Potassium (BioDeep_00000004401)
Secondary id: BioDeep_00001868463, BioDeep_00001893689
human metabolite Exogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: K+ (38.963708)
中文名称: 钾标准溶液
谱图信息:
最多检出来源 () 0%
Last reviewed on 2024-06-29.
Cite this Page
Potassium. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/potassium (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000004401). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: [K+]
InChI: InChI=1S/K/q+1
描述信息
Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675) [HMDB]. Potassium is found in many foods, some of which are half-highbush blueberry, liquor, grouper, and squashberry.
Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675).
同义名列表
22 个代谢物同义名
Liver regeneration factor 1; LRF1 Transcription factor; Potassium monocation; Potassium(I) cation; Potassium ion (K1+); Potassium ion (k+); Potassium ion(1+); Potassium(1+) ion; Potassium ion(+); Potassium cation; Potassium (ion); Potassium (k+); potassium ion; potassium(1+); Potassium(+); Nabumeton a; Potassium; Kalium; LRF-1; K(+); K+; Potassium cation
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:29103
- KEGG: C00238
- KEGGdrug: D08403
- PubChem: 813
- HMDB: HMDB0000586
- DrugBank: DB01345
- Wikipedia: Potassium
- foodb: FDB003521
- CAS: 24203-36-9
- CAS: 7440-09-7
- PMhub: MS000016829
- ChEBI: CHEBI:26216
- PDB-CCD: K
- NIKKAJI: J3.099F
- PubChem: 3537
- KNApSAcK: 26216
分类词条
相关代谢途径
Reactome(26)
- Metabolism
- Biological oxidations
- Visual phototransduction
- Sensory Perception
- Disease
- Phase II - Conjugation of compounds
- Transport of small molecules
- SLC-mediated transmembrane transport
- Methylation
- Immune System
- Innate Immune System
- Ion channel transport
- Disorders of transmembrane transporters
- SLC transporter disorders
- Transport of inorganic cations/anions and amino acids/oligopeptides
- Infectious disease
- Sodium/Calcium exchangers
- Glycolysis
- Carbohydrate metabolism
- Glucose metabolism
- Neuronal System
- Transmission across Chemical Synapses
- Neurotransmitter release cycle
- Viral Infection Pathways
- Ion transport by P-type ATPases
- Muscle contraction
BioCyc(116)
- salvage pathways of pyrimidine ribonucleotides
- pyrimidine ribonucleosides degradation
- creatinine degradation II
- chitin biosynthesis
- superpathway of b heme biosynthesis from glycine
- trehalose degradation II (cytosolic)
- acetate and ATP formation from acetyl-CoA I
- anaerobic energy metabolism (invertebrates, mitochondrial)
- superpathway of anaerobic energy metabolism (invertebrates)
- superpathway of N-acetylneuraminate degradation
- superpathway of L-methionine biosynthesis (transsulfuration)
- superpathway of L-homoserine and L-methionine biosynthesis
- superpathway of hexitol degradation (bacteria)
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis I
- chorismate biosynthesis I
- chorismate biosynthesis from 3-dehydroquinate
- superpathway of bacteriochlorophyll a biosynthesis
- superpathway of chorismate metabolism
- aspartate superpathway
- superpathway of S-adenosyl-L-methionine biosynthesis
- superpathway of anaerobic sucrose degradation
- superpathway of UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis
- tetrapyrrole biosynthesis II (from glycine)
- methanogenesis from acetate
- superpathway of tryptophan utilization
- superpathway of glycol metabolism and degradation
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- glycolate and glyoxylate degradation I
- glycolysis IV (plant cytosol)
- L-lysine biosynthesis II
- L-lysine biosynthesis I
- superpathway of fucose and rhamnose degradation
- superpathway of arginine and polyamine biosynthesis
- phosphopantothenate biosynthesis I
- superpathway of C1 compounds oxidation to CO2
- superpathway of coenzyme A biosynthesis I (bacteria)
- ectoine biosynthesis
- formaldehyde assimilation I (serine pathway)
- formaldehyde oxidation VI (H4MPT pathway)
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium)
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)
- anhydromuropeptides recycling I
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
- superpathay of heme b biosynthesis from glutamate
- TCA cycle I (prokaryotic)
- mixed acid fermentation
- 1,3-propanediol biosynthesis (engineered)
- superpathway of glyoxylate bypass and TCA
- tetrapyrrole biosynthesis I (from glutamate)
- superpathway of L-lysine degradation
- purine nucleotides degradation II (aerobic)
- inosine 5'-phosphate degradation
- superpathway of guanosine nucleotides de novo biosynthesis I
- L-lysine fermentation to acetate and butanoate
- tetrahydrofolate biosynthesis
- superpathway of tetrahydrofolate biosynthesis
- superpathway of tetrahydrofolate biosynthesis and salvage
- N10-formyl-tetrahydrofolate biosynthesis
- guanosine ribonucleotides de novo biosynthesis
- L-phenylalanine degradation IV (mammalian, via side chain)
- lactose and galactose degradation I
- NADH to cytochrome bo oxidase electron transfer I
- NADH to cytochrome bd oxidase electron transfer I
- acetone degradation II (to acetoacetate)
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation
- ketogenesis
- superpathway of glycolysis and the Entner-Doudoroff pathway
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
- Entner-Doudoroff pathway I
- superpathway NAD/NADP - NADH/NADPH interconversion (yeast)
- flavin biosynthesis II (archaea)
- gluconeogenesis I
- L-arginine biosynthesis II (acetyl cycle)
- glycolysis II (from fructose 6-phosphate)
- glycolysis I (from glucose 6-phosphate)
- L-rhamnose degradation I
- ppGpp biosynthesis
- superpathway NAD/NADP - NADH/NADPH interconversion
- L-asparagine degradation I
- Methanobacterium thermoautotrophicum biosynthetic metabolism
- L-lysine degradation IV
- superpathway of 5-aminoimidazole ribonucleotide biosynthesis
- 5-aminoimidazole ribonucleotide biosynthesis II
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing)
- farnesene biosynthesis
- pyruvate fermentation to acetate I
- CDP-archaeol biosynthesis
- archaetidylinositol biosynthesis
- archaetidylserine and archaetidylethanolamine biosynthesis
- methyl indole-3-acetate interconversion
