Gene Association: MVD

UniProt Search: MVD (PROTEIN_CODING)
Function Description: mevalonate diphosphate decarboxylase

found 277 associated metabolites with current gene based on the text mining result from the pubmed database.

Gentisate

2,5-Dihydroxybenzoic acid, matrix substance for MALDI-MS, >=99.5\\% (HPLC), Ultra pure

C7H6O4 (154.0266)


Gentisic acid, also known as gentisate or 2,5-dioxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. Gentisic acid is also classified as a dihydroxybenzoic acid. It is a derivative of benzoic acid and a minor (1\\\\\%) product of the metabolic break down of aspirin, which is excreted by the kidneys. Gentisic acid is found in essentially all organisms ranging from bacteria to fungi to plants to animals. Gentisic acid has been associated with a number of useful effects on human health and exhibits anti-inflammatory, antigenotoxic, hepatoprotective, neuroprotective, antimicrobial, and especially antioxidant activities (PMID: 31825145). It is widely distributed in plants as a secondary plant product such as Gentiana spp., Citrus spp., Vitis vinifera, Pterocarpus santalinus, Helianthus tuberosus, Hibiscus rosa-sinensis, Olea europaea, and Sesamum indicum and in fruits such as avocados, batoko plum, kiwi fruits, apple, bitter melon, black berries, pears, and some mushrooms (PMID: 31825145). Gentisic acid is found in higher concentrations in a number of foods such as tarragons, common thymes, and common sages and in a lower concentration in grape wines, rosemaries, and sweet marjorams. Gentisic acid has also been shown to act as a pathogen-inducible signal for the activation of plant defenses in tomato plants and cucumbers (PMID: 16321412; https://doi.org/10.1094/MPMI.1999.12.3.227). Gentisic acid is a dihydroxybenzoic acid. It is a crystalline powder that forms monoclinic prism in water solution. Gentisic acid is an active metabolite of salicylic acid degradation. There is an increasing amount of evidence indicating that gentisic acid has a broad spectrum of biological activity, such as anti-inflammatory, antirheumatic and antioxidant properties. Gentisic acid is also a byproduct of tyrosine and benzoate metabolism. [HMDB]. Gentisic acid is found in many foods, some of which are common sage, common grape, nutmeg, and dill. 2,5-dihydroxybenzoic acid is a dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. It has a role as a MALDI matrix material, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a human metabolite, a fungal metabolite and a mouse metabolite. It is functionally related to a benzoic acid. It is a conjugate acid of a 2,5-dihydroxybenzoate. 2,5-Dihydroxybenzoic acid is a natural product found in Persicaria mitis, Tilia tomentosa, and other organisms with data available. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates A dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. 2,5-Dihydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-79-9 (retrieved 2024-07-01) (CAS RN: 490-79-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors. 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors.

   

Pinocembrin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-

C15H12O4 (256.0736)


Pinocembrin is a dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. It has a role as an antioxidant, an antineoplastic agent, a vasodilator agent, a neuroprotective agent and a metabolite. It is a dihydroxyflavanone and a (2S)-flavan-4-one. Pinocembrin is a natural product found in Prunus leveilleana, Alpinia rafflesiana, and other organisms with data available. Pinocembrin is found in mexican oregano and is isolated from many plants including food plants. Pinocembrin belongs to the family of flavanones. These are compounds containing a flavan-3-one moiety, which structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. A dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. Isolated from many plants including food plants. (S)-Pinocembrin is found in mexican oregano and pine nut. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].

   

Dauricine

Phenol, 4-((1,2,3,4-tetrahydro-6,7-dimethoxy-2-methyl-1-isoquinolinyl)methyl)-2-(4-((1,2,3,4-tetrahydro-6,7-dimethoxy-2-methyl-1-isoquinolinyl)methyl)phenoxy)-, (R-(R*,R*))-

C38H44N2O6 (624.3199)


Dauricine is a bisbenzylisoquinoline alkaloid resulting from the formal oxidative dimerisation of 4-{[(1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}phenol by attachment of the phenolic oxygen of one molecule to the benzene ring of the second (ortho to the phenolic hydroxy group of the latter). It has a role as a plant metabolite. It is a tertiary amino compound, a member of phenols, an aromatic ether, a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Dauricine is a natural product found in Nelumbo nucifera, Menispermum canadense, and Menispermum dauricum with data available. A bisbenzylisoquinoline alkaloid resulting from the formal oxidative dimerisation of 4-{[(1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}phenol by attachment of the phenolic oxygen of one molecule to the benzene ring of the second (ortho to the phenolic hydroxy group of the latter). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Dauricine, a bisbenzylisoquinoline alkaloid in Menispermum dauricum, possesses anti-inflammatory activity. Dauricine inhibits cell proliferation and invasion, and induces apoptosis by suppressing NF-κB activation in a dose- and time-dependent manner in colon cancer[1]. Dauricine, a bisbenzylisoquinoline alkaloid in Menispermum dauricum, possesses anti-inflammatory activity. Dauricine inhibits cell proliferation and invasion, and induces apoptosis by suppressing NF-κB activation in a dose- and time-dependent manner in colon cancer[1].

   

Yamogenintetroside B

2-[4-(16-{[4-hydroxy-6-(hydroxymethyl)-3,5-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl)-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C52H86O22 (1062.561)


Methylprotodioscin is a steroid saponin. Methylprotodioscin is a natural product found in Dracaena draco, Smilax menispermoidea, and other organisms with data available. Methylprotodioscin is found in herbs and spices. Methylprotodioscin is isolated from seeds of Trigonella caerulea (sweet trefoil) and Asparagus officinalis (asparagus). Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2]. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2].

   

Dimethylallylpyrophosphate

({hydroxy[(3-methylbut-2-en-1-yl)oxy]phosphoryl}oxy)phosphonic acid

C5H12O7P2 (246.0058)


Prenyl diphosphate is a prenol phosphate that is a phosphoantigen comprising the O-pyrophosphate of prenol. It has a role as an epitope, a phosphoantigen, an Escherichia coli metabolite and a mouse metabolite. It is a conjugate acid of a prenyl diphosphate(3-). Dimethylallylpyrophosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Dimethylallyl diphosphate is a natural product found in Centaurium erythraea, Streptomyces albidoflavus, and other organisms with data available. Dimethylallylpyrophosphate is a metabolite found in or produced by Saccharomyces cerevisiae. Dimethylallylpyrophosphate, also known as 2-isopentenyl diphosphate or delta-prenyl diphosphoric acid, belongs to the class of organic compounds known as isoprenoid phosphates. These are prenol lipids containing a phosphate group linked to an isoprene (2-methylbuta-1,3-diene) unit. Dimethylallylpyrophosphate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Dimethylallyl pyrophosphate (or -diphosphate) (DMAPP) is an intermediate product of both mevalonic acid (MVA) pathway and DOXP/MEP pathway. It is an isomer of isopentenyl pyrophosphate (IPP) and exists in virtually all life forms. A prenol phosphate that is a phosphoantigen comprising the O-pyrophosphate of prenol.

   

Trehalose

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.1162)


Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf). Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector. Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy. Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available. Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs in fungi. EU and USA approved sweetener Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 149 D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.

   

Squalene

InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24

C30H50 (410.3912)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Solanidine

(2S,4AR,4BS,6as,6BR,7S,7ar,10S,12as,13as,13BS)-4a,6a,7,10-tetramethyl-2,3,4,4a,4b,5,6,6a,6b,7,7a,8,9,10,11,12a,13,13a,13b,14-icosahydro-1H-naphtho[2,1:4,5]indeno[1,2-b]indolizin-2-ol

C27H43NO (397.3344)


Solanidine is a steroid alkaloid fundamental parent, a 3beta-hydroxy-Delta(5)-steroid and a solanid-5-en-3-ol. It has a role as a plant metabolite and a toxin. It is a conjugate base of a solanidine(1+). Solanidine is a natural product found in Fritillaria delavayi, Fritillaria tortifolia, and other organisms with data available. Alkaloid from potato (Solanum tuberosum). Glycosides, (especies Solanines and chaconine) are trace toxic constits. of potato tubers (especies greened tubers), and interbreeding of potatoes with wild strains may increase their concn. or introduce other more toxic, solanidine glycosides Solanidine is a steroidal alkaloid, and its glycosides have been reported to have caused poisoning in man and animals. Solanidine is present in sera of healthy individuals and in amounts dependent on their dietary potato consumption. (PMID: 4007882). Solanidine is a cholestane alkaloid isolated from several potato species including Solanum demissum, Solanum acaule, and Solanum tuberosum. Solanidine can inhibit proliferation and exhibit obvious antitumor effect[1]. Solanidine is a cholestane alkaloid isolated from several potato species including Solanum demissum, Solanum acaule, and Solanum tuberosum. Solanidine can inhibit proliferation and exhibit obvious antitumor effect[1].

   

Farnesol

InChI=1/C15H26O/c1-13(2)7-5-8-14(3)9-6-10-15(4)11-12-16/h7,9,11,16H,5-6,8,10,12H2,1-4H3/b14-9+,15-11

C15H26O (222.1984)


Farnesol is a signaling molecule that is derived from farnesyl diphosphate, an intermediate in the isoprenoid/cholesterol biosynthetic pathway. Farnesol is a 15 carbon isoprenoid alcohol is the corresponding dephosphorylated form of the isoprenoid farnesyl diphosphate. Farnesol has a potential role in controlling the degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase (EC 1.1.1.34, NADPH-hydroxymethylglutaryl-CoA reductase). The enzyme is stabilized under conditions of cellular sterol depletion (e.g. statin-treated cells) and rapidly degraded in sterol-loaded cells. In mammalian cells, this enhanced degradation is dependent on the presence of both a sterol and a non-sterol derived from the isoprenoid pathway; farnesol, the dephosphorylated form of farnesyl diphosphate, can function as the non-sterol component. Farnesol has been shown to activate the farnesoid receptor (FXR), a nuclear receptor that forms a functional heterodimer with RXR. Thus, dephosphorylation of farnesyl diphosphate, an intermediate in the cholesterol synthetic pathway, might produce an active ligand for the FXR:RXR heterodimer. The physiological ligand for FXR remains to be identified; farnesol, may simply mimic the unidentified natural ligand(s). In addition, exogenous farnesol have an effect on several other physiological processes, including inhibition of phosphatidylcholine biosynthesis, induction of apoptosis, inhibition of cell cycle progression and actin cytoskeletal disorganization. Farnesol cellular availability is an important determinant of vascular tone in animals and humans, and provides a basis for exploring farnesyl metabolism in humans with compromised vascular function as well as for using farnesyl analogues as regulators of arterial tone in vivo. A possible metabolic fate for farnesol is its conversion to farnesoic acid, and then to farnesol-derived dicarboxylic acids (FDDCAs) which would then be excreted in the urine. Farnesol can also be oxidized to a prenyl aldehyde, presumably by an alcohol dehydrogenase (ADH), and that this activity resides in the mitochondrial and peroxisomal. Liver Endoplasmic reticulum and peroxisomal fractions are able to phosphorylate farnesol to Farnesyl diphosphate in a Cytosine triphosphate dependent fashion. (PMID: 9812197, 8636420, 9083051, 9015362). Prenol is polymerized by dehydration reactions; when there are at least four isoprene units (n in the above formula is greater than or equal to four), the polymer is called a polyprenol. Polyprenols can contain up to 100 isoprene units (n=100) linked end to end with the hydroxyl group (-OH) remaining at the end. These isoprenoid alcohols are also called terpenols These isoprenoid alcohols are important in the acylation of proteins, carotenoids, and fat-soluble vitamins A, E and K. They are also building blocks for plant oils such as farnesol and geraniol. Prenol is also a building block of cholesterol (built from six isoprene units), and thus of all steroids. Prenol has sedative properities, it is probably GABA receptor allosteric modulator.When the isoprene unit attached to the alcohol is saturated, the compound is referred to as a dolichol. Dolichols are important as glycosyl carriers in the synthesis of polysaccharides.(Wikipedia). C26170 - Protective Agent > C275 - Antioxidant Component of many flower absolutes [CCD] Farnesol is a colorless liquid with a delicate floral odor. (NTP, 1992) Farnesol is a farnesane sesquiterpenoid that is dodeca-2,6,10-triene substituted by methyl groups at positions 3, 7 and 11 and a hydroxy group at position 1. It has a role as a plant metabolite, a fungal metabolite and an antimicrobial agent. It is a farnesane sesquiterpenoid, a primary alcohol and a polyprenol. trans,trans-Farnesol is a natural product found in Lonicera japonica, Psidium guajava, and other organisms with data available. (2-trans,6-trans)-Farnesol is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless liquid extracted from oils of plants such as citronella, neroli, cyclamen, and tuberose. It is an intermediate step in the biological synthesis of cholesterol from mevalonic acid in vertebrates. It has a delicate odor and is used in perfumery. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria. Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria.

   

Pyridoxate

3-hydroxy-5-(hydroxymethyl)-2-methylpyridine-4-carboxylic acid

C8H9NO4 (183.0532)


4-Pyridoxic acid is a member of the class of compounds known as methylpyridines. More specifically it is a 2-methylpyridine derivative substituted by a hydroxy group at C-3, a carboxy group at C-4, and a hydroxymethyl group at C-5. 4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) and is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced even further in persons with a riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via the enzyme known as 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four-electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide (NAD) as a cofactor. 4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) which is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced in persons with riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide as a cofactor. [HMDB] Vitamin B6 is one of the B vitamins, and thus an essential nutrient.[1][2][3][4] The term refers to a group of six chemically similar compounds, i.e., "vitamers", which can be interconverted in biological systems. Its active form, pyridoxal 5′-phosphate, serves as a coenzyme in more than 140 enzyme reactions in amino acid, glucose, and lipid metabolism.[1][2][3] Plants synthesize pyridoxine as a means of protection from the UV-B radiation found in sunlight[5] and for the role it plays in the synthesis of chlorophyll.[6] Animals cannot synthesize any of the various forms of the vitamin, and hence must obtain it via diet, either of plants, or of other animals. There is some absorption of the vitamin produced by intestinal bacteria, but this is not sufficient to meet dietary needs. For adult humans, recommendations from various countries' food regulatory agencies are in the range of 1.0 to 2.0 milligrams (mg) per day. These same agencies also recognize ill effects from intakes that are too high, and so set safe upper limits, ranging from as low as 25 mg/day to as high as 100 mg/day depending on the country. Beef, pork, fowl and fish are generally good sources; dairy, eggs, mollusks and crustaceans also contain vitamin B6, but at lower levels. There is enough in a wide variety of plant foods so that a vegetarian or vegan diet does not put consumers at risk for deficiency.[7] Dietary deficiency is rare. Classic clinical symptoms include rash and inflammation around the mouth and eyes, plus neurological effects that include drowsiness and peripheral neuropathy affecting sensory and motor nerves in the hands and feet. In addition to dietary shortfall, deficiency can be the result of anti-vitamin drugs. There are also rare genetic defects that can trigger vitamin B6 deficiency-dependent epileptic seizures in infants. These are responsive to pyridoxal 5'-phosphate therapy.[8] 4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

Diethyltoluamide

N,N-Diethyl-2,5-dimethylbenzamide

C12H17NO (191.131)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents CONFIDENCE standard compound; EAWAG_UCHEM_ID 213 CONFIDENCE standard compound; INTERNAL_ID 3353 CONFIDENCE standard compound; INTERNAL_ID 4176 CONFIDENCE standard compound; INTERNAL_ID 8223 CONFIDENCE standard compound; INTERNAL_ID 8797 D020011 - Protective Agents D016573 - Agrochemicals Same as: D02379

   

Deoxyuridine

1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H12N2O5 (228.0746)


Deoxyuridine, also known as dU, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. It is similar in chemical structure to uridine, but without the 2-hydroxyl group. Deoxyuridine exists in all living organisms, ranging from bacteria to humans. Within humans, deoxyuridine participates in a number of enzymatic reactions. In particular, deoxyuridine can be biosynthesized from deoxycytidine through its interaction with the enzyme cytidine deaminase. In addition, deoxyuridine can be converted into uracil and deoxyribose 1-phosphate through its interaction with the enzyme thymidine phosphorylase. Deoxyuridine is considered to be an antimetabolite that is converted into deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies. In humans, deoxyuridine is involved in the metabolic disorder called UMP synthase deficiency (orotic aciduria). Outside of the human body, deoxyuridine has been detected, but not quantified in, several different foods, such as lichee, highbush blueberries, agaves, macadamia nut (M. tetraphylla), and red bell peppers. This could make deoxyuridine a potential biomarker for the consumption of these foods. 2-Deoxyuridine is a naturally occurring nucleoside. It is similar in chemical structure to uridine, but without the 2-hydroxyl group. It is considered to be an antimetabolite that is converted to deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies. [HMDB]. Deoxyuridine is found in many foods, some of which are garden tomato (variety), hickory nut, banana, and hazelnut. Deoxyuridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=951-78-0 (retrieved 2024-07-01) (CAS RN: 951-78-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.

   

3-Hydroxyisovaleric acid

beta-Hydroxy-beta-methylbutyric acid

C5H10O3 (118.063)


3-Hydroxyisovaleric acid is a normal human metabolite excreted in the urine. It is a byproduct of the leucine degradation pathway. Production of 3-hydroxyisovaleric acid begins with the conversion of 3-methylcrotonyl-CoA into 3-methylglutaconyl-CoA in the mitochondria by the biotin-dependent enzyme methylcrotonyl-CoA carboxylase. Biotin deficiencies, certain lifestyle habits (smoking), or specific genetic conditions can reduce methylcrotonyl-CoA carboxylase activity. This reduction can lead to a buildup of 3-methylcrotonyl-CoA, which is converted into 3-hydroxyisovaleryl-CoA by the enzyme enoyl-CoA hydratase. Increased concentrations of 3-methylcrotonyl-CoA and 3-hydroxyisovaleryl-CoA can lead to a disruption of the esterified CoA:free CoA ratio, and ultimately to mitochondrial toxicity. Detoxification of these metabolic end products occur via the transfer of the 3-hydroxyisovaleryl moiety to carnitine forming 3-hydroxyisovaleric acid-carnitine or 3HIA-carnitine, which is then transferred across the inner mitochondrial membrane where 3-hydroxyisovaleric acid is released as the free acid (PMID: 21918059). 3-Hydroxyisovaleric acid has been found to be elevated in smokers and in subjects undergoing long-term anticonvulsant therapy with carbamazepine and/or phenytoin. These levels are elevated due to impairment of renal reclamation of biotin. Levels may also be increased from prolonged consumption of raw egg-whites (PMID: 16895887, 9523856, 15447901, 9176832) (OMIM: 210210, 253270, 600529, 253260, 246450, 210200, 238331). When present in sufficiently high levels, 3-hydroxyisovaleric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of 3-hydroxyisovaleric acid are associated with at least a dozen inborn errors of metabolism, including 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, 3-methylglutaconic aciduria type I, biotinidase deficiency and isovaleric aciduria, dihydrolipoamide dehydrogenase deficiency, 3-methylcrotonyl-CoA carboxylase 1 deficiency, 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, late-onset multiple carboxylase deficiency, holocarboxylase synthetase deficiency, and 3-methylcrotonyl-CoA carboxylase 2 deficiency. 3-Hydroxyisovaleric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. 3-Hydroxyisovaleric acid is a normal human metabolite excreted in the urine. Elevated levels of this compound are found in several inherited disorders such as Dihydrolipoamide dehydrogenase Deficiency, 3-Methylcrotonyl-CoA carboxylase 1 deficiency, 3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (3-hydroxy-3-methylglutaryl -CoA lyase Deficiency, Biotinidase deficiency multiple carboxylase deficiency late-onset , Late onset multiple carboxylase deficiency, HolMcarboxylase synthetase deficiency, 3-Methylcrotonyl-CoA carboxylase 2 deficiency. 3-Hydroxyisovaleric acid is also elevated in smokers, in subjects undergoing long-term anticonvulsant therapy with carbamazepine and/or phenytoin. These levels are elevated due to impairment of renal reclamation of biotin. Levels may also be increased from prolonged consumption of raw egg-whites (PMID: 16895887, 9523856, 15447901, 9176832)(OMIM: 210210, 253270, 600529, 253260, 246450, 210200, 238331) [HMDB] 3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2]. 3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2].

