryopteris filix-mas: 10.1016/0305-1978(85)90030-4
- 3289 - Dryopteris filix-mas: LTS0132646
- 239607 - Dryopteris wallichiana: 10.1016/0305-1978(85)90030-4
- 239607 - Dryopteris wallichiana: LTS0132646
- 19955 - Ebenaceae: LTS0132646
- 7586 - Echinodermata: LTS0132646
- 543 - Enterobacteriaceae: LTS0132646
- 3256 - Equisetaceae: LTS0132646
- 3257 - Equisetum: LTS0132646
- 3258 - Equisetum arvense: 10.1016/0305-1978(85)90030-4
- 3258 - Equisetum arvense: LTS0132646
- 231680 - Equisetum fluviatile: 10.1016/0305-1978(85)90030-4
- 231680 - Equisetum fluviatile: LTS0132646
- 3262 - Equisetum hyemale: 10.1016/0305-1978(85)90030-4
- 3262 - Equisetum hyemale: LTS0132646
- 113538 - Equisetum palustre: 10.1016/0305-1978(85)90030-4
- 113538 - Equisetum palustre: LTS0132646
- 231681 - Equisetum pratense: 10.1016/0305-1978(85)90030-4
- 231681 - Equisetum pratense: LTS0132646
- 231679 - Equisetum sylvaticum: 10.1016/0305-1978(85)90030-4
- 231679 - Equisetum sylvaticum: LTS0132646
- 3260 - Equisetum telmateia: 10.1016/0305-1978(85)90030-4
- 3260 - Equisetum telmateia: LTS0132646
- 4345 - Ericaceae: LTS0132646
- 1903409 - Erwiniaceae: LTS0132646
- 35150 - Erythrotrichia: LTS0132646
- 35151 - Erythrotrichia carnea: 10.1016/0305-1978(84)90049-8
- 35151 - Erythrotrichia carnea: LTS0132646
- 240428 - Erythrotrichiaceae: LTS0132646
- 2759 - Eukaryota: LTS0132646
- 147545 - Eurotiomycetes: LTS0132646
- 3803 - Fabaceae: LTS0132646
- 78067 - Flavocetraria: LTS0132646
- 95627 - Flavocetraria nivalis: 10.1016/0305-1978(87)90002-0
- 95627 - Flavocetraria nivalis: LTS0132646
- 2806 - Florideophyceae: LTS0132646
- 3746 - Fragaria: 10.1111/J.1365-2621.1986.TB10851.X
- 3746 - Fragaria: LTS0132646
- 3010 - Fucaceae: LTS0132646
- 4751 - Fungi: LTS0132646
- 1236 - Gammaproteobacteria: LTS0132646
- 6448 - Gastropoda: LTS0132646
- 8220 - Gobiidae: LTS0132646
- 511215 - Gowardia: LTS0132646
- 413822 - Gowardia nigricans: 10.1016/0305-1978(87)90002-0
- 413822 - Gowardia nigricans: LTS0132646
- 172966 - Gracilaria edulis: 10.1016/S0031-9422(00)90896-3
- 31469 - Gracilariaceae: LTS0132646
- 32115 - Gymnocarpium: LTS0132646
- 32116 - Gymnocarpium dryopteris: 10.1016/0305-1978(85)90030-4
- 32116 - Gymnocarpium dryopteris: LTS0132646
- 16107 - Hemerocallis: LTS0132646
- 34190 - Hemerocallis fulva: LTS0132646
- 213590 - Hemerocallis fulva var. angustifolia: 10.1021/JF000956T
- 213590 - Hemerocallis fulva var. angustifolia: LTS0132646
- 47605 - Hibiscus: LTS0132646
- 106335 - Hibiscus syriacus: 10.1021/JF60182A030
- 106335 - Hibiscus syriacus: LTS0132646
- 7684 - Holothuria: LTS0132646
- 7685 - Holothuria tubulosa: 10.1016/0305-0491(84)90180-9
- 7685 - Holothuria tubulosa: LTS0132646
- 7683 - Holothuriidae: LTS0132646
- 7705 - Holothuroidea: LTS0132646
- 9606 - Homo sapiens: -
- 37428 - Huperzia: LTS0132646
- 70001 - Huperzia selago: 10.1016/0305-1978(85)90030-4
- 70001 - Huperzia selago: LTS0132646
- 191045 - Hydropuntia: LTS0132646
- 448389 - Hydropuntia edulis: 10.1016/S0031-9422(00)90896-3
- 448389 - Hydropuntia edulis: LTS0132646
- 4119 - Ipomoea: LTS0132646
- 4120 - Ipomoea batatas: 10.1111/J.1365-2621.1986.TB10851.X
- 4120 - Ipomoea batatas: LTS0132646
- 4235 - Lactuca: LTS0132646
- 4236 - Lactuca sativa: 10.1111/J.1365-2621.1986.TB10851.X
- 4236 - Lactuca sativa: LTS0132646
- 4136 - Lamiaceae: LTS0132646
- 33637 - Laminaria: LTS0132646
- 80365 - Laminaria digitata: 10.1016/0305-1978(94)90112-0
- 80365 - Laminaria digitata: LTS0132646
- 33636 - Laminariaceae: LTS0132646
- 147547 - Lecanoromycetes: LTS0132646
- 4677 - Liliaceae: LTS0132646
- 4447 - Liliopsida: LTS0132646
- 63752 - Lobaria: LTS0132646
- 86794 - Lobaria pulmonaria: 10.1016/0305-1978(88)90082-8
- 86794 - Lobaria pulmonaria: LTS0132646
- 129109 - Lobariaceae: LTS0132646
- 32137 - Lomariopsidaceae: LTS0132646
- 3250 - Lycopodiaceae: LTS0132646
- 1521260 - Lycopodiopsida: LTS0132646
- 3251 - Lycopodium: LTS0132646
- 3252 - Lycopodium clavatum: 10.1016/0305-1978(85)90030-4
- 3252 - Lycopodium clavatum: LTS0132646
- 3398 - Magnoliopsida: LTS0132646
- 3629 - Malvaceae: LTS0132646
- 23461 - Mangifera: LTS0132646
- 29780 - Mangifera indica: 10.1021/JF9702860
- 29780 - Mangifera indica: LTS0132646
- 3877 - Medicago: LTS0132646
- 70936 - Medicago arabica: 10.1016/0305-1978(73)90022-7
- 70936 - Medicago arabica: 10.1016/0305-1978(75)90058-7
- 70936 - Medicago arabica: LTS0132646
- 66809 - Medicago cancellata: 10.1016/0305-1978(73)90022-7
- 66809 - Medicago cancellata: 10.1016/0305-1978(75)90058-7
- 66809 - Medicago cancellata: LTS0132646
- 66810 - Medicago carstiensis: 10.1016/0305-1978(73)90022-7
- 66810 - Medicago carstiensis: 10.1016/0305-1978(75)90058-7
- 66810 - Medicago carstiensis: LTS0132646
- 66812 - Medicago cretacea: 10.1016/0305-1978(73)90022-7
- 66812 - Medicago cretacea: 10.1016/0305-1978(75)90058-7
- 66812 - Medicago cretacea: LTS0132646
- 66814 - Medicago hybrida: 10.1016/0305-1978(73)90022-7
- 66814 - Medicago hybrida: 10.1016/0305-1978(75)90058-7
- 66814 - Medicago hybrida: LTS0132646
- 66815 - Medicago marina: 10.1016/0305-1978(73)90022-7
- 66815 - Medicago marina: 10.1016/0305-1978(75)90058-7
- 66815 - Medicago marina: LTS0132646
- 70967 - Medicago prostrata: 10.1016/0305-1978(73)90022-7
- 70967 - Medicago prostrata: 10.1016/0305-1978(75)90058-7
- 70967 - Medicago prostrata: LTS0132646
- 70973 - Medicago ruthenica: 10.1016/0305-1978(73)90022-7
- 70973 - Medicago ruthenica: 10.1016/0305-1978(75)90058-7
- 70973 - Medicago ruthenica: LTS0132646
- 3879 - Medicago sativa:
- 66818 - Medicago suffruticosa: 10.1016/0305-1978(73)90022-7
- 66818 - Medicago suffruticosa: 10.1016/0305-1978(75)90058-7
- 66818 - Medicago suffruticosa: LTS0132646
- 3370 - Metasequoia: LTS0132646
- 3371 - Metasequoia glyptostroboides: 10.1016/0305-1978(87)90003-2
