2-C-methyl-D-erythritol-4-phosphate (BioDeep_00000008650)
Secondary id: BioDeep_00001872463
human metabolite natural product
代谢物信息卡片
化学式: C5H13O7P (216.0399)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(otcml) 20.68%
分子结构信息
SMILES: C([C@]([C@H](O)COP(=O)(O)O)(C)O)O
InChI: InChI=1S/C5H13O7P/c1-5(8,3-6)4(7)2-12-13(9,10)11/h4,6-8H,2-3H2,1H3,(H2,9,10,11)/t4-,5+/m1/s1
描述信息
2-c-methyl-d-erythritol-4-phosphate is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. 2-c-methyl-d-erythritol-4-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). 2-c-methyl-d-erythritol-4-phosphate can be found in a number of food items such as tea, narrowleaf cattail, chickpea, and rocket salad (sspecies), which makes 2-c-methyl-d-erythritol-4-phosphate a potential biomarker for the consumption of these food products.
同义名列表
11 个代谢物同义名
[(2R,3S)-2,3,4-trihydroxy-3-methylbutoxy]phosphonic acid; (2R,3S)-2,3,4-trihydroxy-3-methylbutoxyphosphonic acid; 2-C-Methyl-D-erythritol 4-phosphoric acid; 2-c-Methyl-D-erythritol-4-phosphoric acid; 2-C-Methyl-D-erythritol-4-phosphate; 2-C-Methyl-D-erythritol 4-phosphate; 2-C-Methylerythritol 4-phosphate; Methyl-D-erythritol Phosphate; Methyl-erythritol-4-phosphate; SCHEMBL21410636; MEP
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:17764
- KEGG: C11434
- PubChem: 443198
- PubChem: 31
- HMDB: HMDB0304061
- Metlin: METLIN64013
- MetaCyc: 2-C-METHYL-D-ERYTHRITOL-4-PHOSPHATE
- KNApSAcK: C00007297
- foodb: FDB030325
- chemspider: 391470
- CAS: 206440-72-4
- PMhub: MS000022323
- PubChem: 13606
- 3DMET: B04262
- NIKKAJI: J865.583I
- LOTUS: LTS0095389
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
243 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(243)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
4-CDP-2-C-methyl-D-erythritol + ATP ⟶ 4-CDP-2-C-methyl-D-erythritol 2-phosphate + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
4-CDP-2-C-methyl-D-erythritol + ATP ⟶ 4-CDP-2-C-methyl-D-erythritol 2-phosphate + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
30 个相关的物种来源信息
- 3701 - Arabidopsis: LTS0095389
- 3702 - Arabidopsis thaliana: 10.1007/S00425-002-0762-0
- 3702 - Arabidopsis thaliana: 10.1007/S00425-002-0840-3
- 3702 - Arabidopsis thaliana: LTS0095389
- 6656 - Arthropoda: LTS0095389
- 4686 - Asparagus officinalis: 10.1371/JOURNAL.PONE.0219973
- 6658 - Branchiopoda: LTS0095389
- 3700 - Brassicaceae: LTS0095389
- 6668 - Daphnia: LTS0095389
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0095389
- 77658 - Daphniidae: LTS0095389
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 33682 - Euglenozoa: LTS0095389
- 2759 - Eukaryota: LTS0095389
- 9606 - Homo sapiens: -
- 5653 - Kinetoplastea: LTS0095389
- 3398 - Magnoliopsida: LTS0095389
- 33208 - Metazoa: LTS0095389
- 4070 - Solanaceae: LTS0095389
- 4107 - Solanum: LTS0095389
- 4081 - Solanum lycopersicum: 10.1038/SDATA.2014.29
- 4081 - Solanum lycopersicum: LTS0095389
- 35493 - Streptophyta: LTS0095389
- 58023 - Tracheophyta: LTS0095389
- 5690 - Trypanosoma: LTS0095389
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
- 5691 - Trypanosoma brucei: LTS0095389
- 5654 - Trypanosomatidae: LTS0095389
- 33090 - Viridiplantae: LTS0095389
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Diego González-Cabanelas, Erica Perreca, Johann M Rohwer, Axel Schmidt, Tobias Engl, Bettina Raguschke, Jonathan Gershenzon, Louwrance P Wright. Deoxyxylulose 5-Phosphate Synthase Does Not Play a Major Role in Regulating the Methylerythritol 4-Phosphate Pathway in Poplar.
International journal of molecular sciences.
2024 Apr; 25(8):. doi:
10.3390/ijms25084181
. [PMID: 38673766] - Xin Wu, Mengwei Bu, Zili Yang, Hongrui Ping, Chunlin Song, Jiang Duan, Aidong Zhang. Design and Synthesis of Fosmidomycin Analogs containing aza-Linkers and Their Biological Activity Evaluation.
Pest management science.
2023 Oct; ?(?):. doi:
10.1002/ps.7810
. [PMID: 37794283] - Fan Jiang, Dongying Liu, Jingqi Dai, Tao Yang, Jinzhu Zhang, Daidi Che, Jinping Fan. Cloning and Functional Characterization of 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase (LiMCT) Gene in Oriental Lily (Lilium 'Sorbonne').
Molecular biotechnology.
