Bretylium (BioDeep_00000006358)

 

Secondary id: BioDeep_00000408893, BioDeep_00001868249

human metabolite blood metabolite


代谢物信息卡片


2-Bromo-N-ethyl-N,N-dimethylbenzenemethanaminium

化学式: C11H17BrN+ (242.0544)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(not specific) 1.32%

分子结构信息

SMILES: CC[N+](C)(C)CC1=CC=CC=C1Br
InChI: InChI=1S/C11H17BrN/c1-4-13(2,3)9-10-7-5-6-8-11(10)12/h5-8H,4,9H2,1-3H3/q+1

描述信息

Bretylium blocks the release of noradrenaline from the peripheral sympathetic nervous system, and is used in emergency medicine, cardiology, and other specialties for the acute management of ventricular tachycardia and ventricular fibrillation. The primary mode of action for bretylium is thought to be inhibition of voltage-gated K(+) channels. Recent evidence has shown that bretylium may also inhibit the Na,K-ATPase by binding to the extracellular K-site.
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist
D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

同义名列表

13 个代谢物同义名

2-Bromo-N-ethyl-N,N-dimethylbenzenemethanaminium; N-Ethyl-N,N-dimethyl-2-bromobenzenemethanaminium; [(2-bromophenyl)methyl](ethyl)dimethylazanium; (2-Bromobenzyl)ethyldimethylaminium; Bretylium tolsylate; Bretylium tosylate; Bretylium chloride; Bretylium bromide; Bretylium iodide; Bretylium; Bretylate; Bretylum; Bretylium



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 ADRA1A, AXIN2, CALCA, TH
Peripheral membrane protein 1 ACHE
Nucleus 4 ACHE, ADRA1A, AXIN2, TH
cytosol 4 ADRA1A, AXIN2, SST, TH
dendrite 1 TH
centrosome 1 AXIN2
nucleoplasm 3 ADRA1A, ATP2B1, SCNN1G
Cell membrane 4 ACHE, ADRA1A, ADRB3, ATP2B1
Cell projection, axon 1 TH
Multi-pass membrane protein 6 ADRA1A, ADRB3, ATP2B1, CACNA1I, KCNA3, SCNN1G
Synapse 4 ACHE, ATP2B1, CRH, TAC1
cell surface 1 ACHE
glutamatergic synapse 2 ATP2B1, KCNA3
Golgi apparatus 2 ACHE, NPY
Golgi membrane 1 INS
neuromuscular junction 1 ACHE
neuronal cell body 3 CALCA, SST, TAC1
presynaptic membrane 2 ATP2B1, KCNA3
smooth endoplasmic reticulum 1 TH
synaptic vesicle 1 TH
plasma membrane 11 ACHE, ADRA1A, ADRB3, ATP2B1, AXIN2, BCHE, CACNA1I, GCG, KCNA3, KNG1, SCNN1G
synaptic vesicle membrane 1 ATP2B1
terminal bouton 2 CALCA, TH
Membrane 4 ACHE, ATP2B1, CACNA1I, KCNA3
apical plasma membrane 1 SCNN1G
axon 3 KCNA3, TAC1, TH
basolateral plasma membrane 1 ATP2B1
caveola 1 ADRA1A
extracellular exosome 3 ATP2B1, KNG1, SCNN1G
extracellular space 11 ACHE, BCHE, CALCA, CRH, GCG, IL2, INS, KNG1, NPY, SST, TAC1
perinuclear region of cytoplasm 3 ACHE, KCNA3, TH
mitochondrion 1 TH
intracellular membrane-bounded organelle 2 ADRA1A, ATP2B1
Secreted 10 ACHE, BCHE, CALCA, CRH, GCG, IL2, INS, NPY, SST, VIP
extracellular region 12 ACHE, BCHE, CALCA, CRH, GCG, IL2, INS, KNG1, NPY, SST, TAC1, VIP
cytoplasmic side of plasma membrane 1 TH
hippocampal mossy fiber to CA3 synapse 1 CALCA
Extracellular side 1 ACHE
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Nucleus membrane 1 ADRA1A
nuclear membrane 1 ADRA1A
external side of plasma membrane 1 SCNN1G
varicosity 1 CRH
neuronal dense core vesicle lumen 1 CRH
perikaryon 2 CRH, TH
beta-catenin destruction complex 1 AXIN2
cytoplasmic vesicle 1 TH
Melanosome membrane 1 TH
postsynaptic membrane 1 KCNA3
Apical cell membrane 1 SCNN1G
Cytoplasm, perinuclear region 1 TH
Membrane raft 1 KCNA3
GABA-ergic synapse 2 NPY, SST
basement membrane 1 ACHE
collagen-containing extracellular matrix 1 KNG1
lateral plasma membrane 1 ATP2B1
receptor complex 1 ADRB3
neuron projection 2 TH, VIP
cell projection 1 ATP2B1
Secreted, extracellular space 1 KNG1
blood microparticle 2 BCHE, KNG1
Basolateral cell membrane 1 ATP2B1
Lipid-anchor, GPI-anchor 1 ACHE
[Isoform 2]: Cell membrane 1 KCNA3
endosome lumen 1 INS
Membrane, caveola 1 ADRA1A
sodium channel complex 1 SCNN1G
Presynaptic cell membrane 1 ATP2B1
side of membrane 1 ACHE
voltage-gated potassium channel complex 1 KCNA3
secretory granule lumen 2 GCG, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 BCHE, GCG, INS, KNG1
platelet alpha granule lumen 1 KNG1
voltage-gated calcium channel complex 1 CACNA1I
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 ATP2B1
neuronal dense core vesicle 3 CALCA, NPY, SST
nuclear envelope lumen 1 BCHE
calyx of Held 1 KCNA3
synaptic cleft 1 ACHE
[Isoform 1]: Cell membrane 1 KCNA3
[Glucagon-like peptide 1]: Secreted 1 GCG
Cytoplasmic vesicle, secretory vesicle, neuronal dense core vesicle 1 NPY
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 TH
photoreceptor ribbon synapse 1 ATP2B1
[Isoform 3]: Cytoplasm, perinuclear region 1 KCNA3
[Isoform H]: Cell membrane 1 ACHE


