Stirrup (BioDeep_00000016571)
Main id: BioDeep_00000018657
Secondary id: BioDeep_00000001114, BioDeep_00000172034, BioDeep_00000229808, BioDeep_00000400332, BioDeep_00000638405
natural product PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C15H26O (222.1984)
中文名称: 金合欢醇, 法呢醇, 反式橙花醇, 橙花叔醇, 里哪醇, 1,6,10-十二碳三烯-3-醇,3,7,11-三甲基, 法尼醇
谱图信息:
最多检出来源 Homo sapiens(blood) 68.69%
分子结构信息
SMILES: C/C(C)=C\CC/C(C)=C/CC/C(C)=C/CO
InChI: InChI=1S/C15H26O/c1-13(2)7-5-8-14(3)9-6-10-15(4)11-12-16/h7,9,11,16H,5-6,8,10,12H2,1-4H3
描述信息
C26170 - Protective Agent > C275 - Antioxidant
Acquisition and generation of the data is financially supported in part by CREST/JST.
Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria.
Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria.
Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].
Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].
trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].
trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].
同义名列表
101 个代谢物同义名
InChI=1\C15H26O\c1-13(2)7-5-8-14(3)9-6-10-15(4)11-12-16\h7,9,11,16H,5-6,8,10,12H2,1-4H3\b14-9+,15-11; (2-trans,6-trans)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol; 2,6,10-dodecatrien-1-ol, 3,7,11-trimethyl-, (2E,6E)-; trans,trans-3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol; 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl- (8CI,9CI); 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-, (E,E)-; (2E,6E)-3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol; (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol; (E,E)-3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol; 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-; 3,7,11-trimethyldodeca-2,6,10-trien-1-ol; 3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol; 3,7,11-Trimethyl-2,6,10-dodecatrienol; EPA Pesticide Chemical Code 128911; trans,trans-alpha-farnesol; (2-trans,6-trans)-farnesol; 2-trans,6-trans-Farnesol; 2,6-FARNESOL (CIS,TRANS); Trimethyl dodecatrienol; 2,6-Di-trans-Farnesol; trans,trans-Farnesol; All-trans-Farnesol; Farnesol isomer a; Spectrum5_002027; Spectrum3_001070; (2E,6E)-Farnesol; EINECS 225-004-1; Spectrum4_001221; Spectrum2_001397; Farnesyl alcohol; .beta.-Farnesol; NCGC00095654-01; Dihydrofarnesol; NCGC00095654-03; SPECTRUM1501022; NCGC00095654-02; W247804_ALDRICH; Spectrum_001282; SpecPlus_000549; NCGC00095654-04; 277541_ALDRICH; trans-Farnesol; Farnesol (6CI); 2E,6E-farnesol; (E,E)-Farnesol; FEMA No. 2478; DivK1c_006645; KBioGR_001682; BSPBio_002660; KBioSS_001762; F203_ALDRICH; KBio3_001880; ZINC01532860; Inhibitor A2; KBio1_001589; (E)-farnesol; KBio2_006898; SPBio_001414; KBio2_001762; KBio2_004330; NCI60_004648; LMPR01030001; CHEBI:16619; AIDS-032325; 46193_FLUKA; CHEBI:28600; 46191_FLUKA; Polyprenol; AIDS032325; AI3-44561; 4602-84-0; SBB012426; NSC 60597; NSC60597; HSDB 445; 106-28-5; FCI 119a; Farnesol; Stirrup; C06081; C01493; C01126; FOH; 3-Hydroxy-3,7,11-trimethyl-1,6,10-dodecatriene; 3,7,11-Trimethyldodeca-1,6,10-trien-3-ol; 3,7,11-trimethyl-1,6,10-dodecatrien-3-ol; (±)-trans-Nerolidol; (+/-)-nerolidol; trans-Nerolidol; Humbertiol?; Melaleucol; nerolidol; peruviol; Farnesol (mixture of isomers); Nerolidol; Farnesol; (2E,6E)-Farnesol; 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-; Farnesol; Nerolidol; Farnesol
数据库引用编号
42 个数据库交叉引用编号
- ChEBI: CHEBI:16619
- ChEBI: CHEBI:26199
- ChEBI: CHEBI:28600
- ChEBI: CHEBI:141283
- ChEBI: CHEBI:7524
- KEGG: C01126
- PubChem: 445070
- PubChem: 5284507
- Metlin: METLIN90926
- ChEMBL: CHEMBL25308
- ChEMBL: CHEMBL25424
- MeSH: Farnesol
- KNApSAcK: C00003132
- CAS: 4602-84-0
- CAS: 106-28-5
- CAS: 40716-66-3
- CAS: 35944-21-9
- CAS: 7212-44-4
- MoNA: PS088102
- MoNA: PS088101
- MoNA: PS088103
- MoNA: PR100374
- MoNA: PS088104
- MoNA: PR100824
- PubChem: 4357
- LipidMAPS: LMPR0103010001
- PDB-CCD: FOF
- 3DMET: B00244
- NIKKAJI: J5.049K
- RefMet: 2E,6E-Farnesol
- medchemexpress: HY-Y0248A
- medchemexpress: HY-N1944
- medchemexpress: HY-N6635
- KEGG: C09704
- PubChem: 11893
- KNApSAcK: 59958
- KEGG: C01493
- PubChem: 4663
- KNApSAcK: 28600
- KNApSAcK: 16619
- LOTUS: LTS0209244
- wikidata: Q420449
分类词条
相关代谢途径
Reactome(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
148 个相关的物种来源信息
- 78260 - Abies firma: 10.1016/S0031-9422(00)80837-7
- 282720 - Achillea aspleniifolia: 10.1080/10412905.1992.9698109
- 282734 - Achillea erba-rotta: 10.1080/10412905.1989.9697751
- 13329 - Achillea millefolium: 10.1080/10412905.1992.9698109
- 282750 - Achillea moschata: 10.1080/10412905.1989.9697751
- 282752 - Achillea nana: 10.1080/10412905.1989.9697751
- 282753 - Achillea nobilis: 10.1080/10412905.1989.9697751
- 133233 - Achillea ptarmica: 10.1080/10412905.1989.9697751
- 282770 - Achillea virescens: 10.1080/10412905.1992.9698109
- 52820 - Acokanthera oblongifolia: 10.1055/S-0028-1099492
- 123564 - Acorus tatarinowii Schott: -
- 199615 - Aframomum angustifolium: 10.1080/10412905.1994.9698405
- 68299 - Ageratum conyzoides: 10.1080/10412905.1993.9698184
- 518704 - Alpinia chinensis: 10.1080/10412905.1994.9698334
- 125259 - Alpinia hainanensis:
- 128591 - Aniba: 10.1002/FFJ.2730040302
- 158540 - Aristolochia cymbifera: 10.17660/ACTAHORTIC.1999.500.11
- 143780 - Aristolochia elegans: 10.1016/S0031-9422(97)00400-7
- 12948 - Aristolochia gigantea: 10.17660/ACTAHORTIC.1999.500.11
- 325095 - Aristolochia littoralis: 10.1016/S0031-9422(97)00400-7
- 158554 - Aristolochia macroura: 10.17660/ACTAHORTIC.1999.500.11
- 158574 - Aristolochia triangularis: 10.17660/ACTAHORTIC.1999.500.11
- 385370 - Aster scaber: 10.1021/JF00034A033
- 76974 - Atalantia buxifolia: 10.1080/10412905.1994.9698400
- 2707381 - Baccharis articulata: 10.1016/S0031-9422(00)83061-7
- 2321251 - Baccharis linearifolia: 10.1016/S0031-9422(00)83061-7
- 2707820 - Baccharis sessiliflora: 10.1002/1099-1026(200005/06)15:3<151::AID-FFJ884>3.0.CO;2-E
- 2707846 - Baccharis uncinella: 10.1002/FFJ.998
- 85973 - Boletinus cavipes: 10.1271/BBB.59.1036
- 85660 - Bombus hortorum: 10.3891/ACTA.CHEM.SCAND.45-0972