   

1-Methylhistidine

(2S)-2-Amino-3-(1-methyl-1H-imidazol-4-yl)propanoic acid

C7H11N3O2 (169.0851)


1-Methylhistidine, also known as 1-MHis or 1MH, belongs to the class of organic compounds known as histidine and derivatives. 1MH is also classified as a methylamino acid. Methylamino acids are primarily proteogenic amino acids (found in proteins) which have been methylated (in situ) on their side chains by various methyltransferase enzymes. Histidine can be methylated at either the N1 or N3 position of its imidazole ring, yielding the isomers 1-methylhistidine (1MH; also referred to as pi-methylhistidine) or 3-methylhistidine (3MH; tau-methylhistidine), respectively. There is considerable confusion with regard to the nomenclature of the methylated nitrogen atoms on the imidazole ring of histidine and other histidine-containing peptides such as anserine. In particular, older literature (mostly prior to the year 2000) designated anserine (Npi methylated) as beta-alanyl-N1-methyl-histidine, whereas according to standard IUPAC nomenclature, anserine is correctly named as beta-alanyl-N3-methyl-histidine. As a result, many papers published prior to the year 2000 incorrectly identified 1MH as a specific marker for dietary consumption or various pathophysiological effects when they really were referring to 3MH (PMID: 24137022). Recent discoveries have shown that 1MH is produced in essentially all mammals (and other vertebrates) via the enzyme known as METTL9 (PMID: 33563959). METTL9 is a broad-specificity methyltransferase that mediates the formation of the majority of 1MH present in mammalian proteomes. METTL9-catalyzed methylation requires a His-x-His (HxH) motif, where "x" is a small amino acid. This HxH motif is found in a number of abundant mammalian proteins such as ARMC6, S100A9, and NDUFB3 (PMID: 33563959). Because of its abundance in many muscle-related proteins, 1MH has been found to be a good biomarker for the consumption of meat (PMID: 21527577). Dietary studies have shown that poultry consumption (p-trend = 0.0006) and chicken consumption (p-trend = 0.0003) are associated with increased levels of 1MH in human plasma (PMID: 30018457). The consumption of fish, especially salmon and cod, has also been shown to increase the levels of 1MH in serum and urine (PMID: 31401679). As a general rule, urinary 1MH is associated with white meat intake (p< 0.001), whereas urinary 3MH is associated with red meat intake (p< 0.001) (PMID: 34091671). 1-Methyl-L-histidine is an objective indicator of meat ingestion and exogenous 3-methylhistidine (3MH) intake. 1-Methyl-L-histidine is an objective indicator of meat ingestion and exogenous 3-methylhistidine (3MH) intake. 3-Methyl-L-histidine is a biomarker for meat consumption, especially chicken. It is also a biomarker for the consumption of soy products.

   

5-Methyltetrahydrofolic acid

(2R)-2-[(4-{[(2-amino-5-methyl-4-oxo-3,4,5,6,7,8-hexahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C20H25N7O6 (459.1866)


5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin known as folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169). 5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169) [HMDB] 5-Methyltetrahydrofolic acid (5-Methyl THF) is a biologically active form of folic acid. 5-Methyltetrahydrofolic acid is a methylated derivate of tetrahydrofolate. 5-Methyltetrahydrofolic acid is the predominant natural dietary folate and the principal form of folate in plasma and cerebrospinal fluid[1]. Levomefolic acid (5-MTHF) is an orally active, brain-penetrant natural active form of folic acid and is one of the most widely used folic acid food supplements[1][2].

   

L-Kynurenine

(AlphaS)-alpha,2-diamino-3-hydroxy-gamma-oxo-benzenebutanoic acid

C10H12N2O3 (208.0848)


Kynurenine is a metabolite of the amino acid tryptophan used in the production of niacin. L-Kynurenine is a central compound of the tryptophan metabolism pathway since it can change into the neuroprotective agent kynurenic acid or to the neurotoxic agent quinolinic acid. The break-up of these endogenous compounds balance can be observable in many disorders such as stroke, epilepsy, multiple sclerosis, and amyotrophic lateral sclerosis. It can also occur in neurodegenerative disorders such as Parkinsons disease, Huntingtons, and Alzheimers disease; and in mental disorders such as schizophrenia and depression. Kynurenine is a metabolite of the amino acid tryptophan used in the production of niacin. [Raw Data] CBA10_Kynurenine_pos_10eV_1-2_01_666.txt [Raw Data] CBA10_Kynurenine_pos_30eV_1-2_01_668.txt [Raw Data] CBA10_Kynurenine_pos_40eV_1-2_01_669.txt [Raw Data] CBA10_Kynurenine_pos_20eV_1-2_01_667.txt [Raw Data] CBA10_Kynurenine_pos_50eV_1-2_01_670.txt L-Kynurenine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2922-83-0 (retrieved 2024-07-01) (CAS RN: 2922-83-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite. L-Kynurenine is a metabolite of the amino acid L-tryptophan. L-Kynurenine is an aryl hydrocarbon receptor agonist.

   

Muramic acid

(2R)-2-{[(2R,3R,4S,5S,6R)-3-amino-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}propanoic acid

C9H17NO7 (251.1005)


Muramic acid is an amino sugar acid. In terms of chemical composition, it is the ether of lactic acid and glucosamine. It occurs naturally as N-acetylmuramic acid in peptidoglycan, whose primary function is a structural component of many typical bacterial cell walls. Muramic acid, also known as muramate or murexide, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. Muramic acid is an amino sugar acid. It occurs naturally as N-acetylmuramic acid in peptidoglycan, whose primary function is a structural component of many typical bacterial cell walls. In terms of chemical composition, it is the ether of lactic acid and glucosamine. Muramic acid is a marker of bacterial peptidoglycan, in environmental and clinical specimens. (PMID: 10778926) [HMDB] Muramic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1114-41-6 (retrieved 2024-07-01) (CAS RN: 1114-41-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Methyl parathion

Phosphorothioic acid, O,O-dimethyl O-(4-nitrophenyl) ester

C8H10NO5PS (263.0017)


Methyl parathion is an insecticide that does not occur naturally in the environment. Pure methyl parathion exists as white crystals. Impure methyl parathion is a brownish liquid that smells like rotten eggs.Methyl parathion is used to kill insects on farm crops, especially cotton. The EPA now restricts how methyl parathion can be used and applied; only trained people are allowed to spray it. Methyl parathion can no longer be used on food crops commonly consumed by children. Methyl parathion is a white crystalline solid which is often dissolved in a liquid solvent carrier. The commercial product is a tan liquid (xylene solution) with a pungent odor. It is slightly soluble to insoluble in water. Usually with the liquid solvent it is a combustible liquid. It is toxic by inhalation, ingestion and skin absorption. It is used as an insecticide. Parathion-methyl is a C-nitro compound that is 4-nitrophenol substituted by a (dimethoxyphosphorothioyl)oxy group at position 4. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an acaricide, an agrochemical, a genotoxin, an environmental contaminant and an antifungal agent. It is an organic thiophosphate, an organothiophosphate insecticide and a C-nitro compound. It is functionally related to a 4-nitrophenol.

   

Bupropion

(+-)-1-(3-Chlorophenyl)-2-((1,1-dimethylethyl)amino)-1-propanone

C13H18ClNO (239.1077)


Bupropion is a selective catecholamine (norepinephrine and dopamine) reuptake inhibitor. It has only a small effect on serotonin reuptake. It does not inhibit MAO. The antidepressant effect of bupropion is considered to be mediated by its dopaminergic and noradrenergic action. Bupropion has also been shown to act as a competitive alpha-3-beta-4- nicotinic antagonist, the alpha-3-beta-4-antagonism has been shown to interrupt addiction in studies of other drugs such as ibogaine. This alpha-3-beta-4-antagonism correlates quite well with the observed effect of interrupting addiction. A unicyclic, aminoketone antidepressant. The mechanism of its therapeutic actions is not well understood, but it does appear to block dopamine uptake. The hydrochloride is available as an aid to smoking cessation treatment; Bupropion is a selective catecholamine (norepinephrine and dopamine) reuptake inhibitor. It has only a small effect on serotonin reuptake. It does not inhibit MAO. The antidepressant effect of bupropion is considered to be mediated by its dopaminergic and noradrenergic action. Bupropion has also been shown to act as a competitive alpha-3-beta-4-nicotinic antagonist, the alpha-3-beta-4-antagonism has been shown to interrupt addiction in studies of other drugs such as ibogaine. This alpha-3-beta-4-antagonism correlates quite well with the observed effect of interrupting addiction. Bupropion (amfebutamone) (brand names Wellbutrin and Zyban) is an antidepressant of the aminoketone class, chemically unrelated to tricyclics or selective serotonin reuptake inhibitors (SSRIs). It is similar in structure to the stimulant cathinone, and to phenethylamines in general. It is a chemical derivative of diethylpropion, an amphetamine-like substance used as an anorectic. Bupropion is both a dopamine reuptake inhibitor and a norepinephrine reuptake inhibitor. It is often used as a smoking cessation aid. CONFIDENCE standard compound; INTERNAL_ID 1321; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7029; ORIGINAL_PRECURSOR_SCAN_NO 7027 CONFIDENCE standard compound; INTERNAL_ID 1321; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7025; ORIGINAL_PRECURSOR_SCAN_NO 7023 CONFIDENCE standard compound; INTERNAL_ID 1321; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7006; ORIGINAL_PRECURSOR_SCAN_NO 7004 CONFIDENCE standard compound; INTERNAL_ID 1321; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7034; ORIGINAL_PRECURSOR_SCAN_NO 7030 CONFIDENCE standard compound; INTERNAL_ID 1321; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6997; ORIGINAL_PRECURSOR_SCAN_NO 6995 CONFIDENCE standard compound; INTERNAL_ID 1321; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7027; ORIGINAL_PRECURSOR_SCAN_NO 7025 D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE standard compound; INTERNAL_ID 2703 CONFIDENCE standard compound; INTERNAL_ID 8596 D049990 - Membrane Transport Modulators D000077444 - Smoking Cessation Agents

   

cathinone

2-Aminopropiophenone

C9H11NO (149.0841)


D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant The S stereoisomer of 2-aminopropiophenone.

   

Chlorpheniramine

gamma-(4-Chlorophenyl)-gamma-(2-pyridyl)propyldimethylamine

C16H19ClN2 (274.1237)


Chlorpheniramine is a histamine H1 antagonist used in allergic reactions, hay fever, rhinitis, urticaria, and asthma. It has also been used in veterinary applications. One of the most widely used of the classical antihistaminics, it generally causes less drowsiness and sedation than Promethazine. -- Pubchem; Chlorphenamine or chlorpheniramine, commonly marketed as its salt chlorphenamine maleate (Chlor- Trimeton, Piriton, Chlor- Tripolon), is a first generation antihistamine used in the prevention of the symptoms of allergic conditions such as rhinitis and urticaria.- wikipedia. A histamine H1 antagonist used in allergic reactions, hay fever, rhinitis, urticaria, and asthma. It has also been used in veterinary applications. One of the most widely used of the classical antihistaminics, it generally causes less drowsiness and sedation than Promethazine. -- Pubchem; Chlorphenamine or chlorpheniramine, commonly marketed as its salt chlorphenamine maleate (Chlor- Trimeton, Piriton, Chlor- Tripolon), is a first generation antihistamine used in the prevention of the symptoms of allergic conditions such as rhinitis and urticaria.- wikipedia [HMDB] R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents

   

Citalopram

1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydro-2-benzofuran-5-carbonitrile

C20H21FN2O (324.1638)


Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety; Citalopram belongs to a class of drugs known as selective serotonin reuptake inhibitors (SSRIs). It is sold under the brand-names Celexa (U.S., Forest Laboratories, Inc.), Cipramil, Seropram (Europe and Australia) and Ciazil (Australia); A furancarbonitrile that is one of the serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety. Citalopram belongs to a class of drugs known as selective serotonin reuptake inhibitors (SSRIs). Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety; Citalopram belongs to a class of drugs known as selective serotonin reuptake inhibitors (SSRIs). It is sold under the brand-names Celexa (U.S., Forest Laboratories, Inc.), Cipramil, Seropram (Europe and Australia) and Ciazil (Australia); A furancarbonitrile that is one of the serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators

   

Ketamine

2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one

C13H16ClNO (237.092)


Ketamine is only found in individuals that have used or taken this drug. It is a cyclohexanone derivative used for induction of anesthesia. Its mechanism of action is not well understood, but ketamine can block NMDA receptors (receptors, N-methyl-D-aspartate) and may interact with sigma receptors. [PubChem]Ketamine has several clinically useful properties, including analgesia and less cardiorespiratory depressant effects than other anaesthetic agents, it also causes some stimulation of the cardiocascular system. Ketamine has been reported to produce general as well as local anaesthesia. It interacts with N-methyl-D-aspartate (NMDA) receptors, opioid receptors, monoaminergic receptors, muscarinic receptors and voltage sensitive Ca ion channels. Unlike other general anaesthetic agents, ketamine does not interact with GABA receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2826 KEIO_ID K005; [MS2] KO009114 KEIO_ID K005 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Levamisole

(-)-6-Phenyl-2,3,5,6-tetrahydroimidazo[2,1-b][1,3]thiazole

C11H12N2S (204.0721)


An antihelminthic drug that has been tried experimentally in rheumatic disorders where it apparently restores the immune response by increasing macrophage chemotaxis and T-lymphocyte function. Paradoxically, this immune enhancement appears to be beneficial in rheumatoid arthritis where dermatitis, leukopenia, and thrombocytopenia, and nausea and vomiting have been reported as side effects. (From Smith and Reynard, Textbook of Pharmacology, 1991, p435-6) P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CE - Imidazothiazole derivatives C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant > C2141 - Chemo Immunostimulant Adjuvant D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; EAWAG_UCHEM_ID 2857 CONFIDENCE standard compound; INTERNAL_ID 1172 D018501 - Antirheumatic Agents D007155 - Immunologic Factors C2140 - Adjuvant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Levamisole ((-)-Levamisole), an anthelmintic agent with immunomodulatory properties. Levamisole acts as a positive allosteric modulator (PAM) for the α3β2 (EC50=300 μM) and α3β4 (EC50=100 μM) subtype of nAChRs. Orally active[1][2].

   

Sotalol

N-(4-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}phenyl)methanesulfonamide

C12H20N2O3S (272.1195)


Sotalol is only found in individuals that have used or taken this drug. It is an adrenergic beta-antagonist that is used in the treatment of life-threatening arrhythmias (PubChem). Sotalol has both beta-adrenoreceptor blocking (Vaughan Williams Class I) and cardiac action potential duration prolongation (Vaughan Williams Class I) antiarrhythmic properties. Sotalol is a racemic mixture of d- and l-sotalol. Both isomers have similar Class I antiarrhythmic effects, while the l-isomer is responsible for virtually all of the beta-blocking activity. Sotalol inhibits response to adrenergic stimuli by competitively blocking β1-adrenergic receptors within the myocardium and β2-adrenergic receptors within bronchial and vascular smooth muscle. The electrophysiologic effects of sotalol may be due to its selective inhibition of the rapidly activating component of the potassium channel involved in the repolarization of cardiac cells. The class II electrophysiologic effects are caused by an increase in sinus cycle length (slowed heart rate), decreased AV nodal conduction, and increased AV nodal refractoriness, while the class III electrophysiological effects include prolongation of the atrial and ventricular monophasic action potentials, and effective refractory period prolongation of atrial muscle, ventricular muscle, and atrio-ventricular accessory pathways (where present) in both the anterograde and retrograde directions.

   

Venlafaxine

Cyclohexanol, 1-(2-(dimethylamino)-1-(4-methoxyphenyl)ethyl)-, hydrochloride

C17H27NO2 (277.2042)


Venlafaxine (brand name: Effexor or Efexor) is a bicyclic antidepressant and is usually categorized as a serotonin-norepinephrine reuptake inhibitor (SNRI), but it has been referred to as a serotonin-norepinephrine-dopamine reuptake inhibitor. It works by blocking the transporter reuptake proteins for key neurotransmitters affecting mood, thereby leaving more active neurotransmitter in the synapse. The neurotransmitters affected are serotonin (5-hydroxytryptamine) and norepinephrine (noradrenaline). Additionally, in high doses, it weakly inhibits the reuptake of dopamine. A comparison of adverse event rates in a fixed-dose study comparing venlafaxine 75, 225, and 375 mg/day with placebo revealed a dose dependency for some of the more common adverse events associated with venlafaxine use. The rule for including events was to enumerate those that occurred at an incidence of 5\\% or more for at least one of the venlafaxine groups and for which the incidence was at least twice the placebo incidence for at least one venlafaxine group. Tests for potential dose relationships for these events (Cochran-Armitage Test, with a criterion of exact 2-sided p-value <= 0.05) suggested a dose-dependency for several adverse events in this list, including chills, hypertension, anorexia, nausea, agitation, dizziness, somnolence, tremor, yawning, sweating, and abnormal ejaculation (Wyeth Monograph). Venlafaxine is an effective anti-depressant for many persons; however, it seems to be especially effective for those with treatment-resistant depression. Patients suffering from severe long-term depression typically respond better to venlafaxine than other drugs. However, venlafaxine has been reported to be more difficult to discontinue than other antidepressants. In addition, a September 2004 Consumer Reports study ranked venlafaxine as the most effective among six commonly prescribed antidepressants. However, this should not be considered a definitive finding, since responses to psychiatric medications can vary significantly from individual to individual. A black box warning has been issued with venlafaxine and with other SSRI and SNRI anti-depressants advising of risk of suicide. There is an additional risk if a physician misinterprets patient expression of adverse effects such as panic or akathisia. Careful assessment of patient history and comorbid risk factors such as drug abuse are essential in evaluating the safety of venlafaxine for individual patients. Another risk is serotonin syndrome. This is a serious effect that can be caused by interactions with other drugs and is potentially fatal. This risk necessitates clear information to patients and proper medical history. Venlafaxine is used primarily for the treatment of depression, generalized anxiety disorder, obsessive-compulsive disorder, social anxiety disorder, and panic disorder in adults. It is also used for other general depressive disorders. Although it is not approved for use in children or adolescents, there is considerable information by Wyeth on cautions if prescribed to this age group. Venlafaxine hydrochloride is a prescription antidepressant first introduced by Wyeth in 1993. As of August 2006, generic venlafaxine is available in the United States. CONFIDENCE standard compound; INTERNAL_ID 417; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7277; ORIGINAL_PRECURSOR_SCAN_NO 7275 CONFIDENCE standard compound; INTERNAL_ID 417; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7245; ORIGINAL_PRECURSOR_SCAN_NO 7242 CONFIDENCE standard compound; INTERNAL_ID 417; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7253; ORIGINAL_PRECURSOR_SCAN_NO 7251 CONFIDENCE standard compound; INTERNAL_ID 417; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7306; ORIGINAL_PRECURSOR_SCAN_NO 7304 CONFIDENCE standard compound; INTERNAL_ID 417; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7276; ORIGINAL_PRECURSOR_SCAN_NO 7274 CONFIDENCE standard compound; INTERNAL_ID 417; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7292; ORIGINAL_PRECURSOR_SCAN_NO 7289 D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D000068760 - Serotonin and Noradrenaline Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1900 C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants CONFIDENCE standard compound; INTERNAL_ID 8322 CONFIDENCE standard compound; INTERNAL_ID 1502 D049990 - Membrane Transport Modulators

   

Diaminopimelic acid

( (R*,s*)-2,6-diamino-heptanedioic acid

C7H14N2O4 (190.0954)


Diaminopimelic acid or DAPA is a lysine-like amino acid derivative that is a key component of the bacterial cell wall. DAPA is incorporated or integrated into peptidoglycan of gram negative bacteria and is the attachment point for Brauns lipoprotein (BLP or Murein Lipoprotein). BLP is found in gram-negative cell walls and is one of the most abundant membrane proteins. BLP is bound at its C-terminal end (a lysine) by a covalent bond to the peptidoglycan layer (specifically to diaminopimelic acid molecules) and is embedded in the outer membrane by its hydrophobic head (a cysteine with lipids attached). BLP tightly links the two layers and provides structural integrity to the bacterial outer membrane. Diaminopimelic acid can be found in human urine or feces due to the lysis or enzymatic breakdown of gram negative gut microbes. Acquisition and generation of the data is financially supported in part by CREST/JST. 2,6-Diaminoheptanedioic acid is an endogenous metabolite.

