TRAM-34 (BioDeep_00000009576)

   


代谢物信息卡片


1-((2-chlorophenyl)diphenylmethyl)-1H-pyrazole

化学式: C22H17ClN2 (344.1080192)
中文名称: 1-[(2-氯苯基)二苯甲基]-1H-吡唑
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3Cl)N4C=CC=N4
InChI: InChI=1S/C22H17ClN2/c23-21-15-8-7-14-20(21)22(25-17-9-16-24-25,18-10-3-1-4-11-18)19-12-5-2-6-13-19/h1-17H



数据库引用编号

9 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Yaling Bai, Jinsheng Xu, Shuo Yang, Huiran Zhang, Lei He, Wei Zhou, Meijuan Cheng, Shenglei Zhang. The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to alkalinization-induced vascular calcification in vitro. Journal of clinical laboratory analysis. 2021 Aug; 35(8):e23854. doi: 10.1002/jcla.23854. [PMID: 34313357]
  • Susana Rojas, Emerita Basualto, Luz Valdivia, Natalia Vallejos, Karen Ceballos, Eduardo Peña, Coralia Rivas, Francisco Nualart, Enrique Guzmán-Gutiérrez, Carlos Escudero, Fernando Toledo, Luis Sobrevia, Marcela Cid, Marcelo González. The activity of IKCa and BKCa channels contributes to insulin-mediated NO synthesis and vascular tone regulation in human umbilical vein. Nitric oxide : biology and chemistry. 2020 06; 99(?):7-16. doi: 10.1016/j.niox.2020.03.004. [PMID: 32165314]
  • Hongliang Li, Mi Seon Seo, Jin Ryeol An, Hee Seok Jung, Kwon-Soo Ha, Eun-Taek Han, Seok-Ho Hong, Young Min Bae, Sung Hun Na, Won Sun Park. Dipeptidyl peptidase-4 inhibitor sitagliptin induces vasorelaxation via the activation of Kv channels and PKA. Toxicology and applied pharmacology. 2019 12; 384(?):114799. doi: 10.1016/j.taap.2019.114799. [PMID: 31678606]
  • Chunling Huang, Ling Zhang, Ying Shi, Hao Yi, Yongli Zhao, Jason Chen, Carol A Pollock, Xin-Ming Chen. The KCa3.1 blocker TRAM34 reverses renal damage in a mouse model of established diabetic nephropathy. PloS one. 2018; 13(2):e0192800. doi: 10.1371/journal.pone.0192800. [PMID: 29425253]
  • Pei-Chun Chen, Jing-Syuna Ruan, Sheng-Nan Wu. Evidence of Decreased Activity in Intermediate-Conductance Calcium-Activated Potassium Channels During Retinoic Acid-Induced Differentiation in Motor Neuron-Like NSC-34 Cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2018; 48(6):2374-2388. doi: 10.1159/000492653. [PMID: 30114691]
  • Michail V Tarasov, Marina F Bystrova, Polina D Kotova, Olga A Rogachevskaja, Veronika Y Sysoeva, Stanislav S Kolesnikov. Calcium-gated K+ channels of the KCa1.1- and KCa3.1-type couple intracellular Ca2+ signals to membrane hyperpolarization in mesenchymal stromal cells from the human adipose tissue. Pflugers Archiv : European journal of physiology. 2017 02; 469(2):349-362. doi: 10.1007/s00424-016-1932-4. [PMID: 28028617]
  • Cheng-Lung Chen, Jiunn-Wang Liao, Oliver Yoa-Pu Hu, Li-Heng Pao. Blockade of KCa3.1 potassium channels protects against cisplatin-induced acute kidney injury. Archives of toxicology. 2016 Sep; 90(9):2249-2260. doi: 10.1007/s00204-015-1607-5. [PMID: 26438401]
  • Kasper Moller Boje Rasmussen, Thomas Hartig Braunstein, Max Salomonsson, Jens Christian Brasen, Charlotte Mehlin Sorensen. Contribution of K(+) channels to endothelium-derived hypolarization-induced renal vasodilation in rats in vivo and in vitro. Pflugers Archiv : European journal of physiology. 2016 07; 468(7):1139-1149. doi: 10.1007/s00424-016-1805-x. [PMID: 26965146]
  • S L Zhang, J S Xu, S Yang, Y L Bai, J X Zhang, L W Cui, Q Y Yu. [Effects of intermediate conductance calcium-activated potassium channel blocker TARAM-34 on β-glycerophosphate induced vascular smooth muscle cells calcification]. Zhonghua xin xue guan bing za zhi. 2016 Jun; 44(6):536-41. doi: 10.3760/cma.j.issn.0253-3758.2016.06.015. [PMID: 27346269]
  • Mengni Yi, Fangfang Dou, Qin Lu, Zhihua Yu, Hongzhuan Chen. Activation of the KCa3.1 channel contributes to traumatic scratch injury-induced reactive astrogliosis through the JNK/c-Jun signaling pathway. Neuroscience letters. 2016 06; 624(?):62-71. doi: 10.1016/j.neulet.2016.05.004. [PMID: 27163196]
