Fludioxonil (BioDeep_00000002250)

 

Secondary id: BioDeep_00000397714

human metabolite blood metabolite


代谢物信息卡片


4-(2,2-difluoro-2H-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile

化学式: C12H6F2N2O2 (248.0397)
中文名称: 咯菌腈
谱图信息: 最多检出来源 Homo sapiens(blood) 7.88%

分子结构信息

SMILES: C1=CC(=C2C(=C1)OC(O2)(F)F)C3=CNC=C3C#N
InChI: InChI=1S/C12H6F2N2O2/c13-12(14)17-10-3-1-2-8(11(10)18-12)9-6-16-5-7(9)4-15/h1-3,5-6,16H

描述信息

CONFIDENCE standard compound; INTERNAL_ID 49; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4715; ORIGINAL_PRECURSOR_SCAN_NO 4711
CONFIDENCE standard compound; INTERNAL_ID 49; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4759; ORIGINAL_PRECURSOR_SCAN_NO 4755
CONFIDENCE standard compound; INTERNAL_ID 49; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4745; ORIGINAL_PRECURSOR_SCAN_NO 4740
CONFIDENCE standard compound; INTERNAL_ID 49; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4750; ORIGINAL_PRECURSOR_SCAN_NO 4747
CONFIDENCE standard compound; INTERNAL_ID 49; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4753; ORIGINAL_PRECURSOR_SCAN_NO 4751
CONFIDENCE standard compound; INTERNAL_ID 49; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4731; ORIGINAL_PRECURSOR_SCAN_NO 4728

同义名列表

3 个代谢物同义名

4-(2,2-difluoro-2H-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile; Fludioxonil; Fludioxonil



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 AHR, ANXA5, AR, ARHGAP45, ATF7, CAT, CCND1, CCNE1, FRZB, MAPK14
Peripheral membrane protein 3 ANXA5, HK1, SDHB
Nucleus 8 AHR, AR, ATF1, ATF7, CCND1, CCNE1, HAMP, MAPK14
cytosol 10 AHR, ANXA5, AR, ARHGAP45, CAT, CCND1, CCNE1, GSR, HK1, MAPK14
dendrite 1 KCNB1
mitochondrial membrane 1 SDHB
centrosome 2 CCND1, CCNE1
nucleoplasm 8 AHR, AR, ATF1, ATF7, CCND1, CCNE1, MAPK14, SDHB
RNA polymerase II transcription regulator complex 2 ATF1, ATF7
Cell membrane 1 KCNB1
ruffle membrane 1 ARHGAP45
Cell projection, axon 1 KCNB1
Multi-pass membrane protein 4 KCNB1, MT-CYB, SDHC, SDHD
Synapse 1 KCNB1
cell surface 1 KCNB1
glutamatergic synapse 1 MAPK14
mitochondrial inner membrane 4 MT-CYB, SDHB, SDHC, SDHD
sarcolemma 2 ANXA5, KCNB1
Cytoplasm, cytosol 1 HK1
plasma membrane 4 AR, ARHGAP45, KCNB1, SDHB
Membrane 8 ANXA5, AR, ARHGAP45, CAT, FRZB, KCNB1, MT-CYB, SDHC
apical plasma membrane 1 KCNB1
axon 1 KCNB1
extracellular exosome 3 ANXA5, CAT, GSR
extracellular space 2 FRZB, HAMP
perinuclear region of cytoplasm 1 KCNB1
bicellular tight junction 1 CCND1
mitochondrion 8 CAT, GSR, HK1, MAPK14, MT-CYB, SDHB, SDHC, SDHD
protein-containing complex 3 AHR, AR, CAT
intracellular membrane-bounded organelle 1 CAT
Secreted 2 FRZB, HAMP
extracellular region 6 ANXA5, ARHGAP45, CAT, FRZB, HAMP, MAPK14
Mitochondrion outer membrane 1 HK1
mitochondrial outer membrane 1 HK1
neuronal cell body membrane 1 KCNB1
mitochondrial matrix 3 CAT, GSR, SDHB
transcription regulator complex 1 AHR
Nucleus membrane 1 CCND1
nuclear membrane 1 CCND1
external side of plasma membrane 2 ANXA5, GSR
perikaryon 1 KCNB1
postsynaptic membrane 1 KCNB1
Cell membrane, sarcolemma 1 KCNB1
Cell projection, ruffle membrane 1 ARHGAP45
Mitochondrion inner membrane 4 MT-CYB, SDHB, SDHC, SDHD
Matrix side 1 SDHB
Membrane raft 1 HK1
focal adhesion 2 ANXA5, CAT
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 ANXA5
lateral plasma membrane 1 KCNB1
nuclear speck 2 AR, MAPK14
Postsynaptic cell membrane 1 KCNB1
Zymogen granule membrane 1 ANXA5
chromatin 4 AHR, AR, ATF1, ATF7
[Isoform 5]: Cytoplasm 1 ATF7
spindle pole 1 MAPK14
Chromosome, telomere 1 ATF7
chromosome, telomeric region 1 ATF7
aryl hydrocarbon receptor complex 1 AHR
Nucleus, nucleoplasm 1 ATF7
Cell projection, dendrite 1 KCNB1
voltage-gated potassium channel complex 1 KCNB1
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 ARHGAP45, CAT, MAPK14
transcription repressor complex 1 CCND1
azurophil granule lumen 1 ARHGAP45
mitochondrial envelope 1 SDHD
respiratory chain complex II (succinate dehydrogenase) 3 SDHB, SDHC, SDHD
vesicle membrane 1 ANXA5
respiratory chain complex III 1 MT-CYB
Synapse, synaptosome 1 KCNB1
Lateral cell membrane 1 KCNB1
postsynaptic specialization membrane 1 KCNB1
dendrite membrane 1 KCNB1
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
cholinergic synapse 1 KCNB1
cyclin E1-CDK2 complex 1 CCNE1
catalase complex 1 CAT
endothelial microparticle 1 ANXA5
proximal dendrite 1 KCNB1
cyclin D1-CDK4 complex 1 CCND1
ATF4-CREB1 transcription factor complex 1 ATF1
ATF1-ATF4 transcription factor complex 1 ATF1
cyclin D1-CDK6 complex 1 CCND1
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR


文献列表

  • Lingling Wei, Bin Chen, Jiawei Li, Pengcheng Zhang, Wenchan Chen, Wenwu Ye, Changjun Chen. Resistance mechanism of Phomopsis longicolla to fludioxonil is associated with modifications in PlOS1, PlOS4 and PlOS5. Pesticide biochemistry and physiology. 2024 May; 201(?):105862. doi: 10.1016/j.pestbp.2024.105862. [PMID: 38685239]
  • Xueru Yin, Pengfei Li, Zongwei Wang, Jing Wang, Anfei Fang, Binnian Tian, Yuheng Yang, Yang Yu, Chaowei Bi. Binding Mode and Molecular Mechanism of the Two-Component Histidine Kinase Bos1 of Botrytis cinerea to Fludioxonil and Iprodione. Phytopathology. 2024 Apr; 114(4):770-779. doi: 10.1094/phyto-07-23-0241-r. [PMID: 38598410]
  • Ziyue Wen, Yueqi Zhang, Yun Chen, Youfu Zhao, Wenyong Shao, Zhonghua Ma. Characterization of the fludioxonil and phenamacril dual resistant mutants of Fusarium graminearum. Pesticide biochemistry and physiology. 2024 Mar; 200(?):105815. doi: 10.1016/j.pestbp.2024.105815. [PMID: 38582573]
  • Weichao Ren, Wenjiao Han, Tinghua Huan, Meiqi Zhu, Yihan Zhang, Baohua Li, Na Liu. A new point mutation (D1158N) in histidine kinase Bos1 confers high-level resistance to fludioxonil in field gray mold disease. Pesticide biochemistry and physiology. 2024 Jan; 198(?):105750. doi: 10.1016/j.pestbp.2023.105750. [PMID: 38225093]
  • Yunyan Deng, Tao Wang, Ying Du, LuLu Zhang, Jiaxin Wang, Zhiqiu Qi, Mingshan Ji. Risk assessment for resistance to fludioxonil in Corynespora cassiicola in Liaoning China. Pesticide biochemistry and physiology. 2023 Dec; 197(?):105622. doi: 10.1016/j.pestbp.2023.105622. [PMID: 38072516]
  • Dongya Shi, Jin Wang, Yingying Cao, Zhihui Zhang, Xin Li, Jane Ifunanya Mbadianya, Changjun Chen. Overexpression of FgPtp3 Is Involved in Fludioxonil Resistance in Fusarium graminearum by Inhibiting the Phosphorylation of FgHog1. Journal of agricultural and food chemistry. 2023 Aug; 71(34):12807-12818. doi: 10.1021/acs.jafc.3c02663. [PMID: 37585613]
  • Tao Li, Na Li, Ziyang Lei, Chuanqing Zhang. Sensitivity and resistance risk of Botryosphaeria dothidea causing Chinese hickory trunk canker to fludioxonil. Pesticide biochemistry and physiology. 2023 Aug; 194(?):105500. doi: 10.1016/j.pestbp.2023.105500. [PMID: 37532358]
  • Na Zhang, Yiying Xu, Qi Zhang, Le Zhao, Yanan Zhu, Yanhui Wu, Zhen Li, Wenxiang Yang. Detection of fungicide resistance to fludioxonil and tebuconazole in Fusarium pseudograminearum, the causal agent of Fusarium crown rot in wheat. PeerJ. 2023; 11(?):e14705. doi: 10.7717/peerj.14705. [PMID: 36721780]
  • Ping-Hu Wu, Min-Nan Tseng, Ying-Hong Lin, Chang-Hsin Kuo, Hao-Xun Chang. Identification of Cyprodinil+Fludioxonil to Manage Soybean Red Crown Rot using the Microplate-based High Throughput Screening and Pot Assay. Plant disease. 2022 Oct; ?(?):. doi: 10.1094/pdis-08-22-1976-re. [PMID: 36302731]
  • Xiang Liu, Xueting Wang, Fengwen Zhang, Xiangfeng Yao, Zhihua Qiao, Jiahui Deng, Qin Jiao, Luo Gong, Xingyin Jiang. Toxic effects of fludioxonil on the growth, photosynthetic activity, oxidative stress, cell morphology, apoptosis, and metabolism of Chlorella vulgaris. The Science of the total environment. 2022 Sep; 838(Pt 2):156069. doi: 10.1016/j.scitotenv.2022.156069. [PMID: 35605851]
  • Feng Zhou, Ye-Xian Cui, Bing-Li Wang, Yu-Dong Zhou, Shi-Wang Li, Yan-Tong Zhang, Ke Zhang, Ze-Yuan Chen, Hai-Yan Hu, Cheng-Wei Li. Baseline Sensitivity and Potential Resistance Mechanisms for Fusarium pseudograminearum to Fludioxonil. Plant disease. 2022 Aug; 106(8):2138-2144. doi: 10.1094/pdis-12-21-2626-re. [PMID: 35100030]
  • Le Chen, Baixin Sun, Yang Zhao, Peng Xiang, Zeyan Miao. Comparison of the Biological Characteristics and Molecular Mechanisms of Fludioxonil-Resistant Isolates of Botrytis cinerea from Tomato in Liaoning Province of China. Plant disease. 2022 Jul; 106(7):1959-1970. doi: 10.1094/pdis-07-21-1446-re. [PMID: 35678566]
  • Ziyue Wen, Jingrui Wang, Chen Jiao, Wenyong Shao, Zhonghua Ma. Biological and molecular characterizations of field fludioxonil-resistant isolates of Fusarium graminearum. Pesticide biochemistry and physiology. 2022 Jun; 184(?):105101. doi: 10.1016/j.pestbp.2022.105101. [PMID: 35715040]
