Geranyl-PP (BioDeep_00000004295)
Secondary id: BioDeep_00000638324
human metabolite PANOMIX_OTCML-2023 Endogenous natural product BioNovoGene_Lab2019
代谢物信息卡片
化学式: C10H20O7P2 (314.068423)
中文名称: 香叶基焦磷酸铵盐, 香叶基焦磷酸, 香叶焦磷酸
谱图信息:
最多检出来源 Macaca mulatta(otcml) 0.07%
分子结构信息
SMILES: CC(=CCCC(=CCOP(=O)(O)OP(=O)(O)O)C)C
InChI: InChI=1S/C10H20O7P2/c1-9(2)5-4-6-10(3)7-8-16-19(14,15)17-18(11,12)13/h5,7H,4,6,8H2,1-3H3,(H,14,15)(H2,11,12,13)/b10-7+
描述信息
Geranyl diphosphate is the precursor of monoterpenes, a large family of natural occurring C10 compounds predominately found in plants and animals. Geranyl diphosphate is regarded as a key intermediate in the steroid, isoprene and terpene biosynthesis pathways and is used by organisms in the biosynthesis of farnesyl pyrophosphate, geranylgeranyl pyrophosphate, cholesterol, terpenes and terpenoids. (wikipedia). In humans, geranyl diphosphate synthase (GPPS) catalyzes the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl diphosphate. Animals produce IPP through the mevalonate (MVA) pathway. Isoprenoid compounds have been implicated in several human disease states including coronary heart disease, blindness, infectious hepatitis and cancer.; ; Geranyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. -- Wikipedia; Geranyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of farnesyl pyrophosphate, geranylgeranyl pyrophosphate, cholesterol, terpenes and terpenoids.
Geranyl diphosphate is the precursor of monoterpenes, a large family of natural occurring C10 compounds predominately found in plants and animals. Geranyl diphosphate is regarded as a key intermediate in the steroid, isoprene and terpene biosynthesis pathways and is used by organisms in the biosynthesis of farnesyl pyrophosphate, geranylgeranyl pyrophosphate, cholesterol, terpenes and terpenoids. (wikipedia). In humans, geranyl diphosphate synthase (GPPS) catalyzes the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl diphosphate. Animals produce IPP through the mevalonate (MVA) pathway. Isoprenoid compounds have been implicated in several human disease states including coronary heart disease, blindness, infectious hepatitis and cancer. Geranyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. -- Wikipedia.
同义名列表
26 个代谢物同义名
[({[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}(hydroxy)phosphoryl)oxy]phosphonic acid; [(2E)-3,7-dimethylocta-2,6-dienyl] phosphono hydrogen phosphate; (2E)-3,7-Dimethylocta-2,6-dien-1-yl trihydrogen diphosphate; P-[(2E)-3,7-Dimethyl-2,6-octadien-1-yl]diphosphoric acid; trans-Polyisopentenyldiphosphoric acid; Polyisopentenylpyrophosphoric acid; GERANYL PYROPHOSPHATE AMMONIUM 200; trans-Polyisopentenyldiphosphate; Polyisopentenyldiphosphoric acid; Polyisopentenylpyrophosphate; Polyprenyl diphosphoric acid; Geranyl pyrophosphoric acid; trans-Geranyl pyrophosphate; Polyisopentenyldiphosphate; Geranyl pyrophosphic acid; Monoterpenyl diphosphate; Polyprenyl diphosphate; Geranyl-pyrophosphate; Geranyl pyrophosphate; Geranyl-diphosphate; Geranyl diphosphate; Neryl diphosphate; trans-geranyl-PP; FT-0626677; Geranyl-PP; Geranyl diphosphate(Geranyl-PP)
数据库引用编号
24 个数据库交叉引用编号
- ChEBI: CHEBI:55337
- ChEBI: CHEBI:17211
- KEGG: C00341
- PubChem: 445995
- PubChem: 734
- HMDB: HMDB0001285
- Metlin: METLIN400
- DrugBank: DB02552
- ChEMBL: CHEMBL41342
- Wikipedia: Geranyl_pyrophosphate
- MetaCyc: GERANYL-PP
- KNApSAcK: C00000846
- foodb: FDB001463
- chemspider: 393471
- CAS: 763-10-0
- PMhub: MS000016370
- PubChem: 3634
- LipidMAPS: LMPR0102010001
- PDB-CCD: GPP
- 3DMET: B00091
- NIKKAJI: J1.452.575K
- NIKKAJI: J39.583H
- LOTUS: LTS0051684
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-495
分类词条
相关代谢途径
PlantCyc(0)
代谢反应
444 个相关的代谢反应过程信息。
Reactome(72)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
7-dehydroCHOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Cholesterol biosynthesis:
H+ + LAN + Oxygen + TPNH ⟶ 4,4DMCHtOL + H2O + HCOOH + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Metabolism of steroids:
H+ + TEST + TPNH ⟶ DHTEST + TPN
- Cholesterol biosynthesis:
GPP + IPPP ⟶ FAPP + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
BioCyc(5)
- superpathway of sterol biosynthesis:
4-methyl-2-oxopentanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + isovaleryl-CoA
- polyisoprenoid biosynthesis (E. coli):
(2E,6E)-farnesyl diphosphate + isopentenyl diphosphate ⟶ di-trans,poly-cis-undecaprenyl diphosphate + diphosphate
- trans, trans-farnesyl diphosphate biosynthesis I:
geranyl diphosphate + isopentenyl diphosphate ⟶ (2E,6E)-farnesyl diphosphate + diphosphate
- polyisoprenoid biosynthesis (E. coli):
geranyl diphosphate + isopentenyl diphosphate ⟶ (2E,6E)-farnesyl diphosphate + diphosphate
- trans, trans-farnesyl diphosphate biosynthesis I:
geranyl diphosphate + isopentenyl diphosphate ⟶ (2E,6E)-farnesyl diphosphate + diphosphate
WikiPathways(5)
- Cholesterol metabolism:
Dehydrocholesterol ⟶ Cholesterol
- Cholesterol metabolism with Bloch and Kandutsch-Russell pathways:
7-dehydodesmosterol ⟶ 7-dehdrocholesterol
- Cholesterol metabolism with Bloch and Kandutsch-Russell pathways:
7-dehydodesmosterol ⟶ 7-dehdrocholesterol
- Cholesterol synthesis disorders:
squalene ⟶ (S)-2,3-epoxysqualene
- Ergosterol biosynthesis:
PreSqualene-PP ⟶ Squalene
Plant Reactome(298)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Myrcene biosynthesis:
(-)-alpha-terpineol ⟶ 1,8-cineole
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (+)-3-carene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Myrcene biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Oleoresin monoterpene volatiles biosynthesis:
GPP ⟶ (-)-limonene + PPi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- GPP biosynthesis:
DMAPP + IPPP ⟶ GPP + PPi
- FPP biosynthesis:
GPP + IPPP ⟶ FAPP + PPi
- GGPP biosynthesis II (plastidic):