2023 Apr; ?(?):. doi:
10.1007/s12033-023-00729-8
. [PMID: 37014586] - Daven B Khana, Mehmet Tatli, Julio Rivera Vazquez, Sarathi M Weraduwage, Noah Stern, Alexander S Hebert, Edna Angelica Trujillo, David M Stevenson, Joshua J Coon, Thomas D Sharky, Daniel Amador-Noguez. Systematic Analysis of Metabolic Bottlenecks in the Methylerythritol 4-Phosphate (MEP) Pathway of Zymomonas mobilis.
mSystems.
2023 Mar; ?(?):e0009223. doi:
10.1128/msystems.00092-23
. [PMID: 36995223] - Shuai Wang, Yumei Feng, Yin Lou, Jingping Niu, Congcong Yin, Jinzhong Zhao, Weijun Du, Aiqin Yue. 3-Hydroxy-3-methylglutaryl coenzyme A reductase genes from Glycine max regulate plant growth and isoprenoid biosynthesis.
Scientific reports.
2023 03; 13(1):3902. doi:
10.1038/s41598-023-30797-4
. [PMID: 36890158] - Toni Krause, Piera Wiesinger, Diego González-Cabanelas, Nathalie Lackus, Tobias G Köllner, Thomas Klüpfel, Jonathan Williams, Johann Rohwer, Jonathan Gershenzon, Axel Schmidt. HDR, the last enzyme in the MEP pathway, differently regulates isoprenoid biosynthesis in two woody plants.
Plant physiology.
2023 Feb; ?(?):. doi:
10.1093/plphys/kiad110
. [PMID: 36848194] - Garima Pathak, Shivanand S Dudhagi, Saumya Raizada, Rajesh K Singh, A P Sane, Vidhu A Sane. Phosphomevalonate kinase regulates the MVA/MEP pathway in mango during ripening.
Plant physiology and biochemistry : PPB.
2023 Jan; 196(?):174-185. doi:
10.1016/j.plaphy.2023.01.030
. [PMID: 36724702] - Xueni Di, David Ortega-Alarcon, Ramu Kakumanu, Javier Iglesias-Fernandez, Lucia Diaz, Edward E K Baidoo, Adrian Velazquez-Campoy, Manuel Rodríguez-Concepción, Jordi Perez-Gil. MEP pathway products allosterically promote monomerization of deoxy-D-xylulose-5-phosphate synthase to feedback-regulate their supply.
Plant communications.
2022 Dec; ?(?):100512. doi:
10.1016/j.xplc.2022.100512
. [PMID: 36575800] - Ying-Ping Huang, I-Hsuan Chen, Yu-Shun Kao, Yau-Heiu Hsu, Ching-Hsiu Tsai. The gibberellic acid derived from the plastidial MEP pathway is involved in the accumulation of Bamboo mosaic virus.
The New phytologist.
2022 08; 235(4):1543-1557. doi:
10.1111/nph.18210
. [PMID: 35524450] - Yong Yuan, Siyan Ren, Xiaofeng Liu, Liyang Su, Yu Wu, Wen Zhang, Yan Li, Yidan Jiang, Hsihua Wang, Rao Fu, Mondher Bouzayen, Mingchun Liu, Yang Zhang. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit.
The New phytologist.
2022 04; 234(1):164-178. doi:
10.1111/nph.17977
. [PMID: 35048386] - Bin Liu, Lu Zhang, Linda Rusalepp, Eve Kaurilind, Hassan Yusuf Sulaiman, Tõnu Püssa, Ülo Niinemets. Heat priming improved heat tolerance of photosynthesis, enhanced terpenoid and benzenoid emission and phenolics accumulation in Achillea millefolium.
Plant, cell & environment.
2021 07; 44(7):2365-2385. doi:
10.1111/pce.13830
. [PMID: 32583881] - Wu Wang, Jiao Feng, Lingling Wei, Muhammad Khalil-Ur-Rehman, Niels J Nieuwenhuizen, Lina Yang, Huan Zheng, Jianmin Tao. Transcriptomics Integrated with Free and Bound Terpenoid Aroma Profiling during 'Shine Muscat' (Vitis labrusca × V. vinifera) Grape Berry Development Reveals Coordinate Regulation of MEP Pathway and Terpene Synthase Gene Expression.
Journal of agricultural and food chemistry.
2021 Feb; 69(4):1413-1429. doi:
10.1021/acs.jafc.0c06591
. [PMID: 33481572] - Yifeng Zhang, Yujun Zhao, Jiadian Wang, Tianyuan Hu, Yuru Tong, Jiawei Zhou, Jie Gao, Luqi Huang, Wei Gao. The expression of TwDXS in the MEP pathway specifically affects the accumulation of triptolide.
Physiologia plantarum.
2020 May; 169(1):40-48. doi:
10.1111/ppl.13051
. [PMID: 31758560] - M K You, Y J Lee, J K Kim, S A Baek, Y A Jeon, S H Lim, S H Ha. The organ-specific differential roles of rice DXS and DXR, the first two enzymes of the MEP pathway, in carotenoid metabolism in Oryza sativa leaves and seeds.
BMC plant biology.
2020 Apr; 20(1):167. doi:
10.1186/s12870-020-02357-9
. [PMID: 32293285] - Enrico Orsi, Jules Beekwilder, Siebe Peek, Gerrit Eggink, Servé W M Kengen, Ruud A Weusthuis. Metabolic flux ratio analysis by parallel 13C labeling of isoprenoid biosynthesis in Rhodobacter sphaeroides.
Metabolic engineering.
2020 01; 57(?):228-238. doi:
10.1016/j.ymben.2019.12.004
. [PMID: 31843486] - Matthew E Bergman, Benjamin Davis, Michael A Phillips. Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action.