  • Ζografina Mavriou, Ioanna Alexandropoulou, Paraschos Melidis, Dimitrios G Karpouzas, Spyridon Ntougias. Bioprocess performance, transformation pathway, and bacterial community dynamics in an immobilized cell bioreactor treating fludioxonil-contaminated wastewater under microaerophilic conditions. Environmental science and pollution research international. 2022 Apr; 29(20):29597-29612. doi: 10.1007/s11356-021-16452-3. [PMID: 34542817]
  • Hafiz Muhammad Usman, Qin Tan, Fei Fan, Mohammad Mazharul Karim, Wei-Xiao Yin, Fu-Xing Zhu, Chao-Xi Luo. Sensitivity of Colletotrichum nymphaeae to Six Fungicides and Characterization of Fludioxonil-Resistant Isolates in China. Plant disease. 2022 Jan; 106(1):165-173. doi: 10.1094/pdis-05-21-0993-re. [PMID: 34406787]
  • Miao Song, Siqi Fang, Zhigang Li, Na Wang, Xiao Li, Wenbo Liu, Yu Zhang, Chunhua Lin, Weiguo Miao. CsAtf1, a bZIP transcription factor, is involved in fludioxonil sensitivity and virulence in the rubber tree anthracnose fungus Colletotrichum siamense. Fungal genetics and biology : FG & B. 2022 01; 158(?):103649. doi: 10.1016/j.fgb.2021.103649. [PMID: 34921997]
  • Sayoko Oiki, Takashi Yaguchi, Syun-Ichi Urayama, Daisuke Hagiwara. Wide distribution of resistance to the fungicides fludioxonil and iprodione in Penicillium species. PloS one. 2022; 17(1):e0262521. doi: 10.1371/journal.pone.0262521. [PMID: 35100282]
  • Matthew Brown, Dasuni P Jayaweera, Annabel Hunt, James W Woodhall, Rumiana V Ray. Yield Losses and Control by Sedaxane and Fludioxonil of Soilborne Rhizoctonia, Microdochium, and Fusarium Species in Winter Wheat. Plant disease. 2021 Sep; 105(9):2521-2530. doi: 10.1094/pdis-11-20-2401-re. [PMID: 33439039]
  • Liana C Arnaud, Thierry Gauthier, Augustin Le Naour, Saleha Hashim, Nathalie Naud, Jerry W Shay, Fabrice H Pierre, Elisa Boutet-Robinet, Laurence Huc. Short-Term and Long-Term Carcinogenic Effects of Food Contaminants (4-Hydroxynonenal and Pesticides) on Colorectal Human Cells: Involvement of Genotoxic and Non-Genomic Mechanisms. Cancers. 2021 Aug; 13(17):. doi: 10.3390/cancers13174337. [PMID: 34503147]
  • Xiao-Xu Li, Li-Fei He, Xiu-Yu Pang, Yang-Yang Gao, Yang Liu, Peng Zhang, Guang Wei, Wei Mu, Bei-Xing Li, Feng Liu. Tank-mixing adjuvants enhanced the efficacy of fludioxonil on cucumber anthracnose by ameliorating the penetration ability of active ingredients on target interface. Colloids and surfaces. B, Biointerfaces. 2021 Aug; 204(?):111804. doi: 10.1016/j.colsurfb.2021.111804. [PMID: 33940521]
  • F Zhou, H Y Hu, D X Li, L G Tan, Q Zhang, H T Gao, H L Sun, X L Tian, M W Shi, F L Zhang, C W Li. Exploring the Biological and Molecular Characteristics of Resistance to Fludioxonil in Sclerotinia sclerotiorum From Soybean in China. Plant disease. 2021 Jul; 105(7):1936-1941. doi: 10.1094/pdis-07-20-1621-re. [PMID: 33044139]
  • Xiaolian Wang, Dongxiao Lu, Chengming Tian. CgEnd3 Regulates Endocytosis, Appressorium Formation, and Virulence in the Poplar Anthracnose Fungus Colletotrichum gloeosporioides. International journal of molecular sciences. 2021 Apr; 22(8):. doi: 10.3390/ijms22084029. [PMID: 33919762]
  • Hanxiang Wu, Pengtong Hu, Ye Xu, Chunxia Xiao, Zhibin Chen, Xiaojing Liu, Jinliang Jia, Hanhong Xu. Phloem Delivery of Fludioxonil by Plant Amino Acid Transporter-Mediated Polysuccinimide Nanocarriers for Controlling Fusarium Wilt in Banana. Journal of agricultural and food chemistry. 2021 Mar; 69(9):2668-2678. doi: 10.1021/acs.jafc.0c07028. [PMID: 33629581]
  • Madeline Dowling, Jhulia Gelain, Louise Larissa May De Mio, Guido Schnabel. Characterization of High Fludioxonil Resistance in Botrytis cinerea Isolates from Calibrachoa Flowers. Phytopathology. 2021 Mar; 111(3):478-484. doi: 10.1094/phyto-07-20-0268-r. [PMID: 33044131]
  • Tao Li, Qian Xiu, Jianxin Wang, Yabing Duan, Mingguo Zhou. A Putative MAPK Kinase Kinase Gene Ssos4 is Involved in Mycelial Growth, Virulence, Osmotic Adaptation, and Sensitivity to Fludioxonil and is Essential for SsHog1 Phosphorylation in Sclerotinia sclerotiorum. Phytopathology. 2021 Mar; 111(3):521-530. doi: 10.1094/phyto-07-20-0292-r. [PMID: 33044134]
  • Guido Schnabel, Qin Tan, Verena Schneider, Hideo Ishii. Inherent tolerance of Colletotrichum gloeosporioides to fludioxonil. Pesticide biochemistry and physiology. 2021 Feb; 172(?):104767. doi: 10.1016/j.pestbp.2020.104767. [PMID: 33518054]
