12(S)-HPETE (BioDeep_00000002666)
Secondary id: BioDeep_00000172683, BioDeep_00000913099
human metabolite Endogenous blood metabolite
代谢物信息卡片
化学式: C20H32O4 (336.2300472)
中文名称: 12-(S)-过氧化氢-5Z,8Z,10E,14Z-二十碳四烯酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.05%
分子结构信息
SMILES: CCCCC/C=C\C[C@@H](/C=C/C=C\C/C=C\CCCC(=O)O)OO
InChI: InChI=1S/C20H32O4/c1-2-3-4-5-10-13-16-19(24-23)17-14-11-8-6-7-9-12-15-18-20(21)22/h7-11,13-14,17,19,23H,2-6,12,15-16,18H2,1H3,(H,21,22)/b9-7-,11-8-,13-10-,17-14+/t19-/m0/s1
描述信息
12-HPETE is one of the six monohydroperoxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid (Leukotrienes). Reduction of the hydroperoxide yields the more stable hydroxyl fatty acid (+/-)12-HETE. A family of biologically active compounds derived from arachidonic acid by oxidative metabolism through the 5-lipoxygenase pathway. They participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. They have potent actions on many essential organs and systems, including the cardiovascular, pulmonary, and central nervous system as well as the gastrointestinal tract and the immune system.
12-HPETE is one of the six monohydroperoxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid (Leukotrienes). Reduction of the hydroperoxide yields the more stable hydroxyl fatty acid (+/-)12-HETE.
D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors
D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents
同义名列表
25 个代谢物同义名
(5Z,8Z,10E,14Z)-(12S)-12-Hydroperoxyeicosa-5,8,10,14-tetraenoic acid; (5Z,8Z,10E,14Z)-(12S)-12-Hydroperoxyicosa-5,8,10,14-tetraenoic acid; (5Z,8Z,10E,12S,14Z)-12-Hydroperoxyicosa-5,8,10,14-tetraenoic acid; (5Z,8Z,10E,14Z)-(12S)-12-Hydroperoxyeicosa-5,8,10,14-tetraenoate; (5Z,8Z,10E,14Z)-(12S)-12-Hydroperoxyicosa-5,8,10,14-tetraenoate; (5Z,8Z,10E,12S,14Z)-12-Hydroperoxyicosa-5,8,10,14-tetraenoate; 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid; 12-L-Hydroperoxy-5,8,10,14-eicosatetraenoic acid; 12-Hydroperoxy-5,8,10,14-icosatetraenoic acid; Arachidonic acid omega-9 hydroperoxide; Omega-9-hydroperoxyarachidonic acid; 12-Hydroperoxyeicosatetraenoic acid; Arachidonate omega-9 hydroperoxide; 12-Hydroperoxyicosatetraenoic acid; Omega-9-hydroperoxyarachidonate; 12-Hydroperoxyeicosatetraenoate; 12-HPETE, (S-(e,Z,Z,Z))-isomer; 12-Hydroperoxyicosatetraenoate; 12-HPETE, (S-(e,e,e))-isomer; 12-HPETE, (e,Z,Z,Z)-isomer; omega-9 Hpaa; 12(S)-HPETE; 12S-HpETE; 12-Oohete; 12-HpETE
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:15626
- KEGG: C05965
- PubChem: 5280892
- PubChem: 1415
- HMDB: HMDB0004243
- Metlin: METLIN36282
- Metlin: METLIN3845
- ChEMBL: CHEMBL1447811
- foodb: FDB023348
- chemspider: 4444415
- CAS: 71774-10-2
- PMhub: MS000004372
- PubChem: 8249
- LipidMAPS: LMFA03060013
- 3DMET: B01939
- NIKKAJI: J341.562G
- LOTUS: LTS0096496
- wikidata: Q27070764
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
123 个相关的代谢反应过程信息。
Reactome(73)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 12-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 12R-HpETE
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 12-eicosatetraenoic acid derivatives:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Synthesis of 12-eicosatetraenoic acid derivatives:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 12-eicosatetraenoic acid derivatives:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 12-eicosatetraenoic acid derivatives:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 12-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 12R-HpETE
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
prostaglandin H2 ⟶ prostaglandin E2
- Synthesis of 12-eicosatetraenoic acid derivatives:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 12-eicosatetraenoic acid derivatives:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 12-eicosatetraenoic acid derivatives:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 12-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 12R-HpETE
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Fatty acid metabolism:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Arachidonic acid metabolism:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Synthesis of 12-eicosatetraenoic acid derivatives:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 12-eicosatetraenoic acid derivatives:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 12-eicosatetraenoic acid derivatives:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
BioCyc(0)
WikiPathways(3)
- Eicosanoid metabolism via lipoxygenases (LOX):
Arachidonic acid ⟶ 12-HETE
- Eicosanoid synthesis:
PGD2 ⟶ PGJ2
- Arachidonic acid (AA, ARA) oxylipin metabolism:
HXB3 ⟶ Trioxilin B3
Plant Reactome(0)
INOH(1)
- Prostaglandin and Leukotriene metabolism ( Prostaglandin and Leukotriene metabolism ):
Glutathione + Leucotriene A4 ⟶ Leucotriene C4