- pyrimidine deoxyribonucleotides de novo biosynthesis I
- diacylglycerol and triacylglycerol biosynthesis
- superpathway of Clostridium acetobutylicum acidogenic fermentation
- superpathway of purine nucleotides de novo biosynthesis I
- 4-hydroxymandelate degradation
- hexitol fermentation to lactate, formate, ethanol and acetate
- 4-amino-3-hydroxybenzoate degradation
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- superpathway of aromatic compound degradation via 3-oxoadipate
- peptidoglycan biosynthesis I (meso-diaminopimelate containing)
- factor 420 polyglutamylation
- L-arginine biosynthesis I (via L-ornithine)
- Entner-Doudoroff pathway III (semi-phosphorylative)
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis
- trehalose biosynthesis I
- S-adenosyl-L-methionine cycle II
- L-isoleucine biosynthesis II
- superpathway of cholesterol biosynthesis
- hyperxanthone E biosynthesis
- glycine betaine biosynthesis I (Gram-negative bacteria)
- L-methionine salvage cycle I (bacteria and plants)
- L-glutamate degradation VII (to butanoate)
- L-glutamate degradation VI (to pyruvate)
- L-homoserine biosynthesis
- superpathway of L-threonine biosynthesis
- superpathway of L-isoleucine biosynthesis I
PlantCyc(9)
- superpathway of anaerobic sucrose degradation
- sucrose degradation II (sucrose synthase)
- glycolysis IV (plant cytosol)
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium)
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)
- methyl indole-3-acetate interconversion
- S-adenosyl-L-methionine cycle II
- hyperxanthone E biosynthesis
代谢反应
141 个相关的代谢反应过程信息。
Reactome(57)
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Cardiac conduction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Ion homeostasis:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Ion channel transport:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Ion transport by P-type ATPases:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Ion channel transport:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Ion transport by P-type ATPases:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Cardiac conduction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Ion homeostasis:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Ion channel transport:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Ion transport by P-type ATPases:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Cardiac conduction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Ion homeostasis:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Ion channel transport:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Ion transport by P-type ATPases:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Cardiac conduction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Ion homeostasis:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Ion channel transport:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Ion transport by P-type ATPases:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Muscle contraction:
Guanylate cyclase, soluble + NO ⟶ Guanylate cyclase:NO
- Cardiac conduction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Ion homeostasis:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Ion channel transport:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Ion transport by P-type ATPases:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Cardiac conduction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Ion homeostasis:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Ion channel transport:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Ion transport by P-type ATPases:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Cardiac conduction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Ion homeostasis:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Ion channel transport:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Ion transport by P-type ATPases:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Cardiac conduction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Ion homeostasis:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Ion channel transport:
ATP + Cu2+ + H2O ⟶ ADP + Cu2+ + Pi
- Ion transport by P-type ATPases:
ATP + Cu2+ + H2O ⟶ ADP + Cu2+ + Pi
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Ion channel transport:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Ion transport by P-type ATPases:
ATP + Ca2+ + H2O ⟶ ADP + Ca2+ + Pi
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Cardiac conduction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Ion homeostasis:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
BioCyc(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
PathBank(81)
- Lactose Degradation:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Trehalose Degradation:
Trehalose + Water ⟶ -D-Glucose
- Lactose Intolerance:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Esomeprazole Action Pathway:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Omeprazole Action Pathway:
Hydrogen + Omeprazole ⟶ Active Metabolite of Omeprazole
- Lansoprazole Action Pathway:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Pantoprazole Action Pathway:
Hydrogen + Pantoprazole ⟶ Active Metabolite of Pantoprazole
- Rabeprazole Action Pathway:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Ranitidine Action Pathway:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Famotidine Action Pathway:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Cimetidine Action Pathway:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Nizatidine Action Pathway:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Pirenzepine Action Pathway:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Benzocaine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Bupivacaine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Chloroprocaine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Cocaine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Dibucaine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Levobupivacaine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Lidocaine (Local Anaesthetic) Action Pathway:
Lidocaine ⟶ 2,6-Dimethylaniline
- Mepivacaine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Oxybuprocaine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Prilocaine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Procaine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Proparacaine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Ropivacaine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Codeine Action Pathway:
Codeine + NADH + Oxygen ⟶ Formaldehyde + Morphine + NAD + Water
- Morphine Action Pathway:
Morphine ⟶ Normorphine
- Methadone Action Pathway:
Methadone ⟶ 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium (EDDP)
- Oxycodone Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Hydromorphone Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Hydrocodone Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Oxymorphone Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Alfentanil Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Carfentanil Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Fentanyl Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Remifentanil Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Sufentanil Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Imipramine Action Pathway:
Imipramine + NADH + Oxygen ⟶ Desipramine + Formaldehyde + NAD + Water
- Desipramine Action Pathway:
Desipramine + Hydrogen Ion + NADPH + Oxygen ⟶ 2-hydroxydesipramine + NADP + Water
- Citalopram Action Pathway:
Didemethylcitalopram + Oxygen + Water ⟶ Ammonia + Citalopram aldehyde + Hydrogen peroxide
- Escitalopram Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Fluoxetine Action Pathway:
Fluoxetine + NADH + Oxygen ⟶ Formaldehyde + NAD + Norfluoxetine + Water
- Nicotine Action Pathway:
Nicotine ⟶ Nornicotine
- Gastric Acid Production:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Tramadol Action Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Propoxyphene Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Levorphanol Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Anileridine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Diphenoxylate Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Dezocine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Levomethadyl Acetate Action Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Methadyl Acetate Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- 3-Methylthiofentanyl Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Dimethylthiambutene Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Ethylmorphine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Levallorphan Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Buprenorphine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Alvimopan Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Pentazocine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Naltrexone Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Naloxone Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Dihydromorphine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Ketobemidone Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Nalbuphine Action Pathway:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Roxatidine Acetate Action Pathway:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Metiamide Action Pathway:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Betazole Action Pathway:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Lafutidine H2-Antihistamine Action:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Lactose Degradation:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Trehalose Degradation:
Trehalose + Water ⟶ -D-Glucose
- Lactose Intolerance:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Neuron Function:
Adenosine triphosphate + Potassium + Sodium + Water ⟶ Adenosine diphosphate + Phosphate + Potassium + Sodium
- Lactose Degradation:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Trehalose Degradation:
Trehalose + Water ⟶ -D-Glucose
- Lactose Degradation:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Trehalose Degradation:
Trehalose + Water ⟶ -D-Glucose
- Gastric Acid Production:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Gastric Acid Production:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Gastric Acid Production:
Adenosine triphosphate + Hydrogen Ion + Potassium + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Potassium
- Lactose Intolerance:
-Lactose + Water ⟶ D-Galactose + D-Glucose
PharmGKB(0)
16 个相关的物种来源信息
- 13339 - Apocynum cannabinum: 10.1007/S10600-011-9801-Z
- 377125 - Apocynum venetum: 10.1007/S10600-011-9801-Z
- 373122 - Arnebia euchroma: 10.1021/NP50117A007
- 85549 - Artemia salina: 10.1021/JF60200A008
- 92911 - Galactites tomentosus: 10.1007/S10600-017-2003-6
- 183260 - Hibiscus sabdariffa: 10.21608/BFSA.1998.67837
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 98504 - Matricaria chamomilla: 10.1556/AALIM.29.2000.1.5
- 166987 - Montanoa frutescens: 10.1016/0010-7824(83)90003-3
- 166988 - Montanoa grandiflora: 10.1016/0010-7824(83)90003-3
- 166995 - Montanoa leucantha: 10.1016/0010-7824(83)90003-3
- 167007 - Montanoa tomentosa: 10.1016/0010-7824(83)90003-3
- 2896053 - Pascalia glauca: 10.1021/NP50036A029
- 115506 - Phytelephas aequatorialis: 10.1007/BF02907355
- 3641 - Theobroma cacao: 10.1515/ZNC-1998-9-1002
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Y G Weiss, L Bellin, P K Kim, K M Andrejko, C A Haaxma, N Raj, E E Furth, C S Deutschman. Compensatory hepatic regeneration after mild, but not fulminant, intraperitoneal sepsis in rats.
American journal of physiology. Gastrointestinal and liver physiology.
2001 May; 280(5):G968-73. doi:
10.1152/ajpgi.2001.280.5.g968
. [PMID: 11292606] - E Weir, Q Chen, M C DeFrances, A Bell, R Taub, R Zarnegar. Rapid induction of mRNAs for liver regeneration factor and insulin-like growth factor binding protein-1 in primary cultures of rat hepatocytes by hepatocyte growth factor and epidermal growth factor.
Hepatology (Baltimore, Md.).
1994 Oct; 20(4 Pt 1):955-60. doi:
10.1002/hep.1840200426
. [PMID: 7523267]