GPP + IPPP ⟶ FAPP + PPi
- Polyisoprenoid biosynthesis:
FAPP + IPPP ⟶ 2-cis,6-trans,10-trans-geranylgeranyl diphosphate + PPi
- Secologanin and strictosidine biosynthesis:
GPP + H2O ⟶ PPi + geraniol
INOH(1)
- Steroids metabolism ( Steroids metabolism ):
7-Dehydro-cholesterol + NADP+ ⟶ Cholesterol + NADPH
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(63)
- Monoterpenoid Biosynthesis:
(S)- -Terpineol ⟶ Eucalyptol
- Steroid Biosynthesis:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Smith-Lemli-Opitz Syndrome (SLOS):
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- CHILD Syndrome:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Desmosterolosis:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Chondrodysplasia Punctata II, X-Linked Dominant (CDPX2):
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Lysosomal Acid Lipase Deficiency (Wolman Disease):
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Ibandronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Simvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Pravastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Rosuvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Alendronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Hypercholesterolemia:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Lovastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Zoledronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Cerivastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Risedronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Pamidronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Fluvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Atorvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Cholesteryl Ester Storage Disease:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Hyper-IgD Syndrome:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Mevalonic Aciduria:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Wolman Disease:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Secondary Metabolites: Methylerythritol Phosphate and Polyisoprenoid Biosynthesis:
1-Deoxy-D-xylulose 5-phosphate + Hydrogen Ion + NADPH ⟶ 2-C-methyl-D-erythritol 4-phosphate + NADP
- Steroid Biosynthesis:
Farnesyl pyrophosphate + NADPH ⟶ NADP + Pyrophosphate + Squalene
- Terpenoid Backbone Biosynthesis:
3-Hydroxy-3-methylglutaryl-CoA + NADPH ⟶ Coenzyme A + Mevalonic acid + NADP
- Cholesterol biosynthesis and metabolism CE(14:0):
Desmosterol ⟶ Cholesterol
- Cholesterol biosynthesis and metabolism CE(10:0):
Desmosterol ⟶ Cholesterol
- Cholesterol Biosynthesis and Metabolism CE(12:0):
Cholesterol + Lauroyl-CoA ⟶ CE(12:0) + Coenzyme A
- Cholesterol Biosynthesis and Metabolism CE(16:0):
Cholesterol + Palmityl-CoA ⟶ CE(16:0) + Coenzyme A
- Cholesterol biosynthesis and metabolism CE(18:0):
Desmosterol ⟶ Cholesterol
- Epoxysqualene Biosynthesis:
Geranyl-PP + Isopentenyl pyrophosphate ⟶ Farnesyl pyrophosphate + Pyrophosphate
- Farnesene Biosynthesis:
Geranyl-PP + Isopentenyl pyrophosphate ⟶ Farnesyl pyrophosphate + Pyrophosphate
- Steroid Biosynthesis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- CHILD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Chondrodysplasia Punctata II, X-Linked Dominant (CDPX2):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Desmosterolosis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Lysosomal Acid Lipase Deficiency (Wolman Disease):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Smith-Lemli-Opitz Syndrome (SLOS):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hypercholesterolemia:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Cholesteryl Ester Storage Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hyper-IgD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Mevalonic Aciduria:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Wolman Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Cholesterol Biosynthesis and Metabolism:
Cholesterol + long-chain fatty acyl-CoA ⟶ Cholesteryl ester + Coenzyme A
- Steroid Biosynthesis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Steroid Biosynthesis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- CHILD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Chondrodysplasia Punctata II, X-Linked Dominant (CDPX2):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Desmosterolosis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Lysosomal Acid Lipase Deficiency (Wolman Disease):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Smith-Lemli-Opitz Syndrome (SLOS):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hypercholesterolemia:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Cholesteryl Ester Storage Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hyper-IgD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Mevalonic Aciduria:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Wolman Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Mevalonate Pathway:
(S)-2,3-Epoxysqualene ⟶ Lanosterol
- MEP/DOXP Pathway:
4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol + Adenosine diphosphate + Hydrogen Ion ⟶ 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol + Adenosine triphosphate
- Mevalonate Pathway:
3-Hydroxy-3-methylglutaryl-CoA + Hydrogen Ion + NADPH ⟶ (R)-mevalonate + Coenzyme A + NADP
- Terpenoid Backbone Biosynthesis:
Farnesylcysteine + Oxygen + Water ⟶ 2-trans,6-trans-Farnesal + Hydrogen peroxide + L-Cysteine
- Secondary Metabolites: Methylerythritol Phosphate and Polyisoprenoid Biosynthesis:
4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol + Adenosine triphosphate ⟶ 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol + Adenosine diphosphate + Hydrogen Ion
PharmGKB(0)
57 个相关的物种来源信息
- 28211 - Alphaproteobacteria: LTS0051684
- 2 - Bacteria: LTS0051684