  • Li-Mei Zhao, Li-Ping Wang, Hui-Fang Wang, Xiao-Zhen Ma, Dang-Xia Zhou, Xiu-Ling Deng. The role of KCa3.1 channels in cardiac fibrosis induced by pressure overload in rats. Pflugers Archiv : European journal of physiology. 2015 Nov; 467(11):2275-85. doi: 10.1007/s00424-015-1694-4. [PMID: 25715999]
  • Zhifei Shao, Rohit Gaurav, Devendra K Agrawal. Intermediate-conductance calcium-activated potassium channel KCa3.1 and chloride channel modulate chemokine ligand (CCL19/CCL21)-induced migration of dendritic cells. Translational research : the journal of laboratory and clinical medicine. 2015 Jul; 166(1):89-102. doi: 10.1016/j.trsl.2014.11.010. [PMID: 25583444]
  • Jia-Hung Ye, Li-Heng Pao. Using Visualized Matrix Effects to Develop and Improve LC-MS/MS Bioanalytical Methods, Taking TRAM-34 as an Example. PloS one. 2015; 10(4):e0118818. doi: 10.1371/journal.pone.0118818. [PMID: 25909956]
  • Christian Freise, Uwe Querfeld. Inhibition of vascular calcification by block of intermediate conductance calcium-activated potassium channels with TRAM-34. Pharmacological research. 2014 Jul; 85(?):6-14. doi: 10.1016/j.phrs.2014.04.013. [PMID: 24813858]
  • Chunling Huang, Margot L Day, Philip Poronnik, Carol A Pollock, Xin-Ming Chen. Inhibition of KCa3.1 suppresses TGF-β1 induced MCP-1 expression in human proximal tubular cells through Smad3, p38 and ERK1/2 signaling pathways. The international journal of biochemistry & cell biology. 2014 Feb; 47(?):1-10. doi: 10.1016/j.biocel.2013.11.017. [PMID: 24291552]
  • Chunling Huang, Sylvie Shen, Qing Ma, Anthony Gill, Carol A Pollock, Xin-Ming Chen. KCa3.1 mediates activation of fibroblasts in diabetic renal interstitial fibrosis. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2014 Feb; 29(2):313-24. doi: 10.1093/ndt/gft431. [PMID: 24166472]
  • Chunling Huang, Carol A Pollock, Xin-Ming Chen. High glucose induces CCL20 in proximal tubular cells via activation of the KCa3.1 channel. PloS one. 2014; 9(4):e95173. doi: 10.1371/journal.pone.0095173. [PMID: 24733189]
  • Chunling Huang, Sylvie Shen, Qing Ma, Jason Chen, Anthony Gill, Carol A Pollock, Xin-Ming Chen. Blockade of KCa3.1 ameliorates renal fibrosis through the TGF-β1/Smad pathway in diabetic mice. Diabetes. 2013 Aug; 62(8):2923-34. doi: 10.2337/db13-0135. [PMID: 23656889]
  • Yi-Je Chen, Jenny Lam, Clare R Gregory, Sonja Schrepfer, Heike Wulff. The Ca²⁺-activated K⁺ channel KCa3.1 as a potential new target for the prevention of allograft vasculopathy. PloS one. 2013; 8(11):e81006. doi: 10.1371/journal.pone.0081006. [PMID: 24312257]
  • Serge Simonet, Marc Isabelle, Mélanie Bousquenaud, Nicolas Clavreul, Michel Félétou, Christine Vayssettes-Courchay, Tony J Verbeuren. KCa 3.1 channels maintain endothelium-dependent vasodilatation in isolated perfused kidneys of spontaneously hypertensive rats after chronic inhibition of NOS. British journal of pharmacology. 2012 Oct; 167(4):854-67. doi: 10.1111/j.1476-5381.2012.02062.x. [PMID: 22646737]
  • Janos Almassy, Jong Hak Won, Ted B Begenisich, David I Yule. Apical Ca2+-activated potassium channels in mouse parotid acinar cells. The Journal of general physiology. 2012 Feb; 139(2):121-33. doi: 10.1085/jgp.201110718. [PMID: 22291145]
  • Yi-Je Chen, Girija Raman, Silke Bodendiek, Martha E O'Donnell, Heike Wulff. The KCa3.1 blocker TRAM-34 reduces infarction and neurological deficit in a rat model of ischemia/reperfusion stroke. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2011 Dec; 31(12):2363-74. doi: 10.1038/jcbfm.2011.101. [PMID: 21750563]
  • Luigi Catacuzzeno, Francesco Aiello, Bernard Fioretti, Luigi Sforna, Emilia Castigli, Paola Ruggieri, Ada Maria Tata, Antonella Calogero, Fabio Franciolini. Serum-activated K and Cl currents underlay U87-MG glioblastoma cell migration. Journal of cellular physiology. 2011 Jul; 226(7):1926-33. doi: 10.1002/jcp.22523. [PMID: 21506123]