Molecules (Basel, Switzerland).
2019 Nov; 24(21):. doi:
10.3390/molecules24213961
. [PMID: 31683764] - Garima Ayachit, Inayatullah Shaikh, Preeti Sharma, Bhavika Jani, Labdhi Shukla, Priyanka Sharma, Shivarudrappa B Bhairappanavar, Chaitanya Joshi, Jayashankar Das. De novo transcriptome of Gymnema sylvestre identified putative lncRNA and genes regulating terpenoid biosynthesis pathway.
Scientific reports.
2019 10; 9(1):14876. doi:
10.1038/s41598-019-51355-x
. [PMID: 31619732] - Le Xue, Zilong He, Xiaochun Bi, Wei Xu, Ting Wei, Shuangxiu Wu, Songnian Hu. Transcriptomic profiling reveals MEP pathway contributing to ginsenoside biosynthesis in Panax ginseng.
BMC genomics.
2019 May; 20(1):383. doi:
10.1186/s12864-019-5718-x
. [PMID: 31101014] - Thiagarayaselvam Aarthy, Fayaj A Mulani, Avinash Pandreka, Ashish Kumar, Sharvani S Nandikol, Saikat Haldar, Hirekodathakallu V Thulasiram. Tracing the biosynthetic origin of limonoids and their functional groups through stable isotope labeling and inhibition in neem tree (Azadirachta indica) cell suspension.
BMC plant biology.
2018 Oct; 18(1):230. doi:
10.1186/s12870-018-1447-6
. [PMID: 30314459] - Julia Emiliani, Lucio D'Andrea, María Lorena Falcone Ferreyra, Evangelina Maulión, Eduardo Rodriguez, Manuel Rodriguez-Concepción, Paula Casati. A role for β,β-xanthophylls in Arabidopsis UV-B photoprotection.
Journal of experimental botany.
2018 09; 69(20):4921-4933. doi:
10.1093/jxb/ery242
. [PMID: 29945243] - Hidenobu Uchida, Koremitsu Sumimoto, Tomoka Oki, Ichiro Nishii, Eiichi Mizohata, Shigeki Matsunaga, Shigeru Okada. Isolation and characterization of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase gene from Botryococcus braunii, race B.
Journal of plant research.
2018 Sep; 131(5):839-848. doi:
10.1007/s10265-018-1039-4
. [PMID: 29725892] - Mariaevelina Alfieri, Maria Carmela Vaccaro, Elisa Cappetta, Alfredo Ambrosone, Nunziatina De Tommasi, Antonietta Leone. Coactivation of MEP-biosynthetic genes and accumulation of abietane diterpenes in Salvia sclarea by heterologous expression of WRKY and MYC2 transcription factors.
Scientific reports.
2018 07; 8(1):11009. doi:
10.1038/s41598-018-29389-4
. [PMID: 30030474] - Rui Huang, Yang Wang, Pingrong Wang, Chunmei Li, Fuliang Xiao, Nenggang Chen, Na Li, Caixia Li, Changhui Sun, Lihua Li, Rongjun Chen, Zhengjun Xu, Jianqing Zhu, Xiaojian Deng. A single nucleotide mutation of IspF gene involved in the MEP pathway for isoprenoid biosynthesis causes yellow-green leaf phenotype in rice.
Plant molecular biology.
2018 Jan; 96(1-2):5-16. doi:
10.1007/s11103-017-0668-7
. [PMID: 29143298] - Adam Jozwiak, Agata Lipko, Magdalena Kania, Witold Danikiewicz, Liliana Surmacz, Agnieszka Witek, Jacek Wojcik, Konrad Zdanowski, Cezary Pączkowski, Tadeusz Chojnacki, Jaroslaw Poznanski, Ewa Swiezewska. Modeling of Dolichol Mass Spectra Isotopic Envelopes as a Tool to Monitor Isoprenoid Biosynthesis.
Plant physiology.
2017 Jun; 174(2):857-874. doi:
10.1104/pp.17.00036
. [PMID: 28385729] - Xin Wang, Wei Liu, Changpeng Xin, Yi Zheng, Yanbing Cheng, Su Sun, Runze Li, Xin-Guang Zhu, Susie Y Dai, Peter M Rentzepis, Joshua S Yuan. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations.
Proceedings of the National Academy of Sciences of the United States of America.
2016 12; 113(50):14225-14230. doi:
10.1073/pnas.1613340113
. [PMID: 27911807] - Y Shivani, Y Subhash, Ch Sasikala, Ch V Ramana. Description of 'Candidatus Marispirochaeta associata' and reclassification of Spirochaeta bajacaliforniensis, Spirochaeta smaragdinae and Spirochaeta sinaica to a new genus Sediminispirochaeta gen. nov. as Sediminispirochaeta bajacaliforniensis comb. nov., Sediminispirochaeta smaragdinae comb. nov. and Sediminispirochaeta sinaica comb. nov.
International journal of systematic and evolutionary microbiology.
2016 Dec; 66(12):5485-5492. doi:
10.1099/ijsem.0.001545
. [PMID: 27902269] - Han Zheng, Li Jing, Na Yao, Qing-shan Yang, Hua-sheng Peng, Ye Shen, Lu-qi Huang. [Cloning and expression analysis of 1-deoxy-D-xylulose-5-phosphate reductoisomerase gene (CcDXR1) in Cinnamomum camphora L.) Presl].
Yao xue xue bao = Acta pharmaceutica Sinica.