- 21571 - Boraginaceae: LTS0051684
- 172057 - Centaurium erythraea: 10.1016/J.PHYTOCHEM.2018.07.015
- 2706 - Citrus: LTS0051684
- 558547 - Citrus deliciosa: 10.1007/BF00269709
- 76966 - Citrus japonica:
- 76966 - Citrus japonica: 10.1007/BF00393177
- 76966 - Citrus japonica: LTS0051684
- 85571 - Citrus reticulata: 10.1007/BF00269709
- 85571 - Citrus reticulata: LTS0051684
- 55188 - Citrus unshiu: 10.1007/BF00269709
- 55188 - Citrus unshiu: LTS0051684
- 164113 - Citrus × microcarpa: 10.1007/BF00393177
- 28221 - Deltaproteobacteria: LTS0051684
- 543 - Enterobacteriaceae: LTS0051684
- 1903409 - Erwiniaceae: LTS0051684
- 2759 - Eukaryota: LTS0051684
- 49546 - Flavobacteriaceae: LTS0051684
- 117743 - Flavobacteriia: LTS0051684
- 237 - Flavobacterium: 10.1016/S0378-1119(96)00624-5
- 237 - Flavobacterium: LTS0051684
- 1236 - Gammaproteobacteria: LTS0051684
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 4136 - Lamiaceae: LTS0051684
- 21634 - Lithospermum: LTS0051684
- 34254 - Lithospermum erythrorhizon: 10.1016/0014-5793(88)80192-3
- 34254 - Lithospermum erythrorhizon: LTS0051684
- 3398 - Magnoliopsida: LTS0051684
- 10090 - Mus musculus: 10.1016/S0378-1119(96)00593-8
- 31 - Myxococcaceae: LTS0051684
- 32 - Myxococcus: LTS0051684
- 34 - Myxococcus xanthus: 10.1111/J.1432-1033.1995.238_1.X
- 34 - Myxococcus xanthus: LTS0051684
- 204149 - Ocimum tenuiflorum: 10.1371/JOURNAL.PONE.0207097
- 53335 - Pantoea: LTS0051684
- 549 - Pantoea agglomerans:
- 553 - Pantoea ananatis:
- 553 - Pantoea ananatis: 10.1128/JB.172.12.6704-6712.1990
- 553 - Pantoea ananatis: LTS0051684
- 48385 - Perilla: LTS0051684
- 48386 - Perilla frutescens: 10.1016/0031-9422(86)80017-6
- 48386 - Perilla frutescens: LTS0051684
- 1060 - Rhodobacter: LTS0051684
- 1061 - Rhodobacter capsulatus: 10.1007/BF00334364
- 1061 - Rhodobacter capsulatus: LTS0051684
- 23513 - Rutaceae: LTS0051684
- 35974 - Santalum album: 10.1016/J.GENE.2013.06.080
- 1883 - Streptomyces: LTS0051684
- 1911 - Streptomyces griseus:
- 1911 - Streptomyces griseus: 10.1007/BF02173971
- 1911 - Streptomyces griseus: LTS0051684
- 2062 - Streptomycetaceae: LTS0051684
- 35493 - Streptophyta: LTS0051684
- 58023 - Tracheophyta: LTS0051684
- 33090 - Viridiplantae: LTS0051684
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Chen Dong, Zhiwen Wang, Lili Qin, Chen Zhang, Longyun Cao, Haifeng Li, Xintian Ma. Overexpression of Geranyl Diphosphate Synthase 1 (NnGGPPS1) From Nelumbo nucifera Enhances Carotenoid and Chlorophyll Content and Biomass.
Gene.
2023 Jul; ?(?):147645. doi:
10.1016/j.gene.2023.147645
. [PMID: 37453723] - Maria O Taratynova, Ekaterina E Tikhonova, Iuliia M Fedyaeva, Dmitry A Dementev, Tigran V Yuzbashev, Andrey I Solovyev, Sergey P Sineoky, Evgeniya Y Yuzbasheva. Boosting Geranyl Diphosphate Synthesis for Linalool Production in Engineered Yarrowia lipolytica.
Applied biochemistry and biotechnology.
2023 Jul; ?(?):. doi:
10.1007/s12010-023-04581-z
. [PMID: 37392322] - Shuyan Song, Ruitao Jin, Yufan Chen, Sitong He, Kui Li, Qian Tang, Qi Wang, Linjuan Wang, Mengjuan Kong, Natalia Dudareva, Brian J Smith, Fei Zhou, Shan Lu. The functional evolution of architecturally different plant geranyl diphosphate synthases from geranylgeranyl diphosphate synthase.
The Plant cell.
2023 Mar; ?(?):. doi:
10.1093/plcell/koad083
. [PMID: 36929908] - Bin Liu, Qinghua Liu, Zhichun Zhou, Hengfu Yin, Yini Xie. Overexpression of geranyl diphosphate synthase (PmGPPS1) boosts monoterpene and diterpene production involved in the response to pine wood nematode invasion.
Tree physiology.
2022 02; 42(2):411-424. doi:
10.1093/treephys/tpab103
. [PMID: 34378055] - Joy M Blain, Dakota L Grote, Sydney M Watkins, Gashaw M Goshu, Chanté Muller, James L Gorman, Gina Ranieri, Richard L Walter, Heike Hofstetter, James R Horn, Timothy J Hagen. Structural and biophysical characterization of the Burkholderia pseudomallei IspF inhibitor L-tryptophan hydroxamate.
Bioorganic & medicinal chemistry letters.
2021 09; 48(?):128273. doi:
10.1016/j.bmcl.2021.128273
. [PMID: 34298132] - Matthew E Bergman, Mridula Bhardwaj, Michael A Phillips. Cytosolic geraniol and citronellol biosynthesis require a Nudix hydrolase in rose-scented geranium (Pelargonium graveolens).
The Plant journal : for cell and molecular biology.
2021 07; 107(2):493-510. doi:
10.1111/tpj.15304
. [PMID: 33949016] - Simon Dusséaux, William Thomas Wajn, Yixuan Liu, Codruta Ignea, Sotirios C Kampranis. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids.
Proceedings of the National Academy of Sciences of the United States of America.
2020 12; 117(50):31789-31799. doi:
10.1073/pnas.2013968117
. [PMID: 33268495] - Xun Wang, Jing Wu, Jiaming Chen, Longjie Xiao, Yu Zhang, Fei Wang, Xun Li. Efficient Biosynthesis of R-(-)-Linalool through Adjusting the Expression Strategy and Increasing GPP Supply in Escherichia coli.
Journal of agricultural and food chemistry.
2020 Aug; 68(31):8381-8390. doi:
10.1021/acs.jafc.0c03664
. [PMID: 32657129] - Gal Hivert, Rachel Davidovich-Rikanati, Einat Bar, Yaron Sitrit, Arthur Schaffer, Natalia Dudareva, Efraim Lewinsohn. Prenyltransferases catalyzing geranyldiphosphate formation in tomato fruit.
Plant science : an international journal of experimental plant biology.
2020 Jul; 296(?):110504. doi:
10.1016/j.plantsci.2020.110504
. [PMID: 32540020] - Michele Fabris, Jestin George, Unnikrishnan Kuzhiumparambil, Caitlin A Lawson, Ana Cristina Jaramillo-Madrid, Raffaela M Abbriano, Claudia E Vickers, Peter Ralph. Extrachromosomal Genetic Engineering of the Marine Diatom Phaeodactylum tricornutum Enables the Heterologous Production of Monoterpenoids.
ACS synthetic biology.
2020 03; 9(3):598-612. doi:
10.1021/acssynbio.9b00455
. [PMID: 32032487] - Ayelign M Adal, Soheil S Mahmoud. Short-chain isoprenyl diphosphate synthases of lavender (Lavandula).