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(46)
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Piroxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetylsalicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etodolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ibuprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Rofecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diclofenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Sulindac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Celecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketorolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Suprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Bromfenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Indomethacin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Mefenamic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Oxaprozin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nabumetone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Naproxen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diflunisal Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Meloxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Valdecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antipyrine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antrafenine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Carprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etoricoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Fenoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Flurbiprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Magnesium Salicylate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lumiracoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lornoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Phenylbutazone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nepafenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Trisalicylate-Choline Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tolmetin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tiaprofenic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tenoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salsalate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylate-Sodium Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetaminophen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
PharmGKB(0)
3 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 6087 - Hydra vulgaris: 10.1042/BJ2950023
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Juliana Saín, Marcela Aída González, Jimena Verónica Lavandera, María Victoria Scalerandi, Claudio Adrián Bernal. The effects of trans-fatty acids on TAG regulation in mice depend on dietary unsaturated fatty acids.
The British journal of nutrition.
2016 08; 116(4):611-20. doi:
10.1017/s0007114516002415
. [PMID: 27464460] - Cecil R Pace-Asciak. Pathophysiology of the hepoxilins.
Biochimica et biophysica acta.
2015 Apr; 1851(4):383-96. doi:
10.1016/j.bbalip.2014.09.007
. [PMID: 25240838] - Chaoqin Xie, Donna H Wang. Inhibition of renin release by arachidonic acid metabolites, 12(s)-HPETE and 12-HETE: role of TRPV1 channels.
Endocrinology.
2011 Oct; 152(10):3811-9. doi:
10.1210/en.2011-0141
. [PMID: 21846804] - Aaron T Wecksler, Cyril Jacquot, Wilfred A van der Donk, Theodore R Holman. Mechanistic investigations of human reticulocyte 15- and platelet 12-lipoxygenases with arachidonic acid.
Biochemistry.
2009 Jul; 48(26):6259-67. doi:
10.1021/bi802332j
. [PMID: 19469483] - Ryosuke Iijima, Takatsugu Ichikawa, Masatoshi Yamazaki. Sialic acid attenuates the cytotoxicity of the lipid hydroperoxides HpODE and HpETE.
Carbohydrate research.
2009 May; 344(7):933-5. doi:
10.1016/j.carres.2009.02.025
. [PMID: 19329108] - Afaf M Hassan. Selenium status in patients with aspirin-induced asthma.
Annals of clinical biochemistry.
2008 Sep; 45(Pt 5):508-12. doi:
10.1258/acb.2008.008030
. [PMID: 18753425] - Toshiaki Okuno, Yoshiko Iizuka, Hiroshi Okazaki, Takehiko Yokomizo, Ryo Taguchi, Takao Shimizu. 12(S)-Hydroxyheptadeca-5Z, 8E, 10E-trienoic acid is a natural ligand for leukotriene B4 receptor 2.
The Journal of experimental medicine.
2008 Apr; 205(4):759-66. doi:
10.1084/jem.20072329
. [PMID: 18378794] - Marcus J Coffey, Gavin E Jarvis, Jonathan M Gibbins, Barbara Coles, Natasha E Barrett, Oliver R E Wylie, Valerie B O'Donnell. Platelet 12-lipoxygenase activation via glycoprotein VI: involvement of multiple signaling pathways in agonist control of H(P)ETE synthesis.
Circulation research.
2004 Jun; 94(12):1598-605. doi:
10.1161/01.res.0000132281.78948.65
. [PMID: 15142951] - Michiharu Tanabe, Sadaharu Tabuchi, Masato Iwatsuki, Masamichi Kurosaki, Hideki Kamitani, Masayuki Yokota, Takashi Watanabe. Incorporation of arachidonic and linoleic acid hydroperoxides into cultured human umbilical vein endothelial cells.