- 3371 - Metasequoia glyptostroboides: LTS0132646
- 33208 - Metazoa: LTS0132646
- 1892252 - Microcoleaceae: LTS0132646
- 21013 - Mimosa: LTS0132646
- 148708 - Mimosa aculeaticarpa: LTS0132646
- 148709 - Mimosa aculeaticarpa var. biuncifera: 10.1007/BF00596768
- 6447 - Mollusca: LTS0132646
- 3671 - Momordica: LTS0132646
- 3673 - Momordica charantia:
- 3673 - Momordica charantia: 10.1016/S0031-9422(99)00174-0
- 3673 - Momordica charantia: 10.1271/BBB.66.2479
- 3673 - Momordica charantia: LTS0132646
- 3931 - Myrtaceae: LTS0132646
- 32151 - Nephrolepidaceae: LTS0132646
- 32152 - Nephrolepis: LTS0132646
- 32153 - Nephrolepis cordifolia: 10.1016/0305-1978(85)90030-4
- 32153 - Nephrolepis cordifolia: LTS0132646
- 34165 - Nephrolepis exaltata: 10.1016/0305-1978(85)90030-4
- 34165 - Nephrolepis exaltata: LTS0132646
- 48858 - Nephroma: LTS0132646
- 48859 - Nephroma arcticum: 10.1016/0305-1978(87)90002-0
- 48859 - Nephroma arcticum: LTS0132646
- 203386 - Nephroma laevigatum: 10.1016/0305-1978(88)90082-8
- 203386 - Nephroma laevigatum: LTS0132646
- 203387 - Nephroma parile: 10.1016/0305-1978(87)90002-0
- 203387 - Nephroma parile: LTS0132646
- 48857 - Nephromataceae: LTS0132646
- 2696291 - Ochrophyta: LTS0132646
- 3280 - Onoclea: LTS0132646
- 3281 - Onoclea sensibilis: 10.1016/0305-1978(85)90030-4
- 3281 - Onoclea sensibilis: LTS0132646
- 693794 - Onocleaceae: LTS0132646
- 174657 - Oreopteris: LTS0132646
- 174658 - Oreopteris limbosperma: 10.1016/0305-1978(85)90030-4
- 174658 - Oreopteris limbosperma: LTS0132646
- 204150 - Orthosiphon: LTS0132646
- 204151 - Orthosiphon aristatus: 10.1007/BF00596668
- 1158 - Oscillatoria: LTS0132646
- 153188 - Oscillatoria limosa: 10.1016/S0031-9422(00)81568-X
- 153188 - Oscillatoria limosa: LTS0132646
- 1892254 - Oscillatoriaceae: LTS0132646
- 4033 - Oxalidaceae: LTS0132646
- 4726 - Pandanus tectorius: 10.1079/PHN2005892
- 53335 - Pantoea: LTS0132646
- 549 - Pantoea agglomerans: 10.1007/BF00302252
- 549 - Pantoea agglomerans: 10.1128/JB.172.12.6704-6712.1990
- 549 - Pantoea agglomerans: LTS0132646
- 553 - Pantoea ananatis: 10.1007/BF00302252
- 553 - Pantoea ananatis: 10.1128/JB.172.12.6704-6712.1990
- 553 - Pantoea ananatis: LTS0132646
- 7688 - Parastichopus: LTS0132646
- 1497336 - Parastichopus regalis: 10.1016/0305-0491(84)90180-9
- 1497336 - Parastichopus regalis: LTS0132646
- 78060 - Parmeliaceae: LTS0132646
- 3684 - Passiflora: 10.1021/JF9801724
- 3684 - Passiflora: LTS0132646
- 78168 - Passiflora edulis: 10.1021/JF9801724
- 78168 - Passiflora edulis: LTS0132646
- 3683 - Passifloraceae: LTS0132646
- 37461 - Pellaea: LTS0132646
- 414639 - Pellaea atropurpurea: 10.1016/0305-1978(85)90030-4
- 414639 - Pellaea atropurpurea: LTS0132646
- 40973 - Pellaea rotundifolia: 10.1016/0305-1978(85)90030-4
- 40973 - Pellaea rotundifolia: LTS0132646
- 48861 - Peltigera: LTS0132646
- 162008 - Peltigera rufescens: 10.1016/0305-1978(87)90002-0
- 162008 - Peltigera rufescens: LTS0132646
- 48860 - Peltigeraceae: LTS0132646
- 48071 - Pelvetia: LTS0132646
- 74467 - Pelvetia canaliculata: 10.1016/0305-1978(94)90112-0
- 74467 - Pelvetia canaliculata: LTS0132646
- 2870 - Phaeophyceae: LTS0132646
- 3883 - Phaseolus: LTS0132646
- 3885 - Phaseolus vulgaris: 10.1111/J.1365-2621.1986.TB10851.X
- 3885 - Phaseolus vulgaris: LTS0132646
- 218619 - Phlebodium: LTS0132646
- 218620 - Phlebodium aureum: 10.1016/0305-1978(85)90030-4
- 218620 - Phlebodium aureum: LTS0132646
- 58019 - Pinopsida: LTS0132646
- 3887 - Pisum: LTS0132646
- 3888 - Pisum sativum: 10.1111/J.1365-2621.1986.TB10851.X
- 3888 - Pisum sativum: LTS0132646
- 208194 - Pisum sativum subsp. sativum: 10.1111/J.1365-2621.1986.TB10851.X
- 208194 - Pisum sativum subsp. sativum: LTS0132646
- 164273 - Pityrogramma: LTS0132646
- 1868143 - Pityrogramma sulphurea: 10.1016/0305-1978(85)90030-4
- 1868143 - Pityrogramma sulphurea: LTS0132646
- 54304 - Planktothrix: LTS0132646
- 1160 - Planktothrix agardhii:
- 1160 - Planktothrix agardhii: 10.1016/S0031-9422(00)81568-X
- 1160 - Planktothrix agardhii: 10.1016/S0031-9422(00)85703-9
- 1160 - Planktothrix agardhii: LTS0132646
- 59512 - Planktothrix rubescens: 10.1016/S0031-9422(00)81568-X
- 61309 - Platycerium: LTS0132646
- 85331 - Platycerium alcicorne: 10.1016/0305-1978(85)90030-4
- 85331 - Platycerium alcicorne: LTS0132646
- 6341 - Polychaeta: LTS0132646
- 3275 - Polypodiaceae: LTS0132646
- 241806 - Polypodiopsida: LTS0132646
- 38352 - Polypodium: LTS0132646
- 872808 - Polypodium virginianum: 10.1016/0305-1978(85)90030-4
- 872808 - Polypodium virginianum: LTS0132646
- 58048 - Polypodium vulgare: 10.1016/0305-1978(85)90030-4
- 58048 - Polypodium vulgare: LTS0132646
- 3278 - Polystichum: LTS0132646
- 983335 - Polystichum aculeatum: 10.1016/0305-1978(85)90030-4
- 983335 - Polystichum aculeatum: LTS0132646
- 207872 - Polystichum setiferum: 10.1016/0305-1978(85)90030-4
- 6040 - Porifera: LTS0132646
- 51281 - Protula: LTS0132646
- 363316 - Protula tubularia: 10.1016/0305-0491(84)90180-9
- 363316 - Protula tubularia: LTS0132646
- 3754 - Prunus: LTS0132646
- 36596 - Prunus armeniaca:
- 36596 - Prunus armeniaca: 10.1021/JF0480703
- 36596 - Prunus armeniaca: 10.1021/JF403644R
- 36596 - Prunus armeniaca: 10.1111/J.1365-2621.1986.TB10851.X
- 36596 - Prunus armeniaca: LTS0132646
- 3760 - Prunus persica: 10.1111/J.1365-2621.1986.TB10851.X
- 3760 - Prunus persica: LTS0132646
- 120289 - Psidium: 10.1021/JF980405R
- 120289 - Psidium: LTS0132646
- 120290 - Psidium guajava: 10.1021/JF980405R
- 120290 - Psidium guajava: LTS0132646
- 13819 - Pteridaceae: LTS0132646
- 32100 - Pteridium: LTS0132646
- 32101 - Pteridium aquilinum: 10.1016/0305-1978(85)90030-4
- 32101 - Pteridium aquilinum: LTS0132646
- 13820 - Pteris: LTS0132646
- 49539 - Pteris cretica: 10.1016/0305-1978(85)90030-4
- 49539 - Pteris cretica: LTS0132646