Plant molecular biology.
2020 Mar; 102(4-5):517-535. doi:
10.1007/s11103-020-00962-8
. [PMID: 31927660] - Codruta Ignea, Marianna Pontini, Mohammed S Motawia, Massimo E Maffei, Antonios M Makris, Sotirios C Kampranis. Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering.
Nature chemical biology.
2018 12; 14(12):1090-1098. doi:
10.1038/s41589-018-0166-5
. [PMID: 30429605] - Zhuoheng Zhong, Wei Zhu, Shengzhi Liu, Qijie Guan, Xi Chen, Wei Huang, Tantan Wang, Bingxian Yang, Jingkui Tian. Molecular Characterization of a Geranyl Diphosphate-Specific Prenyltransferase Catalyzing Stilbenoid Prenylation from Morus alba.
Plant & cell physiology.
2018 Nov; 59(11):2214-2227. doi:
10.1093/pcp/pcy138
. [PMID: 30020500] - Lixia Yang, Liangzhen Jiang, Wei Li, Yun Yang, Guolin Zhang, Yinggang Luo. A homomeric geranyl diphosphate synthase-encoding gene from Camptotheca acuminata and its combinatorial optimization for production of geraniol in Escherichia coli.
Journal of industrial microbiology & biotechnology.
2017 Oct; 44(10):1431-1441. doi:
10.1007/s10295-017-1967-3
. [PMID: 28695386] - Vaishnavi Amarr Reddy, Qian Wang, Niha Dhar, Nadimuthu Kumar, Prasanna Nori Venkatesh, Chakravarthy Rajan, Deepa Panicker, Vishweshwaran Sridhar, Hui-Zhu Mao, Rajani Sarojam. Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS.LSU).
Plant biotechnology journal.
2017 Sep; 15(9):1105-1119. doi:
10.1111/pbi.12701
. [PMID: 28160379] - Benjamin R Morehouse, Ramasamy P Kumar, Jason O Matos, Sarah Naomi Olsen, Sonya Entova, Daniel D Oprian. Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis.
Biochemistry.
2017 03; 56(12):1706-1715. doi:
10.1021/acs.biochem.7b00143
. [PMID: 28272875] - Li-Chan Tu, Yi-Feng Zhang, Ping Su, Tian-Yuan Hu, Yu-Ru Tong, Hong-Yu Guan, Yu-Jun Zhao, Xia-Nan Zhang, Yuan Yuan, Wei Gao, Lu-Qi Huang. [Cloning and protein expression analysis of geranyl diphosphate synthase genes in Tripterygium wilfordii].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2017 Jan; 42(2):220-225. doi:
10.19540/j.cnki.cjcmm.20161222.042
. [PMID: 28948723] - Fei Chen, Wei Li, Liangzhen Jiang, Xiang Pu, Yun Yang, Guolin Zhang, Yinggang Luo. Functional characterization of a geraniol synthase-encoding gene from Camptotheca acuminata and its application in production of geraniol in Escherichia coli.
Journal of industrial microbiology & biotechnology.
2016 09; 43(9):1281-92. doi:
10.1007/s10295-016-1802-2
. [PMID: 27349769] - Yu Deng, Mingxue Sun, Sha Xu, Jingwen Zhou. Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae.
Journal of applied microbiology.
2016 Jul; 121(1):187-95. doi:
10.1111/jam.13105
. [PMID: 26909774] - Lemeng Dong, Esmer Jongedijk, Harro Bouwmeester, Alexander Van Der Krol. Monoterpene biosynthesis potential of plant subcellular compartments.
The New phytologist.
2016 Jan; 209(2):679-90. doi:
10.1111/nph.13629
. [PMID: 26356766] - Nathalie Gatto, Abith Vattekkatte, Tobias Köllner, Jörg Degenhardt, Jonathan Gershenzon, Wilhelm Boland. Isotope sensitive branching and kinetic isotope effects to analyse multiproduct terpenoid synthases from Zea mays.
Chemical communications (Cambridge, England).
2015 Mar; 51(18):3797-800. doi:
10.1039/c4cc10395e
. [PMID: 25658388] - Ryosuke Munakata, Tsuyoshi Inoue, Takao Koeduka, Fazeelat Karamat, Alexandre Olry, Akifumi Sugiyama, Kojiro Takanashi, Audray Dugrand, Yann Froelicher, Ryo Tanaka, Yoshihiro Uto, Hitoshi Hori, Jun-Ichi Azuma, Alain Hehn, Frédéric Bourgaud, Kazufumi Yazaki. Molecular cloning and characterization of a geranyl diphosphate-specific aromatic prenyltransferase from lemon.
Plant physiology.
2014 Sep; 166(1):80-90. doi:
10.1104/pp.114.246892
. [PMID: 25077796] - Naoko Sato-Masumoto, Michiho Ito. Two types of alcohol dehydrogenase from Perilla can form citral and perillaldehyde.
Phytochemistry.
2014 Aug; 104(?):12-20. doi:
10.1016/j.phytochem.2014.04.019
. [PMID: 24864017] - Avanish Rai, Shachi S Smita, Anup Kumar Singh, Karuna Shanker, Dinesh A Nagegowda. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.
Molecular plant.
2013 Sep; 6(5):1531-49. doi:
10.1093/mp/sst058
. [PMID: 23543438] - Michael Gutensohn, Irina Orlova, Thuong T H Nguyen, Rachel Davidovich-Rikanati, Mario G Ferruzzi, Yaron Sitrit, Efraim Lewinsohn, Eran Pichersky, Natalia Dudareva. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.
The Plant journal : for cell and molecular biology.
2013 Aug; 75(3):351-63. doi:
10.1111/tpj.12212
. [PMID: 23607888] - Eliana Gonzales-Vigil, David E Hufnagel, Jeongwoon Kim, Robert L Last, Cornelius S Barry. Evolution of TPS20-related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites.
The Plant journal : for cell and molecular biology.
2012 Sep; 71(6):921-35. doi:
10.1111/j.1365-313x.2012.05040.x
. [PMID: 22563774] - Zerihun A Demissie, Monica A Cella, Lukman S Sarker, Travis J Thompson, Mark R Rheault, Soheil S Mahmoud. Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula.
Plant molecular biology.
2012 Jul; 79(4-5):393-411. doi:
10.1007/s11103-012-9920-3
. [PMID: 22592779] - Alice Vezzaro, Sandra T Krause, Alberto Nonis, Angelo Ramina, Jörg Degenhardt, Benedetto Ruperti. Isolation and characterization of terpene synthases potentially involved in flavor development of ripening olive (Olea europaea) fruits.