2016 09; 51(9):1494-501. doi:
. [PMID: 29924561]
- Chen Yang, Xiang Gao, Yu Jiang, Bingbing Sun, Fang Gao, Sheng Yang. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.
Metabolic engineering.
2016 09; 37(?):79-91. doi:
10.1016/j.ymben.2016.05.003
. [PMID: 27174717] - Geoffrey Benn, Marta Bjornson, Haiyan Ke, Amancio De Souza, Edward I Balmond, Jared T Shaw, Katayoon Dehesh. Plastidial metabolite MEcPP induces a transcriptionally centered stress-response hub via the transcription factor CAMTA3.
Proceedings of the National Academy of Sciences of the United States of America.
2016 08; 113(31):8855-60. doi:
10.1073/pnas.1602582113
. [PMID: 27432993] - Alexandre Huchelmann, Mathieu Semir Brahim, Esther Gerber, Denis Tritsch, Thomas J Bach, Andréa Hemmerlin. Farnesol-mediated shift in the metabolic origin of prenyl groups used for protein prenylation in plants.
Biochimie.
2016 Aug; 127(?):95-102. doi:
10.1016/j.biochi.2016.04.021
. [PMID: 27138105] - Min Shi, Xiuqin Luo, Guanhua Ju, Leilei Li, Shengxiong Huang, Tong Zhang, Huizhong Wang, Guoyin Kai. Enhanced Diterpene Tanshinone Accumulation and Bioactivity of Transgenic Salvia miltiorrhiza Hairy Roots by Pathway Engineering.
Journal of agricultural and food chemistry.
2016 Mar; 64(12):2523-30. doi:
10.1021/acs.jafc.5b04697
. [PMID: 26753746] - Yan Liu, Shi-Hong Luo, Axel Schmidt, Guo-Dong Wang, Gui-Ling Sun, Marcus Grant, Ce Kuang, Min-Jie Yang, Shu-Xi Jing, Chun-Huan Li, Bernd Schneider, Jonathan Gershenzon, Sheng-Hong Li. A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C25) Formation in the Glandular Trichomes of the Mint Species Leucosceptrum canum.
The Plant cell.
2016 Mar; 28(3):804-22. doi:
10.1105/tpc.15.00715
. [PMID: 26941091] - D González-Cabanelas, A Hammerbacher, B Raguschke, J Gershenzon, L P Wright. Quantifying the Metabolites of the Methylerythritol 4-Phosphate (MEP) Pathway in Plants and Bacteria by Liquid Chromatography-Triple Quadrupole Mass Spectrometry.
Methods in enzymology.
2016; 576(?):225-49. doi:
10.1016/bs.mie.2016.02.025
. [PMID: 27480689] - Mi Jung Kim, Jingjing Jin, Junshi Zheng, Limsoon Wong, Nam-Hai Chua, In-Cheol Jang. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production.
Plant physiology.
2015 Dec; 169(4):2462-80. doi:
10.1104/pp.15.01353
. [PMID: 26438788] - Yu-ru Tong, Ping Su, Meng Zhang, Yu-jun Zhao, Xiu-juan Wang, Wei Gao, Lu-qi Huang. [Cloning and expression analysis of 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase gene in Tripterygium wilfordii].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2015 Nov; 40(22):4378-83. doi:
"
. [PMID: 27097410] - Manuel Rodríguez-Concepción, Albert Boronat. Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis.
Current opinion in plant biology.
2015 Jun; 25(?):17-22. doi:
10.1016/j.pbi.2015.04.001
. [PMID: 25909859] - Alexandra Pokhilko, Jordi Bou-Torrent, Pablo Pulido, Manuel Rodríguez-Concepción, Oliver Ebenhöh. Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis.
The New phytologist.
2015 May; 206(3):1075-1085. doi:
10.1111/nph.13258
. [PMID: 25598499] - Xuhong Du, Chenlu Zhang, Wanli Guo, Weibo Jin, Zongsuo Liang, Xijun Yan, Zhixin Guo, Yan Liu, Dongfeng Yang. Nitric Oxide Plays a Central Role in Water Stress-Induced Tanshinone Production in Salvia miltiorrhiza Hairy Roots.
Molecules (Basel, Switzerland).
2015 Apr; 20(5):7574-85. doi:
10.3390/molecules20057574
. [PMID: 25919278] - J Lv, G S Liu, W Li, Z Hussian, Y H Sun. Cloning and expression analysis of terpenoid metabolism-related gene NsyCMS in Nicotiana sylvestris.
Genetics and molecular research : GMR.
2015 Apr; 14(2):3300-8. doi:
10.4238/2015.april.13.9
. [PMID: 25966096] - Shantanu Mandal, Shivangi Upadhyay, Ved Pal Singh, Rupam Kapoor. Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes.
Plant physiology and biochemistry : PPB.
2015 Apr; 89(?):100-6. doi:
10.1016/j.plaphy.2015.02.010
. [PMID: 25734328] - Niels J Nieuwenhuizen, Xiuyin Chen, Mindy Y Wang, Adam J Matich, Ramon Lopez Perez, Andrew C Allan, Sol A Green, Ross G Atkinson. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors.
Plant physiology.