- 13393 - Cananga odorata: 10.1021/JF00069A028
- 3426 - Canella winterana: 10.1080/10412905.1990.9697854
- 146995 - Chrysanthemum indicum: 10.1002/CBDV.201000034
- 37334 - Citrus maxima: 10.1002/JSSC.200900267
- 148888 - Coluria geoides: 10.1042/BST0280790
- 29742 - Comptonia peregrina: 10.1002/PTR.2095
- 323033 - Croton cajucara: 10.1080/10412905.2000.9712196
- 294148 - Duguetia confinis: 10.1016/J.PHYTOCHEM.2003.08.004
- 1874227 - Elsholtzia blanda: 10.1080/10412905.1992.9698130
- 4392 - Eucommia ulmoides:
- 330892 - Eupatorium Fortunei Turcz: -
- 4397 - Hamamelis virginiana: 10.1055/S-2006-957420
- 71610 - Hedychium coronarium: 10.1080/10412905.1993.9698170
- 110723 - Hedychium spicatum: 10.1002/FFJ.2730100310
- 630287 - Helichrysum amorginum: 10.1055/S-2006-957914
- 261786 - Helichrysum italicum: 10.1055/S-2006-957914
- 261800 - Helichrysum pendulum: 10.1055/S-2006-957552
- 261805 - Helichrysum stoechas: 10.1055/S-2006-957641
- 489330 - Hexalobus crispiflorus: 10.1016/J.PHYTOCHEM.2003.08.004
- 124772 - Illicium Difengpi K. L. B. Et K. I. M.: -
- 124778 - Illicium verum Hook.f.: -
- 58039 - Juniperus communis: 10.1139/V69-334
- 106032 - Kunzea salina: 10.1080/10412905.1994.9698327
- 126435 - Lantana camara: 10.1002/(SICI)1099-1026(199901/02)14:1<15::AID-FFJ777>3.0.CO;2-M
- 649173 - Lantana strigocamara: 10.1002/(SICI)1099-1026(199901/02)14:1<15::AID-FFJ777>3.0.CO;2-M
- 43198 - Launaea: 10.1080/10412905.1993.9698177
- 39329 - Lavandula angustifolia: 10.1080/10412905.1997.9700727
- 194905 - Lentinellus cochleatus: 10.1515/ZNC-1986-11-1201
- 1405036 - Lepechinia floribunda: 10.1080/10412905.1994.9698446
- 105884 - Lonicera japonica: 10.3390/MOLECULES18021368
- 85864 - Magnolia Officinalis Rehd Et Wils\uff0e: -
- 98504 - Matricaria chamomilla: 10.1021/JF00037A027
- 164936 - Melaleuca leucadendra: 10.1021/NP9606052
- 164942 - Melaleuca quinquenervia: 10.1080/10412905.1992.9698155
- 38859 - Mentha longifolia: 10.1055/S-2006-960356
- 29719 - Mentha spicata: 10.1055/S-2006-960356
- 1898872 - Micromeria biflora: 10.1080/10412905.1997.9700709
- 1945650 - Micromeria maderensis: 10.1002/FFJ.2730100313
- 242164 - Morina persica: 10.1080/10412905.1998.9700856
- 4087 - Nicotiana alata: 10.1016/J.PHYTOCHEM.2006.05.038
- 1268187 - Origanum cordifolium: 10.1016/0378-8741(91)90063-J
- 39352 - Origanum vulgare: 10.1055/S-2006-957640
- 35924 - Paeonia lactiflora: 10.1016/S0031-9422(00)94541-2
- 158596 - Pelargonium endlicherianum: 10.1055/S-2006-960872
- 48386 - Perilla Frutescens: -
- 3435 - Persea americana: 10.1007/978-3-030-30182-8_12
- 77912 - Pinus densiflora: 10.1248/CPB.33.4074
- 3350 - Pinus thunbergii: 10.1248/CPB.33.4074
- 130385 - Piper auritum: 10.1080/10412905.1998.9700913
- 425145 - Piper cernuum: 10.1055/S-2001-18363
- 1427529 - Piper regnellii:
- 538370 - Piper vitaceum: 10.1080/10412905.2000.9712050
- 160407 - Pittosporum balfourii: 10.1055/S-2006-959581
- 33090 - Plants: -
- 204156 - Platostoma africanum: 10.1055/S-2006-962093
- 85246 - Plumeria obtusa: 10.1002/(SICI)1099-1026(199907/08)14:4<237::AID-FFJ817>3.0.CO;2-Y
- 28511 - Pogostemon Cablin (Blanco) Benth.: -
- 73824 - Populus balsamifera: 10.1515/ZNC-1989-5-603
- 1616482 - Populus candicans: 10.1515/ZNC-1989-5-603
- 23204 - Potentilla: 10.1139/O92-068
- 1044948 - Rhododendron calostrotum: 10.1016/S0031-9422(00)81225-X
- 313320 - Rhododendron campylogynum: 10.1016/S0031-9422(00)81225-X
- 2946426 - Rhododendron dasypetalum: 10.1016/S0031-9422(00)81225-X
- 880079 - Rhododendron dauricum: 10.1016/S0031-9422(00)81225-X
- 2946434 - Rhododendron glaucophyllum: 10.1016/S0031-9422(00)81225-X
- 4347 - Rhododendron hippophaeoides: 10.1016/S0031-9422(00)81225-X
- 308417 - Rhododendron impeditum: 10.1016/S0031-9422(00)81225-X
- 118362 - Rhododendron keiskei: 10.1016/S0031-9422(00)81225-X
- 1044967 - Rhododendron nivale: 10.1016/S0031-9422(00)81225-X
- 191006 - Rhododendron virgatum: 10.1016/S0031-9422(00)81225-X
- 1044997 - Rhododendron zaleucum: 10.1016/S0031-9422(00)81225-X
- 3764 - Rosa: 10.1139/O92-068
- 52304 - Rudbeckia mollis: 10.1016/0031-9422(92)80361-H
- 933131 - Salvia dorisiana: 10.1080/10412905.1994.9698330
- 35974 - Santalum album: 10.1016/J.GENE.2013.06.080
- 35974 - Santalum Album L\uff0e: -
- 453088 - Santalum spicatum: 10.1080/10412905.1991.9697970
- 453088 - Santalum spicatum: 10.3390/MOLECULES22060940
- 59297 - Solidago canadensis: 10.1055/S-2006-959673
- 41 - Stigmatella aurantiaca: 10.1002/CBIC.200500174
- 262985 - Strobilanthes auriculata: 10.1002/JLAC.198719870105
- 5380 - Suillus cavipes: 10.1271/BBB.59.1036
- 547782 - Symphyotrichum undulatum: 10.1021/JF00034A033
- 169606 - Tagetes lucida: 10.1002/(SICI)1099-1026(199701)12:1<47::AID-FFJ610>3.0.CO;2-7
- 1209851 - Teucrium cyprium: 10.1016/0378-8741(91)90062-I
- 1209865 - Teucrium kotschyanum: 10.1016/0378-8741(91)90062-I
- 1522775 - Thulinella chrysantha: 10.1002/1099-1573(200006)14:4<284::AID-PTR599>3.0.CO;2-Y
- 489417 - Tordylium apulum: 10.1080/10412905.1993.9698167
- 50189 - Torreya nucifera: 10.1016/S0031-9422(00)82385-7
- 59170 - Valeriana jatamansi Jones: -
- 224910 - Virola surinamensis: 10.1016/S0378-8741(99)00072-0
- 79409 - Wigandia urens: 10.1016/S0031-9422(00)82225-6
- 1005659 - Xylopia sericea: 10.1080/10412905.1996.9700559
- 2743316 - Zanthoxylum gardneri: 10.1080/10412905.1991.9697963
- 2099548 - Zanthoxylum zanthoxyloides: 10.1021/NP50046A035
- 94328 - Zingiber officinale: 10.1016/S0031-9422(00)84581-1
- 94328 - Zingiber Officinale Roscoe: -
- 311405 - Zingiber zerumbet:
- 219868 - 丁香: -
- 44586 - 三七: -
- 1603725 - 千斤拔: -
- 33090 - 枇杷叶: -
- 33090 - 栀子: -
- 13428 - 桂枝: -
- 3498 - 桑叶: -
- 33090 - 生姜: -
- 33090 - 白芷: -
- 33090 - 矮地茶: -
- 33090 - 紫苏: -
- 33090 - 艾叶: -
- 4047 - 芫荽: -
- 13422 - 菊花: -
- 33090 - 豆蔻: -
- 33090 - 辛夷: -
- 33090 - 郁金: -
- 33090 - 金银花: -
- 3311 - 银杏叶: -
- 33090 - 麻黄: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Anton Möllerke, Diogo Montes Vidal, Hans Petter Leinaas, Stefan Schulz. Socialane, a Nonaprenyl Terpene Hydrocarbon Surface Lipid from the Collembola Hypogastrura socialis.