- 491155 - Pteris longifolia: 10.1016/0305-1978(85)90030-4
- 491155 - Pteris longifolia: LTS0132646
- 262952 - Pteris tremula: 10.1016/0305-1978(85)90030-4
- 262952 - Pteris tremula: LTS0132646
- 13821 - Pteris vittata: 10.1016/0305-1978(85)90030-4
- 3766 - Pyrus: LTS0132646
- 23211 - Pyrus communis: 10.1007/BF00598399
- 23211 - Pyrus communis: LTS0132646
- 3726 - Raphanus sativus: 10.3390/NU11020402
- 63457 - Rhinogobius: LTS0132646
- 933223 - Rhinogobius brunneus: 10.1021/NP990580H
- 933223 - Rhinogobius brunneus: LTS0132646
- 508009 - Rhinogobius formosanus: 10.1021/NP990580H
- 2803 - Rhodomelaceae: LTS0132646
- 2763 - Rhodophyta: LTS0132646
- 3764 - Rosa: LTS0132646
- 74635 - Rosa canina:
- 74635 - Rosa canina: 10.1016/S0731-7085(97)00099-X
- 74635 - Rosa canina: 10.1111/J.1365-2621.1989.TB04709.X
- 74635 - Rosa canina: LTS0132646
- 74645 - Rosa rugosa: 10.1111/J.1365-2621.1989.TB04709.X
- 74645 - Rosa rugosa: LTS0132646
- 267261 - Rosa villosa: 10.1002/HLCA.19830660211
- 267261 - Rosa villosa: LTS0132646
- 3745 - Rosaceae: LTS0132646
- 23216 - Rubus: LTS0132646
- 32247 - Rubus idaeus: 10.1111/J.1365-2621.1986.TB10851.X
- 32247 - Rubus idaeus: LTS0132646
- 23513 - Rutaceae: LTS0132646
- 309357 - Saccharina: LTS0132646
- 309358 - Saccharina latissima: 10.1016/0305-1978(94)90112-0
- 309358 - Saccharina latissima: LTS0132646
- 3688 - Salicaceae: LTS0132646
- 32186 - Salviniaceae: LTS0132646
- 61863 - Sandersonia: LTS0132646
- 61864 - Sandersonia aurantiaca: 10.1016/S0304-4238(97)00124-6
- 61864 - Sandersonia aurantiaca: LTS0132646
- 51280 - Serpulidae: LTS0132646
- 4070 - Solanaceae: LTS0132646
- 4107 - Solanum: LTS0132646
- 4113 - Solanum tuberosum:
- 4113 - Solanum tuberosum: 10.1021/JF00023A019
- 4113 - Solanum tuberosum: 10.1021/JF0257953
- 4113 - Solanum tuberosum: LTS0132646
- 23222 - Sorbus: LTS0132646
- 36599 - Sorbus aucuparia: 10.1093/OXFORDJOURNALS.AOB.A084605
- 36599 - Sorbus aucuparia: LTS0132646
- 3561 - Spinacia: LTS0132646
- 3562 - Spinacia oleracea: 10.1111/J.1365-2621.1986.TB10851.X
- 3562 - Spinacia oleracea: LTS0132646
- 1965351 - Spinulum: LTS0132646
- 13840 - Spinulum annotinum: LTS0132646
- 1154 - Spirulina: LTS0132646
- 50937 - Stereocaulaceae: LTS0132646
- 50938 - Stereocaulon: LTS0132646
- 350623 - Stereocaulon alpinum: 10.1016/0305-1978(87)90002-0
- 350623 - Stereocaulon alpinum: LTS0132646
- 405089 - Stereocaulon botryosum: 10.1016/0305-1978(87)90002-0
- 405089 - Stereocaulon botryosum: LTS0132646
- 50940 - Stereocaulon paschale: 10.1016/0305-1978(87)90002-0
- 50940 - Stereocaulon paschale: LTS0132646
- 83470 - Stereocaulon vesuvianum: 10.1016/0305-1978(87)90002-0
- 83470 - Stereocaulon vesuvianum: LTS0132646
- 7687 - Stichopodidae: LTS0132646
- 137528 - Sticta: LTS0132646
- 243211 - Sticta canariensis: 10.1016/0305-1978(88)90082-8
- 243211 - Sticta canariensis: LTS0132646
- 35493 - Streptophyta: LTS0132646
- 114457 - Struthiopteris spicant: 10.1016/0305-1978(85)90030-4
- 13707 - Tagetes: LTS0132646
- 13708 - Tagetes erecta: 10.1021/JF980823W
- 13708 - Tagetes erecta: LTS0132646
- 32443 - Teleostei: LTS0132646
- 39992 - Terminalia: LTS0132646
- 39993 - Terminalia catappa: 10.1111/J.1365-2621.2001.TB15182.X
- 39993 - Terminalia catappa: LTS0132646
- 34493 - Tethya: LTS0132646
- 281732 - Tethya aurantium: 10.1016/0305-0491(84)90180-9
- 281732 - Tethya aurantium: LTS0132646
- 45120 - Tethyidae: LTS0132646
- 27065 - Theaceae: LTS0132646
- 29616 - Thelypteridaceae: LTS0132646
- 29617 - Thelypteris: LTS0132646
- 29618 - Thelypteris palustris: LTS0132646
- 1132572 - Thelypteris palustris var. pubescens: 10.1016/0305-1978(85)90030-4
- 1132572 - Thelypteris palustris var. pubescens: LTS0132646
- 58023 - Tracheophyta: LTS0132646
- 59513 - Tychonema bornetii: 10.1016/S0031-9422(00)81568-X
- 87270 - Umbilicaria: LTS0132646
- 87282 - Umbilicaria rigida: 10.1016/0305-1978(87)90002-0
- 87282 - Umbilicaria rigida: LTS0132646
- 392743 - Umbilicaria torrefacta: 10.1016/0305-1978(87)90002-0
- 392743 - Umbilicaria torrefacta: LTS0132646
- 87287 - Umbilicaria vellea: 10.1016/0305-1978(87)90002-0
- 87287 - Umbilicaria vellea: LTS0132646
- 87265 - Umbilicariaceae: LTS0132646
- 13749 - Vaccinium: LTS0132646
- 69266 - Vaccinium corymbosum: 10.1111/J.1365-2621.1986.TB10851.X
- 69266 - Vaccinium corymbosum: LTS0132646
- 146292 - Verrucariaceae: LTS0132646
- 3904 - Vicia: LTS0132646
- 200967 - Vicia articulata: 10.1002/JSFA.2740320312
- 200967 - Vicia articulata: LTS0132646
- 154498 - Vicia ervilia: 10.1002/JSFA.2740320312
- 154498 - Vicia ervilia: LTS0132646
- 33090 - Viridiplantae: LTS0132646
- 3602 - Vitaceae: LTS0132646
- 3603 - Vitis: LTS0132646
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1007/BF00574814
- 29760 - Vitis vinifera: LTS0132646
- 246271 - Woodsiaceae: LTS0132646
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Weidong Chen, Yuanqing Li, Min Li, Hai Li, Caifang Chen, Yanzhao Lin. Association between dietary carotenoid intakes and abdominal aortic calcification in adults: National Health and Nutrition Examination Survey 2013-2014.
Journal of health, population, and nutrition.
2024 Feb; 43(1):20. doi:
10.1186/s41043-024-00511-9
. [PMID: 38303096] - Veronika Gunjević, Mirta Majerić Musa, Dora Zurak, Zlatko Svečnjak, Marija Duvnjak, Darko Grbeša, Kristina Kljak. Carotenoid degradation rate in milled grain of dent maize hybrids and its relationship with the grain physicochemical properties.
Food research international (Ottawa, Ont.).
2024 Feb; 177(?):113909. doi:
10.1016/j.foodres.2023.113909
. [PMID: 38225147] - Shaohua Yan, Siyu Chen, Yumiao Liu, Hongbin Liang, Xinlu Zhang, Qiuxia Zhang, Jiancheng Xiu. Associations of serum carotenoids with visceral adiposity index and lipid accumulation product: a cross-sectional study based on NHANES 2001-2006.
Lipids in health and disease.