Journal of plant physiology.
2012 Jun; 169(9):908-14. doi:
10.1016/j.jplph.2012.01.021
. [PMID: 22475500] - Mustafa Köksal, Wayne K W Chou, David E Cane, David W Christianson. Structure of 2-methylisoborneol synthase from Streptomyces coelicolor and implications for the cyclization of a noncanonical C-methylated monoterpenoid substrate.
Biochemistry.
2012 Apr; 51(14):3011-20. doi:
10.1021/bi201827a
. [PMID: 22455514] - Danilo Aros, Veronica Gonzalez, Rudolf K Allemann, Carsten T Müller, Carlo Rosati, Hilary J Rogers. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers.
Journal of experimental botany.
2012 Apr; 63(7):2739-52. doi:
10.1093/jxb/err456
. [PMID: 22268153] - Yimian Ma, Lichai Yuan, Bin Wu, Xian'en Li, Shilin Chen, Shanfa Lu. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza.
Journal of experimental botany.
2012 Apr; 63(7):2809-23. doi:
10.1093/jxb/err466
. [PMID: 22291132] - Motoyoshi Noike, Chengwei Liu, Yusuke Ono, Yoshimitsu Hamano, Tomonobu Toyomasu, Takeshi Sassa, Nobuo Kato, Tohru Dairi. An enzyme catalyzing O-prenylation of the glucose moiety of fusicoccin A, a diterpene glucoside produced by the fungus Phomopsis amygdali.
Chembiochem : a European journal of chemical biology.
2012 Mar; 13(4):566-73. doi:
10.1002/cbic.201100725
. [PMID: 22287087] - Sol A Green, Xiuyin Chen, Niels J Nieuwenhuizen, Adam J Matich, Mindy Y Wang, Barry J Bunn, Yar-Khing Yauk, Ross G Atkinson. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis).
Journal of experimental botany.
2012 Mar; 63(5):1951-67. doi:
10.1093/jxb/err393
. [PMID: 22162874] - Raimund Nagel, Jonathan Gershenzon, Axel Schmidt. Nonradioactive assay for detecting isoprenyl diphosphate synthase activity in crude plant extracts using liquid chromatography coupled with tandem mass spectrometry.
Analytical biochemistry.
2012 Mar; 422(1):33-8. doi:
10.1016/j.ab.2011.12.037
. [PMID: 22266300] - Ryosuke Munakata, Tsuyoshi Inoue, Takao Koeduka, Kanako Sasaki, Yusuke Tsurumaru, Akifumi Sugiyama, Yoshihiro Uto, Hitoshi Hori, Jun-Ichi Azuma, Kazufumi Yazaki. Characterization of coumarin-specific prenyltransferase activities in Citrus limon peel.
Bioscience, biotechnology, and biochemistry.
2012; 76(7):1389-93. doi:
10.1271/bbb.120192
. [PMID: 22785469] - Tapan Kumar Mohanta, Andrea Occhipinti, Simon Atsbaha Zebelo, Maria Foti, Judith Fliegmann, Simone Bossi, Massimo E Maffei, Cinzia M Bertea. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses.
PloS one.
2012; 7(3):e32822. doi:
10.1371/journal.pone.0032822
. [PMID: 22448229] - Tahira Fatima, Crystal L Snyder, William R Schroeder, Dustin Cram, Raju Datla, David Wishart, Randall J Weselake, Priti Krishna. Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed.
PloS one.
2012; 7(4):e34099. doi:
10.1371/journal.pone.0034099
. [PMID: 22558083] - Adelene Ai Lian Song, Janna O Abdullah, Mohd Puad Abdullah, Norazizah Shafee, Raha A Rahim. Functional expression of an orchid fragrance gene in Lactococcus lactis.
International journal of molecular sciences.
2012; 13(2):1582-1597. doi:
10.3390/ijms13021582
. [PMID: 22408409] - Hongmei Luo, Chao Sun, Yongzhen Sun, Qiong Wu, Ying Li, Jingyuan Song, Yunyun Niu, Xianglin Cheng, Hongxi Xu, Chuyuan Li, Juyan Liu, André Steinmetz, Shilin Chen. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers.
BMC genomics.
2011 Dec; 12 Suppl 5(?):S5. doi:
10.1186/1471-2164-12-s5-s5
. [PMID: 22369100] - Roberto A Barrero, Brett Chapman, Yanfang Yang, Paula Moolhuijzen, Gabriel Keeble-Gagnère, Nan Zhang, Qi Tang, Matthew I Bellgard, Deyou Qiu. De novo assembly of Euphorbia fischeriana root transcriptome identifies prostratin pathway related genes.
BMC genomics.
2011 Dec; 12(?):600. doi:
10.1186/1471-2164-12-600
. [PMID: 22151917] - Axel Schmidt, Raimund Nagel, Trygve Krekling, Erik Christiansen, Jonathan Gershenzon, Paal Krokene. Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies).
Plant molecular biology.
2011 Dec; 77(6):577-90. doi:
10.1007/s11103-011-9832-7
. [PMID: 22002747] - Juri Battilana, Francesco Emanuelli, Giorgio Gambino, Ivana Gribaudo, Flavia Gasperi, Paul K Boss, Maria Stella Grando. Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation.
Journal of experimental botany.
2011 Nov; 62(15):5497-508. doi:
10.1093/jxb/err231
. [PMID: 21868399] - Petra M Bleeker, Eleni A Spyropoulou, Paul J Diergaarde, Hanne Volpin, Michiel T J De Both, Philipp Zerbe, Joerg Bohlmann, Vasiliki Falara, Yuki Matsuba, Eran Pichersky, Michel A Haring, Robert C Schuurink. RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes.
Plant molecular biology.
2011 Nov; 77(4-5):323-36. doi:
10.1007/s11103-011-9813-x
. [PMID: 21818683] - Harm van Bakel, Jake M Stout, Atina G Cote, Carling M Tallon, Andrew G Sharpe, Timothy R Hughes, Jonathan E Page. The draft genome and transcriptome of Cannabis sativa.
Genome biology.
2011 Oct; 12(10):R102. doi:
10.1186/gb-2011-12-10-r102
. [PMID: 22014239] - Tsuyoshi Goto, Hiroyuki Nagai, Kahori Egawa, Young-Il Kim, Sota Kato, Aki Taimatsu, Tomoya Sakamoto, Shogo Ebisu, Takahiro Hohsaka, Hiroh Miyagawa, Shigeru Murakami, Nobuyuki Takahashi, Teruo Kawada. Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARγ agonist.