Chemistry (Weinheim an der Bergstrasse, Germany).
2024 May; 30(27):e202400272. doi:
10.1002/chem.202400272
. [PMID: 38445549] - Guangcai Zhang, Xiaohui Zhou, Qifan Feng, Weihua Ke, Jiahui Pan, Haiying Zhang, Yixian Luan, Beibei Lei. Nerolidol reduces depression-like behavior in mice and suppresses microglia activation by down-regulating DNA methyltransferase 1.
Neuroreport.
2024 May; 35(7):457-465. doi:
10.1097/wnr.0000000000002029
. [PMID: 38526920] - Raissa Bayker Vieira Silva, Valdeci Geraldo Coelho Júnior, Adolfo de Paula Mattos Júnior, Henrique Julidori Garcia, Ester Siqueira Caixeta Nogueira, Talita Sarah Mazzoni, Juliana Ramos Martins, Lívia Maria Rosatto Moda, Angel Roberto Barchuk. Farnesol, a component of plant-derived honeybee-collected resins, shows JH-like effects in Apis mellifera workers.
Journal of insect physiology.
2024 05; 154(?):104627. doi:
10.1016/j.jinsphys.2024.104627
. [PMID: 38373613] - Ting Shen, Baocheng Tian, Wei Liu, Xuesong Yang, Qi Sheng, Mengxin Li, Haiyan Wang, Xiuwen Wang, Huihui Zhou, Yanchun Han, Chen Ding, Sixiang Sai. Transdermal administration of farnesol-ethosomes enhances the treatment of cutaneous candidiasis induced by Candida albicans in mice.
Microbiology spectrum.
2024 Apr; 12(4):e0424723. doi:
10.1128/spectrum.04247-23
. [PMID: 38415658] - Pei Wang, Miao Liu, Changhong Lv, Zhen Tian, Ruichi Li, Yifan Li, Yalin Zhang, Jiyuan Liu. Identifying the Key Role of Plutella xylostella General Odorant Binding Protein 2 in Perceiving a Larval Attractant, (E,E)-2,6-Farnesol.
Journal of agricultural and food chemistry.
2024 Mar; 72(11):5690-5698. doi:
10.1021/acs.jafc.4c00621
. [PMID: 38447177] - Carlos Jonnathan Castro-Juárez, Silvia Luna-Suárez, Flor de Fátima Rosas-Cárdenas, Nemesio Villa-Ruano. Hernandulcin Production in Elicited Hairy Roots of Phyla scaberrima: Toward Sustainable Production of a Non-Caloric Sweetener with Nutraceutical Properties.
Chemistry & biodiversity.
2024 Mar; 21(3):e202302095. doi:
10.1002/cbdv.202302095
. [PMID: 38334300] - Wu Wang, Mindy Wang, Jiao Feng, Shijie Zhang, Yu Chen, Yuqiang Zhao, Ruiping Tian, Cancan Zhu, Niels J Nieuwenhuizen. Terpene Synthase Gene Family in Chinese Chestnut (Castanea mollissima BL.) Harbors Two Sesquiterpene Synthase Genes Implicated in Defense against Gall Wasp Dryocosmus kuriphilus.
Journal of agricultural and food chemistry.
2024 Jan; 72(3):1571-1581. doi:
10.1021/acs.jafc.3c07086
. [PMID: 38206573] - John Staton Laws, Scott D Smid. Characterizing cannabis-prevalent terpenes for neuroprotection reveal a role for α and β-pinenes in mitigating amyloid β-evoked neurotoxicity and aggregation in vitro.
Neurotoxicology.
2024 Jan; 100(?):16-24. doi:
10.1016/j.neuro.2023.12.004
. [PMID: 38070653] - Jill Romer, Katharina Gutbrod, Antonia Schuppener, Michael Melzer, Stefanie J Müller-Schüssele, Andreas J Meyer, Peter Dörmann. Tocopherol and phylloquinone biosynthesis in chloroplasts requires the phytol kinase VTE5 and the farnesol kinase FOLK.
The Plant cell.
2023 Dec; ?(?):. doi:
10.1093/plcell/koad316
. [PMID: 38124486] - Guglielmina Froldi, Francesco Benetti, Andrea Mondin, Marco Roverso, Elisa Pangrazzi, Francine Medjiofack Djeujo, Paolo Pastore. Pterodon emarginatus Seed Preparations: Antiradical Activity, Chemical Characterization, and In Silico ADMET Parameters of β-caryophyllene and Farnesol.
Molecules (Basel, Switzerland).
2023 Nov; 28(22):. doi:
10.3390/molecules28227494
. [PMID: 38005216] - Rodrigo Santos-Pascual, Iván Campoy, David Sanz Mata, María Jesús Martínez, Alicia Prieto, Jorge Barriuso. Deciphering the molecular components of the quorum sensing system in the fungus Ophiostoma piceae.
Microbiology spectrum.
2023 Oct; ?(?):e0029023. doi:
10.1128/spectrum.00290-23
. [PMID: 37796004] - Diksha, Sumit Singh, Evani Mahajan, Satwinder Kaur Sohal. Immunomodulatory, cyto-genotoxic, and growth regulatory effects of nerolidol on melon fruit fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae).
Toxicon : official journal of the International Society on Toxinology.
2023 Sep; 233(?):107248. doi:
10.1016/j.toxicon.2023.107248
. [PMID: 37562702] - Hanyang Dai, Baosheng Liu, Lei Yang, Yu Yao, Mengyun Liu, Wenqing Xiao, Shuai Li, Rui Ji, Yang Sun. Investigating the Regulatory Mechanism of the Sesquiterpenol Nerolidol from a Plant on Juvenile Hormone-Related Genes in the Insect Spodoptera exigua.
International journal of molecular sciences.
2023 Aug; 24(17):. doi:
10.3390/ijms241713330
. [PMID: 37686136] - Nicola Tan, Leonard Ong, Sudha Shukal, Xixian Chen, Congqiang Zhang. High-Yield Biosynthesis of trans-Nerolidol from Sugar and Glycerol.
Journal of agricultural and food chemistry.
2023 May; ?(?):. doi:
10.1021/acs.jafc.3c01161
. [PMID: 37148252] - Neşe Başak Türkmen, Hande Yüce, Muhterem Aydın, Aslı Taşlıdere, Ayşegül Doğan, Dilan Aşkın Özek, Taha Bartu Hayal, Şeyma Yaşar, Osman Çiftçi, Songül Ünüvar. Nerolidol attenuates dehydroepiandrosterone-induced polycystic ovary syndrome in rats by regulating oxidative stress and decreasing apoptosis.
Life sciences.