2015 Apr; 167(4):1243-58. doi:
10.1104/pp.114.254367
. [PMID: 25649633] - Diego González-Cabanelas, Louwrance P Wright, Christian Paetz, Nawaporn Onkokesung, Jonathan Gershenzon, Manuel Rodríguez-Concepción, Michael A Phillips. The diversion of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate from the 2-C-methyl-D-erythritol 4-phosphate pathway to hemiterpene glycosides mediates stress responses in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2015 Apr; 82(1):122-37. doi:
10.1111/tpj.12798
. [PMID: 25704332] - Abdellatif Bahaji, Ángela M Sánchez-López, Nuria De Diego, Francisco J Muñoz, Edurne Baroja-Fernández, Jun Li, Adriana Ricarte-Bermejo, Marouane Baslam, Iker Aranjuelo, Goizeder Almagro, Jan F Humplík, Ondřej Novák, Lukáš Spíchal, Karel Doležal, Javier Pozueta-Romero. Plastidic phosphoglucose isomerase is an important determinant of starch accumulation in mesophyll cells, growth, photosynthetic capacity, and biosynthesis of plastidic cytokinins in Arabidopsis.
PloS one.
2015; 10(3):e0119641. doi:
10.1371/journal.pone.0119641
. [PMID: 25811607] - Shefali Singh, Shaifali Pal, Karuna Shanker, Chandan Singh Chanotiya, Madan Mohan Gupta, Upendra Nath Dwivedi, Ajit Kumar Shasany. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.
Physiologia plantarum.
2014 Dec; 152(4):617-33. doi:
10.1111/ppl.12213
. [PMID: 24749735] - Cinzia Formighieri, Anastasios Melis. Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous β-phellandrene production in Escherichia coli cultures.
Archives of microbiology.
2014 Dec; 196(12):853-61. doi:
10.1007/s00203-014-1024-9
. [PMID: 25116411] - Isabel Mendoza-Poudereux, Jesús Muñoz-Bertomeu, Isabel Arrillaga, Juan Segura. Deoxyxylulose 5-phosphate reductoisomerase is not a rate-determining enzyme for essential oil production in spike lavender.
Journal of plant physiology.
2014 Nov; 171(17):1564-70. doi:
10.1016/j.jplph.2014.07.012
. [PMID: 25151124] - Sergiy G Krasutsky, Marek Urbansky, Chad E Davis, Christian Lherbet, Robert M Coates, C Dale Poulter. Synthesis of methylerythritol phosphate analogues and their evaluation as alternate substrates for IspDF and IspE from Agrobacterium tumefaciens.
The Journal of organic chemistry.
2014 Oct; 79(19):9170-8. doi:
10.1021/jo501529k
. [PMID: 25184438] - Hiroshi Kiyota, Yukiko Okuda, Michiho Ito, Masami Yokota Hirai, Masahiko Ikeuchi. Engineering of cyanobacteria for the photosynthetic production of limonene from CO2.
Journal of biotechnology.
2014 Sep; 185(?):1-7. doi:
10.1016/j.jbiotec.2014.05.025
. [PMID: 24905149] - Montserrat Saladié, Louwrance P Wright, Jordi Garcia-Mas, Manuel Rodriguez-Concepcion, Michael A Phillips. The 2-C-methylerythritol 4-phosphate pathway in melon is regulated by specialized isoforms for the first and last steps.
Journal of experimental botany.
2014 Sep; 65(17):5077-92. doi:
10.1093/jxb/eru275
. [PMID: 25013119] - A Banerjee, T D Sharkey. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation.
Natural product reports.
2014 Aug; 31(8):1043-55. doi:
10.1039/c3np70124g
. [PMID: 24921065] - Adelene A Song, Janna Ong Abdullah, Mohd P Abdullah, Norazizah Shafee, Roohaida Othman, Normah Mohd Noor, Raha A Rahim. Engineering the lactococcal mevalonate pathway for increased sesquiterpene production.
FEMS microbiology letters.
2014 Jun; 355(2):177-84. doi:
10.1111/1574-6968.12469
. [PMID: 24828482] - Andrea Ghirardo, Louwrance Peter Wright, Zhen Bi, Maaria Rosenkranz, Pablo Pulido, Manuel Rodríguez-Concepción, Ülo Niinemets, Nicolas Brüggemann, Jonathan Gershenzon, Jörg-Peter Schnitzler. Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene.
Plant physiology.
2014 May; 165(1):37-51. doi:
10.1104/pp.114.236018
. [PMID: 24590857] - Isabel Mendoza-Poudereux, Jesús Muñoz-Bertomeu, Alicia Navarro, Isabel Arrillaga, Juan Segura. Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves.
Metabolic engineering.
2014 May; 23(?):136-44. doi:
10.1016/j.ymben.2014.03.003
. [PMID: 24685653] - Praveen Guleria, Shikha Masand, Sudesh Kumar Yadav. Overexpression of SrUGT85C2 from Stevia reduced growth and yield of transgenic Arabidopsis by influencing plastidial MEP pathway.
Gene.
2014 Apr; 539(2):250-7. doi:
10.1016/j.gene.2014.01.071
. [PMID: 24518812] - Alexandre Huchelmann, Clément Gastaldo, Mickaël Veinante, Ying Zeng, Dimitri Heintz, Denis Tritsch, Hubert Schaller, Michel Rohmer, Thomas J Bach, Andréa Hemmerlin. S-carvone suppresses cellulase-induced capsidiol production in Nicotiana tabacum by interfering with protein isoprenylation.
Plant physiology.
2014 Feb; 164(2):935-50. doi:
10.1104/pp.113.232546
. [PMID: 24367019] - Catalina Perelló, Manuel Rodríguez-Concepción, Pablo Pulido. Quantification of plant resistance to isoprenoid biosynthesis inhibitors.