2023 Nov; 22(1):209. doi:
10.1186/s12944-023-01945-6
. [PMID: 38037060] - Wenxiang Li, Guangyi Huang, Ningning Tang, Peng Lu, Li Jiang, Jian Lv, Yuanjun Qin, Yunru Lin, Fan Xu, Daizai Lei. Identification of dietary components in association with abdominal aortic calcification.
Food & function.
2023 Sep; 14(18):8383-8395. doi:
10.1039/d3fo02920d
. [PMID: 37609915] - Daiji Brahma, Debjani Dutta. Evaluating β-cryptoxanthin antioxidant properties against ROS-induced macromolecular damages and determining its photo-stability and in-vitro SPF.
World journal of microbiology & biotechnology.
2023 Sep; 39(11):310. doi:
10.1007/s11274-023-03747-5
. [PMID: 37715879] - Zhaofang Li, Yajing Li, Yijing Hou, Yahui Fan, Hong Jiang, Baoyu Li, Hailu Zhu, Yaning Liu, Lei Zhang, Jie Zhang, Min Wu, Tianyou Ma, Tong Zhao, Le Ma. Association of Plasma Vitamins and Carotenoids, DNA Methylation of LCAT, and Risk of Age-Related Macular Degeneration.
Nutrients.
2023 Jun; 15(13):. doi:
10.3390/nu15132985
. [PMID: 37447314] - Yun Xiong, Junya He, Mingzhang Li, Kui Du, Hangyu Lang, Ping Gao, Yue Xie. Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Yellow-Fleshed Kiwifruit.
International journal of molecular sciences.
2023 Jan; 24(2):. doi:
10.3390/ijms24021573
. [PMID: 36675098] - Selly D Msungu, Arnold A Mushongi, Pavithravani B Venkataramana, Ernest R Mbega. Status of carotenoids in elite and landrace maize genotypes: Implications for provitamin A biofortification in Tanzania.
Food research international (Ottawa, Ont.).
2022 06; 156(?):111303. doi:
10.1016/j.foodres.2022.111303
. [PMID: 35651063] - May A Beydoun, Hind A Beydoun, Marie T Fanelli-Kuczmarski, Jordan Weiss, Sharmin Hossain, Jose Atilio Canas, Michele Kim Evans, Alan B Zonderman. Association of Serum Antioxidant Vitamins and Carotenoids With Incident Alzheimer Disease and All-Cause Dementia Among US Adults.
Neurology.
2022 05; 98(21):e2150-e2162. doi:
10.1212/wnl.0000000000200289
. [PMID: 35508396] - Hanxiao Sun, Ting Wu, Yingyi Mao, Fang Tian, Xiaokun Cai, Matthew J Kuchan, Lishi Zhang, Yanrong Zhao, Jinyao Chen. Carotenoid profile in breast milk and maternal and cord plasma: a longitudinal study in Southwest China.
The British journal of nutrition.
2021 11; 126(9):1281-1287. doi:
10.1017/s0007114521000027
. [PMID: 33413728] - Tatsuya Oshima, Koki Takahashi, Asuka Inada, Masao Yamasaki, Yumi Yamasaki, Nozomu Eto. Enhanced water dispersibility and permeability through a Caco-2 cell monolayer of β-cryptoxanthin extracted from kumquats by complexation with casein.
Food chemistry.
2021 Oct; 360(?):129822. doi:
10.1016/j.foodchem.2021.129822
. [PMID: 33984564] - Dejene Kebede, Wende Mengesha, Abebe Menkir, Ayodeji Abe, Ana Luisa Garcia-Oliveira, Melaku Gedil. Marker based enrichment of provitamin A content in two tropical maize synthetics.
Scientific reports.
2021 07; 11(1):14998. doi:
10.1038/s41598-021-94586-7
. [PMID: 34294860] - Atsushi Kimura, Yo-Han Kim, Kazuyoshi Hashizume, Akira Ito, Katsuyuki Mukai, Keiichiro Kizaki, Shigeru Sato. Single oral β-cryptoxanthin administration increases its serum concentration and enhances peripheral blood neutrophil function in Holstein cattle.
The Journal of veterinary medical science.
2021 May; 83(5):829-831. doi:
10.1292/jvms.21-0054
. [PMID: 33775992] - Jun S Lai, Shirong Cai, Bee Lan Lee, Keith M Godfrey, Peter D Gluckman, Lynette P Shek, Fabian Yap, Kok Hian Tan, Yap Seng Chong, Choon Nam Ong, Michael J Meaney, Anne Rifkin-Graboi, Birit F P Broekman, Mary F F Chong. Higher maternal plasma β-cryptoxanthin concentration is associated with better cognitive and motor development in offspring at 2 years of age.
European journal of nutrition.
2021 Mar; 60(2):703-714. doi:
10.1007/s00394-020-02277-2
. [PMID: 32435993] - Srinivas Mummidi, Vidya S Farook, Lavanya Reddivari, Joselin Hernandez-Ruiz, Alvaro Diaz-Badillo, Sharon P Fowler, Roy G Resendez, Feroz Akhtar, Donna M Lehman, Christopher P Jenkinson, Rector Arya, Jane L Lynch, Jose A Canas, Ralph A DeFronzo, Daniel E Hale, John Blangero, Juan Carlos Lopez-Alvarenga, Ravindranath Duggirala, Jairam K P Vanamala. Serum carotenoids and Pediatric Metabolic Index predict insulin sensitivity in Mexican American children.
Scientific reports.
2021 01; 11(1):871. doi:
10.1038/s41598-020-79387-8
. [PMID: 33441626] - Tsuguhito Ota. Prevention of NAFLD/NASH by Astaxanthin and β-Cryptoxanthin.
Advances in experimental medicine and biology.
2021; 1261(?):231-238. doi:
10.1007/978-981-15-7360-6_21
. [PMID: 33783746] - Suman Dutta, Vignesh Muthusamy, Rashmi Chhabra, Aanchal Baveja, Rajkumar U Zunjare, Tapan K Mondal, Devendra K Yadava, Firoz Hossain. Low expression of carotenoids cleavage dioxygenase 1 (ccd1) gene improves the retention of provitamin-A in maize grains during storage.
Molecular genetics and genomics : MGG.
2021 Jan; 296(1):141-153. doi:
10.1007/s00438-020-01734-1
. [PMID: 33068135] - Shan Li, Xianglu Zhu, Lin Zhu, Xin Hu, Shujuan Wen. Associations between serum carotenoid levels and the risk of non-Hodgkin lymphoma: a case-control study.
The British journal of nutrition.
2020 12; 124(12):1311-1319. doi:
10.1017/s000711452000152x
. [PMID: 32349798] - Robin D Clugston. Carotenoids and fatty liver disease: Current knowledge and research gaps.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2020 11; 1865(11):158597. doi:
10.1016/j.bbalip.2019.158597
. [PMID: 31904420] - Fatemeh Haidari, Abdollah Hojhabrimanesh, Bizhan Helli, Seyed-Saeed Seyedian, Kambiz Ahmadi-Angali, Behnaz Abiri. A hypocaloric high-protein diet supplemented with β-cryptoxanthin improves non-alcoholic fatty liver disease: a randomized controlled trial.
BMC gastroenterology.
2020 Oct; 20(1):349. doi:
10.1186/s12876-020-01502-w
. [PMID: 33081717] - Mohamed A Elhadad, Nena Karavasiloglou, Wahyu Wulaningsih, Konstantinos K Tsilidis, Ioanna Tzoulaki, Chirag J Patel, Sabine Rohrmann. Metabolites, Nutrients, and Lifestyle Factors in Relation to Coffee Consumption: An Environment-Wide Association Study.
Nutrients.
2020 May; 12(5):. doi:
10.3390/nu12051470
. [PMID: 32438643] - Ping Lin, Qian Ren, Qin Wang, Jiali Wu. Carotenoids Inhibit Fructose-Induced Inflammatory Response in Human Endothelial Cells and Monocytes.
Mediators of inflammation.
2020; 2020(?):5373562. doi:
10.1155/2020/5373562
. [PMID: 32410856] - Karma Pearce, Kelton Tremellen. Influence of Βeta-Cryptoxanthin Supplementation on Ovarian Reserve and Fertility Status in Aged Wistar Rats.
Journal of dietary supplements.