2023 Feb; 315(?):121380. doi:
10.1016/j.lfs.2023.121380
. [PMID: 36640898] - Marta Balsells-Llauradó, Núria Vall-Llaura, Josep Usall, Christian J Silva, Barbara Blanco-Ulate, Neus Teixidó, Maria Caballol, Rosario Torres. Transcriptional profiling of the terpenoid biosynthesis pathway and in vitro tests reveal putative roles of linalool and farnesal in nectarine resistance against brown rot.
Plant science : an international journal of experimental plant biology.
2023 Feb; 327(?):111558. doi:
10.1016/j.plantsci.2022.111558
. [PMID: 36493930] - Arodí P Favaris, Amanda C Túler, Weliton D Silva, Marvin Pec, Sérgio R Rodrigues, Artur C D Maia, José Maurício S Bento. Methyl benzoate and nerolidol attract the cyclocephaline beetle Cyclocephala paraguayensis to trumpet flowers.
Die Naturwissenschaften.
2023 Jan; 110(1):3. doi:
10.1007/s00114-023-01831-2
. [PMID: 36700962] - Idglan Sá de Lima, Maria Onaira Gonçalves Ferreira, Esmeralda Maria Lustosa Barros, Marcia Dos Santos Rizzo, Jailson de Araújo Santos, Alessandra Braga Ribeiro, Josy Anteveli Osajima Furtini, Edson C Silva-Filho, Leticia M Estevinho. Antibacterial and Healing Effect of Chicha Gum Hydrogel (Sterculia striata) with Nerolidol.
International journal of molecular sciences.
2023 Jan; 24(3):. doi:
10.3390/ijms24032210
. [PMID: 36768534] - Ting Zhang, Yongjie Zheng, Chao Fu, Haikuan Yang, Xinliang Liu, Fengying Qiu, Xindong Wang, Zongde Wang. Chemical Variation and Environmental Influence on Essential Oil of Cinnamomum camphora.
Molecules (Basel, Switzerland).
2023 Jan; 28(3):. doi:
10.3390/molecules28030973
. [PMID: 36770639] - Liliane Sena Pinheiro, Valter Viana Andrade-Neto, Marcio Mantuano-Barradas, Elisa Cavalcante Pereira, Rodrigo Cesar Fernandes Barbosa, Marcia Cristina Campos de Oliveira, Rubem Figueiredo Sadok Menna-Barreto, Edézio Ferreira Cunha-Júnior, Eduardo Caio Torres-Santos. Biological effects of trans, trans-farnesol in Leishmania amazonensis.
Frontiers in cellular and infection microbiology.
2023; 13(?):1221246. doi:
10.3389/fcimb.2023.1221246
. [PMID: 38035328] - Bruna Colombari, Davide Tagliazucchi, Alessandra Odorici, Eva Pericolini, Ismaela Foltran, Diego Pinetti, Aida Meto, Samuele Peppoloni, Elisabetta Blasi. Pomegranate Extract Affects Fungal Biofilm Production: Consumption of Phenolic Compounds and Alteration of Fungal Autoinducers Release.
International journal of environmental research and public health.
2022 10; 19(21):. doi:
10.3390/ijerph192114146
. [PMID: 36361021] - Mwafaq Ibdah, Shada Hino, Bhagwat Nawade, Mosaab Yahyaa, Tejas C Bosamia, Liora Shaltiel-Harpaz. Identification and characterization of three nearly identical linalool/nerolidol synthase from Acorus calamus.
Phytochemistry.
2022 Oct; 202(?):113318. doi:
10.1016/j.phytochem.2022.113318
. [PMID: 35872238] - Varun Dwivedi, Sarma Rajeev Kumar, H B Shilpashree, Ram Krishna, Srinivas Rao, Ajit K Shasany, Shannon B Olsson, Dinesh A Nagegowda. An inducible potato (E,E)-farnesol synthase confers tolerance against bacterial pathogens in potato and tobacco.
The Plant journal : for cell and molecular biology.
2022 09; 111(5):1308-1323. doi:
10.1111/tpj.15890
. [PMID: 35778946] - Sayoko Oiki, Ryo Nasuno, Syun-Ichi Urayama, Hiroshi Takagi, Daisuke Hagiwara. Intracellular production of reactive oxygen species and a DAF-FM-related compound in Aspergillus fumigatus in response to antifungal agent exposure.
Scientific reports.
2022 08; 12(1):13516. doi:
10.1038/s41598-022-17462-y
. [PMID: 35933435] - Yuyang Ma, Xue Liu, Defu Liu, Zihao Yin, Xinyi Yang, Mingyong Zeng. Oyster (Crassostrea gigas) Polysaccharide Ameliorates High-Fat-Diet-Induced Oxidative Stress and Inflammation in the Liver via the Bile Acid-FXR-AMPKα Pathway.
Journal of agricultural and food chemistry.
2022 Jul; 70(28):8662-8671. doi:
10.1021/acs.jafc.2c02490
. [PMID: 35797440] - Shabi Parvez, Archana Karole, Shyam Lal Mudavath. Fabrication, physicochemical characterization and In vitro anticancer activity of nerolidol encapsulated solid lipid nanoparticles in human colorectal cell line.
Colloids and surfaces. B, Biointerfaces.
2022 Jul; 215(?):112520. doi:
10.1016/j.colsurfb.2022.112520
. [PMID: 35489319] - Usman Sabir, Hafiz Muhammad Irfan, Alamgeer, Aman Ullah, Yusuf S Althobaiti, Fahad S Alshehri, Zahid Rasul Niazi. Downregulation of hepatic fat accumulation, inflammation and fibrosis by nerolidol in purpose built western-diet-induced multiple-hit pathogenesis of NASH animal model.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Jun; 150(?):112956. doi:
10.1016/j.biopha.2022.112956
. [PMID: 35447548] - Vaitheeswari Balakrishnan, Sindhu Ganapathy, Vinothkumar Veerasamy, Ramachandhiran Duraisamy, Vigil Anbiah Sathiavakoo, Vasudevan Krishnamoorthy, Vennila Lakshmanan. Anticancer and antioxidant profiling effects of Nerolidol against DMBA induced oral experimental carcinogenesis.
Journal of biochemical and molecular toxicology.
2022 Jun; 36(6):e23029. doi:
10.1002/jbt.23029
. [PMID: 35243731] - Lais Alonso, Laryssa Ketelyn Lima Pimenta, André Kipnis, Antonio Alonso. Mycobacterium abscessus cell wall and plasma membrane characterization by EPR spectroscopy and effects of amphotericin B, miltefosine and nerolidol.
Biochimica et biophysica acta. Biomembranes.
2022 05; 1864(5):183872. doi:
10.1016/j.bbamem.2022.183872
. [PMID: 35085568] - Shanila Akhter, Hafiz Muhammad Irfan, Alamgeer, Shah Jahan, Muhammad Shahzad, Muhammad Bilal Latif. Nerolidol: a potential approach in rheumatoid arthritis through reduction of TNF-α, IL-1β, IL-6, NF-kB, COX-2 and antioxidant effect in CFA-induced arthritic model.
Inflammopharmacology.
2022 Apr; 30(2):537-548. doi:
10.1007/s10787-022-00930-2
. [PMID: 35212850] - Nengmei Jiang, Yuanyuan Zhang. Antidiabetic effects of nerolidol through promoting insulin receptor signaling in high-fat diet and low dose streptozotocin-induced type 2 diabetic rats.
Human & experimental toxicology.
2022 Jan; 41(?):9603271221126487. doi:
10.1177/09603271221126487
. [PMID: 36169646] - Mohammed Ali, Elsayed Nishawy, Walaa A Ramadan, Mohamed Ewas, Mokhtar Said Rizk, Ahmed G M Sief-Eldein, Mohamed Abd S El-Zayat, Ahmed H M Hassan, Mingquan Guo, Guang-Wan Hu, Shengwei Wang, Fatma A Ahmed, Mohamed Hamdy Amar, Qing-Feng Wang. Molecular characterization of a Novel NAD+-dependent farnesol dehydrogenase SoFLDH gene involved in sesquiterpenoid synthases from Salvia officinalis.