Methods in molecular biology (Clifton, N.J.).
2014; 1153(?):273-83. doi:
10.1007/978-1-4939-0606-2_20
. [PMID: 24777805] - Bianca May, B Markus Lange, Matthias Wüst. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol.
Phytochemistry.
2013 Nov; 95(?):135-44. doi:
10.1016/j.phytochem.2013.07.021
. [PMID: 23954075] - Laurent Bonneau, Stéphanie Huguet, Daniel Wipf, Nicolas Pauly, Hoai-Nam Truong. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula.
The New phytologist.
2013 Jul; 199(1):188-202. doi:
10.1111/nph.12234
. [PMID: 23506613] - Aparajita Banerjee, Yan Wu, Rahul Banerjee, Yue Li, Honggao Yan, Thomas D Sharkey. Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway.
The Journal of biological chemistry.
2013 Jun; 288(23):16926-16936. doi:
10.1074/jbc.m113.464636
. [PMID: 23612965] - Parul Gupta, Aditya Vikram Agarwal, Nehal Akhtar, Rajender Singh Sangwan, Surya Pratap Singh, Prabodh Kumar Trivedi. Cloning and characterization of 2-C-methyl-D-erythritol-4-phosphate pathway genes for isoprenoid biosynthesis from Indian ginseng, Withania somnifera.
Protoplasma.
2013 Feb; 250(1):285-95. doi:
10.1007/s00709-012-0410-x
. [PMID: 22526204] - Eva Vranová, Diana Coman, Wilhelm Gruissem. Network analysis of the MVA and MEP pathways for isoprenoid synthesis.
Annual review of plant biology.
2013; 64(?):665-700. doi:
10.1146/annurev-arplant-050312-120116
. [PMID: 23451776] - Mei Han, Simon C Heppel, Tao Su, Jochen Bogs, Yuangang Zu, Zhigang An, Thomas Rausch. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP) pathway enzyme expression in Catharanthus roseus.
PloS one.
2013; 8(5):e62467. doi:
10.1371/journal.pone.0062467
. [PMID: 23650515] - Hamish Webb, Robert Lanfear, John Hamill, William J Foley, Carsten Külheim. The yield of essential oils in Melaleuca alternifolia (Myrtaceae) is regulated through transcript abundance of genes in the MEP pathway.
PloS one.
2013; 8(3):e60631. doi:
10.1371/journal.pone.0060631
. [PMID: 23544156] - Dongfeng Yang, Pengda Ma, Xiao Liang, Zheng Wei, Zongsuo Liang, Yan Liu, Fenghua Liu. PEG and ABA trigger methyl jasmonate accumulation to induce the MEP pathway and increase tanshinone production in Salvia miltiorrhiza hairy roots.
Physiologia plantarum.
2012 Oct; 146(2):173-83. doi:
10.1111/j.1399-3054.2012.01603.x
. [PMID: 22356467] - Xiao-Min Lu, Xiao-Jiao Hu, Yuan-Zeng Zhao, Wei-Bin Song, Mei Zhang, Zong-Liang Chen, Wei Chen, Yong-Bin Dong, Zhen-Hua Wang, Jin-Sheng Lai. Map-based cloning of zb7 encoding an IPP and DMAPP synthase in the MEP pathway of maize.
Molecular plant.
2012 Sep; 5(5):1100-12. doi:
10.1093/mp/sss038
. [PMID: 22498772] - Jinfen Yang, Megha Nath Adhikari, Hui Liu, Hui Xu, Guozhen He, Ruoting Zhan, Jieshu Wei, Weiwen Chen. Characterization and functional analysis of the genes encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase and 1-deoxy-D-xylulose-5-phosphate synthase, the two enzymes in the MEP pathway, from Amomum villosum Lour.
Molecular biology reports.
2012 Aug; 39(8):8287-96. doi:
10.1007/s11033-012-1676-y
. [PMID: 22707144] - Rama Raju Baadhe, Naveen Kumar Mekala, Satwik Reddy Palagiri, Sreenivasa Rao Parcha. Development of petri net-based dynamic model for improved production of farnesyl pyrophosphate by integrating mevalonate and methylerythritol phosphate pathways in yeast.
Applied biochemistry and biotechnology.
2012 Jul; 167(5):1172-82. doi:
10.1007/s12010-012-9583-1
. [PMID: 22350871] - Olivia Ginis, Vincent Courdavault, Céline Melin, Arnaud Lanoue, Nathalie Giglioli-Guivarc'h, Benoit St-Pierre, Martine Courtois, Audrey Oudin. Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway.
Molecular biology reports.
2012 May; 39(5):5433-47. doi:
10.1007/s11033-011-1343-8
. [PMID: 22160472] - Keng-See Chow, Mohd-Noor Mat-Isa, Azlina Bahari, Ahmad-Kamal Ghazali, Halimah Alias, Zainorlina Mohd-Zainuddin, Chee-Choong Hoh, Kiew-Lian Wan. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex.
Journal of experimental botany.
2012 Mar; 63(5):1863-71. doi:
10.1093/jxb/err363
. [PMID: 22162870] - Tahira Fatima, Crystal L Snyder, William R Schroeder, Dustin Cram, Raju Datla, David Wishart, Randall J Weselake, Priti Krishna. Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed.
PloS one.