  • Akeem O Taiwo, Lincoln A Harper, Mark C Derbyshire. Impacts of fludioxonil resistance on global gene expression in the necrotrophic fungal plant pathogen Sclerotinia sclerotiorum. BMC genomics. 2021 Jan; 22(1):91. doi: 10.1186/s12864-021-07402-x. [PMID: 33516198]
  • Zografina Mavriou, Ioanna Alexandropoulou, Paraschos Melidis, Dimitrios G Karpouzas, Spyridon Ntougias. Biotreatment and bacterial succession in an upflow immobilized cell bioreactor fed with fludioxonil wastewater. Environmental science and pollution research international. 2021 Jan; 28(4):3774-3786. doi: 10.1007/s11356-020-09231-z. [PMID: 32418094]
  • F Zhou, D X Li, H Y Hu, Y L Song, Y C Fan, Y Y Guan, P W Song, Q C Wei, H F Yan, C W Li. Biological Characteristics and Molecular Mechanisms of Fludioxonil Resistance in Fusarium graminearum in China. Plant disease. 2020 Sep; 104(9):2426-2433. doi: 10.1094/pdis-01-20-0079-re. [PMID: 32658633]
  • Feng Zhou, Hai-Yan Hu, Yu-Lu Song, Yu-Qing Gao, Qi-Li Liu, Pu-Wen Song, Er-Yong Chen, Yong-Ang Yu, Dong-Xiao Li, Cheng-Wei Li. Biological Characteristics and Molecular Mechanism of Fludioxonil Resistance in Botrytis cinerea From Henan Province of China. Plant disease. 2020 Apr; 104(4):1041-1047. doi: 10.1094/pdis-08-19-1722-re. [PMID: 31999220]
  • Wenwen Gong, Mengyun Jiang, Tingting Zhang, Wei Zhang, Gang Liang, Bingru Li, Bin Hu, Ping Han. Uptake and dissipation of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam in greenhouse chrysanthemum. Environmental pollution (Barking, Essex : 1987). 2020 Feb; 257(?):113499. doi: 10.1016/j.envpol.2019.113499. [PMID: 31706771]
  • Yangfan Li, Puhuizhong He, Chengming Tian, Yonglin Wang. CgHog1 controls the adaptation to both sorbitol and fludioxonil in Colletotrichum gloeosporioides. Fungal genetics and biology : FG & B. 2020 02; 135(?):103289. doi: 10.1016/j.fgb.2019.103289. [PMID: 31704368]
  • Eder Jorge de Oliveira, Saulo Alves Santos de Oliveira, Caroline Otto, Titus Alicai, Juan Paulo Xavier de Freitas, Diego Fernando Marmolejo Cortes, Anthony Pariyo, Charles Liri, Gerald Adiga, Andrea Balmer, Dominik Klauser, Mike Robinson. A novel seed treatment-based multiplication approach for cassava planting material. PloS one. 2020; 15(3):e0229943. doi: 10.1371/journal.pone.0229943. [PMID: 32142527]
  • Arne Haegerbaeumer, Ricarda Raschke, Nicola Reiff, Walter Traunspurger, Sebastian Höss. Comparing the effects of fludioxonil on non-target soil invertebrates using ecotoxicological methods from single-species bioassays to model ecosystems. Ecotoxicology and environmental safety. 2019 Nov; 183(?):109596. doi: 10.1016/j.ecoenv.2019.109596. [PMID: 31454750]
  • Stefan Bohnert, Luis Antelo, Christiane Grünewald, Alexander Yemelin, Karsten Andresen, Stefan Jacob. Rapid adaptation of signaling networks in the fungal pathogen Magnaporthe oryzae. BMC genomics. 2019 Oct; 20(1):763. doi: 10.1186/s12864-019-6113-3. [PMID: 31640564]
  • Jennifer N Apell, Nicholas C Pflug, Kristopher McNeill. Photodegradation of Fludioxonil and Other Pyrroles: The Importance of Indirect Photodegradation for Understanding Environmental Fate and Photoproduct Formation. Environmental science & technology. 2019 Oct; 53(19):11240-11250. doi: 10.1021/acs.est.9b03948. [PMID: 31486641]
  • A Chechi, J Stahlecker, M E Dowling, G Schnabel. Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide biochemistry and physiology. 2019 Jul; 158(?):18-24. doi: 10.1016/j.pestbp.2019.04.002. [PMID: 31378355]
  • Jian Hu, Yuxin Zhou, Tao Gao, Jiamei Geng, Yuan Dai, Haiyan Ren, Kurt Lamour, Xili Liu. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. Pesticide biochemistry and physiology. 2019 May; 156(?):123-128. doi: 10.1016/j.pestbp.2019.02.011. [PMID: 31027571]
  • Meng-Jun Hu, Scott Cosseboom, Guido Schnabel. atrB-Associated Fludioxonil Resistance in Botrytis fragariae Not Linked to Mutations in Transcription Factor mrr1. Phytopathology. 2019 May; 109(5):839-846. doi: 10.1094/phyto-09-18-0341-r. [PMID: 30543488]
  • Stefan Bohnert, Larissa Heck, Christoph Gruber, Hendrik Neumann, Ute Distler, Stefan Tenzer, Alexander Yemelin, Eckhard Thines, Stefan Jacob. Fungicide resistance toward fludioxonil conferred by overexpression of the phosphatase gene MoPTP2 in Magnaporthe oryzae. Molecular microbiology. 2019 03; 111(3):662-677. doi: 10.1111/mmi.14179. [PMID: 30537256]