PloS one.
2022; 17(6):e0269045. doi:
10.1371/journal.pone.0269045
. [PMID: 35657794] - Varvara K Leonardou, Evangelos Doudoumis, Evangelos Tsormpatsidis, Eleni Vysini, Theofanis Papanikolopoulos, Vasileios Papasotiropoulos, Fotini N Lamari. Quality Traits, Volatile Organic Compounds, and Expression of Key Flavor Genes in Strawberry Genotypes over Harvest Period.
International journal of molecular sciences.
2021 Dec; 22(24):. doi:
10.3390/ijms222413499
. [PMID: 34948297] - Gopalakrishnan Balaraman, Jagan Sundaram, Ashok Mari, Palanisamy Krishnan, Sharmila Salam, Nirmala Subramaniam, Immaduddin Sirajduddin, Devaki Thiruvengadam. Farnesol alleviates diethyl nitrosamine induced inflammation and protects experimental rat hepatocellular carcinoma.
Environmental toxicology.
2021 Dec; 36(12):2467-2474. doi:
10.1002/tox.23359
. [PMID: 34473392] - Zhan-Ku Shi, Xiao-Wei Gong, Jiang-Yuan Zhao, Ming-Gang Li, Xiu-Lin Han, Meng-Liang Wen. Functional Characterization of a New Bifunctional Terpene Synthase LpNES1 from a Medicinal Plant Laggera pter odonta.
Journal of oleo science.
2021 Nov; 70(11):1641-1650. doi:
10.5650/jos.ess21172
. [PMID: 34645748] - Salim M A Bastaki, Naheed Amir, Ernest Adeghate, Shreesh Ojha. Nerolidol, a sesquiterpene, attenuates oxidative stress and inflammation in acetic acid-induced colitis in rats.
Molecular and cellular biochemistry.
2021 Sep; 476(9):3497-3512. doi:
10.1007/s11010-021-04094-5
. [PMID: 33999335] - Nur Suhanawati Ashaari, Mohd Hairul Ab Rahim, Suriana Sabri, Kok Song Lai, Adelene Ai-Lian Song, Raha Abdul Rahim, Janna Ong Abdullah. Kinetic studies and homology modeling of a dual-substrate linalool/nerolidol synthase from Plectranthus amboinicus.
Scientific reports.
2021 08; 11(1):17094. doi:
10.1038/s41598-021-96524-z
. [PMID: 34429465] - Luz Díaz-Storani, Anaelle A Clary, Diego M Moreno, María Sol Ballari, Exequiel O J Porta, Andrea B J Bracca, Jonathan B Johnston, Guillermo R Labadie. Synthesis and interaction of terminal unsaturated chemical probes with Mycobacterium tuberculosis CYP124A1.
Bioorganic & medicinal chemistry.
2021 08; 44(?):116304. doi:
10.1016/j.bmc.2021.116304
. [PMID: 34289431] - Paula Piekarski-Barchik, Suelen Ávila, Sila M R Ferreira, Nayana C S Santos, Francisco A Marques, Mayara P Dos Santos, Marco T Grassi, Marilis D Miguel, Obdulio G Miguel. Mineral Content, Antioxidant Activity and Essential Oil of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. Leaves: Plant from South American Biodiversity.
Chemistry & biodiversity.
2021 Aug; 18(8):e2100257. doi:
10.1002/cbdv.202100257
. [PMID: 34101363] - Leandro P Bolzan, Danilo C Barroso, Carine F Souza, Fernanda C Oliveira, Roger Wagner, Bernardo Baldisserotto, Adalberto L Val, Matheus D Baldissera. Dietary supplementation with nerolidol improves the antioxidant capacity and muscle fatty acid profile of Brycon amazonicus exposed to acute heat stress.
Journal of thermal biology.
2021 Jul; 99(?):103003. doi:
10.1016/j.jtherbio.2021.103003
. [PMID: 34420634] - Prema, Takeshi Kodama, Hnin Htet Wai Nyunt, Hla Ngwe, Ikuro Abe, Hiroyuki Morita. Anti-Vpr activities of sesqui- and diterpenoids from the roots and rhizomes of Kaempferia candida.
Journal of natural medicines.
2021 Jun; 75(3):489-498. doi:
10.1007/s11418-020-01480-z
. [PMID: 33687660] - Yueh-Min Lin, Khan Farheen Badrealam, Chia-Hua Kuo, Jayasimharayalu Daddam, Marthandam Asokan Shibu, Kuan-Ho Lin, Tsung-Jung Ho, Vijaya Padma Viswanadha, Wei-Wen Kuo, Chih-Yang Huang. Small Molecule Compound Nerolidol attenuates Hypertension induced hypertrophy in spontaneously hypertensive rats through modulation of Mel-18-IGF-IIR signalling.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2021 Apr; 84(?):153450. doi:
10.1016/j.phymed.2020.153450
. [PMID: 33611212] - Xinhua Zhang, Jaime A Teixeira da Silva, Meiyun Niu, Ting Zhang, Huanfang Liu, Feng Zheng, Yunfei Yuan, Yuan Li, Lin Fang, Songjun Zeng, Guohua Ma. Functional characterization of an Indian sandalwood (Santalum album L.) dual-localized bifunctional nerolidol/linalool synthase gene involved in stress response.
Phytochemistry.
2021 Mar; 183(?):112610. doi:
10.1016/j.phytochem.2020.112610
. [PMID: 33383368] - Eloísa Portugal Barros Silva Soares de Souza, Marcelo Vinicius Lins Dantas Gomes, Bruno Dos Santos Lima, Luiz André Santos Silva, Saravanan Shanmugan, Marcelo Duarte Cavalcanti, Ricardo Luiz Cavalcanti de Albuquerque Júnior, Flavio Machado de Souza Carvalho, Ricardo Neves Marreto, Claudio Moreira de Lima, Lucindo José Quintans Júnior, Adriano Antunes de Souza Araújo. Nerolidol-beta-cyclodextrin inclusion complex enhances anti-inflammatory activity in arthritis model and improves gastric protection.
Life sciences.
2021 Jan; 265(?):118742. doi:
10.1016/j.lfs.2020.118742
. [PMID: 33181176] - Brad R Baker, Callum M Ives, Ashley Bray, Martin Caffrey, Stephen A Cochrane. Undecaprenol kinase: Function, mechanism and substrate specificity of a potential antibiotic target.
European journal of medicinal chemistry.
2021 Jan; 210(?):113062. doi:
10.1016/j.ejmech.2020.113062
. [PMID: 33310291] - Mahpara Qadir, Antim Kumar Maurya, Vijai Kant Agnihotri, Wajaht A Shah. Volatile composition, antibacterial and antioxidant activities of artemisia tournefortiana Reichb. from Kashmir, India.
Natural product research.
2021 Jan; 35(1):152-156. doi:
10.1080/14786419.2019.1613990
. [PMID: 31135230] - Yueh-Min Lin, Khan Farheen Badrealam, Wei-Wen Kuo, Pei Fang Lai, William Shao-Tsu Chen, Cecilia Hsuan Day, Tsung-Jung Ho, Vijaya Padma Viswanadha, Marthandam Asokan Shibu, Chih-Yang Huang. Nerolidol improves cardiac function in spontaneously hypertensive rats by inhibiting cardiac inflammation and remodelling associated TLR4/ NF-κB signalling cascade.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2021 Jan; 147(?):111837. doi:
10.1016/j.fct.2020.111837
. [PMID: 33212213] - Hui Huang, Qinhui Liu, Ting Zhang, Jinhang Zhang, Jian Zhou, Xiandan Jing, Qin Tang, Cuiyuan Huang, Zijing Zhang, Yingnan Zhao, Guorong Zhang, Jiamin Yan, Yan Xia, Ying Xu, Jiahui Li, Yanping Li, Jinhan He. Farnesylthiosalicylic Acid-Loaded Albumin Nanoparticle Alleviates Renal Fibrosis by Inhibiting Ras/Raf1/p38 Signaling Pathway.