The Biochemical journal.
2011 Aug; 438(1):111-9. doi:
10.1042/bj20101939
. [PMID: 21605082] - Wei Wen, Rongmin Yu. Artemisinin biosynthesis and its regulatory enzymes: Progress and perspective.
Pharmacognosy reviews.
2011 Jul; 5(10):189-94. doi:
10.4103/0973-7847.91118
. [PMID: 22279377] - Pilar Martinez-Moya, Steven Alexander Watt, Karsten Niehaus, Jennifer Alcaíno, Marcelo Baeza, Víctor Cifuentes. Proteomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous.
BMC microbiology.
2011 Jun; 11(?):131. doi:
10.1186/1471-2180-11-131
. [PMID: 21669001] - Linda Olofsson, Alexander Engström, Anneli Lundgren, Peter E Brodelius. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L.
BMC plant biology.
2011 Mar; 11(?):45. doi:
10.1186/1471-2229-11-45
. [PMID: 21388533] - Simon Atsbaha Zebelo, Cinzia M Bertea, Simone Bossi, Andrea Occhipinti, Giorgio Gnavi, Massimo E Maffei. Chrysolina herbacea modulates terpenoid biosynthesis of Mentha aquatica L.
PloS one.
2011 Mar; 6(3):e17195. doi:
10.1371/journal.pone.0017195
. [PMID: 21408066] - Christopher I Keeling, Sabrina Weisshaar, Steven G Ralph, Sharon Jancsik, Britta Hamberger, Harpreet K Dullat, Jörg Bohlmann. Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.).
BMC plant biology.
2011 Mar; 11(?):43. doi:
10.1186/1471-2229-11-43
. [PMID: 21385377] - Codruta Ignea, Ivana Cvetkovic, Sofia Loupassaki, Panagiotis Kefalas, Christopher B Johnson, Sotirios C Kampranis, Antonios M Makris. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids.
Microbial cell factories.
2011 Jan; 10(?):4. doi:
10.1186/1475-2859-10-4
. [PMID: 21276210] - Atsushi Muroi, Abdelaziz Ramadan, Masahiro Nishihara, Masaki Yamamoto, Rika Ozawa, Junji Takabayashi, Gen-ichiro Arimura. The composite effect of transgenic plant volatiles for acquired immunity to herbivory caused by inter-plant communications.
PloS one.
2011; 6(10):e24594. doi:
10.1371/journal.pone.0024594
. [PMID: 22022359] - Federico Brilli, Taina M Ruuskanen, Ralf Schnitzhofer, Markus Müller, Martin Breitenlechner, Vinzenz Bittner, Georg Wohlfahrt, Francesco Loreto, Armin Hansel. Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction 'time-of-flight' mass spectrometry (PTR-TOF).
PloS one.
2011; 6(5):e20419. doi:
10.1371/journal.pone.0020419
. [PMID: 21637822] - Eric T McDowell, Jeremy Kapteyn, Adam Schmidt, Chao Li, Jin-Ho Kang, Anne Descour, Feng Shi, Matthew Larson, Anthony Schilmiller, Lingling An, A Daniel Jones, Eran Pichersky, Carol A Soderlund, David R Gang. Comparative functional genomic analysis of Solanum glandular trichome types.
Plant physiology.
2011 Jan; 155(1):524-39. doi:
10.1104/pp.110.167114
. [PMID: 21098679] - Mizue Sugiura, Sohei Ito, Yosuke Saito, Yasuo Niwa, Anna M Koltunow, Osamu Sugimoto, Hiroshi Sakai. Molecular cloning and characterization of a linalool synthase from lemon myrtle.
Bioscience, biotechnology, and biochemistry.
2011; 75(7):1245-8. doi:
10.1271/bbb.100922
. [PMID: 21737936] - Ravi S Singh, Rishi K Gara, Pardeep K Bhardwaj, Anish Kaachra, Sonia Malik, Ravi Kumar, Madhu Sharma, Paramvir S Ahuja, Sanjay Kumar. Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma (Royle) Johnston].
BMC molecular biology.
2010 Nov; 11(?):88. doi:
10.1186/1471-2199-11-88
. [PMID: 21092138] - Francesco Emanuelli, Juri Battilana, Laura Costantini, Loïc Le Cunff, Jean-Michel Boursiquot, Patrice This, Maria S Grando. A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.).
BMC plant biology.
2010 Nov; 10(?):241. doi:
10.1186/1471-2229-10-241
. [PMID: 21062440] - Diane M Martin, Sébastien Aubourg, Marina B Schouwey, Laurent Daviet, Michel Schalk, Omid Toub, Steven T Lund, Jörg Bohlmann. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays.
BMC plant biology.
2010 Oct; 10(?):226. doi:
10.1186/1471-2229-10-226
. [PMID: 20964856] - Patrick R Arsenault, Daniel Vail, Kristin K Wobbe, Karen Erickson, Pamela J Weathers. Reproductive development modulates gene expression and metabolite levels with possible feedback inhibition of artemisinin in Artemisia annua.
Plant physiology.
2010 Oct; 154(2):958-68. doi:
10.1104/pp.110.162552
. [PMID: 20724645] - Geng Yu, Thuong T H Nguyen, Yongxia Guo, Ines Schauvinhold, Michele E Auldridge, Nazmul Bhuiyan, Imri Ben-Israel, Yoko Iijima, Eyal Fridman, Joseph P Noel, Eran Pichersky. Enzymatic functions of wild tomato methylketone synthases 1 and 2.
Plant physiology.
2010 Sep; 154(1):67-77. doi:
10.1104/pp.110.157073
. [PMID: 20605911] - Jin-Ho Kang, Guanghui Liu, Feng Shi, A Daniel Jones, Randolph M Beaudry, Gregg A Howe. The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores.
Plant physiology.
2010 Sep; 154(1):262-72. doi:
10.1104/pp.110.160192
. [PMID: 20668059] - Vasiliki Falara, Eran Pichersky, Angelos K Kanellis. A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes.
Plant physiology.
2010 Sep; 154(1):301-10. doi:
10.1104/pp.110.159566
. [PMID: 20595348] - Laurence G Cool, Karl E Vermillion, Gary R Takeoka, Rosalind Y Wong. Irregular sesquiterpenoids from Ligusticum grayi roots.
Phytochemistry.
2010 Sep; 71(13):1545-57. doi:
10.1016/j.phytochem.2010.06.003
. [PMID: 20615518] - Luis González-Candelas, Santiago Alamar, Paloma Sánchez-Torres, Lorenzo Zacarías, Jose F Marcos. A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection.