文献列表

  • Daniel J Warner, Hongming Chen, Louis-David Cantin, J Gerry Kenna, Simone Stahl, Clare L Walker, Tobias Noeske. Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification. Drug metabolism and disposition: the biological fate of chemicals. 2012 Dec; 40(12):2332-41. doi: 10.1124/dmd.112.047068. [PMID: 22961681]
  • Rachel E Wood, Connie Wishart, Philip J Walker, Christopher D Askew, Ian B Stewart. Plasma ATP concentration and venous oxygen content in the forearm during dynamic handgrip exercise. BMC physiology. 2009 Dec; 9(?):24. doi: 10.1186/1472-6793-9-24. [PMID: 20003530]
  • Manabu Shibasaki, Ken Aoki, Keiko Morimoto, John M Johnson, Akira Takamata. Plasma hyperosmolality elevates the internal temperature threshold for active thermoregulatory vasodilation during heat stress in humans. American journal of physiology. Regulatory, integrative and comparative physiology. 2009 Dec; 297(6):R1706-12. doi: 10.1152/ajpregu.00242.2009. [PMID: 19812357]
  • Ravindra W Tejwani, Bradley D Anderson. Influence of intravesicular pH drift and membrane binding on the liposomal release of a model amine-containing permeant. Journal of pharmaceutical sciences. 2008 Jan; 97(1):381-99. doi: 10.1002/jps.21108. [PMID: 17694543]
  • Marvin Bacaner, James Brietenbucher, John LaBree. Prevention of ventricular fibrillation, acute myocardial infarction (myocardial necrosis), heart failure, and mortality by bretylium: is ischemic heart disease primarily adrenergic cardiovascular disease?. American journal of therapeutics. 2004 Sep; 11(5):366-411. doi: 10.1097/01.mjt.0000126444.24163.81. [PMID: 15356432]
  • Weeranuj Yamreudeewong, Michael DeBisschop, Linda G Martin, Dennis L Lower. Potentially significant drug interactions of class III antiarrhythmic drugs. Drug safety. 2003; 26(6):421-38. doi: 10.2165/00002018-200326060-00004. [PMID: 12688833]
  • J L Berfield, L C Wang, M E Reith. Which form of dopamine is the substrate for the human dopamine transporter: the cationic or the uncharged species?. The Journal of biological chemistry. 1999 Feb; 274(8):4876-82. doi: 10.1074/jbc.274.8.4876. [PMID: 9988729]
  • D L Jones, Y H Kim, A Natale, G J Klein, F Varin. Bretylium decreases and verapamil increases defibrillation threshold in pigs. Pacing and clinical electrophysiology : PACE. 1994 Aug; 17(8):1380-90. doi: 10.1111/j.1540-8159.1994.tb02457.x. [PMID: 7971399]
  • E W Leatham, D W Holt, W J McKenna. Class III antiarrhythmics in overdose. Presenting features and management principles. Drug safety. 1993 Dec; 9(6):450-62. doi: 10.2165/00002018-199309060-00008. [PMID: 8129865]
  • J Michalicek, G Campbell. Autonomic regulation of heart rate and blood pressure in hemorrhaged toads. The American journal of physiology. 1993 Feb; 264(2 Pt 2):R262-7. doi: 10.1152/ajpregu.1993.264.2.r262. [PMID: 8447482]
  • C Pieri, Z Bacsó, R Recchioni, F Moroni, M Balázs, R Gáspár, S Damjanovich. Bretylium differentiates between distinct signal transducing pathways in human lymphocytes. Biochemical and biophysical research communications. 1993 Jan; 190(2):654-9. doi: 10.1006/bbrc.1993.1098. [PMID: 8427605]