2012; 7(4):e34099. doi:
10.1371/journal.pone.0034099
. [PMID: 22558083] - Adelene Ai Lian Song, Janna O Abdullah, Mohd Puad Abdullah, Norazizah Shafee, Raha A Rahim. Functional expression of an orchid fragrance gene in Lactococcus lactis.
International journal of molecular sciences.
2012; 13(2):1582-1597. doi:
10.3390/ijms13021582
. [PMID: 22408409] - Dongfeng Yang, Pengda Ma, Xiao Liang, Zongsuo Liang, Meixiang Zhang, Shuang Shen, Hongyun Liu, Yan Liu. Metabolic profiles and cDNA-AFLP analysis of Salvia miltiorrhiza and Salvia castanea Diel f. tomentosa Stib.
PloS one.
2012; 7(1):e29678. doi:
10.1371/journal.pone.0029678
. [PMID: 22303439] - Sameh S M Soliman, Rong Tsao, Manish N Raizada. Chemical inhibitors suggest endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways.
Journal of natural products.
2011 Dec; 74(12):2497-504. doi:
10.1021/np200303v
. [PMID: 22103292] - Rodrigo A C Sussmann, Cláudia B Angeli, Valnice J Peres, Emilia A Kimura, Alejandro M Katzin. Intraerythrocytic stages of Plasmodium falciparum biosynthesize vitamin E.
FEBS letters.
2011 Dec; 585(24):3985-91. doi:
10.1016/j.febslet.2011.11.005
. [PMID: 22085796] - Maria S Dwiyanti, Tetsuya Yamada, Masako Sato, Jun Abe, Keisuke Kitamura. Genetic variation of γ-tocopherol methyltransferase gene contributes to elevated α-tocopherol content in soybean seeds.
BMC plant biology.
2011 Nov; 11(?):152. doi:
10.1186/1471-2229-11-152
. [PMID: 22053941] - Juri Battilana, Francesco Emanuelli, Giorgio Gambino, Ivana Gribaudo, Flavia Gasperi, Paul K Boss, Maria Stella Grando. Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation.
Journal of experimental botany.
2011 Nov; 62(15):5497-508. doi:
10.1093/jxb/err231
. [PMID: 21868399] - Prabin Bajgain, Bryce A Richardson, Jared C Price, Richard C Cronn, Joshua A Udall. Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata).
BMC genomics.
2011 Jul; 12(?):370. doi:
10.1186/1471-2164-12-370
. [PMID: 21767398] - María Perassolo, Carla Verónica Quevedo, Víctor Daniel Busto, Ana María Giulietti, Julián Rodríguez Talou. Role of reactive oxygen species and proline cycle in anthraquinone accumulation in Rubia tinctorum cell suspension cultures subjected to methyl jasmonate elicitation.
Plant physiology and biochemistry : PPB.
2011 Jul; 49(7):758-63. doi:
10.1016/j.plaphy.2011.03.015
. [PMID: 21511484] - Bahtijor Rasulov, Katja Hüve, Agu Laisk, Ülo Niinemets. Induction of a longer term component of isoprene release in darkened aspen leaves: origin and regulation under different environmental conditions.
Plant physiology.
2011 Jun; 156(2):816-31. doi:
10.1104/pp.111.176222
. [PMID: 21502186] - Ingo Rekittke, Tsuyoshi Nonaka, Jochen Wiesner, Ulrike Demmer, Eberhard Warkentin, Hassan Jomaa, Ulrich Ermler. Structure of the E-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate synthase (GcpE) from Thermus thermophilus.
FEBS letters.
2011 Feb; 585(3):447-51. doi:
10.1016/j.febslet.2010.12.012
. [PMID: 21167158] - Manuel Rodríguez-Concepción. Supply of precursors for carotenoid biosynthesis in plants.
Archives of biochemistry and biophysics.
2010 Dec; 504(1):118-22. doi:
10.1016/j.abb.2010.06.016
. [PMID: 20561506] - Francesco Emanuelli, Juri Battilana, Laura Costantini, Loïc Le Cunff, Jean-Michel Boursiquot, Patrice This, Maria S Grando. A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.).
BMC plant biology.
2010 Nov; 10(?):241. doi:
10.1186/1471-2229-10-241
. [PMID: 21062440] - Heng Li, Shao-Qing Yang, Hui Wang, Jie Tian, Wen-Yun Gao. Biosynthesis of the iridoid glucoside, lamalbid, in Lamium barbatum.
Phytochemistry.
2010 Oct; 71(14-15):1690-4. doi:
10.1016/j.phytochem.2010.06.019
. [PMID: 20656306] - Mengsu Huang, Christian Abel, Reza Sohrabi, Jana Petri, Ina Haupt, John Cosimano, Jonathan Gershenzon, Dorothea Tholl. Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03.
Plant physiology.
2010 Jul; 153(3):1293-310. doi:
10.1104/pp.110.154864
. [PMID: 20463089] - Yang Tang, Fei Wang, Jinping Zhao, Ke Xie, Yiguo Hong, Yule Liu. Virus-based microRNA expression for gene functional analysis in plants.
Plant physiology.
2010 Jun; 153(2):632-41. doi:
10.1104/pp.110.155796
. [PMID: 20388670] - Shufan Xing, Jin Miao, Shuang Li, Genji Qin, Si Tang, Haoni Li, Hongya Gu, Li-Jia Qu. Disruption of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino, dwarf and defects in trichome initiation and stomata closure in Arabidopsis.
Cell research.