   

Isopentenyl pyrophosphate

({hydroxy[(3-methylbut-3-en-1-yl)oxy]phosphoryl}oxy)phosphonic acid

C5H12O7P2 (246.0058)


Isopentenyl pyrophosphate, also known as delta3-isopentenyl diphosphate or ipp, is a member of the class of compounds known as isoprenoid phosphates. Isoprenoid phosphates are prenol lipids containing a phosphate group linked to an isoprene (2-methylbuta-1,3-diene) unit. Thus, isopentenyl pyrophosphate is considered to be an isoprenoid lipid molecule. Isopentenyl pyrophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Isopentenyl pyrophosphate can be found in a number of food items such as american butterfish, conch, tea leaf willow, and butternut, which makes isopentenyl pyrophosphate a potential biomarker for the consumption of these food products. Isopentenyl pyrophosphate can be found primarily in human spleen tissue. Isopentenyl pyrophosphate exists in all living species, ranging from bacteria to humans. In humans, isopentenyl pyrophosphate is involved in several metabolic pathways, some of which include ibandronate action pathway, lovastatin action pathway, fluvastatin action pathway, and pravastatin action pathway. Isopentenyl pyrophosphate is also involved in several metabolic disorders, some of which include hypercholesterolemia, hyper-igd syndrome, lysosomal acid lipase deficiency (wolman disease), and wolman disease. Isopentenyl pyrophosphate (IPP, isopentenyl diphosphate, or IDP) is an isoprenoid precursor. IPP is an intermediate in the classical, HMG-CoA reductase pathway (commonly called the mevalonate pathway) and in the non-mevalonate MEP pathway of isoprenoid precursor biosynthesis. Isoprenoid precursors such as IPP, and its isomer DMAPP, are used by organisms in the biosynthesis of terpenes and terpenoids . Isopentenyl pyrophosphate, IPP or isopentenyl diphosphate, is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. IPP is formed from Mevalonate-5-pyrophosphate, in a reaction catalyzed by the enzyme mevalonate-5-pyrophosphate decarboxylase. (wikipedia).

   

Mevalonic acid

beta,delta-Dihydroxy-beta-methylvaleric acid

C6H12O4 (148.0736)


Mevalonic acid, also known as MVA, mevalonate, or hiochic acid, belongs to the class of organic compounds known as hydroxy fatty acids. These are fatty acids in which the chain bears a hydroxyl group. Mevalonic acid is a key organic compound in biochemistry. It is found in most higher organisms ranging from plants to animals. Mevalonic acid is a precursor in the biosynthetic pathway known as the mevalonate pathway that produces terpenes (in plants) and steroids (in animals). Mevalonic acid is the primary precursor of isopentenyl pyrophosphate (IPP), that is in turn the basis for all terpenoids. The production of mevalonic acid by the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, is the rate-limiting step in the biosynthesis of cholesterol (PMID: 12872277). The cholesterol biosynthetic pathway has three major steps: (1) acetate to mevalonate, (2) mevalonate to squalene, and (3) squalene to cholesterol. In the first step, which catalyzed by thiolase, two acetyl-CoA molecules form acetoacetyl-CoA and one CoA molecule is released, then the acetoacetyl-CoA reacts with another molecule of acetyl-CoA and generates 3-hydroxy-3-methylglutaryl-CoA (HMGCoA). The enzyme responsible for this reaction is 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase): In the pathway to synthesize cholesterol, one of the HMG-CoA carboxyl groups undergoes reduction to an alcohol, releasing CoA, leading to the formation of mevalonate, a six carbon compound. This reaction is catalyzed by hydroxy-methylglutaryl-CoA reductase, In the second step (mevalonate to squalene) mevalonate receives a phosphoryl group from ATP to form 5-phosphomevalonate. This compound accepts another phosphate to generate mevalonate-5-pyrophosphate. After a third phosphorylation, the compound is decarboxylated, loses water, and generates isopentenyl pyrophosphate (IPP). Then through successive condensations, IPP forms squalene, a terpene hydrocarbon that contains 30 carbon atoms. By cyclization and other changes, this compound will finally result in cholesterol. Mevalonic acid is found, on average, in the highest concentration within a few different foods, such as apples, corns, and wild carrots and in a lower concentration in garden tomato (var.), pepper (C. frutescens), and cucumbers. Mevalonic acid has also been detected, but not quantified in, several different foods, such as sweet oranges, potato, milk (cow), cabbages, and white cabbages. This could make mevalonic acid a potential biomarker for the consumption of these foods. Plasma concentrations and urinary excretion of MVA are decreased by HMG-CoA reductase inhibitor drugs such as pravastatin, simvastatin, and atorvastatin (PMID: 8808497). Mevalonic acid (MVA) is a key organic compound in biochemistry. The anion of mevalonic acid, the predominant form in biological media, is known as mevalonate. This compound is of major pharmaceutical importance. Drugs, such as the statins, stop the production of mevalonate by inhibiting HMG-CoA reductase. [Wikipedia]. Mevalonic acid is found in many foods, some of which are pepper (c. frutescens), cabbage, wild carrot, and white cabbage.

   

N-acetylaspartate (NAA)

N-Acetylaspartate, monopotassium salt

C6H9NO5 (175.0481)


N-Acetyl-L-Aspartic acid (NAA) or N-Acetylaspartic acid, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-alpha-Acetyl-L-aspartic acid can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyl-L-aspartic acid is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-aspartic acid. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylaspartate can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free aspartic acid can also occur. In particular, N-Acetyl-L-aspartic acid can be synthesized in neurons from the amino acid aspartate and acetyl coenzyme A (acetyl CoA). Specifically, the enzyme known as aspartate N-acetyltransferase (EC 2.3.1.17) catalyzes the transfer of the acetyl group of acetyl CoA to the amino group of aspartate. N-Acetyl-L-aspartic acid is the second most concentrated molecule in the brain after the amino acid glutamate. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include (1) acting as a neuronal osmolyte that is involved in fluid balance in the brain, (2) serving as a source of acetate for lipid and myelin synthesis in oligodendrocytes (the glial cells that myelinate neuronal axons), (3) serving as a precursor for the synthesis of the important dipeptide neurotransmitter N-acetylaspartylglutamate (NAAG), and (4) playing a potential role in energy production from the amino acid glutamate in neuronal mitochondria. High neurotransmitter (i.e. N-acetylaspartic acid) levels can lead to abnormal neural signaling, delayed or arrested intellectual development, and difficulties with general motor skills. When present in sufficiently high levels, N-acetylaspartic acid can be a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of N-acetylaspartic acid are associated with Canavan disease. Because N-acetylaspartic acid functions as an organic acid and high levels of organic acids can lead to a condition known... N-Acetylaspartic acid is a derivative of aspartic acid. It is the second most concentrated molecule in the brain after the amino acid glutamate. It is synthesized in neurons from the amino acid aspartate and acetyl coenzyme A. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include: Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID A142 N-Acetyl-L-aspartic acid is a derivative of aspartic acid.

   

Phenylpyruvate

2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto)

C9H8O3 (164.0473)


Phenylpyruvic acid is a keto-acid that is an intermediate or catabolic byproduct of phenylalanine metabolism. It has a slight honey-like odor. Levels of phenylpyruvate are normally very low in blood or urine. High levels of phenylpyruvic acid can be found in the urine of individuals with phenylketonuria (PKU), an inborn error of metabolism. PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid. In particular, excessive phenylalanine can be metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. Phenylpyruvic acid is also a microbial metabolite, it can be produced by Lactobacillus plantarum (PMID: 9687465). Flavouring ingredient Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1]. Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1].

   

Farnesyl pyrophosphate

{[hydroxy({[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy})phosphoryl]oxy}phosphonic acid

C15H28O7P2 (382.131)


Farnesyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. -- Wikipedia [HMDB]. Farnesyl pyrophosphate is found in many foods, some of which are kumquat, macadamia nut, sweet bay, and agave. Farnesyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. -- Wikipedia.

   

Mannitol 1-phosphate

{[(2R,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl]oxy}phosphonic acid

C6H15O9P (262.0454)


Mannitol-1-phosphate is a sugar alcohol. Mannitol-1-phosphate dehydrogenase, (EC 1.1.1.17) reduces fructose 6-phosphate into mannitol 1-phosphate, in the mannitol cycle of organisms such as Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals. Mannitol-1-phosphate is also produced in many organisms that have a range of biological interactions with humans: parasitic, mutualism, or commensalism (Examples. A. niger; A. parasiticus; B. subtilis; C. difficile; E. faecalis; E. coli; K. pneumoniae; L. salivarius; M. hyopneumoniae; M. mycoides; M. pneumoniae; P. multocida; S. typhi; S. typhimurium; S. aureus; S. pneumoniae; V. cholerae; V. parahaemolyticus; Y. pestis). [HMDB] Mannitol 1-phosphate is a sugar alcohol. Mannitol 1-phosphate dehydrogenase (EC 1.1.1.17) reduces fructose 6-phosphate into mannitol 1-phosphate in the gastrointestinal tract of mammals and the mannitol cycle of organisms such as Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products. Mannitol 1-phosphate is also produced in many organisms that have a range of biological interactions with humans (e.g. A. niger, A. parasiticus, B. subtilis, C. difficile, E. faecalis, E. coli, K. pneumoniae, L. salivarius, M. hyopneumoniae, M. mycoides, M. pneumoniae, P. multocida, S. typhi, S. typhimurium, S. aureus, S. pneumoniae, V. cholerae, V. parahaemolyticus, Y. pestis). KEIO_ID M011

   

3-Hydroxyl kyneurenine

2-Amino-4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid

C10H12N2O4 (224.0797)


Hydroxykynurenine is a free radical generator and a bioprecursor quinolinic acid which is a endogenous excitotoxin (PMID 16697652). It is a product of enzyme kynurenine 3-monooxygenase in the tryptophan catabolism pathway (Reactome http://www.reactome.org). [HMDB] Hydroxykynurenine is a free radical generator and a bioprecursor quinolinic acid which is a endogenous excitotoxin (PMID 16697652). It is a product of enzyme kynurenine 3-monooxygenase in the tryptophan catabolism pathway (Reactome http://www.reactome.org). Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA12_3-OH-kynurenine_pos_20eV_1-4_01_802.txt [Raw Data] CBA12_3-OH-kynurenine_pos_10eV_1-4_01_801.txt [Raw Data] CBA12_3-OH-kynurenine_pos_50eV_1-4_01_805.txt [Raw Data] CBA12_3-OH-kynurenine_pos_40eV_1-4_01_804.txt [Raw Data] CBA12_3-OH-kynurenine_pos_30eV_1-4_01_803.txt C26170 - Protective Agent > C275 - Antioxidant KEIO_ID H050; [MS3] KO009001 KEIO_ID H050; [MS2] KO009000 KEIO_ID H050

   

Oxyphenbutazone

3,5-Dioxo-1-phenyl-2-(p-hydroxyphenyl)-4-N-butylpyrazolidene

C19H20N2O3 (324.1474)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AA - Butylpyrazolidines S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Oxyphenbutazone is a Phenylbutazone (HY-B0230) metabolite, with anti-inflammatory effect. Oxyphenbutazone is an orally active non-selective COX inhibitor. Oxyphenbutazone selectively kills non-replicating Mycobaterium tuberculosis[1][2].

   

Dimethylbenzimidazole

5,6-Dimethylbenzimidazole hydrochloride

C9H10N2 (146.0844)


Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. Dimethylbenzimidazole is the second to last step for the synthesis of alpha-Ribazole. It is converted from Riboflavin then it is converted to N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via the enzyme nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase (EC 2.4.2.21). Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. KEIO_ID D087 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   

Chlorhexidine

N-(4-chlorophenyl)-1-3-(6-{N-[3-(4-chlorophenyl)carbamimidamidomethanimidoyl]amino}hexyl)carbamimidamidomethanimidamide

C22H30Cl2N10 (504.2032)


Chlorhexidine is only found in individuals that have used or taken this drug. It is a disinfectant and topical anti-infective agent used also as mouthwash to prevent oral plaque. [PubChem]Chlorhexidines antimicrobial effects are associated with the attractions between chlorhexidine (cation) and negatively charged bacterial cells. After chlorhexidine is absorpted onto the organisms cell wall, it disrupts the integrity of the cell membrane and causes the leakage of intracellular components of the organisms. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AC - Biguanides and amidines D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides D003358 - Cosmetics > D009067 - Mouthwashes D001697 - Biomedical and Dental Materials D000890 - Anti-Infective Agents D004202 - Disinfectants

   

Albendazole

(5-(Propylthio)-1H-benzimidazol-2-yl)carbamic acid methyl ester

C12H15N3O2S (265.0885)


Albendazole is only found in individuals that have used or taken this drug. It is a benzimidazole broad-spectrum anthelmintic structurally related to mebendazole that is effective against many diseases. (From Martindale, The Extra Pharmacopoeia, 30th ed, p38)Albendazole causes degenerative alterations in the tegument and intestinal cells of the worm by binding to the colchicine-sensitive site of tubulin, thus inhibiting its polymerization or assembly into microtubules. The loss of the cytoplasmic microtubules leads to impaired uptake of glucose by the larval and adult stages of the susceptible parasites, and depletes their glycogen stores. Degenerative changes in the endoplasmic reticulum, the mitochondria of the germinal layer, and the subsequent release of lysosomes result in decreased production of adenosine triphosphate (ATP), which is the energy required for the survival of the helminth. Due to diminished energy production, the parasite is immobilized and eventually dies. P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CA - Benzimidazole derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3580 KEIO_ID A082; [MS3] KO008867 KEIO_ID A082; [MS2] KO008866 KEIO_ID A082 Albendazole (SKF-62979) is an orally active and broad-spectrum parasiticide with high effectiveness and low host toxicity, is used for the research of gastrointestinal parasites in humans and animals. Albendazole induces apoptosis and autophagy in cancer cells. Albendazole also inhibits tubulin polymerization and HIF-1α, VEGF expression, has antioxidant activity, and inhibits the glycolytic process in cancer cells[1][2][3][4][5].

   

Allidochlor

2-chloro-N,N-bis(prop-2-en-1-yl)acetamide

C8H12ClNO (173.0607)


   

Diethylpropion

Investigacion farmaceutica brand OF amfepramone hydrochloride

C13H19NO (205.1467)


Diethylpropion is only found in individuals that have used or taken this drug. It is a appetite depressant considered to produce less central nervous system disturbance than most drugs in this therapeutic category. It is also considered to be among the safest for patients with hypertension. (From AMA Drug Evaluations Annual, 1994, p2290)Diethylpropion is an amphetamine that stimulates neurons to release or maintain high levels of a particular group of neurotransmitters known as catecholamines; these include dopamine and norepinephrine. High levels of these catecholamines tend to suppress hunger signals and appetite. Diethylpropion (through catecholamine elevation) may also indirectly affect leptin levels in the brain. It is theorized that diethylpropion can raise levels of leptin which signal satiety. It is also theorized that increased levels of the catecholamines are partially responsible for halting another chemical messenger known as neuropeptide Y. This peptide initiates eating, decreases energy expenditure, and increases fat storage. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   

Barban

4-chlorobut-2-yn-1-yl N-(3-chlorophenyl)carbamate

C11H9Cl2NO2 (257.001)


   

Butylate

N,N-bis(2-methylpropyl)(ethylsulfanyl)formamide

C11H23NOS (217.15)


   

Triazophos

Diethoxy-[(1-phenyl-1,2,4-triazol-3-yl)oxy]-sulphanylidene-$l^{5}-phosphane

C12H16N3O3PS (313.065)


CONFIDENCE standard compound; INTERNAL_ID 1193; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9355; ORIGINAL_PRECURSOR_SCAN_NO 9354 CONFIDENCE standard compound; INTERNAL_ID 1193; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9217; ORIGINAL_PRECURSOR_SCAN_NO 9214 CONFIDENCE standard compound; INTERNAL_ID 1193; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9286; ORIGINAL_PRECURSOR_SCAN_NO 9281 CONFIDENCE standard compound; INTERNAL_ID 1193; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9227; ORIGINAL_PRECURSOR_SCAN_NO 9226 CONFIDENCE standard compound; INTERNAL_ID 1193; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9231; ORIGINAL_PRECURSOR_SCAN_NO 9228 CONFIDENCE standard compound; INTERNAL_ID 1193; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9272; ORIGINAL_PRECURSOR_SCAN_NO 9270 C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

MDMA

3,4-Methylenedioxy-N-methylamphetamine (MDMA)

C11H15NO2 (193.1103)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3613 CONFIDENCE standard compound; INTERNAL_ID 1712 D049990 - Membrane Transport Modulators Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Methylephedrine

N,N-Dimethylnorephedrine2-dimethylamino-1-phenylpropanol

C11H17NO (179.131)


Methylephedrine belongs to the family of Amphetamines and Derivatives. These are organic compounds containing or derived from 1-phenylpropan-2-amine.

   

Methylphenidate

Mallinckrodt brand OF methylphenidate hydrochloride

C14H19NO2 (233.1416)


Methylphenidate is only found in individuals that have used or taken this drug. It is a central nervous system stimulant used most commonly in the treatment of attention-deficit disorders in children and for narcolepsy. Its mechanisms appear to be similar to those of dextroamphetamine. [PubChem]Methylphenidate blocks dopamine uptake in central adrenergic neurons by blocking dopamine transport or carrier proteins. Methylphenidate acts at the brain stem arousal system and the cerebral cortex and causes increased sympathomimetic activity in the central nervous system. Alteration of serotonergic pathways via changes in dopamine transport may result. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators

   

Nirvanol

2,4-Imidazolidinedione,5-ethyl-5-phenyl-

C11H12N2O2 (204.0899)


Nirvanol is a metabolite of Mephenytoin. Nirvanol, also known as ethylphenylhydantoin, is a derivative of hydantoin with anticonvulsant properties. Its 5-ethyl-5-phenyl substitution pattern is similar to that of phenobarbital. It is useful in the treatment of chorea. (Wikipedia) D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Nefazodone

1-{3-[4-(3-chlorophenyl)piperazin-1-yl]propyl}-3-ethyl-4-(2-phenoxyethyl)-4,5-dihydro-1H-1,2,4-triazol-5-one

C25H32ClN5O2 (469.2244)


Nefazodone hydrochloride (trade name Serzone) is an antidepressant drug marketed by Bristol-Myers Squibb. Its sale was discontinued in 2003 in some countries, due to the small possibility of hepatic (liver) injury, which could lead to the need for a liver transplant, or even death. The incidence of severe liver damage is approximately 1 in 250,000 to 300,000 patient-years. On May 20, 2004, Bristol-Myers Squibb discontinued the sale of Serzone in the United States. [Wikipedia] D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D000068760 - Serotonin and Noradrenaline Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D049990 - Membrane Transport Modulators Nefazodone is an orally active phenylpiperazine antidepressant. Nefazodone can potently and selectively block postsynaptic 5-HT2A receptors, and moderately inhibit 5-HT and noradrenaline reuptake. Nefazodone can also relieve the adverse effects of stress on the the immune system of mice. Nefazodone has a high affinity for CYP3A4 isoenzyme, which indicates that it has certain risk of agent-agent interaction. Nefazodone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83366-66-9 (retrieved 2024-10-16) (CAS RN: 83366-66-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Paroxetine

(-)-(3S,4R)-4-(p-Fluorophenyl)-3-((3,4-(methylenedioxy)phenoxy)methyl)piperidine

C19H20FNO3 (329.1427)


Paroxetine hydrochloride and paroxetine mesylate belong to a class of antidepressant agents known as selective serotonin-reuptake inhibitors (SSRIs). Despite distinct structural differences between compounds in this class, SSRIs possess similar pharmacological activity. As with other antidepressant agents, several weeks of therapy may be required before a clinical effect is seen. SSRIs are potent inhibitors of neuronal serotonin reuptake. They have little to no effect on norepinephrine or dopamine reuptake and do not antagonize α- or β-adrenergic, dopamine D2 or histamine H1 receptors. During acute use, SSRIs block serotonin reuptake and increase serotonin stimulation of somatodendritic 5-HT1A and terminal autoreceptors. Chronic use leads to desensitization of somatodendritic 5-HT1A and terminal autoreceptors. The overall clinical effect of increased mood and decreased anxiety is thought to be due to adaptive changes in neuronal function that leads to enhanced serotonergic neurotransmission. Side effects include dry mouth, nausea, dizziness, drowsiness, sexual dysfunction and headache (see Toxicity section below for a complete listing of side effects). Side effects generally occur during the first two weeks of therapy and are usually less severe and frequent than those observed with tricyclic antidepressants. Paroxetine hydrochloride and mesylate are considered therapeutic alternatives rather than generic equivalents by the US Food and Drug Administration (FDA); both agents contain the same active moiety (i.e. paroxetine), but are formulated as different salt forms. Clinical studies establishing the efficacy of paroxetine in various conditions were performed using paroxetine hydrochloride. Since both agents contain the same active moiety, the clinical efficacy of both agents is thought to be similar. Paroxetine may be used to treat major depressive disorder (MDD), panic disorder with or without agoraphobia, obsessive-compulsive disorder (OCD), social anxiety disorder (social phobia), generalized anxiety disorder (GAD), post-traumatic stress disorder (PTSD) and premenstrual dysphoric disorder (PMDD). Paroxetine has the most evidence supporting its use for anxiety-related disorders of the SSRIs. It has the greatest anticholinergic activity of the agents in this class and compared to other SSRIs, paroxetine may cause greater weight gain, sexual dysfunction, sedation and constipation. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent CONFIDENCE standard compound; INTERNAL_ID 8555 CONFIDENCE standard compound; INTERNAL_ID 1526 D049990 - Membrane Transport Modulators Paroxetine, a phenylpiperidine derivative, is a potent and selective serotonin reuptake inhibitor (SSRI). Paroxetine is a very weak inhibitor of norepinephrine (NE) uptake but it is still more potent at this site than the other SSRIs[1].