  • S Saito, C L Xiao. Fungicide Resistance in Botrytis cinerea Populations in California and its Influence on Control of Gray Mold on Stored Mandarin Fruit. Plant disease. 2018 12; 102(12):2545-2549. doi: 10.1094/pdis-05-18-0766-re. [PMID: 30328758]
  • W X Yin, M Adnan, Y Shang, Y Lin, C X Luo. Sensitivity of Botrytis cinerea From Nectarine/Cherry in China to Six Fungicides and Characterization of Resistant Isolates. Plant disease. 2018 12; 102(12):2578-2585. doi: 10.1094/pdis-02-18-0244-re. [PMID: 30299208]
  • Leiming He, Kaidi Cui, Yufei Song, Zhengqun Zhang, Beixing Li, Wei Mu, Feng Liu. A precisely targeted application strategy of dipping young cucumber fruit in fungicide to control cucumber gray mold. Pest management science. 2018 Nov; 74(11):2432-2437. doi: 10.1002/ps.5055. [PMID: 29704289]
  • Stacey E Haack, Kelly L Ivors, Gerald J Holmes, Helga Förster, James E Adaskaveg. Natamycin, a New Biofungicide for Managing Crown Rot of Strawberry Caused by QoI-Resistant Colletotrichum acutatum. Plant disease. 2018 Sep; 102(9):1687-1695. doi: 10.1094/pdis-12-17-2033-re. [PMID: 30125151]
  • J B Qiu, M Z Yu, Q Yin, J H Xu, J R Shi. Molecular Characterization, Fitness, and Mycotoxin Production of Fusarium asiaticum Strains Resistant to Fludioxonil. Plant disease. 2018 Sep; 102(9):1759-1765. doi: 10.1094/pdis-11-17-1772-re. [PMID: 30125190]
  • Yingying Song, Lili Li, Chao Li, Zengbin Lu, Xingyuan Men, Fajun Chen. Evaluating the Sensitivity and Efficacy of Fungicides with Different Modes of Action Against Botryosphaeria dothidea. Plant disease. 2018 Sep; 102(9):1785-1793. doi: 10.1094/pdis-01-18-0118-re. [PMID: 30125189]
  • Christian Imholt, Tariq Abdulla, Alexander Stevens, Peter Edwards, Jens Jacob, David Woods, Elaine Rogers, Leon Aarons, Daniel Segelcke. Establishment and validation of microsampling techniques in wild rodents for ecotoxicological research. Journal of applied toxicology : JAT. 2018 09; 38(9):1244-1250. doi: 10.1002/jat.3635. [PMID: 29766525]
  • N Muzhinji, J W Woodhall, M Truter, J E van der Waals. Variation in Fungicide Sensitivity Among Rhizoctonia Isolates Recovered from Potatoes in South Africa. Plant disease. 2018 Aug; 102(8):1520-1526. doi: 10.1094/pdis-09-17-1470-re. [PMID: 30673418]
  • Emran Md Ali, Laxmi K Pandit, Katie A Mulvaney, Achour Amiri. Sensitivity of Phacidiopycnis spp. Isolates from Pome Fruit to Six Pre- and Postharvest Fungicides. Plant disease. 2018 Mar; 102(3):533-539. doi: 10.1094/pdis-07-17-1014-re. [PMID: 30673472]
  • Yi-Ping Hou, Xue-Wei Mao, Shi-Peng Lin, Xiu-Shi Song, Ya-Bing Duan, Jian-Xin Wang, Ming-Guo Zhou. Activity of a novel succinate dehydrogenase inhibitor fungicide pyraziflumid against Sclerotinia sclerotiorum. Pesticide biochemistry and physiology. 2018 Feb; 145(?):22-28. doi: 10.1016/j.pestbp.2017.12.009. [PMID: 29482728]
  • İbrahim Kahramanoğlu, Mehmet Aktaş, Şerife Gündüz. Effects of fludioxonil, propolis and black seed oil application on the postharvest quality of 'Wonderful' pomegranate. PloS one. 2018; 13(5):e0198411. doi: 10.1371/journal.pone.0198411. [PMID: 29852011]
  • Xu Han, Hu Zhao, Weichao Ren, ChiYuan Lv, Changjun Chen. Resistance risk assessment for fludioxonil in Bipolaris maydis. Pesticide biochemistry and physiology. 2017 Jun; 139(?):32-39. doi: 10.1016/j.pestbp.2017.04.006. [PMID: 28595919]
  • Carolina Camargo, Thomas E Hunt, Loren J Giesler, Blair D Siegfried. Thiamethoxam Toxicity and Effects on Consumption Behavior in Orius insidiosus (Hemiptera: Anthocoridae) on Soybean. Environmental entomology. 2017 06; 46(3):693-699. doi: 10.1093/ee/nvx050. [PMID: 28369319]
  • Yeo Hong Yun, Man Hwan Oh, Jun Young Kim, Seong Hwan Kim. UmTco1, a Hybrid Histidine Kinase Gene, Is Essential for the Sexual Development and Virulence of Ustilago maydis. Journal of microbiology and biotechnology. 2017 May; 27(5):1010-1022. doi: 10.4014/jmb.1702.02001. [PMID: 28237997]
  • Wayne M Jurick, Otilia Macarisin, Verneta L Gaskins, Eunhee Park, Jiujiang Yu, Wojciech Janisiewicz, Kari A Peter. Characterization of Postharvest Fungicide-Resistant Botrytis cinerea Isolates From Commercially Stored Apple Fruit. Phytopathology. 2017 03; 107(3):362-368. doi: 10.1094/phyto-07-16-0250-r. [PMID: 27841961]