BMC plant biology.
2010 Aug; 10(?):194. doi:
10.1186/1471-2229-10-194
. [PMID: 20807411] - Gustavo G L Costa, Kiara C Cardoso, Luís E V Del Bem, Aline C Lima, Muciana A S Cunha, Luciana de Campos-Leite, Renato Vicentini, Fábio Papes, Raquel C Moreira, José A Yunes, Francisco A P Campos, Márcio J Da Silva. Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L.
BMC genomics.
2010 Aug; 11(?):462. doi:
10.1186/1471-2164-11-462
. [PMID: 20691070] - Mitsuko Kishi-Kaboshi, Kazunori Okada, Leona Kurimoto, Shinya Murakami, Toshiaki Umezawa, Naoto Shibuya, Hisakazu Yamane, Akio Miyao, Hiroshi Takatsuji, Akira Takahashi, Hirohiko Hirochika. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis.
The Plant journal : for cell and molecular biology.
2010 Aug; 63(4):599-612. doi:
10.1111/j.1365-313x.2010.04264.x
. [PMID: 20525005] - Corinna Schmiderer, Sabine Grausgruber-Gröger, Paolo Grassi, Ralf Steinborn, Johannes Novak. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).
Journal of plant physiology.
2010 Jul; 167(10):779-86. doi:
10.1016/j.jplph.2009.12.009
. [PMID: 20163890] - Mengsu Huang, Christian Abel, Reza Sohrabi, Jana Petri, Ina Haupt, John Cosimano, Jonathan Gershenzon, Dorothea Tholl. Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03.
Plant physiology.
2010 Jul; 153(3):1293-310. doi:
10.1104/pp.110.154864
. [PMID: 20463089] - Anthony L Schilmiller, Dennis P Miner, Matthew Larson, Eric McDowell, David R Gang, Curtis Wilkerson, Robert L Last. Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics.
Plant physiology.
2010 Jul; 153(3):1212-23. doi:
10.1104/pp.110.157214
. [PMID: 20431087] - Naoko Masumoto, Miyuki Korin, Michiho Ito. Geraniol and linalool synthases from wild species of perilla.
Phytochemistry.
2010 Jul; 71(10):1068-75. doi:
10.1016/j.phytochem.2010.04.006
. [PMID: 20447664] - S Jana, G S Shekhawat. Anethum graveolens: An Indian traditional medicinal herb and spice.
Pharmacognosy reviews.
2010 Jul; 4(8):179-84. doi:
10.4103/0973-7847.70915
. [PMID: 22228959] - Eric Abbott, Dawn Hall, Björn Hamberger, Jörg Bohlmann. Laser microdissection of conifer stem tissues: isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca).
BMC plant biology.
2010 Jun; 10(?):106. doi:
10.1186/1471-2229-10-106
. [PMID: 20540781] - Mohamed A Ibrahim, Maarit Mäenpää, Viivi Hassinen, Sari Kontunen-Soppela, Lukás Malec, Matti Rousi, Liisa Pietikäinen, Arja Tervahauta, Sirpa Kärenlampi, Jarmo K Holopainen, Elina J Oksanen. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula.
Journal of experimental botany.
2010 Jun; 61(6):1583-95. doi:
10.1093/jxb/erq034
. [PMID: 20181662] - Silvia Noelí López, Adriana Aparecida Lopes, João Marcos Batista, Otávio Flausino, Vanderlan da Silva Bolzani, Massuo Jorge Kato, Maysa Furlan. Geranylation of benzoic acid derivatives by enzymatic extracts from Piper crassinervium (Piperaceae).
Bioresource technology.
2010 Jun; 101(12):4251-60. doi:
10.1016/j.biortech.2010.01.041
. [PMID: 20185304] - Dinesh A Nagegowda. The small subunit of geranyl diphosphate synthase: a tool to improve aroma and flavour by metabolic engineering.
Journal of biosciences.
2010 Jun; 35(2):167-9. doi:
10.1007/s12038-010-0019-1
. [PMID: 20689171] - Paul Targett-Adams, Steeve Boulant, Mark W Douglas, John McLauchlan. Lipid metabolism and HCV infection.
Viruses.
2010 May; 2(5):1195-1217. doi:
10.3390/v2051195
. [PMID: 21994676] - Iris F Kappers, Francel W A Verstappen, Ludo L P Luckerhoff, Harro J Bouwmeester, Marcel Dicke. Genetic variation in jasmonic acid- and spider mite-induced plant volatile emission of cucumber accessions and attraction of the predator Phytoseiulus persimilis.
Journal of chemical ecology.
2010 May; 36(5):500-12. doi:
10.1007/s10886-010-9782-6
. [PMID: 20383796] - Anthony Schilmiller, Feng Shi, Jeongwoon Kim, Amanda L Charbonneau, Daniel Holmes, A Daniel Jones, Robert L Last. Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines.
The Plant journal : for cell and molecular biology.
2010 May; 62(3):391-403. doi:
10.1111/j.1365-313x.2010.04154.x
. [PMID: 20113441] - Rigoberto Rios-Estepa, Iris Lange, James M Lee, B Markus Lange. Mathematical modeling-guided evaluation of biochemical, developmental, environmental, and genotypic determinants of essential oil composition and yield in peppermint leaves.
Plant physiology.
2010 Apr; 152(4):2105-19. doi:
10.1104/pp.109.152256
. [PMID: 20147490] - Axel Schmidt, Betty Wächtler, Ulrike Temp, Trygve Krekling, Armand Séguin, Jonathan Gershenzon. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies.
Plant physiology.
2010 Feb; 152(2):639-55. doi:
10.1104/pp.109.144691
. [PMID: 19939949] - Tao-Hsin Chang, Fu-Lien Hsieh, Tzu-Ping Ko, Kuo-Hsun Teng, Po-Huang Liang, Andrew H-J Wang. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation.
The Plant cell.
2010 Feb; 22(2):454-67. doi:
10.1105/tpc.109.071738
. [PMID: 20139160] - Jin-Ho Kang, Feng Shi, A Daniel Jones, M David Marks, Gregg A Howe. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry.
Journal of experimental botany.
2010 Feb; 61(4):1053-64. doi:
10.1093/jxb/erp370
. [PMID: 20018901] - Tsuyoshi Goto, Nobuyuki Takahashi, Shizuka Hirai, Teruo Kawada. Various Terpenoids Derived from Herbal and Dietary Plants Function as PPAR Modulators and Regulate Carbohydrate and Lipid Metabolism.
PPAR research.