   

Oxyquinoline

8-HYDROXYQUINOLINE

C9H7NO (145.0528)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AC - Quinoline derivatives A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AH - Quinoline derivatives R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent CONFIDENCE standard compound; ML_ID 55

   

Primidone

5-Phenyl-5-ethyl-hexahydropyrimidine-4,6-dione

C12H14N2O2 (218.1055)


An antiepileptic agent related to the barbiturates; it is partly metabolized to phenobarbital in the body and owes some of its actions to this metabolite. Adverse effects are reported to be more frequent than with phenobarbital. (From Martindale, The Extra Pharmacopoeia, 30th ed, p309) N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AA - Barbiturates and derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants EAWAG_UCHEM_ID 195; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 195 CONFIDENCE standard compound; INTERNAL_ID 4095 INTERNAL_ID 4095; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 8502 CONFIDENCE standard compound; INTERNAL_ID 1516 KEIO_ID P061

   

Ethylmorphine

(1S,5R,13R,14S,17R)-10-ethoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraen-14-ol

C19H23NO3 (313.1678)


A narcotic analgesic and antitussive. It is metabolized in the liver by ethylmorphine-N-demethylase and used as an indicator of liver function. It is not marketed in the US but is approved for use in various countries around the world. In the US it is a schedule II drug (single-entity) and schedule III drug (in combination products). R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics S - Sensory organs > S01 - Ophthalmologicals

   

Aripiprazole

7-{4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butoxy}-1,2,3,4-tetrahydroquinolin-2-one

C23H27Cl2N3O2 (447.148)


Aripiprazole is a warning has gone out recently because of this drugs name. The -prazole ending of this drug name makes this drug sound like it is one of the proton pump inhibitors (such as omeprazole, pantoprazole, lansoprazole) which are used in treating peptic ulcer disease. However, aripiprazole and these drugs are in an entirely different class of drugs altogether and confusing the two can lead to some unnecessary side effects. Aripiprazole is the sixth and most recent of the atypical antipsychotic medications to be approved by the Food and Drug Administration (FDA) for the treatment of schizophrenia. It has also recently received FDA approval for the treatment of acute manic and mixed episodes associated with bipolar disorder. Aripiprazole appears to mediate its antipsychotic effects primarily by partial agonism at the Dopamine 2 (D2)receptor. Aripiprazole is an atypical antipsychotic and antidepressant used in the treatment of schizophrenia, bipolar disorder, and clinical depression. OPC is found in chinese cinnamon. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics Aripiprazole (OPC-14597), an atypical antipsychotic, is a potent and high-affinity dopamine D2 receptor partial agonist. Aripiprazole is an inverse agonist at 5-HT2B and 5-HT2A receptors and displays partial agonist actions at 5-HT1A, 5-HT2C, D3, and D4 receptors. Aripiprazole can be used for the research of schizophrenia and COVID19[1][2][3][4].

   

Pindolol

1-(1H-indol-4-Yloxy)-3-[(1-methylethyl)amino]propan-2-ol

C14H20N2O2 (248.1525)


Pindolol is only found in individuals that have used or taken this drug. It is a moderately lipophilic beta blocker (adrenergic beta-antagonists). It is non-cardioselective and has intrinsic sympathomimetic actions, but little membrane-stabilizing activity. (From Martindale, The Extra Pharmocopoeia, 30th ed, p638)Pindolol non-selectively blocks beta-1 adrenergic receptors mainly in the heart, inhibiting the effects of epinephrine and norepinephrine resulting in a decrease in heart rate and blood pressure. By binding beta-2 receptors in the juxtaglomerular apparatus, Pindolol inhibits the production of renin, thereby inhibiting angiotensin II and aldosterone production and therefore inhibits the vasoconstriction and water retention due to angiotensin II and aldosterone, respectively. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents CONFIDENCE standard compound; INTERNAL_ID 4098 CONFIDENCE standard compound; INTERNAL_ID 2663 Pindolol (LB-46) is a nonselective β-blocker with partial beta-adrenergic receptor agonist activity, also functions as a 5-HT1A receptor weak partial antagonist (Ki=33nM).

   

Mirtazapine

5-methyl-2,5,19-triazatetracyclo[13.4.0.0²,⁷.0⁸,¹³]nonadeca-1(15),8,10,12,16,18-hexaene

C17H19N3 (265.1579)


Mirtazapine is an antidepressant introduced by Organon International in 1996 used for the treatment of moderate to severe depression. Mirtazapine has a tetracyclic chemical structure and is classified as a noradrenergic and specific serotonergic antidepressant (NaSSA). It is the only tetracyclic antidepressant that has been approved by the Food and Drug Administration to treat depression. [Wikipedia] D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3622 CONFIDENCE standard compound; INTERNAL_ID 1551 (R)-Mirtazapine ((R)-Org3770) is a R(?)-enantiomer of Mirtazapine with antinociceptive properties in an animal model of acute thermal nociception. (R)-Mirtazapine is a 5-HT3 receptor antagonist. (R)-Mirtazapine is mainly metabolized by CYP3A4[1]. Mirtazapine (Org3770) is a potent and orally active noradrenergic and specific serotonergic antidepressant (NaSSA) agent. Mirtazapine is also a 5-HT2, 5-HT3, histamine H1 receptor and α2-adrenoceptor antagonist with pKi values of 8.05, 8.1, 9.3 and 6.95, respectively[1][2].

   

Mandipropamid

Pesticide4_Mandipropamid_C23H22ClNO4_2-(4-Chlorophenyl)-N-{2-[3-methoxy-4-(2-propyn-1-yloxy)phenyl]ethyl}-2-(2-propyn-1-yloxy)acetamide

C23H22ClNO4 (411.1237)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; EAWAG_UCHEM_ID 3061

   

nystatin

(1S,3R,4E,6E,8E,10E,14E,16E,18S,19R,20R,21S,25R,27R,29R,32R,33R,35S,37S,38R)-3-[(2R,3S,4S,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,29,32,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10,14,16-hexaene-38-carboxylic acid

C47H75NO17 (925.5035)


A polyene macrolide antibiotic; part of the nystatin complex produced by several Streptomyces species. It is an antifungal antibiotic used for the treatment of topical fungal infections caused by a broad spectrum of fungal pathogens comprising yeast-like and filamentous species. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent D049990 - Membrane Transport Modulators D007476 - Ionophores A polyene macrolide antibiotic; part of the nystatin complex produced by several Streptococcus species. The keto-form of nystatin A1. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3140

   

C-Quens

Chlormadinone Acetate

C23H29ClO4 (404.1754)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Quetiapine

2-[2-(4-{2-thia-9-azatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,9,11,13-heptaen-10-yl}piperazin-1-yl)ethoxy]ethan-1-ol

C21H25N3O2S (383.1667)


The most common side effect is sedation, and is prescribed specifically for this effect in patients with sleep disorders. Seroquel will put the patient into a drowsy state, and will help the patient fall asleep. It is one of the most sedating of all anti psychotic drugs, rivaling even the most sedating older antipsychotics. Many prescriptions call for the entire dose to be taken before bedtime because of its sedative effects. Although quetiapine is approved by the FDA for the treatment of schizophrenia and bipolar disorder, it is frequently prescribed for off-label purposes including insomnia or the treatment of anxiety disorders. Due to its sedative side effects, reports of quetiapine abuse (sometimes by insufflating crushed tablets) have emerged in medical literature; Quetiapine belongs to a series of neuroleptics known as "atypical antipsychotics", which have become increasingly popular alternatives to "typical antipsychotics" such as haloperidol. Quetiapine HAS approvals for the treatment of schizophrenia and acute mania in bipolar disorder. It is also used off-label to treat other disorders, such as post-traumatic stress disorder, alcoholism, obsessive compulsive disorder, anxiety disorders, hallucinations in Parkinsons disease patients using ropinirole, and as a sedative for those with sleep disorders. The most common side effect is sedation, and is prescribed specifically for this effect in patients with sleep disorders. Seroquel will put the patient into a drowsy state, and will help the patient fall asleep. It is one of the most sedating of all anti psychotic drugs, rivaling even the most sedating older antipsychotics. Many prescriptions call for the entire dose to be taken before bedtime because of its sedative effects. Although quetiapine is approved by the FDA for the treatment of schizophrenia and bipolar disorder, it is frequently prescribed for off-label purposes including insomnia or the treatment of anxiety disorders. Due to its sedative side effects, reports of quetiapine abuse (sometimes by insufflating crushed tablets) have emerged in medical literature; for the same reason, abuse of other antipsychotics, such as chlorpromazine (Thorazine), may occur as well, but research related to the abuse of typical antipsychotics is limited. for the same reason, abuse of other antipsychotics, such as chlorpromazine (Thorazine), may occur as well, but research related to the abuse of typical antipsychotics is limited. The most common side effect is sedation, and is prescribed specifically for this effect in patients with sleep disorders. Seroquel will put the patient into a drowsy state, and will help the patient fall asleep. It is one of the most sedating of all anti psychotic drugs, rivaling even the most sedating older antipsychotics. Many prescriptions call for the entire dose to be taken before bedtime because of its sedative effects. Although quetiapine is approved by the FDA for the treatment of schizophrenia and bipolar disorder, it is frequently prescribed for off-label purposes including insomnia or the treatment of anxiety disorders. Due to its sedative side effects, reports of quetiapine abuse (sometimes by insufflating crushed tablets) have emerged in medical literature; Quetiapine belongs to a series of neuroleptics known as "atypical antipsychotics", which have become increasingly popular alternatives to "typical antipsychotics" such as haloperidol. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quetiapine (ICI204636) is a 5-HT receptors agonist with a pEC50 of 4.77 for human 5-HT1A receptor. Quetiapine is a dopamine receptor antagonist with a pIC50 of 6.33 for human D2 receptor. Quetiapine has moderate to high affinity for the human D2, HT1A, 5-HT2A, 5-HT2C receptor with pKis of 7.25, 5.74, 7.54, 5.55. Antidepressant and anxiolytic effects[1].

   

Safrole

4-Allyl-1,2-(methylenedioxy)benzene, 8ci

C10H10O2 (162.0681)


Safrole, also known as shikimol, is a colorless or slightly yellow oily liquid. It is typically extracted from the root-bark or the fruit of sassafras plants in the form of sassafras oil, or synthesized from other related methylenedioxy compounds. It is the principal component of brown camphor oil, and is found in small amounts in a wide variety of plants, where it functions as a natural pesticide. Safrole is found in anise and nutmeg. Banned by FDA for use in food. Safrole is formerly used as a food flavour It is a precursor in the synthesis of the insecticide synergist piperonyl butoxide and the recreational drug MDMA ("Ecstacy"). Safrole is a natural plant constituent, found in oil of sassafras and certain other essential oils. It is a member of the methylenedioxybenzene group of compounds, many of which (e.g. piperonyl butoxide) are extensively used as insecticide synergists. Safrole is a major source of human exposure to safrole is through consumption of spices, such as nutmeg, cinnamon and black pepper, in which safrole is a constituent. Safrole is also present in root beer, and has been used as an additive in chewing gum, toothpaste, soaps and certain pharmaceutical preparations. Safrole is a weak hepatocarcinogen and it is a matter of considerable interest whether the ally1 moiety or the methylenedioxy group, or both, are involved in the mechanism of its carcinogenesis. Safrole is extensively metabolized, giving rise to a large number of metabolites. Metabolism involves essentially two major routes, oxidation of the ally1 side chain, and oxidation of the methylenedioxy group with subsequent cleavage to form the catechol. Safrole undergoes oxidation of the allylic group to yield the 2, 3-epoxide (safrole epoxide). The dihydrodiol is one of the metabolites of safrole, and presumably arises from the hydration of the 2, 3-epoxide. The principal route of metabolism of safrole is through cleavage of the methylenedioxy group, the major metabolites being allylcatechol and its isomer, propenylcatechol. Eugenol and its isomer I-methoxy- 2-hydroxy-4-allylbenzene have been detected as minor metabolites in rat, mouse and human (PMID:6719936). The Ocotea cymbarum oil made of the Ocotea pretiosa, a plant growing in Brazil, and sassafras oil made of Sassafras albidum, a tree growing in eastern North America, are the main natural sources for safrole. It has a characteristic "candy-shop" aroma Occurs in nutmeg. Banned by FDA for use in food. Formerly used as a food flavour

   

Phenylacetic acid

Phenylacetic acid, sodium salt , carboxy-(11)C-labeled CPD

C8H8O2 (136.0524)


Phenylacetic acid, also known as phenylacetate or alpha-toluic acid, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. Phenylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Phenylacetic acid can be synthesized from acetic acid. Phenylacetic acid is also a parent compound for other transformation products, including but not limited to, hydratropic acid, 2,4,5-trihydroxyphenylacetic acid, and mandelamide. Phenylacetic acid is a sweet, civet, and floral tasting compound and can be found in a number of food items such as hyssop, cowpea, endive, and shea tree, which makes phenylacetic acid a potential biomarker for the consumption of these food products. Phenylacetic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), saliva, feces, and blood. Phenylacetic acid exists in all living species, ranging from bacteria to humans. In humans, phenylacetic acid is involved in the phenylacetate metabolism. Moreover, phenylacetic acid is found to be associated with kidney disease and phenylketonuria. Phenylacetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylacetic acid is a drug which is used for use as adjunctive therapy for the treatment of acute hyperammonemia and associated encephalopathy in patients with deficiencies in enzymes of the urea cycle. Phenyl acetate (or phenylacetate) is a carboxylic acid ester that has been found in the biofluids of patients with nephritis and/or hepatitis as well as patients with phenylketonuria (PKU), an inborn error of metabolism. Phenyl acetate has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Excess phenylalanine in the body can be disposed of through a transamination process leading to the production of phenylpyruvate. The phenylpyruvate can be further metabolized into a number of products. Decarboxylation of phenylpyruvate gives phenylacetate, while a reduction reaction gives phenyllactate. The phenylacetate can be further conjugated with glutamine to give phenylacetyl glutamine. All of these metabolites can be detected in serum and urine of PKU patients. Phenyl acetate is also produced endogenously as the metabolite of 2-Phenylethylamine, which is mainly metabolized by monoamine oxidase to form phenyl acetate. 2-phenylethylamine is an "endogenous amphetamine" which may modulate central adrenergic functions, and the urinary phenyl acetate levels have been postulated as a marker for depression. (PMID: 17978765 , 476920 , 6857245). Phenylacetate is also found in essential oils, e.g. neroli, rose oil, free and as esters and in many fruits. As a result it is used as a perfumery and flavoring ingredient. Phenyl acetate is a microbial metabolite. D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

Cannabidiolate

Cannabidiolic acid

C22H30O4 (358.2144)


A dihydroxybenzoic acid that is olivetolic acid in which the hydrogen at position 3 is substituted by a 3-p-mentha-1,8-dien-3-yl (limonene) group.

   

Fenfluramine

Ethyl-[1-methyl-2-(3-trifluoromethyl-phenyl)-ethyl]-amine

C12H16F3N (231.1235)


A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C78272 - Agent Affecting Nervous System > C29728 - Anorexiant D049990 - Membrane Transport Modulators KEIO_ID F016; [MS2] KO009107 KEIO_ID F016

   

Phenylacetone

1-phenylpropan-2-one

C9H10O (134.0732)


Phenylacetone is a DEA Schedule II controlled substance. Substances in the DEA Schedule II have a high potential for abuse which may lead to severe psychological or physical dependence. It is a Immediate precursors substance. Phenylacetone is a propanone that is propan-2-one substituted by a phenyl group at position 1. It is a member of propanones and a methyl ketone. Phenylacetone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=103-79-7 (retrieved 2024-10-28) (CAS RN: 103-79-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Psilocybine

3-(2-(Dimethylamino)ethyl)-1H-indol-4-ol dihydrogen phosphoric acid ester

C12H17N2O4P (284.0926)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Sertraline

(1S-cis)-1,2,3,4-Tetrahydro-4-(3,4-dichlorophenyl)-N-methyl-1-naphthalenamine

C17H17Cl2N (305.0738)


Sertraline is a selective serotonin uptake inhibitor that is used in the treatment of depression. Sertraline hydrochloride (also labeled under numerous brand names: Zoloft, Sertralin, Lustral, Apo-Sertral, Asentra, Gladem, Serlift, Stimuloton, Xydep, Serlain, Concorz) is an orally administered antidepressant of the selective serotonin reuptake inhibitor (SSRI) type. It was first approved by the Food and Drug Administration (FDA) in 1991. Sertraline is an odorless, white, sparingly soluble crystalline solid. The minimum effective dose is usually 50 mg per day (it can be still effective at 25 mg or 37.5 mg), but lower doses may be used in the initial weeks of treatment to acclimate the patients body, especially the liver, to the drug and to minimize the severity of any side effects. Patients who do not experience relief of symptoms at 50 mg a day may have their dose increased, up to 200 mg a day. Sertraline (HCl) is used medically mainly to treat the symptoms of depression and anxiety. It is also prescribed for the treatment of obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), premenstrual dysphoric disorder (PMDD), panic disorder (PD) and social phobia/social anxiety disorder. A study has shown that sertraline is an effective treatment for impulsive aggressive behavior in personality disordered patients. A selective serotonin uptake inhibitor that is used in the treatment of depression.; Sertraline hydrochloride (also labeled under numerous brand names: Zoloft, Sertralin, Lustral, Apo-Sertral, Asentra, Gladem, Serlift, Stimuloton, Xydep, Serlain, Concorz) is an orally administered antidepressant of the selective serotonin reuptake inhibitor (SSRI) type. It was first approved by the Food and Drug Administration (FDA) in 1991.; Sertraline is an odorless, white, sparingly soluble crystalline solid. The minimum effective dose is usually 50 mg per day (it can be still effective at 25 mg or 37.5 mg), but lower doses may be used in the initial weeks of treatment to acclimate the patients body, especially the liver, to the drug and to minimize the severity of any side effects. Patients who do not experience relief of symptoms at 50 mg a day may have their dose increased, up to 200 mg a day.; Sertraline (HCl) is used medically mainly to treat the symptoms of depression and anxiety. It is also prescribed for the treatment of obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), premenstrual dysphoric disorder (PMDD), panic disorder (PD) and social phobia/social anxiety disorder.; A study has shown that sertraline is an effective treatment for impulsive aggressive behavior in personality disordered patients. [HMDB] N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent CONFIDENCE standard compound; INTERNAL_ID 8627 CONFIDENCE standard compound; INTERNAL_ID 1500 D049990 - Membrane Transport Modulators

   

12(S)-HPETE

(5Z,8Z,10E,14Z)-(12S)-12-Hydroperoxyeicosa-5,8,10,14-tetraenoic acid

C20H32O4 (336.23)


12-HPETE is one of the six monohydroperoxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid (Leukotrienes). Reduction of the hydroperoxide yields the more stable hydroxyl fatty acid (+/-)12-HETE. A family of biologically active compounds derived from arachidonic acid by oxidative metabolism through the 5-lipoxygenase pathway. They participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. They have potent actions on many essential organs and systems, including the cardiovascular, pulmonary, and central nervous system as well as the gastrointestinal tract and the immune system. 12-HPETE is one of the six monohydroperoxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid (Leukotrienes). Reduction of the hydroperoxide yields the more stable hydroxyl fatty acid (+/-)12-HETE. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Acrylic acid

Acrylic acid, ca (2:1) salt, dihydrate

C3H4O2 (72.0211)


Polyacrylic acid, sodium salt is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") Monomer component of packaging materials for food. Acrylic acid is found in pineapple. D001697 - Biomedical and Dental Materials > D014014 - Tissue Adhesives KEIO_ID A041

   

m-Phenylenediamine

Meta-phenylenediamine

C6H8N2 (108.0687)


KEIO_ID P035

   

Altanserin

3-{2-[4-(4-fluorobenzoyl)piperidin-1-yl]ethyl}-2-sulfanylidene-1,2,3,4-tetrahydroquinazolin-4-one

C22H22FN3O2S (411.1417)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist Altanserin can synthesize Fluorine-18 Altanserin. Fluorine-18 Altanserin binds to the brain 5HT2 receptors[1].