International journal of nanomedicine.
2021; 16(?):6441-6453. doi:
10.2147/ijn.s318124
. [PMID: 34584410] - Ashif Iqubal, Mansoor Ali Syed, Abul Kalam Najmi, Faizul Azam, George E Barreto, Mohammad Kashif Iqubal, Javed Ali, Syed Ehtaishamul Haque. Nano-engineered nerolidol loaded lipid carrier delivery system attenuates cyclophosphamide neurotoxicity - Probable role of NLRP3 inflammasome and caspase-1.
Experimental neurology.
2020 12; 334(?):113464. doi:
10.1016/j.expneurol.2020.113464
. [PMID: 32941795] - Diego Santos Souza, Tatiane de Oliveira Barreto, José Evaldo Rodrigues de Menezes-Filho, Luana Heimfarth, Paula Rhana, Thallita Kelly Rabelo, Michael Nadson Santos Santana, Aimée Obolari Durço, Michael Ramon de Lima Conceição, Lucindo José Quintans-Júnior, Adriana Gibara Guimarães, Jader Santos Cruz, Carla Maria Lins de Vasconcelos. Myocardial hypertrophy is prevented by farnesol through oxidative stress and ERK1/2 signaling pathways.
European journal of pharmacology.
2020 Nov; 887(?):173583. doi:
10.1016/j.ejphar.2020.173583
. [PMID: 32956645] - Yuanxin Wang, Yanhong Liu, Xingchun Wang, Dong Jia, Jun Hu, Ling-Ling Gao, Ruiyan Ma. Agasicles hygrophila attack increases nerolidol synthase gene expression in Alternanthera philoxeroides, facilitating host finding.
Scientific reports.
2020 10; 10(1):16994. doi:
10.1038/s41598-020-73130-z
. [PMID: 33046727] - Mingyue Zhao, Lu Wang, Jingming Wang, Jieyang Jin, Na Zhang, Lei Lei, Ting Gao, Tingting Jing, Shangrui Zhang, Yi Wu, Bin Wu, Yunqing Hu, Xiaochun Wan, Wilfried Schwab, Chuankui Song. Induction of priming by cold stress via inducible volatile cues in neighboring tea plants.
Journal of integrative plant biology.
2020 Oct; 62(10):1461-1468. doi:
10.1111/jipb.12937
. [PMID: 32275096] - Guanhua Liu, Mei Yang, Jianyu Fu. Identification and characterization of two sesquiterpene synthase genes involved in volatile-mediated defense in tea plant (Camellia sinensis).
Plant physiology and biochemistry : PPB.
2020 Oct; 155(?):650-657. doi:
10.1016/j.plaphy.2020.08.004
. [PMID: 32858427] - Pulu Sun, Clément Dégut, Stéphane Réty, Jean-Claude Caissard, Laurence Hibrand-Saint Oyant, Aurélie Bony, Saretta N Paramita, Corentin Conart, Jean-Louis Magnard, Julien Jeauffre, Ahmed M Abd-El-Haliem, Jordan Marie-Magdelaine, Tatiana Thouroude, Raymonde Baltenweck, Carine Tisné, Fabrice Foucher, Michel Haring, Philippe Hugueney, Robert C Schuurink, Sylvie Baudino. Functional diversification in the Nudix hydrolase gene family drives sesquiterpene biosynthesis in Rosa × wichurana.
The Plant journal : for cell and molecular biology.
2020 09; 104(1):185-199. doi:
10.1111/tpj.14916
. [PMID: 32639596] - Lin Marcellin Messi, Olivier Placide Noté, Joséphine Ngo Mbing, Marieke Vansteelandt, Pierre Lavedan, Marc Vedrenne, Dieudonné Emmanuel Pegnyemb, Mohamed Haddad. Farnesyl glycosides and one new triterpenoid saponin from the roots of Lecaniodiscus cupanioides Planch. ex Benth.
Carbohydrate research.
2020 Sep; 495(?):108092. doi:
10.1016/j.carres.2020.108092
. [PMID: 32755723] - Mohammad H Abukhalil, Omnia E Hussein, May Bin-Jumah, Sultan A M Saghir, Mousa O Germoush, Hassan A Elgebaly, Nermeen M Mosa, Ismail Hamad, Moath M Qarmush, Emad M Hassanein, Emadeldin M Kamel, Rene Hernandez-Bautista, Ayman M Mahmoud. Farnesol attenuates oxidative stress and liver injury and modulates fatty acid synthase and acetyl-CoA carboxylase in high cholesterol-fed rats.
Environmental science and pollution research international.
2020 Aug; 27(24):30118-30132. doi:
10.1007/s11356-020-09296-w
. [PMID: 32449150] - Matheus D Baldissera, Carine F Souza, Maiara C Velho, Vitória A Bassotto, Aline F Ourique, Aleksandro S Da Silva, Bernardo Baldisserotto. Nanospheres as a technological alternative to suppress hepatic cellular damage and impaired bioenergetics caused by nerolidol in Nile tilapia (Oreochromis niloticus).
Naunyn-Schmiedeberg's archives of pharmacology.
2020 05; 393(5):751-759. doi:
10.1007/s00210-020-01824-2
. [PMID: 31953674] - Tejas Barot, Deepak Rawtani, Pratik Kulkarni, Chaudhery Mustansar Hussain, Satyaprasad Akkireddy. Physicochemical and biological assessment of flowable resin composites incorporated with farnesol loaded halloysite nanotubes for dental applications.
Journal of the mechanical behavior of biomedical materials.
2020 04; 104(?):103675. doi:
10.1016/j.jmbbm.2020.103675
. [PMID: 32174431] - Matheus D Baldissera, Carine F Souza, Aleksandro S da Silva, Maiara C Velho, Aline F Ourique, Bernardo Baldisserotto. Benefits of nanotechnology: Dietary supplementation with nerolidol-loaded nanospheres increases survival rates, reduces bacterial loads and prevents oxidative damage in brains of Nile tilapia experimentally infected by Streptococcus agalactiae.
Microbial pathogenesis.
2020 Apr; 141(?):103989. doi:
10.1016/j.micpath.2020.103989
. [PMID: 31982567] - Anna Wróblewska-Kurdyk, Katarzyna Dancewicz, Anna Gliszczyńska, Beata Gabryś. New insight into the behaviour modifying activity of two natural sesquiterpenoids farnesol and nerolidol towards Myzus persicae (Sulzer) (Homoptera: Aphididae).
Bulletin of entomological research.
2020 Apr; 110(2):249-258. doi:
10.1017/s0007485319000609
. [PMID: 31559933] - Nur Suhanawati Ashaari, Mohd Hairul Ab Rahim, Suriana Sabri, Kok Song Lai, Adelene Ai-Lian Song, Raha Abdul Rahim, Wan Muhamad Asrul Nizam Wan Abdullah, Janna Ong Abdullah. Functional characterization of a new terpene synthase from Plectranthus amboinicus.
PloS one.
2020; 15(7):e0235416. doi:
10.1371/journal.pone.0235416
. [PMID: 32614884] - A Špičáková, V Bazgier, L Skálová, M Otyepka, P Anzenbacher. beta-caryophyllene oxide and trans-nerolidol affect enzyme activity of CYP3A4 - in vitro and in silico studies.
Physiological research.
2019 11; 68(Suppl 1):S51-S58. doi:
10.33549/physiolres.934323
. [PMID: 31755290] - Shuang-Feng Sun, Fang-Fang Zeng, Shan-Cheng Yi, Man-Qun Wang. Molecular Screening of Behaviorally Active Compounds with CmedOBP14 from the Rice Leaf Folder Cnaphalocrocis medinalis.