  • Joanne E Millership, Daniel C Devor, Kirk L Hamilton, Corina M Balut, Jason I E Bruce, Ian M Fearon. Calcium-activated K+ channels increase cell proliferation independent of K+ conductance. American journal of physiology. Cell physiology. 2011 Apr; 300(4):C792-802. doi: 10.1152/ajpcell.00274.2010. [PMID: 21123738]
  • Abeer M Al-Ghananeem, Maggie Abbassi, Srishti Shrestha, Girija Raman, Heike Wulff, Lara Pereira, Aftab Ansari. Formulation-based approach to support early drug discovery and development efforts: a case study with enteric microencapsulation dosage form development for a triarylmethane derivative TRAM-34; a novel potential immunosuppressant. Drug development and industrial pharmacy. 2010 May; 36(5):563-9. doi: 10.3109/03639040903329554. [PMID: 19929567]
  • Malika Faouzi, Valérie Chopin, Ahmed Ahidouch, Halima Ouadid-Ahidouch. Intermediate Ca2+-sensitive K+ channels are necessary for prolactin-induced proliferation in breast cancer cells. The Journal of membrane biology. 2010 Mar; 234(1):47-56. doi: 10.1007/s00232-010-9238-5. [PMID: 20177667]
  • Aurelie Chantome, Alban Girault, Marie Potier, Christine Collin, Pascal Vaudin, Jean-Christophe Pagès, Christophe Vandier, Virginie Joulin. KCa2.3 channel-dependent hyperpolarization increases melanoma cell motility. Experimental cell research. 2009 Dec; 315(20):3620-30. doi: 10.1016/j.yexcr.2009.07.021. [PMID: 19646982]
  • Tom Schilling, Claudia Eder. Non-selective cation channel activity is required for lysophosphatidylcholine-induced monocyte migration. Journal of cellular physiology. 2009 Nov; 221(2):325-34. doi: 10.1002/jcp.21857. [PMID: 19562685]
  • Ivica Grgic, Eva Kiss, Brajesh P Kaistha, Christoph Busch, Michael Kloss, Julia Sautter, Anja Müller, Anuradha Kaistha, Claudia Schmidt, Girija Raman, Heike Wulff, Frank Strutz, Hermann-Josef Gröne, Ralf Köhler, Joachim Hoyer. Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. Proceedings of the National Academy of Sciences of the United States of America. 2009 Aug; 106(34):14518-23. doi: 10.1073/pnas.0903458106. [PMID: 19706538]
  • I Grgic, H Wulff, I Eichler, C Flothmann, R Köhler, J Hoyer. Blockade of T-lymphocyte KCa3.1 and Kv1.3 channels as novel immunosuppression strategy to prevent kidney allograft rejection. Transplantation proceedings. 2009 Jul; 41(6):2601-6. doi: 10.1016/j.transproceed.2009.06.025. [PMID: 19715983]
  • Jing Wang, Yu-Qing Xu, You-You Liang, Rafael Gongora, David G Warnock, He-Ping Ma. An intermediate-conductance Ca(2+)-activated K (+) channel mediates B lymphoma cell cycle progression induced by serum. Pflugers Archiv : European journal of physiology. 2007 Sep; 454(6):945-56. doi: 10.1007/s00424-007-0258-7. [PMID: 17429684]
  • Louise S Harrington, Martin J Carrier, Nicola Gallagher, Derek Gilroy, Chris J Garland, Jane A Mitchell. Elucidation of the temporal relationship between endothelial-derived NO and EDHF in mesenteric vessels. American journal of physiology. Heart and circulatory physiology. 2007 Sep; 293(3):H1682-8. doi: 10.1152/ajpheart.00389.2007. [PMID: 17557917]
  • Jian-Zhong Sheng, Andrew P Braun. Small- and intermediate-conductance Ca2+-activated K+ channels directly control agonist-evoked nitric oxide synthesis in human vascular endothelial cells. American journal of physiology. Cell physiology. 2007 Jul; 293(1):C458-67. doi: 10.1152/ajpcell.00036.2007. [PMID: 17459950]
  • S O Awe, A S O Adeagbo, S E D'Souza, A Bhatnagar, D J Conklin. Acrolein induces vasodilatation of rodent mesenteric bed via an EDHF-dependent mechanism. Toxicology and applied pharmacology. 2006 Dec; 217(3):266-76. doi: 10.1016/j.taap.2006.08.008. [PMID: 17069868]