   

Vanillylmandelic acid (VMA)

(2S)-2-Hydroxy-2-(4-hydroxy-3-methoxyphenyl)acetic acid

C9H10O5 (198.0528)


Vanillylmandelic acid, also known as vanillylmandelate or VMA, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Vanillylmandelic acid is a sweet and vanilla tasting compound. Vanillylmandelic acid (VMA) is a chemical intermediate in the synthesis of artificial vanilla flavorings and is an end-stage metabolite of the catecholamines (dopamine, epinephrine, and norepinephrine). Vanillylmandelic acid exists in all living organisms, ranging from bacteria to plants to humans. Within humans, vanillylmandelic acid participates in a number of enzymatic reactions. In particular, vanillylmandelic acid can be biosynthesized from 3-methoxy-4-hydroxyphenylglycolaldehyde through its interaction with the enzyme aldehyde dehydrogenase. In addition, vanillylmandelic acid and pyrocatechol can be biosynthesized from 3,4-dihydroxymandelic acid and guaiacol through the action of the enzyme catechol O-methyltransferase. Urinary VMA is elevated in patients with tumors that secrete catecholamines. Urinary VMA tests may also be used to diagnose neuroblastomas, and to monitor treatment of these conditions. VMA urinalysis tests can be used to diagnose an adrenal gland tumor called pheochromocytoma, a tumor of catecholamine-secreting chromaffin cells. Vanillylmandelic acid (VMA) is produced in the liver and is a major product of norepinephrine and epinephrine metabolism excreted in the urine. Vanillylmandelic acid is one of the products of the catabolism of catecholamines (epinephrine, norepinephrine and dopamine). High levels of vanillylmandelic acid can indicate an adrenal gland tumor (pheochromocytoma) or another type of tumor that produces catecholamines. (WebMD) [HMDB] D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H056 Vanillylmandelic acid is the endproduct of epinephrine and norepinephrine metabolism. Vanillylmandelic acid can be used as an indication of the disorder in neurotransmitter metabolism as well. Vanillylmandelic acid has antioxidant activity towards DPPH radical with an IC50 value of 33 μM[1].

   

Methyl acetate

Ethyl ester OF monoacetic acid

C3H6O2 (74.0368)


Methyl acetate belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Methyl acetate is present in apple, grape, banana and other fruits. Methyl acetate is a flavouring ingredient and it is an ester that, in the laboratory, is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature. Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants Methyl acetate is an ester that is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature.; Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. Methyl acetate is VOC exempt.; The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a flavouring agent and can be found in many foods, some of which are apple, grape, banana, orange mint, and ginger.

   

Phosphate

Sodium pyrophosphate decahydrate biochemica

H3O4P (97.9769)


Phosphate is a salt of phosphoric acid and is an essential component of life. Organic phosphates are important in biochemistry, biogeochemistry, and ecology. In biological systems, phosphorus is found as a free phosphate ion in solution and is called inorganic phosphate, to distinguish it from phosphates bound in various phosphate esters. Inorganic phosphate is generally denoted Pi and at physiological (neutral) pH primarily consists of a mixture of HPO2-4 and H2PO-4 ions. Phosphates are most commonly found in the form of adenosine phosphates (AMP, ADP, and ATP) and in DNA and RNA, and can be released by the hydrolysis of ATP or ADP. Similar reactions exist for the other nucleoside diphosphates and triphosphates. Phosphoanhydride bonds in ADP and ATP, or other nucleoside diphosphates and triphosphates, contain high amounts of energy which give them their vital role in all living organisms. Phosphate must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+-dependent Pi transporters carry out this task. Remarkably, the two families transport different Pi species: whereas type II Na+/Pi cotransporters (SCL34) prefer divalent HPO4(2), type III Na+/Pi cotransporters (SLC20) transport monovalent H2PO4. The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body Pi homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the Pi content of luminal fluids. Phosphate levels in the blood play an important role in hormone signalling and in bone homeostasis. In classical endocrine regulation, low serum phosphate induces the renal production of the secosteroid hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). This active metabolite of vitamin D acts to restore circulating mineral (i.e. phosphate and calcium) levels by increasing absorption in the intestine, reabsorption in the kidney, and mobilization of calcium and phosphate from bone. Thus, chronic renal failure is associated with hyperparathyroidism, which in turn contributes to osteomalacia (softening of the bones). Another complication of chronic renal failure is hyperphosphatemia (low levels of phosphate in the blood). Hyperphosphatemia (excess levels of phosphate in the blood) is a prevalent condition in kidney dialysis patients and is associated with increased risk of mortality. Hypophosphatemia (hungry bone syndrome) has been associated with postoperative electrolyte aberrations and after parathyroidectomy (PMID: 17581921, 11169009, 11039261, 9159312, 17625581). Fibroblast growth factor 23 (FGF-23) has recently been recognized as a key mediator of phosphate homeostasis and its most notable effect is the promotion of phosphate excretion. FGF-23 was discovered to be involved in diseases such as autosomal dominant hypophosphatemic rickets, X-linked hypophosphatemia, and tumour-induced osteomalacia in which phosphate wasting was coupled to inappropriately low levels of 1,25(OH)2D3. FGF-23 is regulated by dietary phosphate in humans. In particular, it was found that phosphate restriction decreased FGF-23, and phosphate loading increased FGF-23. In agriculture, phosphate refers to one of the three primary plant nutrients, and it is a component of fertilizers. In ecological terms, because of its important role in biological systems, phosphate is a highly sought after resource. Consequently, it is often a limiting reagent in environments, and its availability may govern the rate of growth of organisms. Addition of high levels of phosphate to environments and to micro-environments in which it is typically rare can have significant ecological consequences. In the context of pollution, phosphates are a principal component of total dissolved solids, a major indicator of water quality. Dihydrogen phosphate is an inorganic sal... Found in fruit juices. It is used in foods as an acidulant for drinks and candies, pH control agent, buffering agent, flavour enhancer, flavouring agent, sequestrant, stabiliser and thickener, and synergist D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

N-Acetylmuramate

(2R)-2-{[(3R,4R,5S,6R)-2,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-4-yl]oxy}propanoic acid

C11H19NO8 (293.1111)


This compound belongs to the family of N-acyl-alpha-hexosamines. These are carbohydrate derivatives containing a hexose moeity in which the oxygen atom is replaced by an n-acyl group. KEIO_ID A191

   

Etidronic acid

(1-Hydroxyethylene)diphosphonic acid, tetrapotassium salt

C2H8O7P2 (205.9745)


Etidronic acid is only found in individuals that have used or taken this drug. It is a diphosphonate which affects calcium metabolism. It inhibits ectopic calcification and slows down bone resorption and bone turnover. [PubChem]Bisphosphonates, when attached to bone tissue, are absorbed by osteoclasts, the bone cells that breaks down bone tissue. Although the mechanism of action of non-nitrogenous bisphosphonates has not been fully elucidated, available data suggest that they bind strongly to hydroxyapatite crystals in the bone matrix, preferentially at the sites of increased bone turnover and inhibit the formation and dissolution of the crystals. Other actions may include direct inhibition of mature osteoclast function, promotion of osteoclast apoptosis, and interference with osteoblast-mediated osteoclast activation. Etidronic acid does not interfere with bone mineralization. In malignancy-related hypercalcemia, etidronic acid decreases serum calcium by inhibiting tumour-induced bone resorption and reducing calcium flow from the resorbing bone into the blood. Etidronic acid also reduces morbidity of osteolytic bone metastases by inhibiting tumour-induced bone resorption. Etidronic acid may promote osteoclast apoptosis by competing with adenosine triphosphate (ATP) in the cellular energy metabolism. The osteoclast initiates apoptosis and dies, leading to an overall decrease in the breakdown of bone. Food contaminant arising from its use as a boiler water additive for prepn. of steam used in food processing. Component of antimicrobial washes for poultry carcasses and fruit M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates KEIO_ID E010

   

Shikomol

4-Allylpyrocatechol formaldehyde acetal

C10H10O2 (162.0681)


   

Glycerylphosphorylethanolamine

2-AMINOETHYL (2,3-DIHYDROXYPROPYL) HYDROGEN PHOSPHATE

C5H14NO6P (215.0559)


Glycerylphosphorylethanolamine is a membrane breakdown product resulting from the cleavage of the lipid group from glycerophosphoethanlomine fatty acids (i.e. phosphatidylethanolamine). It acts as a growth stimulant for hepatocytes. A membrane breakdown product resulting from the cleavage of the lipid group from glycerophosphoethanlomine fatty acids (i.e. phosphatidylethanolamine). It acts as a growth stimulant for hepatocytes. [HMDB]

   

3-Methylcrotonyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-methylbut-2-enoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C26H42N7O17P3S (849.1571)


3-Methylcrotonyl-CoA, also known as beta-methylcrotonyl-coenzyme A or dimethylacryloyl-CoA, belongs to the class of organic compounds known as acyl-CoAs. These are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, 3-methylcrotonyl-CoA is considered to be a fatty ester lipid molecule. 3-Methylcrotonyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 3-Methylcrotonyl-CoA is an essential metabolite for leucine metabolism, is a substrate of 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), and is a biotin-dependent mitochondrial enzyme in the catabolism of leucine (OMIM: 609010). 3-Methylcrotonyl-CoA is an essential metabolite for leucine metabolism, a substrate of 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), a biotin-dependent mitochondrial enzyme in the catabolism of leucine. (OMIM 609010) [HMDB]. 3-Methylcrotonyl-CoA is found in many foods, some of which are summer savory, lupine, blackcurrant, and soft-necked garlic.

   

Lanosterol

(2S,5S,7R,11R,14R,15R)-2,6,6,11,15-pentamethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C30H50O (426.3861)


Lanosterol, also known as lanosterin, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Thus, lanosterol is considered to be a sterol lipid molecule. Lanosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Lanosterol is biochemically synthesized starting from acetyl-CoA by the HMG-CoA reductase pathway. The critical step is the enzymatic conversion of the acyclic terpene squalene to the polycylic lanosterol via 2,3-squalene oxide. Constituent of wool fat used e.g. as chewing-gum softenerand is) also from yeast COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Geranyl-PP

[({[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H20O7P2 (314.0684)


Geranyl diphosphate is the precursor of monoterpenes, a large family of natural occurring C10 compounds predominately found in plants and animals. Geranyl diphosphate is regarded as a key intermediate in the steroid, isoprene and terpene biosynthesis pathways and is used by organisms in the biosynthesis of farnesyl pyrophosphate, geranylgeranyl pyrophosphate, cholesterol, terpenes and terpenoids. (wikipedia). In humans, geranyl diphosphate synthase (GPPS) catalyzes the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl diphosphate. Animals produce IPP through the mevalonate (MVA) pathway. Isoprenoid compounds have been implicated in several human disease states including coronary heart disease, blindness, infectious hepatitis and cancer.; ; Geranyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. -- Wikipedia; Geranyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of farnesyl pyrophosphate, geranylgeranyl pyrophosphate, cholesterol, terpenes and terpenoids. Geranyl diphosphate is the precursor of monoterpenes, a large family of natural occurring C10 compounds predominately found in plants and animals. Geranyl diphosphate is regarded as a key intermediate in the steroid, isoprene and terpene biosynthesis pathways and is used by organisms in the biosynthesis of farnesyl pyrophosphate, geranylgeranyl pyrophosphate, cholesterol, terpenes and terpenoids. (wikipedia). In humans, geranyl diphosphate synthase (GPPS) catalyzes the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl diphosphate. Animals produce IPP through the mevalonate (MVA) pathway. Isoprenoid compounds have been implicated in several human disease states including coronary heart disease, blindness, infectious hepatitis and cancer. Geranyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. -- Wikipedia.

   

Isopropyl alcohol

1-Methylethyl alcohol

C3H8O (60.0575)


Isopropyl alcohol, also known as isopropanol or 1-methylethanol, belongs to the class of organic compounds known as secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl). It is used in the manufacture of acetone and its derivatives and as a solvent. Isopropyl alcohol exists in all living species, ranging from bacteria to humans. Isopropyl alcohol is an alcohol, bitter, and musty tasting compound. Isopropyl alcohol has also been detected, but not quantified in several different foods, such as papaya, roselles, apples, sweet cherries, and allium (onion). Isopropyl alcohol is an isomer of 1-propanol and is considered as a potentially toxic compound. Topically, it is used as an antiseptic. It is a colorless liquid having disinfectant properties. Present in fruit aromas, e.g. papaya (Carica papaya). It is used as an extraction solvent in food preparation D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D012997 - Solvents

   
   

Fluoride

Fluorine anion

F- (18.9984)


Fluorine (Latin: fluere, meaning "to flow"), is the chemical element with the symbol F and atomic number 9. It is a nonmetallic, diatomic gas that is a trace element and member of the halogen family. Pure fluorine (F2) is a corrosive, poisonous, pale yellowish brown gas that is a powerful oxidizing agent. It is the most reactive and electronegative of all the elements (4.0), and readily forms compounds with most other elements. Fluorine even combines with the noble gases, krypton, xenon, and radon. Even in dark, cool conditions, fluorine reacts explosively with hydrogen. It is so reactive that glass, metals, and even water, as well as other substances, burn with a bright flame in a jet of fluorine gas. It is far too reactive to be found in elemental form and has such an affinity for most elements, including silicon, that it can neither be prepared nor be kept in ordinary glass vessels. Instead, it must be kept in specialized quartz tubes lined with a very thin layer of fluorocarbons. In moist air it reacts with water to form also-dangerous hydrofluoric acid. Elemental fluorine is a powerful oxidizer which can cause organic material, combustibles, or other flammable materials to ignite. Both elemental fluorine and fluoride ions are highly toxic and must be handled with great care and any contact with skin and eyes should be strictly avoided. Physiologically, fluorine. exists as an ion in the body. When it is a free element, fluorine has a characteristic pungent odor that is detectable in concentrations as low as 20 nL/L. Fluorine is used in dentistry as flouride (Fluorides) to prevent dental caries. Sodium and stannous salts of fluorine are commonly used in dentifrices. Contact of exposed skin with HF (hydrofluoric acid) solutions posses one of the most extreme and insidious industrial threats-- one which is exacerbated by the fact that HF damages nerves in such a way as to make such burns initially painless. The HF molecule is capable of rapidly migrating through lipid layers of cells which would ordinarily stop an ionized acid, and the burns are typically deep. HF may react with calcium, permanently damaging the bone. More seriously, reaction with the bodys calcium can cause cardiac arrhythmias, followed by cardiac arrest brought on by sudden chemical changes within the body. These cannot always be prevented with local or intravenous injection of calcium salts. HF spills over just 2.5\\% of the bodys surface area, despite copious immediate washing, have been fatal If the patient survives, HF burns typically produce open wounds of an especially slow-healing nature. Fluorine in the form of fluorspar (also called fluorite) (calcium fluoride) was described in 1530 by Georgius Agricola for its use as a flux , which is a substance that is used to promote the fusion of metals or minerals. In 1670 Schwanhard found that glass was etched when it was exposed to fluorspar that was treated with acid. Karl Scheele and many later researchers, including Humphry Davy, Gay-Lussac, Antoine Lavoisier, and Louis Thenard all would experiment with hydrofluoric acid, easily obtained by treating calcium fluoride (fluorspar) with concentrated sulfuric acid. Fluoride is the anion F-, the reduced form of fluorine F. Compounds containing fluoride anions and those containing covalent bonds to fluorine are called fluorides. Fluoride is found in many foods, some of which are rum, black-eyed pea, pear, and corn chip. D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides D001697 - Biomedical and Dental Materials

   

Mevalonic acid-5P

(3R)-3-Hydroxy-3-methyl-5-(phosphonooxy)pentanoic acid

C6H13O7P (228.0399)


Mevalonic acid-5p, also known as (R)-5-phosphomevalonate or mevalonate-5p, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Thus, mevalonic acid-5p is considered to be a fatty acid lipid molecule. Mevalonic acid-5p is soluble (in water) and a moderately acidic compound (based on its pKa). Mevalonic acid-5p can be found in a number of food items such as rowanberry, common oregano, caraway, and cherry tomato, which makes mevalonic acid-5p a potential biomarker for the consumption of these food products. Mevalonic acid-5p can be found primarily throughout most human tissues. Mevalonic acid-5p exists in all eukaryotes, ranging from yeast to humans. In humans, mevalonic acid-5p is involved in several metabolic pathways, some of which include pamidronate action pathway, rosuvastatin action pathway, pravastatin action pathway, and lovastatin action pathway. Mevalonic acid-5p is also involved in several metabolic disorders, some of which include hypercholesterolemia, lysosomal acid lipase deficiency (wolman disease), hyper-igd syndrome, and mevalonic aciduria. Mevalonic acid-5P (CAS: 1189-94-2), also known as 5-phosphomevalonic acid, belongs to the class of organic compounds known as monoalkyl phosphates. These are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Within humans, mevalonic acid-5P participates in many enzymatic reactions. In particular, mevalonic acid-5P can be biosynthesized from mevalonate; which is mediated by the enzyme mevalonate kinase. In addition, mevalonic acid-5P can be converted into mevalonic acid-5-pyrophosphate through its interaction with the enzyme phosphomevalonate kinase. In humans, mevalonic acid-5P is involved in the mevalonate pathway. Outside of the human body, mevalonic acid-5P has been detected, but not quantified in, several different foods, such as oriental wheat, devilfish, pepper (spice), redcurrants, and star fruits. This could make mevalonic acid-5P a potential biomarker for the consumption of these foods.

   

Arsenate

Orthoarsenic acid, dihydrate

AsH3O4 (141.9247)


Arsenate is an ion consisting of arsenic. An arsenate is any compound containing the arsenate ion AsO43−. Arsenates are also referred to as pentavalent arsenic [As(V)] as the arsenic atom in arsenate has a valence of five. Arsenates can be both salts and esters of arsenic acid. Arsenate can be used as an indicator of mineral deposits, as a result of transition metals reacting with it to form bright colours. These mineral blooms can be used to find nickel (annabergite), copper (chalcophyllite), and cobalt (erythrite) arsenide ores. Arsenate is a chemical analogue of phosphate due to arsenic and phosphorous being part of the same group (pnictogens). Because of the similarities, arsenate can be taken by phosphate transporters due to imperfect selectivity (PMID: 328484, 8598055). Arsenate is much less toxic than the trivalent form arsenite, which is more mobile in groundwater and soils, and forms strong metal-like interactions with thiol groups in protein cysteine residues and small molecule thiols (PMID: 30852446). The arsenate ion is AsO43−. An arsenate (compound) is any compound that contains this ion.The arsenic atom in arsenate has a valency of 5 and is also known as pentavalent arsenic or As[V].Arsenate resembles phosphate in many respects, since arsenic and phosphorus occur in the same group (column) of the periodic table. D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals

   

Dimethyl selenide

Dimethylselenide, 75Se-labeled

C2H6Se (109.9635)


Constituent of Allium subspecies Dimethyl selenide is found in many foods, some of which are breadnut tree seed, buffalo currant, guava, and muskmelon. Dimethyl selenide is found in onion-family vegetables. Dimethyl selenide is a constituent of Allium species.

   

N-Methylpyridinium

1-Methylpyridinium mu-iodotetraiododimercurate (1-)

C6H8N+ (94.0657)


   

4-hydroxybenzoyl-CoA

(2R)-4-({[({[(2R,4S,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-(2-{[2-(4-hydroxybenzoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-3,3-dimethylbutanimidic acid

C28H40N7O18P3S (887.1363)


4-Hydroxybenzoyl-CoA is an intermediate in Fluorobenzoate degradation. 4-Hydroxybenzoyl-CoA is converted from 4-Fluorobenzoyl-CoA via the enzyme 4-chlorobenzoyl-CoA dehalogenase (EC 3.8.1.7). [HMDB]. 4-Hydroxybenzoyl-CoA is found in many foods, some of which are chinese chives, mustard spinach, salmonberry, and sunflower. 4-Hydroxybenzoyl-CoA is an intermediate in Fluorobenzoate degradation. 4-Hydroxybenzoyl-CoA is converted from 4-Fluorobenzoyl-CoA via the enzyme 4-chlorobenzoyl-CoA dehalogenase (EC 3.8.1.7). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-trans,6-trans-Farnesal

(2-trans,6-trans)-3,7,11-Trimethyldodeca-2,6,10-trienal

C15H24O (220.1827)


Farnesal, also known as (2e,6e)-3,7,11-trimethyl-2,6,10-dodecatrienal or 2-trans,6-trans-farnesal, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Thus, farnesal is considered to be an isoprenoid lipid molecule. Farnesal is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Farnesal is a floral and minty tasting compound and can be found in a number of food items such as bamboo shoots, dandelion, italian sweet red pepper, and chicory roots, which makes farnesal a potential biomarker for the consumption of these food products. This compound belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units.