  • Thomas F Boudreau, Gregory M Peck, Sean F O'Keefe, Amanda C Stewart. The interactive effect of fungicide residues and yeast assimilable nitrogen on fermentation kinetics and hydrogen sulfide production during cider fermentation. Journal of the science of food and agriculture. 2017 Jan; 97(2):693-704. doi: 10.1002/jsfa.8096. [PMID: 27747891]
  • S N Chen, C X Luo, M J Hu, G Schnabel. Fitness and Competitive Ability of Botrytis cinerea Isolates with Resistance to Multiple Chemical Classes of Fungicides. Phytopathology. 2016 09; 106(9):997-1005. doi: 10.1094/phyto-02-16-0061-r. [PMID: 27161219]
  • Magdalena Jankowska, Piotr Kaczynski, Izabela Hrynko, Bozena Lozowicka. Dissipation of six fungicides in greenhouse-grown tomatoes with processing and health risk. Environmental science and pollution research international. 2016 Jun; 23(12):11885-900. doi: 10.1007/s11356-016-6260-x. [PMID: 26957431]
  • Siwy Ling Yang, Pei-Ling Yu, Kuang-Ren Chung. The glutathione peroxidase-mediated reactive oxygen species resistance, fungicide sensitivity and cell wall construction in the citrus fungal pathogen Alternaria alternata. Environmental microbiology. 2016 Mar; 18(3):923-35. doi: 10.1111/1462-2920.13125. [PMID: 26567914]
  • Shuna Cui, Rabeay Y A Hassan, Anna Heintz-Buschart, Ursula Bilitewski. Regulation of Candida albicans Interaction with Macrophages through the Activation of HOG Pathway by Genistein. Molecules (Basel, Switzerland). 2016 Jan; 21(2):162. doi: 10.3390/molecules21020162. [PMID: 26828477]
  • Li-min Zhao, Qi-ming Wang, Dong-dong Zhang, Gui-lan Ma. [Cooperative Protection of American Ginseng Seedlings by Applying Imidacloprid, Fludioxonil and Phoxim]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 Jul; 38(7):1349-54. doi: . [PMID: 26946830]
  • Stefan Jacob, Andrew J Foster, Alexander Yemelin, Eckhard Thines. High osmolarity glycerol (HOG) signalling in Magnaporthe oryzae: Identification of MoYPD1 and its role in osmoregulation, fungicide action, and pathogenicity. Fungal biology. 2015 Jul; 119(7):580-94. doi: 10.1016/j.funbio.2015.03.003. [PMID: 26058534]
  • Xingpeng Li, Dolores Fernández-Ortuño, Anja Grabke, Guido Schnabel. Resistance to fludioxonil in Botrytis cinerea isolates from blackberry and strawberry. Phytopathology. 2014 Jul; 104(7):724-32. doi: 10.1094/phyto-11-13-0308-r. [PMID: 24423402]
  • N N Misra, S K Pankaj, Tony Walsh, Finbarr O'Regan, Paula Bourke, P J Cullen. In-package nonthermal plasma degradation of pesticides on fresh produce. Journal of hazardous materials. 2014 Apr; 271(?):33-40. doi: 10.1016/j.jhazmat.2014.02.005. [PMID: 24598029]
  • Anja Grabke, Dolores Fernández-Ortuño, Achour Amiri, Xingpeng Li, Natália A Peres, Powell Smith, Guido Schnabel. Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry. Phytopathology. 2014 Apr; 104(4):396-402. doi: 10.1094/phyto-06-13-0156-r. [PMID: 24156554]
  • Sylvia Niemann, Markus Burghardt, Christian Popp, Markus Riederer. Aqueous pathways dominate permeation of solutes across Pisum sativum seed coats and mediate solute transport via diffusion and bulk flow of water. Plant, cell & environment. 2013 May; 36(5):1027-36. doi: 10.1111/pce.12035. [PMID: 23146121]
  • Maria Marinozzi, Laura Coppola, Elga Monaci, Dimitrios G Karpouzas, Evangelia Papadopoulou, Urania Menkissoglu-Spiroudi, Costantino Vischetti. The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community. Environmental science and pollution research international. 2013 Apr; 20(4):2546-55. doi: 10.1007/s11356-012-1165-9. [PMID: 22965543]
  • Qianqian Yang, Leiyan Yan, Qin Gu, Zhonghua Ma. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea. Applied microbiology and biotechnology. 2012 Oct; 96(2):481-92. doi: 10.1007/s00253-012-4029-9. [PMID: 22526788]
  • Jinhua Jiang, Yingzi Yun, Ye Liu, Zhonghua Ma. FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Fungal genetics and biology : FG & B. 2012 Aug; 49(8):653-62. doi: 10.1016/j.fgb.2012.06.005. [PMID: 22713714]
  • Kentaro Furukawa, Anmoldeep Randhawa, Harsimran Kaur, Alok K Mondal, Stefan Hohmann. Fungal fludioxonil sensitivity is diminished by a constitutively active form of the group III histidine kinase. FEBS letters. 2012 Jul; 586(16):2417-22. doi: 10.1016/j.febslet.2012.05.057. [PMID: 22687241]