2020; 17(3):273-285. doi:
10.1080/19390211.2018.1521489
. [PMID: 30526158] - Jacinta L Watkins, Ming Li, Ryan P McQuinn, Kai Xun Chan, Heather E McFarlane, Maria Ermakova, Robert T Furbank, Daryl Mares, Chongmei Dong, Kenneth J Chalmers, Peter Sharp, Diane E Mather, Barry J Pogson. A GDSL Esterase/Lipase Catalyzes the Esterification of Lutein in Bread Wheat.
The Plant cell.
2019 12; 31(12):3092-3112. doi:
10.1105/tpc.19.00272
. [PMID: 31575724] - Akira Iwata, Suzuka Fujiwara, Satoshi Matsubara, Kouji Miyazaki. Intake of β-cryptoxanthin with fat-containing food increases β-cryptoxanthin serum level and palmar yellowness in healthy adults.
Nutrition research (New York, N.Y.).
2019 11; 71(?):65-71. doi:
10.1016/j.nutres.2019.09.003
. [PMID: 31757627] - Feng Luo, Shun-Chang Cheng, Jia-Hui Cai, Bao-Dong Wei, Xin Zhou, Qian Zhou, Ying-Bo Zhao, Shu-Juan Ji. Chlorophyll degradation and carotenoid biosynthetic pathways: Gene expression and pigment content in broccoli during yellowing.
Food chemistry.
2019 Nov; 297(?):124964. doi:
10.1016/j.foodchem.2019.124964
. [PMID: 31253313] - Hideyuki Hara, Haruya Takahashi, Shinsuke Mohri, Hiroki Murakami, Satoko Kawarasaki, Mari Iwase, Nobuyuki Takahashi, Minoru Sugiura, Tsuyoshi Goto, Teruo Kawada. β-Cryptoxanthin Induces UCP-1 Expression via a RAR Pathway in Adipose Tissue.
Journal of agricultural and food chemistry.
2019 Sep; 67(38):10595-10603. doi:
10.1021/acs.jafc.9b01930
. [PMID: 31475817] - Ji Ye Lim, Chun Liu, Kang-Quan Hu, Donald E Smith, Dayong Wu, Stefania Lamon-Fava, Lynne M Ausman, Xiang-Dong Wang. Dietary β-Cryptoxanthin Inhibits High-Refined Carbohydrate Diet-Induced Fatty Liver via Differential Protective Mechanisms Depending on Carotenoid Cleavage Enzymes in Male Mice.
The Journal of nutrition.
2019 09; 149(9):1553-1564. doi:
10.1093/jn/nxz106
. [PMID: 31212314] - M Pilar Cano, Andrea Gómez-Maqueo, Rebeca Fernández-López, Jorge Welti-Chanes, Tomás García-Cayuela. Impact of high hydrostatic pressure and thermal treatment on the stability and bioaccessibility of carotenoid and carotenoid esters in astringent persimmon (Diospyros kaki Thunb, var. Rojo Brillante).
Food research international (Ottawa, Ont.).
2019 09; 123(?):538-549. doi:
10.1016/j.foodres.2019.05.017
. [PMID: 31285003] - Fabiane C Petry, Fabio B de Nadai, Mariângela Cristofani-Yaly, Rodrigo R Latado, Adriana Z Mercadante. Carotenoid biosynthesis and quality characteristics of new hybrids between tangor (Citrus reticulata x C. sinensis) cv. 'Murcott' and sweet orange (C. sinensis) cv. 'Pêra'.
Food research international (Ottawa, Ont.).
2019 08; 122(?):461-470. doi:
10.1016/j.foodres.2019.04.035
. [PMID: 31229100] - Daniele Bobrowski Rodrigues, Adriana Zerlotti Mercadante, Lilian Regina Barros Mariutti. Marigold carotenoids: Much more than lutein esters.
Food research international (Ottawa, Ont.).
2019 05; 119(?):653-664. doi:
10.1016/j.foodres.2018.10.043
. [PMID: 30884700] - Rina Terao, Akira Murata, Kazuhiro Sugamoto, Tomoko Watanabe, Kiyoko Nagahama, Keiko Nakahara, Tomomi Kondo, Noboru Murakami, Keiichi Fukui, Hidemi Hattori, Nozomu Eto. Immunostimulatory effect of kumquat (Fortunella crassifolia) and its constituents, β-cryptoxanthin and R-limonene.
Food & function.
2019 Jan; 10(1):38-48. doi:
10.1039/c8fo01971a
. [PMID: 30548041] - Melissa Thoene, Ann Anderson-Berry, Matthew Van Ormer, Jeremy Furtado, Ghada A Soliman, Whitney Goldner, Corrine Hanson. Quantification of Lutein + Zeaxanthin Presence in Human Placenta and Correlations with Blood Levels and Maternal Dietary Intake.
Nutrients.
2019 Jan; 11(1):. doi:
10.3390/nu11010134
. [PMID: 30634589] - Azusa Nishino, Takashi Ichihara, Kazuhisa Sugimoto, Takashi Kuriki, Hiroyuki Yasui, Takashi Maoka. Predicting organ carotenoids levels from analysis of plasma could lead to errors: A study in cynomolgus monkeys.
Nutrition research (New York, N.Y.).
2019 01; 61(?):95-101. doi:
10.1016/j.nutres.2018.10.001
. [PMID: 30683442] - Fatemeh Haidari, Abdollah Hojhabrimanesh, Bizhan Helli, Seyed Saeid Seyedian, Kambiz Ahmadi-Angali. Effect of a high-protein diet with β-cryptoxanthin supplementation on metabolic risk factors, oxidative and inflammatory biomarkers in non-alcoholic fatty liver disease (NAFLD): study protocol for a randomized controlled clinical trial.
Trials.
2018 Nov; 19(1):634. doi:
10.1186/s13063-018-3014-8
. [PMID: 30445988] - Jean Fidèle Bationo, Augustin N Zeba, Souheila Abbeddou, Nadine D Coulibaly, Olivier O Sombier, Jesse Sheftel, Imael Henri Nestor Bassole, Nicolas Barro, Jean Bosco Ouedraogo, Sherry A Tanumihardjo. Serum Carotenoids Reveal Poor Fruit and Vegetable Intake among Schoolchildren in Burkina Faso.
Nutrients.
2018 Oct; 10(10):. doi:
10.3390/nu10101422
. [PMID: 30287727] - Tyler J Titcomb, Jesse Sheftel, Margaret Sowa, Bryan M Gannon, Christopher R Davis, Natalia Palacios-Rojas, Sherry A Tanumihardjo. β-Cryptoxanthin and zeaxanthin are highly bioavailable from whole-grain and refined biofortified orange maize in humans with optimal vitamin A status: a randomized, crossover, placebo-controlled trial.
The American journal of clinical nutrition.
2018 10; 108(4):793-802. doi:
10.1093/ajcn/nqy134
. [PMID: 30321275] - Dámaso Hornero-Méndez, Isabel Cerrillo, Ángeles Ortega, María-Rosario Rodríguez-Griñolo, Blanca Escudero-López, Franz Martín, María-Soledad Fernández-Pachón. β-Cryptoxanthin is more bioavailable in humans from fermented orange juice than from orange juice.
Food chemistry.
2018 Oct; 262(?):215-220. doi:
10.1016/j.foodchem.2018.04.083
. [PMID: 29751912] - Mary E Kelly, Srinivasagan Ramkumar, Weizhong Sun, Crystal Colon Ortiz, Philip D Kiser, Marcin Golczak, Johannes von Lintig. The Biochemical Basis of Vitamin A Production from the Asymmetric Carotenoid β-Cryptoxanthin.
ACS chemical biology.
2018 08; 13(8):2121-2129. doi:
10.1021/acschembio.8b00290
. [PMID: 29883100] - Gang Ma, Lancui Zhang, Witchulada Yungyuen, Yuki Sato, Takuma Furuya, Masaki Yahata, Kazuki Yamawaki, Masaya Kato. Accumulation of carotenoids in a novel citrus cultivar 'Seinannohikari' during the fruit maturation.
Plant physiology and biochemistry : PPB.
2018 Aug; 129(?):349-356. doi:
10.1016/j.plaphy.2018.06.015
. [PMID: 29936241] - Emily K Heying, Kaitlin Leary Ziemer, Jacob P Tanumihardjo, Natalia Palacios-Rojas, Sherry A Tanumihardjo. β-Cryptoxanthin-Biofortified Hen Eggs Enhance Vitamin A Status When Fed to Male Mongolian Gerbils.