   

N,N-Dimethyl-p-phenylenediamine

N1,N1-dimethylbenzene-1,4-diamine

C8H12N2 (136.1)


   

15-Keto-prostaglandin E2

(5Z)-7-[(1R,2R,3R)-3-hydroxy-5-oxo-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]hept-5-enoic acid

C20H30O5 (350.2093)


15-keto-PGE2 is one of the prostaglandin E2 metabolites. (PMID 7190512). It is a degradation product produced by 15-hydroxy prostaglandin dehydrogenase (PGDH or 15-PGDH). Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, to induce uterine contractions and to activate platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1alpha and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. (PMID: 16978535). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 15-keto-PGE2 is one of the prostaglandin E2 metabolites. (PMID 7190512). It is a degradation product produced by 15-hydroxy prostaglandin dehydrogenase (PGDH or 15-PGDH)

   

Isoglutamate

3-Aminopentanedioic acid

C5H9NO4 (147.0532)


   

Vanylglycol

1-(4-hydroxy-3-methoxyphenyl)ethane-1,2-diol

C9H12O4 (184.0736)


Vanylglycol, also known as 3-Methoxy-4-hydroxyphenylethyleneglycol (MHPG), belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is synthesized from endogenous epinephrine and norepinephrine in vivo. It is found in brain, blood, CSF, and urine, where its concentrations are used to measure catecholamine turnover. Catecholamines play an important role in platelet activation and aggregation, epinephrine being the most potent one. Vanylglycol and pyrocatechol can be biosynthesized from 3,4-dihydroxyphenylglycol and guaiacol; which is catalyzed by the enzyme catechol O-methyltransferase. Vanylglycol is a O-methylated metabolite of normetanephrine. In humans, vanylglycol is involved in the metabolic disorder called tyrosinemia in newborns. Alcohol consumption increases the level of vanylglycol in urine and CSF. Vanylglycol is found normally in urine, in plasma and cerebrospinal fluid. Outside of the human body, vanylglycol has been detected, but not quantified in several different foods, such as blackcurrants, chinese bayberries, elderberries, oriental wheats, and poppies.

   

(1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate

(1R,6R)-2-(3-carboxypropanoyl)-6-hydroxycyclohexa-2,4-diene-1-carboxylic acid

C11H12O6 (240.0634)


(1r,6r)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate, also known as shchc, belongs to gamma-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the C4 carbon atom (1r,6r)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). (1r,6r)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate can be found in a number of food items such as kiwi, muskmelon, purple laver, and lima bean, which makes (1r,6r)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate a potential biomarker for the consumption of these food products (1r,6r)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate may be a unique E.coli metabolite.

   

20-Carboxy-leukotriene B4

(5S,6Z,8E,10E,12R,14Z)-5,12-Dihydroxyicosa-6,8,10,14-tetraenedioic acid

C20H30O6 (366.2042)


20-Carboxyleukotriene B4 is an omega-oxidized metabolite of leukotriene B4 (LTB4). Neutrophil microsomes are known to oxidize 20-hydroxy-LTB4 (20-OH-LTB4) to its 20-oxo and 20-carboxy derivatives in the presence of NADPH. This activity has been ascribed to LTB4 omega-hydroxylase (cytochrome P-450LTB omega). Leukotriene B4 release from polymorphonuclear granulocytes of severely burned patients was reduced as compared to healthy donor cells. This decrease is due to an enhanced conversion of LTB4 into the 20-hydroxy- and 20-carboxy-metabolites and further to a decreased LTB4-synthesis. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/ 15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. (PMID 17623009, 7633595, 2155225, 3039534)Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.

   

Nystatin

(21E,23E,25E,27E,31E,33E)-20-{[(3S,4S,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,6,8,11,12,16,18,36-octahydroxy-35,37,38-trimethyl-2,14-dioxo-1-oxacyclooctatriaconta-21,23,25,27,31,33-hexaene-17-carboxylic acid

C47H75NO17 (925.5035)


Nystatin is a polyene antifungal drug to which many molds and yeasts are sensitive, including Candida spp. Nystatin has some toxicity associated with it when given intravenously, but it is not absorbed across intact skin or mucous membranes. It is considered a relatively safe drug for treating oral or gastrointestinal fungal infections. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent D049990 - Membrane Transport Modulators D007476 - Ionophores

   

Cyclohexaneacetic acid, 4-[4-[6-(aminocarbonyl)-3,5-dimethyl-2-pyrazinyl]phenyl]-, trans-

Cyclohexaneacetic acid, 4-[4-[6-(aminocarbonyl)-3,5-dimethyl-2-pyrazinyl]phenyl]-, trans-

H2O3P+ (80.9742)


   

Ceftizoxime

(6R,7R)-7-[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetamido]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C13H13N5O5S2 (383.0358)


A semisynthetic cephalosporin antibiotic which can be administered intravenously or by suppository. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative organisms. It has few side effects and is reported to be safe and effective in aged patients and in patients with hematologic disorders. [PubChem] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

1,2-Epoxy-p-menth-8-ene

1-Methyl-4-(1-methylethenyl)-7-oxabicyclo[4.1.0]heptane, 9ci

C10H16O (152.1201)


1,2-epoxy-p-menth-8-ene, also known as limonene-1,2-epoxide or 1,2-epoxylimonene, is a member of the class of compounds known as oxepanes. Oxepanes are compounds containing an oxepane ring, which is a seven-member saturated aliphatic heterocycle with one oxygen and six carbon atoms. 1,2-epoxy-p-menth-8-ene is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 1,2-epoxy-p-menth-8-ene is a green tasting compound found in lemon and wild celery, which makes 1,2-epoxy-p-menth-8-ene a potential biomarker for the consumption of these food products. 1,2-Epoxy-p-menth-8-ene is found in citrus. 1,2-Epoxy-p-menth-8-ene is isolated from oil of Cymbopogon species, orange (Citrus sinensis), Japanese pepper tree (Zanthoxylum piperitum) and other

   

Pamidronate

(3-amino-1-hydroxy-1-phosphonopropyl)phosphonic acid

C3H11NO7P2 (235.0011)


Pamidronate is only found in individuals that have used or taken this drug.Pamidronate, marketed as pamidronate disodium pentahydrate under the brand name Aredia, is a bisphosphonate. [Wikipedia]The mechanism of action of pamidronate is inhibition of bone resorption. Pamidronate adsorbs to calcium phosphate (hydroxyapatite) crystals in bone and may directly block dissolution of this mineral component of bone. In vitro studies also suggest that inhibition of osteoclast activity contributes to inhibition of bone resorption. Pamidronate also targets farnesyl pyrophosphate (FPP) synthase. Nitrogen-containing bisphosphonates (such as pamidronate, alendronate, risedronate, ibandronate and zoledronate) appear to act as analogues of isoprenoid diphosphate lipids, thereby inhibiting FPP synthase, an enzyme in the mevalonate pathway. Inhibition of this enzyme in osteoclasts prevents the biosynthesis of isoprenoid lipids (FPP and GGPP) that are essential for the post-translational farnesylation and geranylgeranylation of small GTPase signalling proteins. This activity inhibits osteoclast activity and reduces bone resorption and turnover. In postmenopausal women, it reduces the elevated rate of bone turnover, leading to, on average, a net gain in bone mass. M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

Succimer

Butanedioic acid, 2,3-dimercapto-, (r*,s*)-isomer

C4H6O4S2 (181.9708)


Succimer is only found in individuals that have used or taken this drug. It is a mercaptodicarboxylic acid used as an antidote to heavy metal poisoning because it forms strong chelates with them. [PubChem]Succimer is a heavy metal chelator. It binds with high specificity to ions of lead in the blood to form a water-soluble complex that is subsequently excreted by the kidneys. Succimer can also chelate mercury, cadmium, and arsenic in this manner. D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes

   

2-((3-Aminopropyl)amino)ethanethiol

N-(2-Mercaptoethyl)-1,3-diaminopropane dihydrochloride

C5H14N2S (134.0878)


D020011 - Protective Agents > D011837 - Radiation-Protective Agents Amifostine thiol (WR-1065) is an active metabolite of the cytoprotector Amifostine (HY-B0639). Amifostine thiol is a cytoprotective agent with radioprotective abilities. Amifostine thiol activates p53 through a JNK-dependent signaling pathway[1][2][3].

   

Nisoldipine

3-methyl 5-(2-methylpropyl) 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

C20H24N2O6 (388.1634)


Nisoldipine is a 1,4-dihydropyridine calcium channel blocker. It acts primarily on vascular smooth muscle cells by stabilizing voltage-gated L-type calcium channels in their inactive conformation. By inhibiting the influx of calcium in smooth muscle cells, nisoldipine prevents calcium-dependent smooth muscle contraction and subsequent vasoconstriction. Nisoldipine may be used in alone or in combination with other agents in the management of hypertension. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Alendronic acid

(4-amino-1-hydroxy-1-phosphonobutyl)phosphonic acid

C4H13NO7P2 (249.0167)


Alendronate (Fosamax, Merck) is a bisphosphonate drug used for osteoporosis and several other bone diseases. It is marketed alone as well as in combination with vitamin D (2,800 U, under the name Fosavance). [HMDB] Alendronate (Fosamax, Merck) is a bisphosphonate drug used for osteoporosis and several other bone diseases. It is marketed alone as well as in combination with vitamin D (2,800 U, under the name Fosavance). M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

Lithium carbonate

Lithium carbonate

CLi2O3 (74.0168)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D004791 - Enzyme Inhibitors

   

Sodium fluoride (NaF)

Procter and gamble brand OF sodium fluoride

FNa (41.9882)


A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AA - Caries prophylactic agents A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CD - Fluoride D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides Indirect food contaminant arising from its use in adhesives for aluminium foil D001697 - Biomedical and Dental Materials

   

Juvenile hormone III

methyl (2E,6E)-9-[(2R)-3,3-dimethyloxiran-2-yl]-3,7-dimethylnona-2,6-dienoate

C16H26O3 (266.1882)


Juvenile hormone III is a member of the juvenile hormone family of compounds that is the methyl ester of (2E,6E)-9-[(2R)-3,3-dimethyloxiran-2-yl]-3,7-dimethylnona-2,6-dienoic acid. Juvenile hormone III is found in most insect species. It is an epoxide, an enoate ester, a fatty acid methyl ester and a juvenile hormone.

   

trans-Ocimene

trans-3,7-Dimethylocta-1,3,6-triene

C10H16 (136.1252)


trans-Ocimene is found in allspice. trans-Ocimene is a constituent of the pheromones of Anastrepha suspensa, Euploea tulliolus koxinga, and Labidus species (CCD). Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha-isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odour and it is used in perfumery. Constituent of the pheromones of Anastrepha suspensa, Euploea tulliolus koxinga and Labidus subspecies [CCD]

   

3,4-Methylenedioxybenzaldehyde

3,4-Dihydroxybenzaldehyde methylene ketal

C8H6O3 (150.0317)


3,4-Methylenedioxybenzaldehyde is found in highbush blueberry. 3,4-Methylenedioxybenzaldehyde is a flavouring agent used in cherry and vanilla flavour Flavouring agent used in cherry and vanilla flavours. 3,4-Methylenedioxybenzaldehyde is found in pepper (spice), highbush blueberry, and vanilla.

   

Sesamol

5-Hydroxy-1,3-benzodioxole;5-Benzodioxolol;3,4-Methylendioxyphenol;3,4-methylenedioxyphenoL;3,4-(Methylenedioxy)phenol, sesamoL;1,3-Benzodioxol-5-ol

C7H6O3 (138.0317)


Sesamol is a member of benzodioxoles. Sesamol is a natural product found in Sesamum indicum with data available. See also: Sesame Oil (part of). Isolated from sesame oil. Sesamol is found in fats and oils and sesame. Sesamol is found in fats and oils. Sesamol is isolated from sesame oi D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2]. Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2].

   

N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate

N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulphonic acid

C19H41NO3S (363.2807)


   

2-C-methyl-D-erythritol-4-phosphate

[(2R,3S)-2,3,4-trihydroxy-3-methylbutoxy]phosphonic acid

C5H13O7P (216.0399)


2-c-methyl-d-erythritol-4-phosphate is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. 2-c-methyl-d-erythritol-4-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). 2-c-methyl-d-erythritol-4-phosphate can be found in a number of food items such as tea, narrowleaf cattail, chickpea, and rocket salad (sspecies), which makes 2-c-methyl-d-erythritol-4-phosphate a potential biomarker for the consumption of these food products.

   

Chloramphenicol palmitate

2-[(Dichloroacetyl)amino]-3-hydroxy-3-(4-nitrophenyl)propyl palmitate

C27H42Cl2N2O6 (560.242)


C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D01072

   

Cyclacillin

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylicacid, 6-[[(1-aminocyclohexyl)carbonyl]amino]-3,3-dimethyl-7-oxo-, (2S,5R,6R)-

C15H23N3O4S (341.1409)


Cyclacillin is only found in individuals that have used or taken this drug. It is a cyclohexylamido analog of penicillanic acid. [PubChem]The bactericidal activity of cyclacillin results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Cyclacillin is stable in the presence of a variety of b-lactamases, including penicillinases and some cephalosporinases. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01334

   

Calcium biphosphate

Monobasic calcium phosphate

Ca(H2PO4)2 (233.9007)


   

Dodecanamide

DODECANAMIDE

C12H25NO (199.1936)


   

PS(16:0/18:1(9Z))

(2S)-2-amino-3-({[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C40H76NO10P (761.5207)


PS(16:0/18:1(9Z)) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(16:0/18:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

Dicyclopentadiene

4,7-Methano-1H-indene, 3a,4,7,7a-tetrahydro-, homopolymer

C10H12 (132.0939)


   

Norethindrone enanthate

Norethindrone enanthate; Norethisterone enanthate; 17alpha-Ethynyl-17beta-heptanoyloxy-4-estren-3-one

C27H38O3 (410.2821)


D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D08285

   

Silux

2-Hydroxy-3-{4-[2-(4-{2-hydroxy-3-[(2-methylprop-2-enoyl)oxy]propoxy}phenyl)propan-2-yl]phenoxy}propyl 2-methylprop-2-enoic acid

C29H36O8 (512.241)


D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

Camphorquinone

1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione bornane-2,3-dione

C10H14O2 (166.0994)


   

METHYL METHACRYLATE

Methyl 2-methylpropenoate

C5H8O2 (100.0524)


   

2-Hydroxyethyl methacrylate

1,2-Ethanediol mono(2-methyl)-2-propenoic acid

C6H10O3 (130.063)


   

Thallium

Thallium chloride, (203)TL,(35)CL-labeled

ClTl (239.9433)


A mercury-thallium alloy, which forms a eutectic at 8.5\\% thallium, is reported to freeze at -60 C, some 20 °C below the freezing point of mercury. This alloy is used in thermometers and low-temperature switches. In organic synthesis thallium(III) salts, as thallium trinitrate or triacetate, are useful reagents performing different transformations in aromatics, ketones, olefins, among others. Thallium is a constituent of the alloy in the anode plates in magnesium seawater batteries. Soluble thallium salts are added to gold plating baths to increase the speed of plating and to reduce grain size within the gold layer. A thallium stress test is a form of scintigraphy, where the amount of thallium in tissues correlates with tissue blood supply. Viable cardiac cells have normal Na+/K+ ion exchange pumps. The Tl+ cation binds the K+ pumps and is transported into the cells. Exercise or dipyridamole induces widening (vasodilation) of normal coronary arteries. This produces coronary steal from areas where arteries are maximally dilated. Areas of infarct or ischemic tissue will remain "cold". Pre- and post-stress thallium may indicate areas which will benefit from myocardial revascularization. Redistribution indicates the existence of coronary steal and the presence of ischemic coronary artery disease. Although thallium is a modestly abundant element in the Earths crust, with a concentration estimated to be about 0.7 mg/kg, mostly in association with potassium-based minerals in clays, soils, and granites, thallium is not generally economically recoverable from these sources. The major source of thallium for practical purposes is the trace amount that is found in copper, lead, zinc, and other heavy-metal-sulfide ores. One of the main methods of removing thallium (both radioactive and normal) from humans is to use Prussian blue, which is a material which absorbs thallium. Up to 20 g per day of Prussian blue is fed by mouth to the person, and it passes through their digestive system and comes out in the stool. Hemodialysis and hemoperfusion are also used to remove thallium from the blood serum. At later stage of the treatment additional potassium is used to mobilize thallium from the tissue. Thallium is a chemical element with the symbol Tl and atomic number 81. This soft gray poor metal resembles tin but discolors when exposed to air. Chemists William Crookes and Claude-Auguste Lamy discovered thallium independently in 1861 by the newly developed method of flame spectroscopy. Each discovered the new element in residues of sulfuric acid production. Thallium and its compounds are extremely toxic, and should be handled with great care. There are numerous recorded cases of fatal thallium poisoning. Contact with skin is dangerous, and adequate ventilation should be provided when melting this metal. Thallium(I) compounds have a high aqueous solubility and are readily absorbed through the skin. Exposure to them should not exceed 0.1 mg per m2 of skin in an 8-hour time-weighted average (40-hour work week). Thallium is a suspected human carcinogen. For a long time thallium compounds were easily available as rat poison. This fact and that it is water soluble and nearly tasteless led to frequent intoxications caused by accident or criminal intent. Thallium can also be obtained from the smelting of lead and zinc ores. Manganese nodules found on the ocean floor also contain some thallium, but the collection of these nodules has been and continues to be prohibitively expensive. There is also the potential for damaging the environment of the oceans. In addition, several other thallium minerals, containing 16\\% to 60\\% thallium, occur in nature as complexes of sulfides or selenides that primarily contain antimony, arsenic, copper, lead, and/or silver. However, these minerals are rare, and they have had no commercial importance as sources of thallium. The Allchar deposit in southern Macedonia was the only area where thallium was ever actively mined. This dep...

   

Phenyl-P

2-Methacryloyloxyethyl phenyl phosphate

C12H15O6P (286.0606)


   

amorpha-4,11-diene

(1R,4R,4aS,8aR)-4,7-dimethyl-1-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.1878)


   

Germacrene D

(1E,6E,8S)-1-methyl-8-(1-methylethyl)-5-methylidenecyclodeca-1,6-diene

C15H24 (204.1878)


Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.

   

farnesoic acid

trans,trans-Farnesoic acid

C15H24O2 (236.1776)


A methyl-branched, trienoic fatty acid consisting of dodeca-2,6,10-trienoic acid having three methyl substituents at the 3-, 7- and 11-positions.

   

methyl farnesoate

(2E,6E)-METHYL 3,7,11-TRIMETHYLDODECA-2,6,10-TRIENOATE

C16H26O2 (250.1933)


A member of the juvenile hormone family of compounds that is the methyl ester of farnesoic acid. Found in several species of crustaceans.

   

Isopren

2-methylbuta-1,3-diene

C5H8 (68.0626)


Isoprene, also known as 2-methyl-1,3-butadiene or 2-methyldivinyl, is a member of the class of compounds known as branched unsaturated hydrocarbons. Branched unsaturated hydrocarbons are hydrocarbons that contains one or more unsaturated carbon atoms, and an aliphatic branch. Isoprene can be found in carrot, sweet orange, and wild carrot, which makes isoprene a potential biomarker for the consumption of these food products. Isoprene, or 2-methyl-1,3-butadiene, is a common organic compound with the formula CH2=C(CH3)−CH=CH2. In its pure form it is a colorless volatile liquid. Isoprene is produced by many plants, and its polymers are the main component of natural rubber. C. G. Williams named the compound in 1860 after obtaining it from thermal decomposition (pyrolysis) of natural rubber; he correctly deduced the empirical formula C5H8 .

   

Isoglutamine

4,5-Diamino-5-oxopentanoic acid

C5H10N2O3 (146.0691)


   

Strophanthin

K-Strophanthin-beta

C36H54O14 (710.3513)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

Oxocamphor

1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione bornane-2,3-dione

C10H14O2 (166.0994)


   

Methyl methacrylate

2-Propenoic acid, 2-methyl-, methyl ester

C5H8O2 (100.0524)


Methyl methacrylate is an enoate ester compound having methacrylic acid as the carboxylic acid component and methanol as the alcohol component. (ChEBI An enoate ester compound having methacrylic acid as the carboxylic acid component and methanol as the alcohol component. (ChEBI)

   

D-Kynurenine

(2R)-6-methoxy-2-phenyl-2,3-dihydrochromen-4-one

C10H12N2O3 (208.0848)


Kynurenine, also known as 3-anthraniloylalanine, is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Kynurenine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Kynurenine can be found in a number of food items such as yellow zucchini, carrot, spinach, and broccoli, which makes kynurenine a potential biomarker for the consumption of these food products. Kynurenine is synthesized by the enzyme tryptophan dioxygenase, which is made primarily but not exclusively in the liver, and indoleamine 2,3-dioxygenase, which is made in many tissues in response to immune activation. Kynurenine and its further breakdown products carry out diverse biological functions, including dilating blood vessels during inflammation and regulating the immune response. Some cancers increase kynurenine production, which increases tumor growth . 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite.

   

Mevalonic acid

3R-methyl-3,5-dihydroxy-pentanoic acid

C6H12O4 (148.0736)


A dihydroxy monocarboxylic acid comprising valeric acid having two hydroxy groups at the 3- and 5-positions together with a methyl group at the 3-position.