Journal of chemical ecology.
2019 Oct; 45(10):849-857. doi:
10.1007/s10886-019-01106-z
. [PMID: 31512099] - Michaela Šadibolová, Tomáš Zárybnický, Tomáš Smutný, Petr Pávek, Zdeněk Šubrt, Petra Matoušková, Lenka Skálová, Iva Boušová. Sesquiterpenes Are Agonists of the Pregnane X Receptor but Do Not Induce the Expression of Phase I Drug-Metabolizing Enzymes in the Human Liver.
International journal of molecular sciences.
2019 Sep; 20(18):. doi:
10.3390/ijms20184562
. [PMID: 31540101] - Loordhurani Asaikumar, Lakshmanan Vennila, Palaniyandi Akila, Subramanian Sivasangari, Kaliyamoorthi Kanimozhi, Vengatesan Premalatha, Ganapathi Sindhu. Preventive effect of nerolidol on isoproterenol induced myocardial damage in Wistar rats: Evidences from biochemical and histopathological studies.
Drug development research.
2019 09; 80(6):814-823. doi:
10.1002/ddr.21564
. [PMID: 31313346] - Mummadireddy Ramya, Pue Hee Park, Yu-Chen Chuang, Oh Keun Kwon, Hye Ryun An, Pil Man Park, Yun Su Baek, Byoung-Chorl Kang, Wen-Chieh Tsai, Hong-Hwa Chen. RNA sequencing analysis of Cymbidium goeringii identifies floral scent biosynthesis related genes.
BMC plant biology.
2019 Aug; 19(1):337. doi:
10.1186/s12870-019-1940-6
. [PMID: 31375064] - Miklós Tóth, Lorenzo Furlan, István Szarukán, Antal Nagy, József Vuts, Teodora Toshova, Dimitar Velchev, Zsófia Lohonyai, Zoltán Imrei. The Addition of a Pheromone to a Floral Lure Increases Catches of Females of the Click Beetle Agriotes ustulatus (Schaller) (Coleoptera: Elateridae).
Journal of chemical ecology.
2019 Aug; 45(8):667-672. doi:
10.1007/s10886-019-01087-z
. [PMID: 31313134] - Lais Alonso, Kelly Souza Fernandes, Sebastião Antônio Mendanha, Pablo José Gonçalves, Rodrigo Saar Gomes, Miriam Leandro Dorta, Antonio Alonso. In vitro antileishmanial and cytotoxic activities of nerolidol are associated with changes in plasma membrane dynamics.
Biochimica et biophysica acta. Biomembranes.
2019 06; 1861(6):1049-1056. doi:
10.1016/j.bbamem.2019.03.006
. [PMID: 30890467] - Zohreh Nassimi, Parissa Taheri, Saeed Tarighi. Farnesol altered morphogenesis and induced oxidative burst-related responses in Rhizoctonia solani AG1-IA.
Mycologia.
2019 May; 111(3):359-370. doi:
10.1080/00275514.2019.1600315
. [PMID: 31021706] - Qin-Qin Shen, Li-Ping Wang, Jin Liang, Li-Jun Liu, Qiang Wang. [Functional characterization of SsNES responsible for nerolidol biosynthesis in Senecio scandens].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2019 Apr; 44(7):1334-1340. doi:
10.19540/j.cnki.cjcmm.20181204.009
. [PMID: 31090289] - E-Eum Woo, Ji-Yul Kim, Jeong-Seon Kim, Soon-Wo Kwon, In-Kyoung Lee, Bong-Sik Yun. Mannonerolidol, a new nerolidol mannoside from culture broth of Schizophyllum commune.
The Journal of antibiotics.
2019 03; 72(3):178-180. doi:
10.1038/s41429-018-0130-3
. [PMID: 30542161] - Asmita Pant, Elizabeth A Rondini, Thomas A Kocarek. Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells.
Toxicology and applied pharmacology.
2019 02; 365(?):61-70. doi:
10.1016/j.taap.2019.01.003
. [PMID: 30611723] - Farhat Abbas, Yanguo Ke, Rangcai Yu, Yanping Fan. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium 'Siberia'.
Planta.
2019 Jan; 249(1):71-93. doi:
10.1007/s00425-018-3006-7
. [PMID: 30218384] - Yung-Lun Ni, Huan-Ting Shen, Chun-Hung Su, Wen-Ying Chen, Rosa Huang-Liu, Chun-Jung Chen, Shih-Pin Chen, Yu-Hsiang Kuan. Nerolidol Suppresses the Inflammatory Response during Lipopolysaccharide-Induced Acute Lung Injury via the Modulation of Antioxidant Enzymes and the AMPK/Nrf-2/HO-1 Pathway.
Oxidative medicine and cellular longevity.
2019; 2019(?):9605980. doi:
10.1155/2019/9605980
. [PMID: 31827712] - Bing Mu, Yin Zhu, Hai-Peng Lv, Han Yan, Qun-Hua Peng, Zhi Lin. The enantiomeric distributions of volatile constituents in different tea cultivars.
Food chemistry.
2018 Nov; 265(?):329-336. doi:
10.1016/j.foodchem.2018.05.094
. [PMID: 29884390] - Kyvia F Alves, Flávio H Caetano, Israel J Pereira Garcia, Hérica L Santos, Denise B Silva, João M Siqueira, Aparecida S Tanaka, Stênio N Alves. Baccharis dracunculifolia (Asteraceae) essential oil toxicity to Culex quinquefasciatus (Culicidae).
Environmental science and pollution research international.
2018 Nov; 25(31):31718-31726. doi:
10.1007/s11356-018-3149-x
. [PMID: 30209768] - Kateřina Lněničková, Hana Svobodová, Lenka Skálová, Martin Ambrož, Filip Novák, Petra Matoušková. The impact of sesquiterpenes β-caryophyllene oxide and trans-nerolidol on xenobiotic-metabolizing enzymes in mice in vivo.
Xenobiotica; the fate of foreign compounds in biological systems.
2018 Nov; 48(11):1089-1097. doi:
10.1080/00498254.2017.1398359
. [PMID: 29098926] - Lin Ni, Li Li, Yatie Qiu, Fang-You Chen, Chuang-Jun Li, Jie Ma, Dongming Zhang. Triptergosidols A-D, nerolidol-type sesquiterpene glucosides from the leaves of Tripterygium wilfordii.
Fitoterapia.
2018 Jul; 128(?):187-191. doi:
10.1016/j.fitote.2018.05.018
. [PMID: 29778574] - Jean-Louis Magnard, Aurélie Rius Bony, Fabienne Bettini, Ausilia Campanaro, Bernard Blerot, Sylvie Baudino, Frédéric Jullien. Linalool and linalool nerolidol synthases in roses, several genes for little scent.
Plant physiology and biochemistry : PPB.
2018 Jun; 127(?):74-87. doi:
10.1016/j.plaphy.2018.03.009
. [PMID: 29550664] - Ling Chuang, Chi-Hsiang Wen, Yi-Ru Lee, Yan-Liang Lin, Li-Ren Hsu, Sheng-Yang Wang, Fang-Hua Chu. Identification, Functional Characterization, and Seasonal Expression Patterns of Five Sesquiterpene Synthases in Liquidambar formosana.
Journal of natural products.
2018 05; 81(5):1162-1172. doi:
10.1021/acs.jnatprod.7b00773
. [PMID: 29746128] - Ming-Xing Zhou, Guo-Hui Li, Bin Sun, You-Wei Xu, Ai-Ling Li, Yan-Ru Li, Dong-Mei Ren, Xiao-Ning Wang, Xue-Sen Wen, Hong-Xiang Lou, Tao Shen. Identification of novel Nrf2 activators from Cinnamomum chartophyllum H.W. Li and their potential application of preventing oxidative insults in human lung epithelial cells.