The Journal of nutrition.
2018 08; 148(8):1236-1243. doi:
10.1093/jn/nxy117
. [PMID: 30137479] - Lindsay N Kohler, Ana Florea, Connor P Kelley, Sherry Chow, Paul Hsu, Ken Batai, Kathylynn Saboda, Peter Lance, Elizabeth T Jacobs. Higher Plasma Selenium Concentrations Are Associated with Increased Odds of Prevalent Type 2 Diabetes.
The Journal of nutrition.
2018 08; 148(8):1333-1340. doi:
10.1093/jn/nxy099
. [PMID: 29924331] - Mohsen Mazidi, Andre Pascal Kengne, L J Cheskin, Maciej Banach. Serum lipophilic antioxidants levels are associated with leucocyte telomere length among US adults.
Lipids in health and disease.
2018 Jul; 17(1):164. doi:
10.1186/s12944-018-0781-x
. [PMID: 30029639] - Nattawut Leelakanok, Ronilda R D'Cunha, Grerk Sutamtewagul, Marin L Schweizer. A systematic review and meta-analysis of the association between vitamin A intake, serum vitamin A, and risk of liver cancer.
Nutrition and health.
2018 Jun; 24(2):121-131. doi:
10.1177/0260106018777170
. [PMID: 29792083] - Cheng Wang, Rui Qiu, Yi Cao, Wei-Fu Ouyang, Hua-Bin Li, Wen-Hua Ling, Yu-Ming Chen. Higher dietary and serum carotenoid levels are associated with lower carotid intima-media thickness in middle-aged and elderly people.
The British journal of nutrition.
2018 03; 119(5):590-598. doi:
10.1017/s0007114517003932
. [PMID: 29508696] - Andrea Alvarez-Sala, Gabriel López-García, Alessandro Attanzio, Luisa Tesoriere, Antonio Cilla, Reyes Barberá, Amparo Alegría. Effects of Plant Sterols or β-Cryptoxanthin at Physiological Serum Concentrations on Suicidal Erythrocyte Death.
Journal of agricultural and food chemistry.
2018 Feb; 66(5):1157-1166. doi:
10.1021/acs.jafc.7b05575
. [PMID: 29345907] - Naofumi Umigai, Katsura Murakami, Ryoma Shimizu, Ryuji Takeda, Takayuki Azuma. Safety Evaluation and Plasma Carotenoid Accumulation in Healthy Adult Subjects after 12 Weeks of Paprika Oleoresin Supplementation.
Journal of oleo science.
2018 Feb; 67(2):225-234. doi:
10.5650/jos.ess17155
. [PMID: 29367485] - Amanda C Palmer, Neal E Craft, Kerry J Schulze, Maxwell Barffour, Justin Chileshe, Ward Siamusantu, Keith P West. Impact of biofortified maize consumption on serum carotenoid concentrations in Zambian children.
European journal of clinical nutrition.
2018 02; 72(2):301-303. doi:
10.1038/s41430-017-0054-1
. [PMID: 29321687] - José Manuel Quesada-Gómez, Raquel Santiago-Mora, Mario Durán-Prado, Gabriel Dorado, Gema Pereira-Caro, José Manuel Moreno-Rojas, Antonio Casado-Díaz. β-Cryptoxanthin Inhibits Angiogenesis in Human Umbilical Vein Endothelial Cells Through Retinoic Acid Receptor.
Molecular nutrition & food research.
2018 01; 62(2):. doi:
10.1002/mnfr.201700489
. [PMID: 29131551] - Arianna C Chan-León, Humberto Estrella-Maldonado, Pascal Dubé, Gabriela Fuentes Ortiz, Francisco Espadas-Gil, Carlos Talavera May, Jorge Ramírez Prado, Yves Desjardins, Jorge M Santamaría. The high content of β-carotene present in orange-pulp fruits of Carica papaya L. is not correlated with a high expression of the CpLCY-β2 gene.
Food research international (Ottawa, Ont.).
2017 10; 100(Pt 2):45-56. doi:
10.1016/j.foodres.2017.08.017
. [PMID: 28888458] - Jing Huang, Min-Shan Lu, Yu-Jing Fang, Ming Xu, Wu-Qing Huang, Zhi-Zhong Pan, Yu-Ming Chen, Cai-Xia Zhang. Serum carotenoids and colorectal cancer risk: A case-control study in Guangdong, China.
Molecular nutrition & food research.
2017 10; 61(10):. doi:
10.1002/mnfr.201700267
. [PMID: 28605127] - José J Ríos, Ana Augusta Odorissi Xavier, Elena Díaz-Salido, Isabel Arenilla-Vélez, Manuel Jarén-Galán, Juan Garrido-Fernández, Josefa Aguayo-Maldonado, Antonio Pérez-Gálvez. Xanthophyll esters are found in human colostrum.
Molecular nutrition & food research.
2017 10; 61(10):. doi:
10.1002/mnfr.201700296
. [PMID: 28586173] - Wanpitak Pongkan, Osamu Takatori, Yinhua Ni, Liang Xu, Naoto Nagata, Siriporn C Chattipakorn, Soichiro Usui, Shuichi Kaneko, Masayuki Takamura, Minoru Sugiura, Nipon Chattipakorn, Tsuguhito Ota. β-Cryptoxanthin exerts greater cardioprotective effects on cardiac ischemia-reperfusion injury than astaxanthin by attenuating mitochondrial dysfunction in mice.
Molecular nutrition & food research.
2017 10; 61(10):. doi:
10.1002/mnfr.201601077
. [PMID: 28544535] - Lee Ashton, Rebecca Williams, Lisa Wood, Tracy Schumacher, Tracy Burrows, Megan Rollo, Kristine Pezdirc, Robin Callister, Clare Collins. Comparison of Australian Recommended Food Score (ARFS) and Plasma Carotenoid Concentrations: A Validation Study in Adults.
Nutrients.
2017 Aug; 9(8):. doi:
10.3390/nu9080888
. [PMID: 28817083] - Tana Ingram, Jessica Zuck, Chad R Borges, Patrick Redig, Karen L Sweazea. Variations in native protein glycation and plasma antioxidants in several birds of prey.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2017 Aug; 210(?):18-28. doi:
10.1016/j.cbpb.2017.05.004
. [PMID: 28529085] - Kouichi Mizuno, Tetsuo Tokiwano, Yuko Yoshizawa. Gene expression analysis of enzymes of the carotenoid biosynthesis pathway involved in β-cryptoxanthin accumulation in wild raspberry, Rubus palmatus.
Biochemical and biophysical research communications.
2017 03; 484(4):845-849. doi:
10.1016/j.bbrc.2017.01.186
. [PMID: 28161629] - Gyujin Park, Tetsuhiro Horie, Kazuya Fukasawa, Kakeru Ozaki, Yuki Onishi, Takashi Kanayama, Takashi Iezaki, Katsuyuki Kaneda, Minoru Sugiura, Eiichi Hinoi. Amelioration of the Development of Osteoarthritis by Daily Intake of β-Cryptoxanthin.
Biological & pharmaceutical bulletin.
2017; 40(7):1116-1120. doi:
10.1248/bpb.b17-00161
. [PMID: 28674255] - Corrine Hanson, Marina Schumacher, Elizabeth Lyden, Jeremy Furtado, Matthew Van Ormer, Elizabeth McGinn, Katherine Rilett, Caleb Cave, Rebecca Johnson, Kara Weishaar, Ann Anderson-Berry. Status of Vitamin A and Related Compounds and Clinical Outcomes in Maternal-Infant Pairs in the Midwestern United States.
Annals of nutrition & metabolism.
2017; 71(3-4):175-182. doi:
10.1159/000481292
. [PMID: 28942446] - Anine Christine Medin, Monica Hauger Carlsen, Lene Frost Andersen. Associations between reported intakes of carotenoid-rich foods and concentrations of carotenoids in plasma: a validation study of a web-based food recall for children and adolescents.
Public health nutrition.
2016 12; 19(18):3265-3275. doi:
10.1017/s1368980016001622
. [PMID: 27346293] - Xiao-Ran Liu, Yue-Ying Wang, Hai-Rui Fan, Can-Jie Wu, Ashok Kumar, Li-Guo Yang. Preventive effects of β-cryptoxanthin against cadmium-induced oxidative stress in the rat testis.