   

Stirrup

InChI=1\C15H26O\c1-13(2)7-5-8-14(3)9-6-10-15(4)11-12-16\h7,9,11,16H,5-6,8,10,12H2,1-4H3\b14-9+,15-11

C15H26O (222.1984)


C26170 - Protective Agent > C275 - Antioxidant Acquisition and generation of the data is financially supported in part by CREST/JST. Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria. Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].

   

3-Methylhistidine

(2S)-2-Amino-3-(1-methyl-1H-imidazol-5-yl)propanoic acid

C7H11N3O2 (169.0851)


3-Methylhistidine, also known as 3-MHis or 3MH, belongs to the class of organic compounds known as histidine and derivatives. 3MH is also classified as a methylamino acid. Methylamino acids are primarily proteogenic amino acids (found in proteins) which have been methylated (in situ) on their side chains by various methyltransferase enzymes. 3-Methylhistidine is also classified as a member of the class of compounds known as L-alpha-amino acids. L-alpha-Amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. 3-Methylhistidine is generated from histidine residues found in proteins. Histidine can be methylated at either the N1 or N3 position of its imidazole ring, yielding the isomers 1-methylhistidine (1MH; also referred to as pi-methylhistidine) or 3-methylhistidine (3MH; tau-methylhistidine), respectively. There is considerable confusion with regard to the nomenclature of the methylated nitrogen atoms on the imidazole ring of histidine and other histidine-containing peptides such as anserine. In particular, older literature (mostly prior to the year 2000) designated anserine (Npi methylated) as beta-alanyl-N1-methyl-histidine, whereas according to standard IUPAC nomenclature, anserine is correctly named as beta-alanyl-N3-methyl-histidine. As a result, many papers published prior to the year 2000 incorrectly identified 1MH as a specific marker for dietary consumption or various pathophysiological effects when they really were referring to 3MH (PMID: 24137022). Histidine methylation on the 3- or tau site is mediated by the enzyme known as METTL18. METTL18 is a nuclear methyltransferase protein that contains a functional nuclear localization signal and accumulates in nucleoli. Urinary concentrations of 3-methylhistidine can be used as a biomarker for skeletal muscle protein breakdown in humans who have been subject to muscle injury (PMID: 16079625). 3-methylhistidine is formed by the posttranslational methylation of histidine residues of the main myofibrillar proteins actin and myosin. During protein catabolism, 3-methylhistidine is released but cannot be reutilized. Therefore, the plasma concentration and urine excretion of 3-methylhistidine are sensitive markers of myofibrillar protein degradation (PMID: 32235743). Approximately 75\\\% of 3-methylhistidine is estimated to originate from skeletal muscle (PMID: 32235743). In addition to the degradation of muscle proteins, the 3-methylhistidine level is affected by the degradation of intestinal proteins and meat intake. 3-Methylhistidine exists in all eukaryotes, ranging from yeast to humans. In humans, 3-methylhistidine is involved in methylhistidine metabolism. 3-Methylhistidine has been found to be associated with several diseases such as diabetes mellitus type 2, eosinophilic esophagitis, and kidney disease. The normal concentration of 3-methylhistidine in the urine of healthy adult humans has been detected and quantified in a range of 3.63–69.27 micromoles per millimole (umol/mmol) of creatinine, with most studies reporting the average urinary concentration between 15–20 umol/mmol of creatinine. The average concentration of 3-methylhistidine in human blood plasma has been detected and quantified at 2.85 micromolar (uM) with a range of 0.0–5.9 uM. As a general rule, urinary 1MH is associated with white meat intake (p< 0.001), whereas urinary 3MH is associated with red meat intake (p< 0.001) (PMID: 34091671). 3-Methyl-L-histidine is a biomarker for meat consumption, especially chicken. It is also a biomarker for the consumption of soy products.

   

Escitalopram

(1S)-1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydro-2-benzofuran-5-carbonitrile

C20H21FN2O (324.1638)


Escitalopram is a furancarbonitrile that is one of the Serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Escitalopram (Cipralex) is a medication developed by the Danish pharmaceutical company Lundbeck, that acts as a selective serotonin reuptake inhibitor (SSRI). It is typically used as an antidepressant to treat depression associated with mood disorders, although it also may be used in the treatment of body dysmorphic disorder and anxiety, including OCD. In the United States, the drug is marketed under the name Lexapro by Forest Laboratories, Inc; Escitalopram is a medication that acts as a selective serotonin reuptake inhibitor (SSRI). It is typically used as an antidepressant to treat depression associated with mood disorders, although it also may be used in the treatment of body dysmorphic disorder and anxiety, including OCD; Discontinuation from antidepressants, especially abruptly, has been known to cause certain withdrawal symptoms. One possible discontinuation symptom from Escitalopram is a type of spontaneous nerve pulse known as paresthesia or electric shock sensations, described by some patients as a feeling of small electric shocks, which may be accompanied by dizziness. These pulses may be short in duration, only milliseconds long, may affect any region of the body, and recur up to several times a minute, throughout all waking hours. They can be increased by physical activity, but are not solely linked to muscular activity. Other discontinuation symptoms include extreme sensitivity to loud sounds and bright lights, chills, hot flushes, cold sweats, reddening of the face, abdominal pain, weight gain and extreme mental fatigue. A furancarbonitrile that is one of the Serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Escitalopram (Cipralex) is a medication developed by the Danish pharmaceutical company Lundbeck, that acts as a selective serotonin reuptake inhibitor (SSRI). It is typically used as an antidepressant to treat depression associated with mood disorders, although it also may be used in the treatment of body dysmorphic disorder and anxiety, including OCD. In the United States, the drug is marketed under the name Lexapro by Forest Laboratories, Inc; Escitalopram is a medication that acts as a selective serotonin reuptake inhibitor (SSRI). It is typically used as an antidepressant to treat depression associated with mood disorders, although it also may be used in the treatment of body dysmorphic disorder and anxiety, including OCD; Discontinuation from antidepressants, especially abruptly, has been known to cause certain withdrawal symptoms. One possible discontinuation symptom from Escitalopram is a type of spontaneous nerve pulse known as paresthesia or electric shock sensations, described by some patients as a feeling of small electric shocks, which may be accompanied by dizziness. These pulses may be short in duration, only milliseconds long, may affect any region of the body, and recur up to several times a minute, throughout all waking hours. They can be increased by physical activity, but are not solely linked to muscular activity. Other discontinuation symptoms include extreme sensitivity to loud sounds and bright lights, chills, hot flushes, cold sweats, reddening of the face, abdominal pain, weight gain and extreme mental fatigue. [HMDB] N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators Escitalopram ((S)-Citalopram), the S-enantiomer of racemic Citalopram, is a selective serotonin reuptake inhibitor (SSRI) with a Ki of 0.89 nM. Escitalopram has ~30 fold higher binding affinity than its R(-)-enantiomer and shows selectivity over both dopamine transporter (DAT) and norepinephrine transporter (NET). Escitalopram is an antidepressant for the research of major depression[1][2].

   

Dexfenfluramine

ethyl[(2S)-1-[3-(trifluoromethyl)phenyl]propan-2-yl]amine

C12H16F3N (231.1235)


Dexfenfluramine, also marketed under the name Redux, is a serotoninergic anorectic drug. It was for some years in the mid-1990s approved by the United States Food and Drug Administration for the purposes of weight loss. However, following multiple concerns about the cardiovascular side-effects of the drug, such approval was withdrawn. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C78272 - Agent Affecting Nervous System > C29728 - Anorexiant D049990 - Membrane Transport Modulators

   

Phosphoric acid

Phosphoric acid

H3O4P (97.9769)


D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

sn-glycero-3-Phosphoethanolamine

(2-aminoethoxy)[(2S)-2,3-dihydroxypropoxy]phosphinic acid

C5H14NO6P (215.0559)


Sn-glycero-3-phosphoethanolamine is a substrate for: Lysoplasmalogenase. Glycerophosphoethanolamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1190-00-7 (retrieved 2024-07-25) (CAS RN: 1190-00-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

8-iso-15-keto-PGE2

(5Z)-7-[(1S,2R)-3-hydroxy-5-oxo-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]hept-5-enoic acid

C20H30O5 (350.2093)


8-iso-15-keto-PGE2 is an isoprostane. Isoprostanes are arachidonic acid metabolites produced by peroxidative attack of membrane lipids. These accumulate to substantial levels in many clinical conditions characterized in part by accumulation of free radicals and reactive oxygen species, including asthma, hypertension and ischemia reperfusion injury. For this reason, they are frequently used as markers of oxidative stress; however, many are now finding that these molecules are not inert, but in fact evoke powerful biological responses in an increasing array of cell types. In many cases, these biological effects can account in part for the various features and manifestations of those clinical conditions. Thus, it may be possible that the isoprostanes are playing somewhat of a causal role in those disease states (PMID: 14504139). Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, to induce uterine contractions and to activate platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1alpha and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype (PMID: 16978535). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 8-iso-15-keto-PGE2 is an isoprostane. Isoprostanes are arachidonic acid metabolites produced by peroxidative attack of membrane lipids. These accumulate to substantial levels in many clinical conditions characterized in part by accumulation of free radicals and reactive oxygen species, including asthma, hypertension and ischemia reperfusion injury. For this reason, they are frequently used as markers of oxidative stress; however, many are now finding that these molecules are not inert, but in fact evoke powerful biological responses in an increasing array of cell types. In many cases, these biological effects can account in part for the various features and manifestations of those clinical conditions. Thus, it may be possible that the isoprostanes are playing somewhat of a causal role in those disease states. (PMID: 14504139)

   

cis-Ocimene

(Z)-3,7-dimethylocta-1,3,6,-triene

C10H16 (136.1252)


Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odor. It is used in perfumery. cis-beta-Ocimene is found in many foods, some of which are cornmint, sweet orange, sweet basil, and common sage. cis-Ocimene is found in allspice. Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odor. It is used in perfumery. (Wikipedia

   

4-Hydroxybenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-[(2-{[2-(4-hydroxybenzoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C28H40N7O18P3S (887.1363)


This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.

   

Strophanthin

7,11-dihydroxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-15-methyl-14-(5-oxo-2,5-dihydrofuran-3-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecane-2-carbaldehyde

C36H54O14 (710.3513)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

C-Quens

14-acetyl-8-chloro-2,15-dimethyl-5-oxotetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-6,8-dien-14-yl acetate

C23H29ClO4 (404.1754)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

3,4-Methylenedioxymethamphetamine

Hydrochloride, N-methyl-3,4-methylenedioxyamphetamine

C11H15NO2 (193.1103)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents D049990 - Membrane Transport Modulators Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Citalopram

Citalopram

C20H21FN2O (324.1638)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent EAWAG_UCHEM_ID 2901; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 2901 CONFIDENCE standard compound; INTERNAL_ID 8590 D049990 - Membrane Transport Modulators

   

4-Pyridoxic acid

4-Pyridoxic acid

C8H9NO4 (183.0532)


4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

L-3-Methylhistidine

3-Methyl-L-histidine

C7H11N3O2 (169.0851)


3-Methyl-L-histidine is a biomarker for meat consumption, especially chicken. It is also a biomarker for the consumption of soy products.

   

PHENYLACETIC ACID

2-phenylacetic acid

C8H8O2 (136.0524)


D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

venlafaxine

venlafaxine

C17H27NO2 (277.2042)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D000068760 - Serotonin and Noradrenaline Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants CONFIDENCE standard compound; EAWAG_UCHEM_ID 645 D049990 - Membrane Transport Modulators

   

bupropion

bupropion

C13H18ClNO (239.1077)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2803 D049990 - Membrane Transport Modulators D000077444 - Smoking Cessation Agents

   

Phosphoric acid

Hydrogen phosphate

H3O4P (97.9769)


A phosphorus oxoacid that consists of one oxo and three hydroxy groups joined covalently to a central phosphorus atom. D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

Vanillylmandelic acid

dl-4-hydroxy-3-methoxymandelic acid

C9H10O5 (198.0528)


D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids An aromatic ether that is the 3-O-methyl ether of 3,4-dihydroxymandelic acid. Vanillylmandelic acid is the endproduct of epinephrine and norepinephrine metabolism. Vanillylmandelic acid can be used as an indication of the disorder in neurotransmitter metabolism as well. Vanillylmandelic acid has antioxidant activity towards DPPH radical with an IC50 value of 33 μM[1].

   

Germacrene D

1,6-Cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-, [s-(E,E)]-

C15H24 (204.1878)


(-)-germacrene D is a germacrene D. It is an enantiomer of a (+)-germacrene D. (-)-Germacrene D is a natural product found in Teucrium montanum, Stachys obliqua, and other organisms with data available. See also: Clary Sage Oil (part of).

   

Squalene

InChI=1\C30H50\c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4\h15-18,23-24H,9-14,19-22H2,1-8H3\b27-17+,28-18+,29-23+,30-24

C30H50 (410.3912)


Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Pinocembrin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-

C15H12O4 (256.0736)


(2s)-pinocembrin, also known as 5,7-dihydroxyflavanone or dihydrochrysin, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, (2s)-pinocembrin is considered to be a flavonoid lipid molecule (2s)-pinocembrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (2s)-pinocembrin can be found in a number of food items such as acorn, lentils, mulberry, and sorghum, which makes (2s)-pinocembrin a potential biomarker for the consumption of these food products. (s)-pinocembrin, also known as 5,7-dihydroxyflavanone or dihydrochrysin, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3 (s)-pinocembrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-pinocembrin is a bitter tasting compound found in mexican oregano and tarragon, which makes (s)-pinocembrin a potential biomarker for the consumption of these food products. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.069 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.067 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.071 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.070 5,7-Dihydroxyflavanone is a natural product found in Pinus contorta var. latifolia, Piper nigrum, and other organisms with data available. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].

   

Citalopram

Citalopram

C20H21FN2O (324.1638)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 1513 CONFIDENCE standard compound; INTERNAL_ID 4118

   

ketamine

ketamine

C13H16ClNO (237.092)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1586

   

fenfluramine

fenfluramine hydrochloride

C12H16F3N (231.1235)


A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C78272 - Agent Affecting Nervous System > C29728 - Anorexiant D049990 - Membrane Transport Modulators CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 600 CONFIDENCE standard compound; INTERNAL_ID 2248

   

Paroxetine

3-(1,3-benzodioxol-5-yloxymethyl)-4-(4-fluorophenyl)piperidine

C19H20FNO3 (329.1427)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 1526 CONFIDENCE standard compound; INTERNAL_ID 4079 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3611 Paroxetine, a phenylpiperidine derivative, is a potent and selective serotonin reuptake inhibitor (SSRI). Paroxetine is a very weak inhibitor of norepinephrine (NE) uptake but it is still more potent at this site than the other SSRIs[1].

   

Diethyltoluamide

N,N-Diethyl-3-methylbenzamide

C12H17NO (191.131)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents D020011 - Protective Agents D016573 - Agrochemicals Same as: D02379 CONFIDENCE Reference Standard (Level 1)

   

sotalol

sotalol

C12H20N2O3S (272.1195)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C93038 - Cation Channel Blocker CONFIDENCE Reference Standard (Level 1)

   

venlafaxine

venlafaxine

C17H27NO2 (277.2042)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D000068760 - Serotonin and Noradrenaline Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D049990 - Membrane Transport Modulators CONFIDENCE Reference Standard (Level 1)

   

Levamisole

(S)-(-)-Levamisole

C11H12N2S (204.0721)


P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CE - Imidazothiazole derivatives C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant > C2141 - Chemo Immunostimulant Adjuvant D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018501 - Antirheumatic Agents D007155 - Immunologic Factors C2140 - Adjuvant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB142_Levamisole_pos_50eV_CB000052.txt [Raw Data] CB142_Levamisole_pos_40eV_CB000052.txt [Raw Data] CB142_Levamisole_pos_30eV_CB000052.txt [Raw Data] CB142_Levamisole_pos_20eV_CB000052.txt [Raw Data] CB142_Levamisole_pos_10eV_CB000052.txt Levamisole ((-)-Levamisole), an anthelmintic agent with immunomodulatory properties. Levamisole acts as a positive allosteric modulator (PAM) for the α3β2 (EC50=300 μM) and α3β4 (EC50=100 μM) subtype of nAChRs. Orally active[1][2].

   

2,5-Dihydroxybenzoic acid

"2,5-Dihydroxybenzoic acid"

C7H6O4 (154.0266)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00007.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00006.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00002.jpg 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors. 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors.

   

isosafrole

InChI=1\C10H10O2\c1-2-3-8-4-5-9-10(6-8)12-7-11-9\h2-6H,7H2,1H3\b3-2

C10H10O2 (162.0681)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.089

   

Kynurenine

(2R)-6-methoxy-2-phenyl-2,3-dihydrochromen-4-one

C10H12N2O3 (208.0848)


A ketone that is alanine in which one of the methyl hydrogens is substituted by a 2-aminobenzoyl group. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.060 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite. L-Kynurenine is a metabolite of the amino acid L-tryptophan. L-Kynurenine is an aryl hydrocarbon receptor agonist.

   

primidone

Primidone (Mysoline)

C12H14N2O2 (218.1055)


N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AA - Barbiturates and derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

nisoldipine

Nisoldipine (Sular)

C20H24N2O6 (388.1634)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

mirtazapine

Mirtazapine aka "2-methyl-1,2,3,4,10,14b-hexahydrobenzo[c]pyrazino[1,2-a]pyrido[3,2-f]azepine"

C17H19N3 (265.1579)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants Mirtazapine (Org3770) is a potent and orally active noradrenergic and specific serotonergic antidepressant (NaSSA) agent. Mirtazapine is also a 5-HT2, 5-HT3, histamine H1 receptor and α2-adrenoceptor antagonist with pKi values of 8.05, 8.1, 9.3 and 6.95, respectively[1][2].

   

N-acetyl-L-aspartic acid

N-acetyl-L-aspartic acid

C6H9NO5 (175.0481)


An N-acyl-L-aspartic acid in which the acyl group is specified as acetyl. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OTCCIMWXFLJLIA-BYPYZUCNSA-N_STSL_0218_N-Acetyl-L-aspartic acid_2000fmol_190326_S2_LC02MS02_065; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. N-Acetyl-L-aspartic acid is a derivative of aspartic acid.

   

3-Hydroxykynurenine

3-hydroxy-dl-kynurenine

C10H12N2O4 (224.0797)


A hydroxykynurenine that is kynurenine substituted by a hydroxy group at position 3. C26170 - Protective Agent > C275 - Antioxidant MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; VCKPUUFAIGNJHC-UHFFFAOYSA-N_STSL_0007_3-Hydroxy-DL-Kynurenine_8000fmol_180416_S2_LC02_MS02_13; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

PHENYLACETIC ACID

2-phenylacetic acid

C8H8O2 (136.0524)


A monocarboxylic acid that is toluene in which one of the hydrogens of the methyl group has been replaced by a carboxy group. D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

3-Methyl-L-histidine

N(pros)-Methyl-L-histidine

C7H11N3O2 (169.0851)


A L-histidine derivative that is L-histidine substituted by a methyl group at position 3 on the imidazole ring. 3-Methylhistidine is a product of peptide bond synthesis and methylation of actin and myosin. The measurement of 3-Methylhistidine provides an index of the rate of muscle protein breakdown. [HMDB]. 3-Methylhistidine is a biomarker for meat consumption, especially chicken. It is also a biomarker for the consumption of soy products. 3-Methyl-L-histidine is a biomarker for meat consumption, especially chicken. It is also a biomarker for the consumption of soy products.

   

Phenylpyruvic acid

2-Oxo-3-phenylpropanoic acid

C9H8O3 (164.0473)


Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1]. Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1].

   

3-Hydroxyisovaleric acid

3-Hydroxy-3-methylbutanoic acid

C5H10O3 (118.063)


A 3-hydroxy monocarboxylic acid that is isovaleric acid substituted at position 3 by a hydroxy group. Used as indicator of biotin deficiency. 3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2]. 3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2].

   

isopropanol

Isopropyl alcohol

C3H8O (60.0575)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D012997 - Solvents

   

Diaminopimelic acid

meso-α,ε-Diaminopimelic acid

C7H14N2O4 (190.0954)


2,6-Diaminoheptanedioic acid is an endogenous metabolite.

   

Vanylglycol

Vanylglycol

C9H12O4 (184.0736)


   

ALENDRONIC ACID

ALENDRONIC ACID

C4H13NO7P2 (249.0167)


M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

chlorpheniramine

chlorpheniramine

C16H19ClN2 (274.1237)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents

   

2,6-Diaminopimelic acid

DL-2,6-Diaminopimelic acid

C7H14N2O4 (190.0954)


The amino dicarboxylic acid that is heptanedioic acid with amino substituents at C-2 and C-6. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GMKMEZVLHJARHF-UHFFFAOYSA-N_STSL_0247_26-diaminopimelic_acid_4000fmol_190413_S2_LC02MS02_053; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 2,6-Diaminoheptanedioic acid is an endogenous metabolite.