  • Ying-Lien Chen, Jay H Konieczka, Deborah J Springer, Samantha E Bowen, Jing Zhang, Fitz Gerald S Silao, Alice Alma C Bungay, Ursela G Bigol, Marilou G Nicolas, Soman N Abraham, Dawn A Thompson, Aviv Regev, Joseph Heitman. Convergent Evolution of Calcineurin Pathway Roles in Thermotolerance and Virulence in Candida glabrata. G3 (Bethesda, Md.). 2012 Jun; 2(6):675-91. doi: 10.1534/g3.112.002279. [PMID: 22690377]
  • Thomas Veloukas, George S Karaoglanidis. Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Pest management science. 2012 Jun; 68(6):858-64. doi: 10.1002/ps.3241. [PMID: 22262495]
  • Vitaly Dzhavakhiya, Larisa Shcherbakova, Yulia Semina, Natalia Zhemchuzhina, Bruce Campbell. Chemosensitization of plant pathogenic fungi to agricultural fungicides. Frontiers in microbiology. 2012; 3(?):87. doi: 10.3389/fmicb.2012.00087. [PMID: 22408641]
  • Tommaso Raffaello, Susanna Keriö, Fred O Asiegbu. Role of the HaHOG1 MAP kinase in response of the conifer root and butt rot pathogen (heterobasidion annosum) to osmotic and oxidative stress [corrected]. PloS one. 2012; 7(2):e31186. doi: 10.1371/journal.pone.0031186. [PMID: 22319614]
  • Bruce C Campbell, Kathleen L Chan, Jong H Kim. Chemosensitization as a means to augment commercial antifungal agents. Frontiers in microbiology. 2012; 3(?):79. doi: 10.3389/fmicb.2012.00079. [PMID: 22393330]
  • José Fenoll, Encarnación Ruiz, Pilar Hellín, Pilar Flores, Simón Navarro. Heterogeneous photocatalytic oxidation of cyprodinil and fludioxonil in leaching water under solar irradiation. Chemosphere. 2011 Nov; 85(8):1262-8. doi: 10.1016/j.chemosphere.2011.07.022. [PMID: 21840030]
  • Quang Le Dang, Won Ki Kim, Cuong Mai Nguyen, Yong Ho Choi, Gyung Ja Choi, Kyoung Soo Jang, Myung Soo Park, Chi Hwan Lim, Ngoc Hoang Luu, Jin-Cheol Kim. Nematicidal and antifungal activities of annonaceous acetogenins from Annona squamosa against various plant pathogens. Journal of agricultural and food chemistry. 2011 Oct; 59(20):11160-7. doi: 10.1021/jf203017f. [PMID: 21910504]
  • Hokyoung Son, Young-Su Seo, Kyunghun Min, Ae Ran Park, Jungkwan Lee, Jian-Ming Jin, Yang Lin, Peijian Cao, Sae-Yeon Hong, Eun-Kyung Kim, Seung-Ho Lee, Aram Cho, Seunghoon Lee, Myung-Gu Kim, Yongsoo Kim, Jung-Eun Kim, Jin-Cheol Kim, Gyung Ja Choi, Sung-Hwan Yun, Jae Yun Lim, Minkyun Kim, Yong-Hwan Lee, Yang-Do Choi, Yin-Won Lee. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS pathogens. 2011 Oct; 7(10):e1002310. doi: 10.1371/journal.ppat.1002310. [PMID: 22028654]
  • Rubik J Sommerhalder, Bruce A McDonald, Fabio Mascher, Jiasui Zhan. Effect of hosts on competition among clones and evidence of differential selection between pathogenic and saprophytic phases in experimental populations of the wheat pathogen Phaeosphaeria nodorum. BMC evolutionary biology. 2011 Jul; 11(?):188. doi: 10.1186/1471-2148-11-188. [PMID: 21718545]
  • Jong H Kim, Kathleen L Chan, Noreen Mahoney, Bruce C Campbell. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation. Annals of clinical microbiology and antimicrobials. 2011 May; 10(?):23. doi: 10.1186/1476-0711-10-23. [PMID: 21627838]
  • Leiyan Yan, Qianqian Yang, Jinhua Jiang, Themis J Michailides, Zhonghua Ma. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea. Applied microbiology and biotechnology. 2011 Apr; 90(1):215-26. doi: 10.1007/s00253-010-3027-z. [PMID: 21161211]
  • George S Karaoglanidis, Anastasios N Markoglou, George A Bardas, Eleftherios G Doukas, Sotiris Konstantinou, John F Kalampokis. Sensitivity of Penicillium expansum field isolates to tebuconazole, iprodione, fludioxonil and cyprodinil and characterization of fitness parameters and patulin production. International journal of food microbiology. 2011 Jan; 145(1):195-204. doi: 10.1016/j.ijfoodmicro.2010.12.017. [PMID: 21251724]
  • Jinhua Jiang, Xin Liu, Yanni Yin, Zhonghua Ma. Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. PloS one. 2011; 6(11):e28291. doi: 10.1371/journal.pone.0028291. [PMID: 22140571]
  • Marc Benigni, Gilbert Bompeix. Chemical and biological control of Sclerotinia sclerotiorum in witloof chicory culture. Pest management science. 2010 Dec; 66(12):1332-6. doi: 10.1002/ps.2019. [PMID: 20839264]
  • J H Kim, B C Campbell, N Mahoney, K L Chan, R J Molyneux, C L Xiao. Use of chemosensitization to overcome fludioxonil resistance in Penicillium expansum. Letters in applied microbiology. 2010 Aug; 51(2):177-83. doi: 10.1111/j.1472-765x.2010.02875.x. [PMID: 20536709]