2010; 2010(?):483958. doi:
10.1155/2010/483958
. [PMID: 20613991] - Irina Orlova, Dinesh A Nagegowda, Christine M Kish, Michael Gutensohn, Hiroshi Maeda, Marina Varbanova, Eyal Fridman, Shinjiro Yamaguchi, Atsushi Hanada, Yuji Kamiya, Alexander Krichevsky, Vitaly Citovsky, Eran Pichersky, Natalia Dudareva. The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta.
The Plant cell.
2009 Dec; 21(12):4002-17. doi:
10.1105/tpc.109.071282
. [PMID: 20028839] - Sophie Vandermoten, Eric Haubruge, Michel Cusson. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition.
Cellular and molecular life sciences : CMLS.
2009 Dec; 66(23):3685-95. doi:
10.1007/s00018-009-0100-9
. [PMID: 19633972] - Qiang Xu, Keqin Yu, Andan Zhu, Junli Ye, Qing Liu, Jianchen Zhang, Xiuxin Deng. Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant.
BMC genomics.
2009 Nov; 10(?):540. doi:
10.1186/1471-2164-10-540
. [PMID: 19922663] - Sophie Vandermoten, Sébastien Santini, Eric Haubruge, Fabien Heuze, Frédéric Francis, Robert Brasseur, Michel Cusson, Benoit Charloteaux. Structural features conferring dual geranyl/farnesyl diphosphate synthase activity to an aphid prenyltransferase.
Insect biochemistry and molecular biology.
2009 Oct; 39(10):707-16. doi:
10.1016/j.ibmb.2009.08.007
. [PMID: 19720147] - Anthony L Schilmiller, Ines Schauvinhold, Matthew Larson, Richard Xu, Amanda L Charbonneau, Adam Schmidt, Curtis Wilkerson, Robert L Last, Eran Pichersky. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate.
Proceedings of the National Academy of Sciences of the United States of America.
2009 Jun; 106(26):10865-70. doi:
10.1073/pnas.0904113106
. [PMID: 19487664] - Kazuaki Ohara, Ayumu Muroya, Nobuhiro Fukushima, Kazufumi Yazaki. Functional characterization of LePGT1, a membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid.
The Biochemical journal.
2009 Jun; 421(2):231-41. doi:
10.1042/bj20081968
. [PMID: 19392660] - Wayra G Navia-Giné, Joshua S Yuan, Andy Mauromoustakos, J Brad Murphy, Feng Chen, Kenneth L Korth. Medicago truncatula (E)-beta-ocimene synthase is induced by insect herbivory with corresponding increases in emission of volatile ocimene.
Plant physiology and biochemistry : PPB.
2009 May; 47(5):416-25. doi:
10.1016/j.plaphy.2009.01.008
. [PMID: 19249223] - Henrik Toft Simonsen, Damian Paul Drew, Christina Lunde. Perspectives on using physcomitrella patens as an alternative production platform for thapsigargin and other terpenoid drug candidates.
Perspectives in medicinal chemistry.
2009 Mar; 3(?):1-6. doi:
10.4137/pmc.s2220
. [PMID: 19812738] - Deepak Ganjewala, Rajesh Luthra. Geranyl acetate esterase controls and regulates the level of geraniol in lemongrass (Cymbopogon flexuosus Nees ex Steud.) mutant cv. GRL-1 leaves.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2009 Mar; 64(3-4):251-9. doi:
10.1515/znc-2009-3-417
. [PMID: 19526721] - M David Marks, Li Tian, Jonathan P Wenger, Stephanie N Omburo, Wilfredo Soto-Fuentes, Ji He, David R Gang, George D Weiblen, Richard A Dixon. Identification of candidate genes affecting Delta9-tetrahydrocannabinol biosynthesis in Cannabis sativa.
Journal of experimental botany.
2009; 60(13):3715-26. doi:
10.1093/jxb/erp210
. [PMID: 19581347] - Wanderley de Souza, Juliany Cola Fernandes Rodrigues. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs.
Interdisciplinary perspectives on infectious diseases.
2009; 2009(?):642502. doi:
10.1155/2009/642502
. [PMID: 19680554] - Llanie K Ranzer, Thomas B Brück, Wolfram M Brück, Jose V Lopez, Russell G Kerr. A new prokaryotic farnesyldiphosphate synthase from the octocoral Eunicea fusca: differential display, inverse PCR, cloning, and characterization.
Marine biotechnology (New York, N.Y.).
2009 Jan; 11(1):62-73. doi:
10.1007/s10126-008-9120-y
. [PMID: 18626710] - Guodong Wang, Li Tian, Naveed Aziz, Pierre Broun, Xinbin Dai, Ji He, Andrew King, Patrick X Zhao, Richard A Dixon. Terpene biosynthesis in glandular trichomes of hop.
Plant physiology.
2008 Nov; 148(3):1254-66. doi:
10.1104/pp.108.125187
. [PMID: 18775972] - Xavier Argout, Olivier Fouet, Patrick Wincker, Karina Gramacho, Thierry Legavre, Xavier Sabau, Ange Marie Risterucci, Corinne Da Silva, Julio Cascardo, Mathilde Allegre, David Kuhn, Joseph Verica, Brigitte Courtois, Gaston Loor, Regis Babin, Olivier Sounigo, Michel Ducamp, Mark J Guiltinan, Manuel Ruiz, Laurence Alemanno, Regina Machado, Wilberth Phillips, Ray Schnell, Martin Gilmour, Eric Rosenquist, David Butler, Siela Maximova, Claire Lanaud. Towards the understanding of the cocoa transcriptome: Production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions.
BMC genomics.
2008 Oct; 9(?):512. doi:
10.1186/1471-2164-9-512
. [PMID: 18973681] - Rachel Davidovich-Rikanati, Efraim Lewinsohn, Einat Bar, Yoko Iijima, Eran Pichersky, Yaron Sitrit. Overexpression of the lemon basil alpha-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit.
The Plant journal : for cell and molecular biology.
2008 Oct; 56(2):228-238. doi:
10.1111/j.1365-313x.2008.03599.x
. [PMID: 18643974] - Yu-Yun Hsiao, Mei-Fen Jeng, Wen-Chieh Tsai, Yu-Chen Chuang, Chia-Ying Li, Tian-Shung Wu, Chang-Sheng Kuoh, Wen-Huei Chen, Hong-Hwa Chen. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif.
The Plant journal : for cell and molecular biology.
2008 Sep; 55(5):719-33. doi:
10.1111/j.1365-313x.2008.03547.x
. [PMID: 18466308]