2010 Jun; 20(6):688-700. doi:
10.1038/cr.2010.54
. [PMID: 20404857] - Andrea Ghirardo, Ina Zimmer, Nicolas Brüggemann, Jörg-Peter Schnitzler. Analysis of 1-deoxy-D-xylulose 5-phosphate synthase activity in Grey poplar leaves using isotope ratio mass spectrometry.
Phytochemistry.
2010 Jun; 71(8-9):918-22. doi:
10.1016/j.phytochem.2010.02.016
. [PMID: 20303132] - Jianwei Tang, Keiko Kobayashi, Masashi Suzuki, Shogo Matsumoto, Toshiya Muranaka. The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing.
The Plant journal : for cell and molecular biology.
2010 Feb; 61(3):456-66. doi:
10.1111/j.1365-313x.2009.04082.x
. [PMID: 19929879] - Denis Tritsch, Andréa Hemmerlin, Thomas J Bach, Michel Rohmer. Plant isoprenoid biosynthesis via the MEP pathway: in vivo IPP/DMAPP ratio produced by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase in tobacco BY-2 cell cultures.
FEBS letters.
2010 Jan; 584(1):129-34. doi:
10.1016/j.febslet.2009.11.010
. [PMID: 19903472] - Deepak Ganjewala, Rajesh Luthra. Essential oil biosynthesis and regulation in the genus Cymbopogon.
Natural product communications.
2010 Jan; 5(1):163-72. doi:
"
. [PMID: 20184044] - Jian-Zhi Huang, Ting-Chi Cheng, Pei-Jung Wen, Ming-Hsiun Hsieh, Fure-Chyi Chen. Molecular characterization of the Oncidium orchid HDR gene encoding 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase, the last step of the methylerythritol phosphate pathway.
Plant cell reports.
2009 Oct; 28(10):1475-86. doi:
10.1007/s00299-009-0747-6
. [PMID: 19636561] - Myriam Seemann, Karnjapan Janthawornpong, Julia Schweizer, Lars H Böttger, Adam Janoschka, Anne Ahrens-Botzong, Erasmienne Ngouamegne Tambou, Olaf Rotthaus, Alfred X Trautwein, Michel Rohmer. Isoprenoid biosynthesis via the MEP pathway: in vivo Mössbauer spectroscopy identifies a [4Fe-4S]2+ center with unusual coordination sphere in the LytB protein.
Journal of the American Chemical Society.
2009 Sep; 131(37):13184-5. doi:
10.1021/ja9012408
. [PMID: 19708647] - K V Mazikin, Iu V Ershov, A V goncharenko, D N Ostrovskiĭ. [2-(14)C-Methylerythritol 2,4-cyclodiphosphate incorporation into bacterial and plant isoprenoids].
Prikladnaia biokhimiia i mikrobiologiia.
2009 Sep; 45(5):561-4. doi:
"
. [PMID: 19845288] - Yeon-Bok Kim, Sang-Min Kim, Min-Kyoung Kang, Tomohisa Kuzuyama, Jong Kyu Lee, Seung-Chan Park, Sang-Chul Shin, Soo-Un Kim. Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes.
Tree physiology.
2009 May; 29(5):737-49. doi:
10.1093/treephys/tpp002
. [PMID: 19203978] - Man Zhang, Kai Li, Chunhong Zhang, Junyi Gai, Deyue Yu. Identification and characterization of class 1 DXS gene encoding 1-deoxy-D-xylulose-5-phosphate synthase, the first committed enzyme of the MEP pathway from soybean.
Molecular biology reports.
2009 May; 36(5):879-87. doi:
10.1007/s11033-008-9258-8
. [PMID: 18437529] - Masashi Suzuki, Shoko Nakagawa, Yukiko Kamide, Keiko Kobayashi, Kiyoshi Ohyama, Hiromi Hashinokuchi, Reiko Kiuchi, Kazuki Saito, Toshiya Muranaka, Noriko Nagata. Complete blockage of the mevalonate pathway results in male gametophyte lethality.
Journal of experimental botany.
2009; 60(7):2055-64. doi:
10.1093/jxb/erp073
. [PMID: 19363204] - Esther Gerber, Andréa Hemmerlin, Michael Hartmann, Dimitri Heintz, Marie-Andrée Hartmann, Jérôme Mutterer, Manuel Rodríguez-Concepción, Albert Boronat, Alain Van Dorsselaer, Michel Rohmer, Dring N Crowell, Thomas J Bach. The plastidial 2-C-methyl-D-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells.
The Plant cell.
2009 Jan; 21(1):285-300. doi:
10.1105/tpc.108.063248
. [PMID: 19136647] - Corinne Rivasseau, Myriam Seemann, Anne-Marie Boisson, Peter Streb, Elisabeth Gout, Roland Douce, Michel Rohmer, Richard Bligny. Accumulation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate in illuminated plant leaves at supraoptimal temperatures reveals a bottleneck of the prokaryotic methylerythritol 4-phosphate pathway of isoprenoid biosynthesis.
Plant, cell & environment.
2009 Jan; 32(1):82-92. doi:
10.1111/j.1365-3040.2008.01903.x
. [PMID: 19021881] - Katrin Besser, Andrea Harper, Nicholas Welsby, Ines Schauvinhold, Stephen Slocombe, Yi Li, Richard A Dixon, Pierre Broun. Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species.
Plant physiology.
2009 Jan; 149(1):499-514. doi:
10.1104/pp.108.126276
. [PMID: 18997116]