  • Roger R Lew. Turgor and net ion flux responses to activation of the osmotic MAP kinase cascade by fludioxonil in the filamentous fungus Neurospora crassa. Fungal genetics and biology : FG & B. 2010 Aug; 47(8):721-6. doi: 10.1016/j.fgb.2010.05.007. [PMID: 20546911]
  • L Kanetis, H Förster, J E Adaskaveg. Determination of natural resistance frequencies in Penicillium digitatum using a new air-sampling method and characterization of fludioxonil- and pyrimethanil-resistant isolates. Phytopathology. 2010 Aug; 100(8):738-46. doi: 10.1094/phyto-100-8-0738. [PMID: 20626277]
  • Carla J Eaton, Murray P Cox, Barbara Ambrose, Matthias Becker, Uljana Hesse, Christopher L Schardl, Barry Scott. Disruption of signaling in a fungal-grass symbiosis leads to pathogenesis. Plant physiology. 2010 Aug; 153(4):1780-94. doi: 10.1104/pp.110.158451. [PMID: 20519633]
  • Mario Schirra, Amedeo Palma, Antonio Barberis, Alberto Angioni, Vincenzo Luigi Garau, Paolo Cabras, Salvatore D'Aquino. Postinfection activity, residue levels, and persistence of azoxystrobin, fludioxonil, and pyrimethanil applied alone or in combination with heat and imazalil for green mold control on inoculated oranges. Journal of agricultural and food chemistry. 2010 Mar; 58(6):3661-6. doi: 10.1021/jf904521f. [PMID: 20166660]
  • Matthias Kretschmer, Michaela Leroch, Andreas Mosbach, Anne-Sophie Walker, Sabine Fillinger, Dennis Mernke, Henk-Jan Schoonbeek, Jean-Marc Pradier, Pierre Leroux, Maarten A De Waard, Matthias Hahn. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS pathogens. 2009 Dec; 5(12):e1000696. doi: 10.1371/journal.ppat.1000696. [PMID: 20019793]
  • Anne-Sophie Walker, Christiane Auclair, Michel Gredt, Pierre Leroux. First occurrence of resistance to strobilurin fungicides in Microdochium nivale and Microdochium majus from French naturally infected wheat grains. Pest management science. 2009 Aug; 65(8):906-15. doi: 10.1002/ps.1772. [PMID: 19431150]
  • Yun Mi Lee, Jae Sun Moon, Bong-Sik Yun, Ki Duk Park, Gyung Ja Choi, Jin-Cheol Kim, Sang Han Lee, Sung Uk Kim. Antifungal activity of CHE-23C, a dimeric sesquiterpene from Chloranthus henryi. Journal of agricultural and food chemistry. 2009 Jul; 57(13):5750-5. doi: 10.1021/jf900674y. [PMID: 19566082]
  • Jeffrey J Coleman, Eleftherios Mylonakis. Efflux in fungi: la pièce de résistance. PLoS pathogens. 2009 Jun; 5(6):e1000486. doi: 10.1371/journal.ppat.1000486. [PMID: 19557154]
  • Anne-Noëlle Petit, Geneviève Wojnarowiez, Marie-Laure Panon, Fabienne Baillieul, Christophe Clément, Florence Fontaine, Nathalie Vaillant-Gaveau. Botryticides affect grapevine leaf photosynthesis without inducing defense mechanisms. Planta. 2009 Feb; 229(3):497-506. doi: 10.1007/s00425-008-0849-3. [PMID: 19002490]
  • Anita Dongo, Nelly Bataillé-Simoneau, Claire Campion, Thomas Guillemette, Bruno Hamon, Béatrice Iacomi-Vasilescu, Leonard Katz, Philippe Simoneau. The group III two-component histidine kinase of filamentous fungi is involved in the fungicidal activity of the bacterial polyketide ambruticin. Applied and environmental microbiology. 2009 Jan; 75(1):127-34. doi: 10.1128/aem.00993-08. [PMID: 19011080]
  • Anne-Noëlle Petit, Florence Fontaine, Christophe Clement, Nathalie Vaillant-Gaveau. Gating in grapevine: relationship between application of the fungicide fludioxonil and circadian rhythm on photosynthesis. Environmental pollution (Barking, Essex : 1987). 2009 Jan; 157(1):130-4. doi: 10.1016/j.envpol.2008.07.017. [PMID: 18789565]
  • Anne-Noëlle Petit, Florence Fontaine, Christophe Clément, Nathalie Vaillant-Gaveau. Photosynthesis limitations of grapevine after treatment with the fungicide fludioxonil. Journal of agricultural and food chemistry. 2008 Aug; 56(15):6761-7. doi: 10.1021/jf800919u. [PMID: 18598040]
  • Neil C Glynn, Martin C Hare, Simon G Edwards. Fungicide seed treatment efficacy against Microdochium nivale and M. majus in vitro and in vivo. Pest management science. 2008 Aug; 64(8):793-9. doi: 10.1002/ps.1558. [PMID: 18338339]
  • Rosa Ma González-Rodríguez, Raquel Rial-Otero, Beatriz Cancho-Grande, Jesús Simal-Gándara. Determination of 23 pesticide residues in leafy vegetables using gas chromatography-ion trap mass spectrometry and analyte protectants. Journal of chromatography. A. 2008 Jul; 1196-1197(?):100-9. doi: 10.1016/j.chroma.2008.02.087. [PMID: 18343389]