Asian journal of andrology.
2016 Nov; 18(6):920-924. doi:
10.4103/1008-682x.173449
. [PMID: 27101804] - E Hernández-Alvarez, I Blanco-Navarro, B Pérez-Sacristán, L M Sánchez-Siles, F Granado-Lorencio. In vitro digestion-assisted development of a β-cryptoxanthin-rich functional beverage; in vivo validation using systemic response and faecal content.
Food chemistry.
2016 Oct; 208(?):18-25. doi:
10.1016/j.foodchem.2016.03.119
. [PMID: 27132819] - Charles Couillard, Simone Lemieux, Marie-Claude Vohl, Patrick Couture, Benoît Lamarche. Carotenoids as biomarkers of fruit and vegetable intake in men and women.
The British journal of nutrition.
2016 Oct; 116(7):1206-1215. doi:
10.1017/s0007114516003056
. [PMID: 27572625] - Wolfgang Stuetz, Daniela Weber, Martijn E T Dollé, Eugène Jansen, Beatrix Grubeck-Loebenstein, Simone Fiegl, Olivier Toussaint, Juergen Bernhardt, Efstathios S Gonos, Claudio Franceschi, Ewa Sikora, María Moreno-Villanueva, Nicolle Breusing, Tilman Grune, Alexander Bürkle. Plasma Carotenoids, Tocopherols, and Retinol in the Age-Stratified (35-74 Years) General Population: A Cross-Sectional Study in Six European Countries.
Nutrients.
2016 Sep; 8(10):. doi:
10.3390/nu8100614
. [PMID: 27706032] - M Nakamura, M Sugiura, K Ogawa, Y Ikoma, M Yano. Serum β-cryptoxanthin and β-carotene derived from Satsuma mandarin and brachial-ankle pulse wave velocity: The Mikkabi cohort study.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2016 09; 26(9):808-14. doi:
10.1016/j.numecd.2016.04.001
. [PMID: 27212620] - Yu Fen Zheng, Jee Sun Min, Doyun Kim, Jung Bae Park, Sung-Wook Choi, Eun Seong Lee, Kun Na, Soo Kyung Bae. In Vitro Inhibition of Human UDP-Glucuronosyl-Transferase (UGT) Isoforms by Astaxanthin, β-Cryptoxanthin, Canthaxanthin, Lutein, and Zeaxanthin: Prediction of in Vivo Dietary Supplement-Drug Interactions.
Molecules (Basel, Switzerland).
2016 Aug; 21(8):. doi:
10.3390/molecules21081052
. [PMID: 27529203] - Chenghao H Zhu, Erik R Gertz, Yimeng Cai, Betty J Burri. Consumption of canned citrus fruit meals increases human plasma β-cryptoxanthin concentration, whereas lycopene and β-carotene concentrations did not change in healthy adults.
Nutrition research (New York, N.Y.).
2016 07; 36(7):679-88. doi:
10.1016/j.nutres.2016.03.005
. [PMID: 27333959] - Z-Q Zhang, W-T Cao, J Liu, Y Cao, Y-X Su, Y-M Chen. Greater serum carotenoid concentration associated with higher bone mineral density in Chinese adults.
Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.
2016 Apr; 27(4):1593-1601. doi:
10.1007/s00198-015-3425-2
. [PMID: 26753540] - Minoru Sugiura, Mieko Nakamura, Kazunori Ogawa, Yoshinori Ikoma, Masamichi Yano. High serum carotenoids are associated with lower risk for developing elevated serum alanine aminotransferase among Japanese subjects: the Mikkabi cohort study.
The British journal of nutrition.
2016 04; 115(8):1462-9. doi:
10.1017/s0007114516000374
. [PMID: 26916997] - Masaaki Hikita, Kento Motojima, Sumito Kamata, Testuro Yoshida, Sawako Tanaka-Nakadate, Kazuhiko Nakadate. Protective Efficacy of the Ingestion of Mandarin Orange Containing β-Cryptoxanthin on Lipopolysaccharide-induced Acute Nephritis.
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2016; 136(7):1031-40. doi:
10.1248/yakushi.15-00284
. [PMID: 27374966] - Minoru Sugiura, Mieko Nakamura, Kazunori Ogawa, Yoshinori Ikoma, Masamichi Yano. High Vitamin C Intake with High Serum β-Cryptoxanthin Associated with Lower Risk for Osteoporosis in Post-Menopausal Japanese Female Subjects: Mikkabi Cohort Study.
Journal of nutritional science and vitaminology.
2016; 62(3):185-91. doi:
10.3177/jnsv.62.185
. [PMID: 27465725] - Minoru Sugiura, Mieko Nakamura, Kazunori Ogawa, Yoshinori Ikoma, Masamichi Yano. High serum carotenoids associated with lower risk for the metabolic syndrome and its components among Japanese subjects: Mikkabi cohort study.
The British journal of nutrition.
2015 Nov; 114(10):1674-82. doi:
10.1017/s0007114515003268
. [PMID: 26365147] - Won Jin Ho, Michael S Simon, Vedat O Yildiz, James M Shikany, Ikuko Kato, Jennifer L Beebe-Dimmer, Jeremy P Cetnar, Cathryn H Bock. Antioxidant micronutrients and the risk of renal cell carcinoma in the Women's Health Initiative cohort.
Cancer.
2015 Feb; 121(4):580-8. doi:
10.1002/cncr.29091
. [PMID: 25302685] - Akihiko Nagao, Takashi Maoka, Hiroshi Ono, Eiichi Kotake-Nara, Miyuki Kobayashi, Mie Tomita. A 3-hydroxy β-end group in xanthophylls is preferentially oxidized to a 3-oxo ε-end group in mammals.
Journal of lipid research.
2015 Feb; 56(2):449-62. doi:
10.1194/jlr.p055459
. [PMID: 25502844] - Marie Modestine Kana-Sop, Inocent Gouado, Mercy Bih Achu, John Van Camp, Paul Henri Amvam Zollo, Florian J Schweigert, Donald Oberleas, Tetanye Ekoe. The Influence of Iron and Zinc Supplementation on the Bioavailability of Provitamin A Carotenoids from Papaya Following Consumption of a Vitamin A-Deficient Diet.
Journal of nutritional science and vitaminology.
2015; 61(3):205-14. doi:
10.3177/jnsv.61.205
. [PMID: 26226956] - Huei-Yan Chen, Chih-Min Yang, Jen-Yin Chen, Te-Cheng Yueh, Miao-Lin Hu. Multicarotenoids at Physiological Levels Inhibit Metastasis in Human Hepatocarcinoma SK-Hep-1 Cells.
Nutrition and cancer.
2015; 67(4):676-86. doi:
10.1080/01635581.2015.1019633
. [PMID: 25868689] - Kiyoko Nagahama, Nozomu Eto, Tomofumi Shimojo, Tomomi Kondoh, Keiko Nakahara, Yoichi Sakakibara, Keiichi Fukui, Masahito Suiko. Effect of kumquat (Fortunella crassifolia) pericarp on natural killer cell activity in vitro and in vivo.
Bioscience, biotechnology, and biochemistry.
2015; 79(8):1327-36. doi:
10.1080/09168451.2015.1025033
. [PMID: 25849817] - Minoru Sugiura. [β-Cryptoxanthin and the risk for lifestyle-related disease: findings from recent nutritional epidemiologic studies].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2015; 135(1):67-76. doi:
10.1248/yakushi.14-00208-5
. [PMID: 25743900] - Jun Liu, Wen-Qi Shi, Yi Cao, Li-Ping He, Ke Guan, Wen-Hua Ling, Yu-Ming Chen. Higher serum carotenoid concentrations associated with a lower prevalence of the metabolic syndrome in middle-aged and elderly Chinese adults.
The British journal of nutrition.
2014 Dec; 112(12):2041-8. doi:
10.1017/s000711451400316x
. [PMID: 25345663] - Jun S Lai, John Attia, Mark McEvoy, Alexis J Hure. Biochemical validation of the older Australian's food frequency questionnaire using carotenoids and vitamin E.
Nutrients.