Redox biology.
2018 04; 14(?):154-163. doi:
10.1016/j.redox.2017.09.004
. [PMID: 28942193] - Efat Jafari, Gholamabbas Ghanbarian, Atefeh Bahmanzadegan. Essential oil composition of aerial parts of Micromeria persica Boiss. from Western of Shiraz, Iran.
Natural product research.
2018 Apr; 32(8):991-996. doi:
10.1080/14786419.2017.1374270
. [PMID: 28893105] - Paola Andrade, David Manzano, Karla Ramirez-Estrada, Daniel Caudepon, Montserrat Arro, Albert Ferrer, Michael A Phillips. Nerolidol production in agroinfiltrated tobacco: Impact of protein stability and membrane targeting of strawberry (Fragraria ananassa) NEROLIDOL SYNTHASE1.
Plant science : an international journal of experimental plant biology.
2018 Feb; 267(?):112-123. doi:
10.1016/j.plantsci.2017.11.013
. [PMID: 29362090] - Guo-Feng Liu, Jing-Jing Liu, Zhi-Rong He, Fu-Min Wang, Hua Yang, Yi-Feng Yan, Ming-Jun Gao, Margaret Y Gruber, Xiao-Chun Wan, Shu Wei. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis.
Plant, cell & environment.
2018 Jan; 41(1):176-186. doi:
10.1111/pce.13080
. [PMID: 28963730] - Soufiane M'sou, Mohamed Alifriqui, Abderrahmane Romane. Phytochemical study and biological effects of the essential oil of Fraxinus dimorpha Coss & Durieu §.
Natural product research.
2017 Dec; 31(23):2797-2800. doi:
10.1080/14786419.2017.1294173
. [PMID: 28278638] - Veronika Hanušová, Kateřina Caltová, Hana Svobodová, Martin Ambrož, Adam Skarka, Natálie Murínová, Věra Králová, Pavel Tomšík, Lenka Skálová. The effects of β-caryophyllene oxide and trans-nerolidol on the efficacy of doxorubicin in breast cancer cells and breast tumor-bearing mice.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2017 Nov; 95(?):828-836. doi:
10.1016/j.biopha.2017.09.008
. [PMID: 28903178] - Sebastião Antonio Mendanha, Cássia Alessandra Marquezin, Amando Siuiti Ito, Antonio Alonso. Effects of nerolidol and limonene on stratum corneum membranes: A probe EPR and fluorescence spectroscopy study.
International journal of pharmaceutics.
2017 Oct; 532(1):547-554. doi:
10.1016/j.ijpharm.2017.09.046
. [PMID: 28935253] - Bruna Isabela Biazi, Thalita Alves Zanetti, Adrivanio Baranoski, Amanda Cristina Corveloni, Mário Sérgio Mantovani. Cis-Nerolidol Induces Endoplasmic Reticulum Stress and Cell Death in Human Hepatocellular Carcinoma Cells through Extensive CYP2C19 and CYP1A2 Oxidation.
Basic & clinical pharmacology & toxicology.
2017 Oct; 121(4):334-341. doi:
10.1111/bcpt.12772
. [PMID: 28256105] - Huijuanzi Rao, Pengxiang Lai, Yang Gao. Chemical Composition, Antibacterial Activity, and Synergistic Effects with Conventional Antibiotics and Nitric Oxide Production Inhibitory Activity of Essential Oil from Geophila repens (L.) I.M. Johnst.
Molecules (Basel, Switzerland).
2017 Sep; 22(9):. doi:
10.3390/molecules22091561
. [PMID: 28926976] - Ying Zhou, Lanting Zeng, Xiaoyu Liu, Jiadong Gui, Xin Mei, Xiumin Fu, Fang Dong, Jingchi Tang, Lingyun Zhang, Ziyin Yang. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing.
Food chemistry.
2017 Sep; 231(?):78-86. doi:
10.1016/j.foodchem.2017.03.122
. [PMID: 28450026] - Emine Sekerdag, Sevda Lüle, Sibel Bozdağ Pehlivan, Naile Öztürk, Aslı Kara, Abbas Kaffashi, Imran Vural, Ilkay Işıkay, Burҫin Yavuz, Kader Karlı Oguz, Figen Söylemezoğlu, Yasemin Gürsoy-Özdemir, Melike Mut. A potential non-invasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles.
Journal of controlled release : official journal of the Controlled Release Society.
2017 09; 261(?):187-198. doi:
10.1016/j.jconrel.2017.06.032
. [PMID: 28684169] - Marcos P Silva, Rosimeire N de Oliveira, Ana C Mengarda, Daniel B Roquini, Silmara M Allegretti, Maria C Salvadori, Fernanda S Teixeira, Damião P de Sousa, Pedro L S Pinto, Ademar A da Silva Filho, Josué de Moraes. Antiparasitic activity of nerolidol in a mouse model of schistosomiasis.
International journal of antimicrobial agents.
2017 Sep; 50(3):467-472. doi:
10.1016/j.ijantimicag.2017.06.005
. [PMID: 28666754] - Abbas Kaffashi, Sevda Lüle, Sibel Bozdağ Pehlivan, Can Sarısözen, İmran Vural, Hüsnü Koşucu, Taner Demir, Kadir Emre Buğdaycı, Figen Söylemezoğlu, Kader Karlı Oğuz, Melike Mut. Farnesylthiosalicylic acid-loaded lipid-polyethylene glycol-polymer hybrid nanoparticles for treatment of glioblastoma.
The Journal of pharmacy and pharmacology.
2017 Aug; 69(8):1010-1021. doi:
10.1111/jphp.12740
. [PMID: 28471040] - Rui-Huan Liu, Zhi-Chun Shang, Tian-Xiao Li, Ming-Hua Yang, Ling-Yi Kong. In Vitro Antibiofilm Activity of Eucarobustol E against Candida albicans.
Antimicrobial agents and chemotherapy.
2017 08; 61(8):. doi:
10.1128/aac.02707-16
. [PMID: 28584159] - Ligia Fernanda Ceole, Maria DAS Graças Cardoso, Maurilio José Soares. Nerolidol, the main constituent of Piper aduncum essential oil, has anti-Leishmania braziliensis activity.
Parasitology.
2017 Aug; 144(9):1179-1190. doi:
10.1017/s0031182017000452
. [PMID: 28482935] - Laura Scalvenzi, Alessandro Grandini, Antonella Spagnoletti, Massimo Tacchini, David Neill, José Luis Ballesteros, Gianni Sacchetti, Alessandra Guerrini. Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A Chemical Characterization and Bioactivity Profile.
Molecules (Basel, Switzerland).
2017 Jul; 22(7):. doi:
10.3390/molecules22071163
. [PMID: 28704964] - Mehrnaz Riasat, Ali Ashraf Jafari, Atefeh Bahmanzadegan, Ahmad Hatami, Faraneh Zareiyan. The constituents of essential oil in leaves of Karaj accession of Trigonella foenum graecum.
Natural product research.
2017 Jul; 31(14):1709-1712. doi:
10.1080/14786419.2017.1286484
. [PMID: 28278666] - Alessandro Passera, Giovanni Venturini, Giovanna Battelli, Paola Casati, Francesca Penaca, Fabio Quaglino, Piero Attilio Bianco. Competition assays revealed Paenibacillus pasadenensis strain R16 as a novel antifungal agent.
Microbiological research.
2017 May; 198(?):16-26. doi:
10.1016/j.micres.2017.02.001
. [PMID: 28285658] - Cecilia Cagliero, Carlo Bicchi, Chiara Cordero, Erica Liberto, Patrizia Rubiolo, Barbara Sgorbini. Analysis of essential oils and fragrances with a new generation of highly inert gas chromatographic columns coated with ionic liquids.
Journal of chromatography. A.
2017 Apr; 1495(?):64-75. doi:
10.1016/j.chroma.2017.03.029
. [PMID: 28343686]