   

4-Pyridoxic acid

4-Pyridoxic acid

C8H9NO4 (183.0532)


A methylpyridine that is 2-methylpyridine substituted by a hydroxy group at C-3, a carboxy group at C-4, and a hydroxymethyl group at C-5. It is the catabolic product of vitamin B6 and is excreted in the urine. 4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

5,6-Dimethylbenzimidazole

5,6-Dimethylbenzimidazole

C9H10N2 (146.0844)


A dimethylbenzimidazole carrying methyl substituents at positions 5 and 6. 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   

Altanserin

Altanserin

C22H22FN3O2S (411.1417)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist Altanserin can synthesize Fluorine-18 Altanserin. Fluorine-18 Altanserin binds to the brain 5HT2 receptors[1].

   

Aripiprazole

Aripiprazole

C23H27Cl2N3O2 (447.148)


An N-arylpiperazine that is piperazine substituted by a 4-[(2-oxo-1,2,3,4-tetrahydroquinolin-7-yl)oxy]butyl group at position 1 and by a 2,3-dichlorophenyl group at position 4. It is an antipsychotic drug used for the treatment of Schizophrenia, and other mood disorders. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics Aripiprazole (OPC-14597), an atypical antipsychotic, is a potent and high-affinity dopamine D2 receptor partial agonist. Aripiprazole is an inverse agonist at 5-HT2B and 5-HT2A receptors and displays partial agonist actions at 5-HT1A, 5-HT2C, D3, and D4 receptors. Aripiprazole can be used for the research of schizophrenia and COVID19[1][2][3][4].

   

bupropion

bupropion

C13H18ClNO (239.1077)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators D000077444 - Smoking Cessation Agents Bupropion is a selective catecholamine (norepinephrine and dopamine) reuptake inhibitor. It has only a small effect on serotonin reuptake. It does not inhibit MAO. The antidepressant effect of bupropion is considered to be mediated by its dopaminergic and noradrenergic action. Bupropion has also been shown to act as a competitive alpha-3-beta-4- nicotinic antagonist, the alpha-3-beta-4-antagonism has been shown to interrupt addiction in studies of other drugs such as ibogaine. This alpha-3-beta-4-antagonism correlates quite well with the observed effect of interrupting addiction.; A unicyclic, aminoketone antidepressant. The mechanism of its therapeutic actions is not well understood, but it does appear to block dopamine uptake. The hydrochloride is available as an aid to smoking cessation treatment; Bupropion is a selective catecholamine (norepinephrine and dopamine) reuptake inhibitor. It has only a small effect on serotonin reuptake. It does not inhibit MAO. The antidepressant effect of bupropion is considered to be mediated by its dopaminergic and noradrenergic action. Bupropion has also been shown to act as a competitive alpha-3-beta-4-nicotinic antagonist, the alpha-3-beta-4-antagonism has been shown to interrupt addiction in studies of other drugs such as ibogaine. This alpha-3-beta-4-antagonism correlates quite well with the observed effect of interrupting addiction. Bupropion (amfebutamone) (brand names Wellbutrin and Zyban) is an antidepressant of the aminoketone class, chemically unrelated to tricyclics or selective serotonin reuptake inhibitors (SSRIs). It is similar in structure to the stimulant cathinone, and to phenethylamines in general. It is a chemical derivative of diethylpropion, an amphetamine-like substance used as an anorectic. Bupropion is both a dopamine reuptake inhibitor and a norepinephrine reuptake inhibitor. It is often used as a smoking cessation aid. [HMDB]. Bupropion is found in many foods, some of which are cardoon, mung bean, salmonberry, and climbing bean.

   

Muramic acid

Muramic acid

C9H17NO7 (251.1005)


   

nefazodone

nefazodone

C25H32ClN5O2 (469.2244)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D000068760 - Serotonin and Noradrenaline Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D049990 - Membrane Transport Modulators Nefazodone is an orally active phenylpiperazine antidepressant. Nefazodone can potently and selectively block postsynaptic 5-HT2A receptors, and moderately inhibit 5-HT and noradrenaline reuptake. Nefazodone can also relieve the adverse effects of stress on the the immune system of mice. Nefazodone has a high affinity for CYP3A4 isoenzyme, which indicates that it has certain risk of agent-agent interaction[1][2][3].

   

quetiapine

quetiapine

C21H25N3O2S (383.1667)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quetiapine (ICI204636) is a 5-HT receptors agonist with a pEC50 of 4.77 for human 5-HT1A receptor. Quetiapine is a dopamine receptor antagonist with a pIC50 of 6.33 for human D2 receptor. Quetiapine has moderate to high affinity for the human D2, HT1A, 5-HT2A, 5-HT2C receptor with pKis of 7.25, 5.74, 7.54, 5.55. Antidepressant and anxiolytic effects[1].

   

Sertraline

cis-sertraline

C17H17Cl2N (305.0738)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators

   

Farnesol

InChI=1/C15H26O/c1-13(2)7-5-8-14(3)9-6-10-15(4)11-12-16/h7,9,11,16H,5-6,8,10,12H2,1-4H3/b14-9+,15-11

C15H26O (222.1984)


A farnesane sesquiterpenoid that is dodeca-2,6,10-triene substituted by methyl groups at positions 3, 7 and 11 and a hydroxy group at position 1. Farnesol is a colorless liquid with a delicate floral odor. (NTP, 1992) Farnesol is a farnesane sesquiterpenoid that is dodeca-2,6,10-triene substituted by methyl groups at positions 3, 7 and 11 and a hydroxy group at position 1. It has a role as a plant metabolite, a fungal metabolite and an antimicrobial agent. It is a farnesane sesquiterpenoid, a primary alcohol and a polyprenol. trans,trans-Farnesol is a natural product found in Lonicera japonica, Psidium guajava, and other organisms with data available. (2-trans,6-trans)-Farnesol is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless liquid extracted from oils of plants such as citronella, neroli, cyclamen, and tuberose. It is an intermediate step in the biological synthesis of cholesterol from mevalonic acid in vertebrates. It has a delicate odor and is used in perfumery. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) The (2-trans,6-trans)-stereoisomer of farnesol. C26170 - Protective Agent > C275 - Antioxidant Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria. Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria.

   

pindolol

pindolol

C14H20N2O2 (248.1525)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Pindolol (LB-46) is a nonselective β-blocker with partial beta-adrenergic receptor agonist activity, also functions as a 5-HT1A receptor weak partial antagonist (Ki=33nM).

   

Ritalin

methylphenidate

C14H19NO2 (233.1416)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators

   

ethylmorphine

ethylmorphine

C19H23NO3 (313.1678)


R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics S - Sensory organs > S01 - Ophthalmologicals

   

isopentenyl pyrophosphate

3-methylbut-3-enyl pyrophosphate

C5H12O7P2 (246.0058)


   

safrole

safrole

C10H10O2 (162.0681)


A member of the class of benzodioxoles that is 1,3-benzodioxole which is substituted by an allyl group at position 5. It is found in several plants, including black pepper, cinnamon and nutmeg, and is present in several essential oils, notably that of sassafras. It has insecticidal properties and has been used as a topical antiseptic. Although not thought to pose a significant carcinogenic risk to humans, findings of weak carcinogenicity in rats have resulted in the banning of its (previously widespread) use in perfumes and soaps, and as a food additive.

   

15-keto-Prostaglandin E2

9,15-dioxo-11-hydroxy-prosta-5Z,13E-dien-1-oic acid

C20H30O5 (350.2093)


   

ACRYLIC ACID

Polyacrylic acid, sodium salt

C3H4O2 (72.0211)


A alpha,beta-unsaturated monocarboxylic acid that is ethene substituted by a carboxy group. D001697 - Biomedical and Dental Materials > D014014 - Tissue Adhesives It is used as a food additive .

   

b-Hydroxyisovalerate

β-hydroxy-beta-methylbutyric acid

C5H10O3 (118.063)


3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2]. 3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2].

   

methyl protodioscin

2-[4-(16-{[4-hydroxy-6-(hydroxymethyl)-3,5-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icos-18-en-6-yl)-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C52H86O22 (1062.561)


Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2]. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2].

   

FA 3:1

2-Propenoic acid

C3H4O2 (72.0211)


D001697 - Biomedical and Dental Materials > D014014 - Tissue Adhesives

   

FA 20:5;O3

(5R,6E,8Z,10E,12E,14R,15R,17Z)-5,14,15-trihydroxyicosa-6,8,10,12,17-pentaenoic acid

C20H30O5 (350.2093)


   

FA 20:5;O4

(5R,6Z,8E,10E,14Z)-5,20,20-trihydroxy-12-oxoicosa-6,8,10,14-tetraenoic acid

C20H30O6 (366.2042)


   

CoA 5:1

3,3-dimethacrylyl-CoA;3,3-dimethacrylyl-coenzyme A;DMA-CoA;S-(3-Methyl-crotonoyl)-coenzym-A;S-(3-methylcrotonoyl)-coenzyme-A;beta,beta-dimethacrylyl-CoA;beta,beta-dimethacrylyl-coenzyme A

C26H42N7O17P3S (849.1571)


   

PS 34:1

L-Serine, 3-[(1-oxohexadecyl)oxy]-2-[(1-oxo-9-octadecenyl)oxy]propyl hydrogen phosphate (ester), [R-(Z)]-

C40H76NO10P (761.5207)


A 3-sn-phosphatidyl-L-serine compound with a palmitoyl group at the 1-position and an oleoyl group at the 2-position.

   

Lanosterin

Lanosta-8,24-dien-3beta-ol

C30H50O (426.3861)


A tetracyclic triterpenoid that is lanosta-8,24-diene substituted by a beta-hydroxy group at the 3beta position. It is the compound from which all steroids are derived. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Geranyl diphosphate

GERANYL PYROPHOSPHATE AMMONIUM 200

C10H20O7P2 (314.0684)


The diphosphate of the polyprenol compound geraniol.

   

Limonene-1,2-epoxide

Limonene-1,2-epoxide

C10H16O (152.1201)


   

farnesyl diphosphate

2-trans,6-trans-Farnesyl diphosphate

C15H28O7P2 (382.131)


The trans,trans-stereoisomer of farnesyl diphosphate.

   

Norethisterone enanthate

Norethisterone enanthate

C27H38O3 (410.2821)


D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents

   

2-HYDROXYETHYL METHACRYLATE

2-HYDROXYETHYL METHACRYLATE

C6H10O3 (130.063)


   

Lauramide

DODECANAMIDE

C12H25NO (199.1936)


A fatty amide of lauric acid.

   

Cyclacillin

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylicacid, 6-[[(1-aminocyclohexyl)carbonyl]amino]-3,3-dimethyl-7-oxo-, (2S,5R,6R)-

C15H23N3O4S (341.1409)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Safrol

InChI=1\C10H10O2\c1-2-3-8-4-5-9-10(6-8)12-7-11-9\h2,4-6H,1,3,7H

C10H10O2 (162.0681)


   

LS-631

InChI=1\C8H6O3\c9-4-6-1-2-7-8(3-6)11-5-10-7\h1-4H,5H

C8H6O3 (150.0317)


   

Sesamol

InChI=1\C7H6O3\c8-5-1-2-6-7(3-5)10-4-9-6\h1-3,8H,4H

C7H6O3 (138.0317)


D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2]. Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2].

   

Lanster

(3S,5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,5,6,7,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H50O (426.3861)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Devoton

Methyl acetate [UN1231] [Flammable liquid]

C3H6O2 (74.0368)


   

GENOP

InChI=1\C7H6O4\c8-4-1-2-6(9)5(3-4)7(10)11\h1-3,8-9H,(H,10,11

C7H6O4 (154.0266)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors. 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors.

   

AI3-08920

InChI=1\C8H8O2\c9-8(10)6-7-4-2-1-3-5-7\h1-5H,6H2,(H,9,10

C8H8O2 (136.0524)


D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

AIDS-228041

2,6,10-Dodecatrienoic acid, 3,7,11-trimethyl-, methyl ester, (2E,6E)-

C16H26O2 (250.1933)


   

Isohol

Isopropyl alcohol (only persons who manufacture by the strong acid process are subject, supplier notification not required)

C3H8O (60.0575)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D012997 - Solvents

   

AI3-02938

InChI=1\C9H10O\c1-8(10)7-9-5-3-2-4-6-9\h2-6H,7H2,1H

C9H10O (134.0732)


   

156-06-9

Benzenepropanoic acid, .alpha.-oxo-

C9H8O3 (164.0473)


Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1]. Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1].

   

12(S)-HPETE

12-Hydroperoxy-5,8,10,14-eicosatetraenoic acid

C20H32O4 (336.23)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents The (S)-enantiomer of 12-HPETE.

   

Calcium biphosphate

Monocalcium phosphate

CaH4O8P2 (233.9007)


   

MPD cpd

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,22.ALPHA.,25R)-26-(.BETA.-D-GLUCOPYRANOSYLOXY)-22-METHOXYFUROST-5-EN-3-YL O-6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL-(1->2)-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL-(1->4))-

C52H86O22 (1062.561)


Methylprotodioscin is a steroid saponin. Methylprotodioscin is a natural product found in Dracaena draco, Smilax menispermoidea, and other organisms with data available. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2]. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2].

   

Chlorhexidine

Chlorhexidine

C22H30Cl2N10 (504.2032)


A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AC - Biguanides and amidines D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides D003358 - Cosmetics > D009067 - Mouthwashes D001697 - Biomedical and Dental Materials D000890 - Anti-Infective Agents D004202 - Disinfectants

   

Sodium fluoride

Sodium fluoride

FNa (41.9882)


A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AA - Caries prophylactic agents A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CD - Fluoride D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides D001697 - Biomedical and Dental Materials

   

G-29701

oxyphenbutazone

C19H20N2O3 (324.1474)


A metabolite of phenylbutazone obtained by hydroxylation at position 4 of one of the phenyl rings. Commonly used (as its hydrate) to treat pain, swelling and stiffness associated with arthritis and gout, it was withdrawn from the market 1984 following association with blood dyscrasis and Stevens-Johnson syndrome. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AA - Butylpyrazolidines S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Oxyphenbutazone is a Phenylbutazone (HY-B0230) metabolite, with anti-inflammatory effect. Oxyphenbutazone is an orally active non-selective COX inhibitor. Oxyphenbutazone selectively kills non-replicating Mycobaterium tuberculosis[1][2].

   

Etidronic acid

Etidronic acid

C2H8O7P2 (205.9745)


M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

METHYL ACETATE

METHYL ACETATE

C3H6O2 (74.0368)


   

Arsenic acid

Arsenic acid

AsH3O4 (141.9247)


An arsenic oxoacid comprising one oxo group and three hydroxy groups attached to a central arsenic atom. D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals

   

3,4-methylenedioxymethamphetamine

3,4-methylenedioxymethamphetamine

C11H15NO2 (193.1103)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents D049990 - Membrane Transport Modulators Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Triazophos

Triazophos

C12H16N3O3PS (313.065)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

Succimer

Succimer

C4H6O4S2 (181.9708)


D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes

   

fluoride

FLUORIDE ion

F- (18.9984)


D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides D001697 - Biomedical and Dental Materials

   
   

Psilocybine

Psilocybine

C12H17N2O4P (284.0926)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Diethylpropion

(S)-diethylpropion

C13H19NO (205.1467)


A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   

m-Phenylenediamine

m-Phenylenediamine

C6H8N2 (108.0687)


   

PAMIDRONIC ACID

PAMIDRONIC ACID

C3H11NO7P2 (235.0011)


M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

ceftizoxime

ceftizoxime

C13H13N5O5S2 (383.0358)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins A parenteral third-generation cephalosporin, bearing a 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino group at the 7beta-position. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   
   
   

5-Methyltetrahydrofolic acid

(2R)-2-[(4-{[(2-amino-5-methyl-4-oxo-3,4,5,6,7,8-hexahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C20H25N7O6 (459.1866)


5-Methyltetrahydrofolic acid (5-Methyl THF) is a biologically active form of folic acid. 5-Methyltetrahydrofolic acid is a methylated derivate of tetrahydrofolate. 5-Methyltetrahydrofolic acid is the predominant natural dietary folate and the principal form of folate in plasma and cerebrospinal fluid[1]. Levomefolic acid (5-MTHF) is an orally active, brain-penetrant natural active form of folic acid and is one of the most widely used folic acid food supplements[1][2].

   

N,N-Dimethyl-p-phenylenediamine

N,N-Dimethyl-1,4-benzenediamine

C8H12N2 (136.1)


   

(Z)-β-ocimene

beta-OCIMENE, (3E)-

C10H16 (136.1252)


   

20-carboxy-Leukotriene B4

20-hydroxy-20-oxoleukotriene B4

C20H30O6 (366.2042)


   

(6S,2S)-Diaminopimelic acid

(2S,6S)-2,6-diaminoheptanedioic acid

C7H14N2O4 (190.0954)


   

Dimethylselenide

Dimethyl selenide

C2H6Se (109.9635)


An organoselenium compound of two methyl groups covalently bound to a selenium.

   

N-Acetyl-Muramic Acid

N-Acetyl-Muramic Acid

C11H19NO8 (293.1111)


   

Amifostine thiol

2-((3-Aminopropyl)amino)ethanethiol

C5H14N2S (134.0878)


D020011 - Protective Agents > D011837 - Radiation-Protective Agents Amifostine thiol (WR-1065) is an active metabolite of the cytoprotector Amifostine (HY-B0639). Amifostine thiol is a cytoprotective agent with radioprotective abilities. Amifostine thiol activates p53 through a JNK-dependent signaling pathway[1][2][3].

   

(3R)-3-Hydroxy-3-methyl-5-(phosphonooxy)pentanoic acid

(3R)-3-Hydroxy-3-methyl-5-(phosphonooxy)pentanoic acid

C6H13O7P (228.0399)


   

3-methylbut-2-enoyl-CoA

3-methylbut-2-enoyl-CoA

C26H42N7O17P3S (849.1571)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-methylbut-2-enoic acid.

   

D-Mannitol 1-phosphate

D-Mannitol 1-phosphate

C6H15O9P (262.0454)


An alditol 1-phosphate that is the 1-O-phospho derivative of mannitol with D-configuration.

   

Isoglutamic acid

3-Aminopentanedioic acid

C5H9NO4 (147.0532)


A 1,5-dicarboxylic acid compound having a 3-amino substituent. It has been isolated from the extracts of the algae, Chondria armata.

   

N-Methylpyridinium

N-Methylpyridinium

C6H8N+ (94.0657)


   

2-(3-CARBOXYPROPIONYL)-6-hydroxy-cyclohexa-2,4-diene carboxylIC ACID

2-(3-CARBOXYPROPIONYL)-6-hydroxy-cyclohexa-2,4-diene carboxylIC ACID

C11H12O6 (240.0634)


   

4-hydroxybenzoyl-CoA

4-hydroxybenzoyl-CoA

C28H40N7O18P3S (887.1363)


A hydroxybenzoyl-CoA that is the S-(4-hydroxybenzoyl) derivative of coenzyme A.

   

Thallous chloride

thallium(i) chloride

ClTl (239.9433)


   

Ciclacillin

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylicacid, 6-[[(1-aminocyclohexyl)carbonyl]amino]-3,3-dimethyl-7-oxo-, (2S,5R,6R)-

C15H23N3O4S (341.1409)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01334

   

2-Methyl-1,3-butadiene

2-Methyl-1,3-butadiene

C5H8 (68.0626)


A hemiterpene with the formula CH2=C(CH3)CH=CH2; the monomer of natural rubber and a common structure motif to the isoprenoids, a large class of other naturally occurring compounds.

   

Methylparathion

Parathion-methyl

C8H10NO5PS (263.0017)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

PIPERONAL

PIPERONAL

C8H6O3 (150.0317)


An arenecarbaldehyde that is 1,3-benzodioxole substituted by a formyl substituent at position 5. It has been isolated from Piper nigrum.

   
   

DICYCLOPENTADIENE

4,7-Methano-1H-indene, 3a,4,7,7a-tetrahydro-, homopolymer

C10H12 (132.0939)


   

Silux

2,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane

C29H36O8 (512.241)


D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

Nirvanol

2,4-Imidazolidinedione,5-ethyl-5-phenyl-

C11H12N2O2 (204.0899)


D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

N-Methylephedrine

N-Methylephedrine

C11H17NO (179.131)


   

Zwittergent 3-14

N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate

C19H41NO3S (363.2807)


   

3-Hydroxy-3-methyl-5-phosphonooxypentanoic acid

3-Hydroxy-3-methyl-5-phosphonooxypentanoic acid

C6H13O7P (228.0399)


   

3,5-dihydroxy-3-methylpentanoic acid

3,5-dihydroxy-3-methylpentanoic acid

C6H12O4 (148.0736)