2014 Nov; 6(11):4906-17. doi:
10.3390/nu6114906
. [PMID: 25383938] - F Granado-Lorencio, M J Lagarda, F J Garcia-López, L M Sánchez-Siles, I Blanco-Navarro, A Alegría, B Pérez-Sacristán, G Garcia-Llatas, E Donoso-Navarro, R A Silvestre-Mardomingo, R Barberá. Effect of β-cryptoxanthin plus phytosterols on cardiovascular risk and bone turnover markers in post-menopausal women: a randomized crossover trial.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2014 Oct; 24(10):1090-6. doi:
10.1016/j.numecd.2014.04.013
. [PMID: 24909799] - May A Beydoun, Michael A Nalls, J Atilio Canas, Michele K Evans, Alan B Zonderman. Gene polymorphisms and gene scores linked to low serum carotenoid status and their associations with metabolic disturbance and depressive symptoms in African-American adults.
The British journal of nutrition.
2014 Sep; 112(6):992-1003. doi:
10.1017/s0007114514001706
. [PMID: 25201307] - Elisabeth Kvaavik, Torunn H Totland, Nasser Bastani, Marte K Kjøllesdal, Grethe S Tell, Lene F Andersen. Do smoking and fruit and vegetable intake mediate the association between socio-economic status and plasma carotenoids?.
European journal of public health.
2014 Aug; 24(4):685-90. doi:
10.1093/eurpub/ckt081
. [PMID: 23813714] - Kyoung-Bok Min, Jin-Young Min. Serum carotenoid levels and risk of lung cancer death in US adults.
Cancer science.
2014 Jun; 105(6):736-43. doi:
10.1111/cas.12405
. [PMID: 24673770] - Michael R La Frano, Chenghao Zhu, Betty J Burri. Assessment of tissue distribution and concentration of β-cryptoxanthin in response to varying amounts of dietary β-cryptoxanthin in the Mongolian gerbil.
The British journal of nutrition.
2014 Mar; 111(6):968-78. doi:
10.1017/s0007114513003371
. [PMID: 24229567] - Soroush Ghodratizadeh, Güngör Kanbak, Mojtaba Beyramzadeh, Zeliha Gunnur Dikmen, Salar Memarzadeh, Reza Habibian. Effect of carotenoid β-cryptoxanthin on cellular and humoral immune response in rabbit.
Veterinary research communications.
2014 Mar; 38(1):59-62. doi:
10.1007/s11259-013-9584-8
. [PMID: 24307458] - Meng Yang, Ying Wang, Catherine G Davis, Sang Gil Lee, Maria Luz Fernandez, Sung I Koo, Eunyoung Cho, Won O Song, Ock K Chun. Validation of an FFQ to assess short-term antioxidant intake against 30 d food records and plasma biomarkers.
Public health nutrition.
2014 Feb; 17(2):297-306. doi:
10.1017/s1368980012005071
. [PMID: 23164175] - Camille Pouchieu, Pilar Galan, Véronique Ducros, Paule Latino-Martel, Serge Hercberg, Mathilde Touvier. Plasma carotenoids and retinol and overall and breast cancer risk: a nested case-control study.
Nutrition and cancer.
2014; 66(6):980-8. doi:
10.1080/01635581.2014.936952
. [PMID: 25072980] - Andrew P Black, Hassan Vally, Peter Morris, Mark Daniel, Adrian Esterman, Connie S Karschimkus, Kerin O'Dea. Nutritional impacts of a fruit and vegetable subsidy programme for disadvantaged Australian Aboriginal children.
The British journal of nutrition.
2013 Dec; 110(12):2309-17. doi:
10.1017/s0007114513001700
. [PMID: 23742751] - Tami Turner, Betty J Burri, Kazi M Jamil, Maleka Jamil. The effects of daily consumption of β-cryptoxanthin-rich tangerines and β-carotene-rich sweet potatoes on vitamin A and carotenoid concentrations in plasma and breast milk of Bangladeshi women with low vitamin A status in a randomized controlled trial.
The American journal of clinical nutrition.
2013 Nov; 98(5):1200-8. doi:
10.3945/ajcn.113.058180
. [PMID: 24004891] - Sara J Hendrickson, Walter C Willett, Bernard A Rosner, A Heather Eliassen. Food predictors of plasma carotenoids.
Nutrients.
2013 Oct; 5(10):4051-66. doi:
10.3390/nu5104051
. [PMID: 24152746] - Rachel E Kopec, Ralf M Schweiggert, Ken M Riedl, Reinhold Carle, Steven J Schwartz. Comparison of high-performance liquid chromatography/tandem mass spectrometry and high-performance liquid chromatography/photo-diode array detection for the quantitation of carotenoids, retinyl esters, α-tocopherol and phylloquinone in chylomicron-rich fractions of human plasma.
Rapid communications in mass spectrometry : RCM.
2013 Jun; 27(12):1393-402. doi:
10.1002/rcm.6576
. [PMID: 23681818] - D Kevin Horton, Olorunfemi Adetona, Manuel Aguilar-Villalobos, Brandon E Cassidy, Christine M Pfeiffer, Rosemary L Schleicher, Kathleen L Caldwell, Larry L Needham, Stephen L Rathbun, John E Vena, Luke P Naeher. Changes in the concentrations of biochemical indicators of diet and nutritional status of pregnant women across pregnancy trimesters in Trujillo, Peru, 2004-2005.
Nutrition journal.
2013 Jun; 12(?):80. doi:
10.1186/1475-2891-12-80
. [PMID: 23758715] - Stephanie M Rink, Pauline Mendola, Sunni L Mumford, Jill K Poudrier, Richard W Browne, Jean Wactawski-Wende, Neil J Perkins, Enrique F Schisterman. Self-report of fruit and vegetable intake that meets the 5 a day recommendation is associated with reduced levels of oxidative stress biomarkers and increased levels of antioxidant defense in premenopausal women.
Journal of the Academy of Nutrition and Dietetics.
2013 Jun; 113(6):776-85. doi:
10.1016/j.jand.2013.01.019
. [PMID: 23522825] - Patrick Borel, Georg Lietz, Aurélie Goncalves, Fabien Szabo de Edelenyi, Sophie Lecompte, Peter Curtis, Louisa Goumidi, Muriel J Caslake, Elizabeth A Miles, Christopher Packard, Philip C Calder, John C Mathers, Anne M Minihane, Franck Tourniaire, Emmanuelle Kesse-Guyot, Pilar Galan, Serge Hercberg, Christina Breidenassel, Marcela González Gross, Myriam Moussa, Aline Meirhaeghe, Emmanuelle Reboul. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans.
The Journal of nutrition.
2013 Apr; 143(4):448-56. doi:
10.3945/jn.112.172734
. [PMID: 23427331] - Brian J Song, Zeina E Jouni, Mario G Ferruzzi. Assessment of phytochemical content in human milk during different stages of lactation.
Nutrition (Burbank, Los Angeles County, Calif.).
2013 Jan; 29(1):195-202. doi:
10.1016/j.nut.2012.07.015
. [PMID: 23237648] - Ying Wang, Meng Yang, Sang-Gil Lee, Catherine G Davis, Anne Kenny, Sung I Koo, Ock K Chun. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women.
The Journal of nutritional biochemistry.
2012 Dec; 23(12):1725-31. doi:
10.1016/j.jnutbio.2011.12.004
. [PMID: 22617460] - Kaye E Brock, Liang Ke, Gloria Gridley, Brian C-H Chiu, Abby G Ershow, Charles F Lynch, Barry I Graubard, Kenneth P Cantor. Fruit, vegetables, fibre and micronutrients and risk of US renal cell carcinoma.
The British journal of nutrition.
2012 Sep; 108(6):1077-85. doi:
10.1017/s0007114511006489
. [PMID: 22186835] - Francina R Baldrick, J Stuart Elborn, Jayne V Woodside, Katherine Treacy, Judy M Bradley, Chris C Patterson, Bettina C Schock, Madeleine Ennis, Ian S Young, Michelle C McKinley. Effect of fruit and vegetable intake on oxidative stress and inflammation in COPD: a randomised controlled trial.
The European respiratory journal.
2012 Jun; 39(6):1377-84. doi:
10.1183/09031936.00086011
. [PMID: 22088966] - Masako Iwamoto, Katsumi Imai, Hideaki Ohta, Bungo Shirouchi, Masao Sato. Supplementation of highly concentrated β-cryptoxanthin in a satsuma mandarin beverage improves adipocytokine profiles in obese Japanese women.
Lipids in health and disease.
2012 May; 11(?):52. doi:
10.1186/1476-511x-11-52
. [PMID: 22584034]