  • J T Cheng, C F Chen, A Y Shum, J Y Wang, H I Chen. Increase of plasma neuropeptide Y-like immunoreactivity following chronic hypoxia in the rat. Neuroscience letters. 1992 Jun; 140(2):211-4. doi: 10.1016/0304-3940(92)90105-g. [PMID: 1501780]
  • H S Young, V Skita, R P Mason, L G Herbette. Molecular basis for the inhibition of 1,4-dihydropyridine calcium channel drugs binding to their receptors by a nonspecific site interaction mechanism. Biophysical journal. 1992 May; 61(5):1244-55. doi: 10.1016/s0006-3495(92)81933-1. [PMID: 1318093]
  • Y Théorêt, F Varin. Simple, rapid and selective method using high-performance liquid chromatography for the determination of bretylium in plasma. Journal of chromatography. 1992 Mar; 575(1):162-6. doi: 10.1016/0378-4347(92)80519-v. [PMID: 1517295]
  • R Amlacher, A Härtl, R Neubert, U Stöckel, K Wenzel. Influence of ion-pair formation on the pharmacokinetic properties of drugs. Pharmacokinetic interactions of bretylium and hexylsalicylic acid in rabbits. The Journal of pharmacy and pharmacology. 1991 Nov; 43(11):794-7. doi: 10.1111/j.2042-7158.1991.tb03484.x. [PMID: 1686909]
  • T K Keeton, A M Biediger. Propranolol and atenolol inhibit norepinephrine spillover rate into plasma in conscious spontaneously hypertensive rats. Naunyn-Schmiedeberg's archives of pharmacology. 1991 Jul; 344(1):47-55. doi: 10.1007/bf00167382. [PMID: 1685557]
  • G Drüge, A Raedler, H Greten, H J Lenz. Pathways mediating CRF-induced inhibition of gastric acid secretion in rats. The American journal of physiology. 1989 Jan; 256(1 Pt 1):G214-9. doi: 10.1152/ajpgi.1989.256.1.g214. [PMID: 2783535]
  • M Axelsson, S Nilsson. Blood pressure control during exercise in the Atlantic cod, Gadus morhua. The Journal of experimental biology. 1986 Nov; 126(?):225-36. doi: 10.1242/jeb.126.1.225. [PMID: 3805992]
  • G W Kasten, S T Martin. Bupivacaine cardiovascular toxicity: comparison of treatment with bretylium and lidocaine. Anesthesia and analgesia. 1985 Sep; 64(9):911-6. doi: . [PMID: 4025854]
  • W G Rapeport. Clinical pharmacokinetics of bretylium. Clinical pharmacokinetics. 1985 May; 10(3):248-56. doi: 10.2165/00003088-198510030-00004. [PMID: 3893841]
  • C D JOHNSON, J P REVILL. DETERMINATION OF BRETYLIUM IN BIOLOGICAL FLUIDS. Acta pharmacologica et toxicologica. 1965; 22(?):112-4. doi: 10.1111/j.1600-0773.1965.tb03502.x. [PMID: 14284187]
  • A F GREEN, M F SIM. Diuresis in rats: effects of sympathomimetic and sympathetic blocking agents. British journal of pharmacology and chemotherapy. 1961 Dec; 17(?):464-72. doi: 10.1111/j.1476-5381.1961.tb01133.x. [PMID: 13901392]
  • W G DUNCOMBE, A McCOUBREY. The excretion and stability to metabolism of bretylium. British journal of pharmacology and chemotherapy. 1960 Jun; 15(?):260-4. doi: 10.1111/j.1476-5381.1960.tb01241.x. [PMID: 13818641]