Prostaglandins, leukotrienes, and essential fatty acids.
2004 Jun; 70(6):485-9. doi:
10.1016/j.plefa.2003.10.003
. [PMID: 15120710] - Tuan Trang, Benjamin McNaull, Remi Quirion, Khem Jhamandas. Involvement of spinal lipoxygenase metabolites in hyperalgesia and opioid tolerance.
European journal of pharmacology.
2004 Apr; 491(1):21-30. doi:
10.1016/j.ejphar.2004.03.022
. [PMID: 15102529] - Huiyong Yin, Jason D Morrow, Ned A Porter. Identification of a novel class of endoperoxides from arachidonate autoxidation.
The Journal of biological chemistry.
2004 Jan; 279(5):3766-76. doi:
10.1074/jbc.m307137200
. [PMID: 14594817] - María A Balboa, Rebeca Pérez, Jesús Balsinde. Amplification mechanisms of inflammation: paracrine stimulation of arachidonic acid mobilization by secreted phospholipase A2 is regulated by cytosolic phospholipase A2-derived hydroperoxyeicosatetraenoic acid.
Journal of immunology (Baltimore, Md. : 1950).
2003 Jul; 171(2):989-94. doi:
10.4049/jimmunol.171.2.989
. [PMID: 12847271] - David M Aronoff, Olivier Boutaud, Lawrence J Marnett, John A Oates. Inhibition of prostaglandin H2 synthases by salicylate is dependent on the oxidative state of the enzymes.
The Journal of pharmacology and experimental therapeutics.
2003 Feb; 304(2):589-95. doi:
10.1124/jpet.102.042853
. [PMID: 12538810] - Shailaja Kalyankrishna, Jean-Hugues Parmentier, Kafait U Malik. Arachidonic acid-derived oxidation products initiate apoptosis in vascular smooth muscle cells.
Prostaglandins & other lipid mediators.
2002 Sep; 70(1-2):13-29. doi:
10.1016/s0090-6980(02)00010-2
. [PMID: 12428675] - C Calzada, E Véricel, B Mitel, L Coulon, M Lagarde. 12(S)-Hydroperoxy-eicosatetraenoic acid increases arachidonic acid availability in collagen-primed platelets.
Journal of lipid research.
2001 Sep; 42(9):1467-73. doi:
. [PMID: 11518767]
- J Gu, Y Liu, Y Wen, R Natarajan, L Lanting, J L Nadler. Evidence that increased 12-lipoxygenase activity induces apoptosis in fibroblasts.
Journal of cellular physiology.
2001 Mar; 186(3):357-65. doi:
10.1002/1097-4652(200103)186:3<357::aid-jcp1034>3.0.co;2-e
. [PMID: 11169974] - M H Zink, C L Oltman, T Lu, P V Katakam, T L Kaduce, H Lee, K C Dellsperger, A A Spector, P R Myers, N L Weintraub. 12-lipoxygenase in porcine coronary microcirculation: implications for coronary vasoregulation.
American journal of physiology. Heart and circulatory physiology.
2001 Feb; 280(2):H693-704. doi:
10.1152/ajpheart.2001.280.2.h693
. [PMID: 11158968] - S W Hwang, H Cho, J Kwak, S Y Lee, C J Kang, J Jung, S Cho, K H Min, Y G Suh, D Kim, U Oh. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances.
Proceedings of the National Academy of Sciences of the United States of America.
2000 May; 97(11):6155-60. doi:
10.1073/pnas.97.11.6155
. [PMID: 10823958] - M Liminga, E Oliw. Qualitative and quantitative analysis of lipoxygenase products in bovine corneal epithelium by liquid chromatography-mass spectrometry with an ion trap.
Lipids.
2000 Feb; 35(2):225-32. doi:
10.1007/bf02664773
. [PMID: 10757554] - H S Huang, C J Chen, H Suzuki, S Yamamoto, W C Chang. Inhibitory effect of phospholipid hydroperoxide glutathione peroxidase on the activity of lipoxygenases and cyclooxygenases.
Prostaglandins & other lipid mediators.
1999 Oct; 58(2-4):65-75. doi:
10.1016/s0090-6980(99)00017-9
. [PMID: 10560610] - S Huang, M Konieczkowski, J R Schelling, J R Sedor. Interleukin-1 stimulates Jun N-terminal/stress-activated protein kinase by an arachidonate-dependent mechanism in mesangial cells.
Kidney international.
1999 May; 55(5):1740-9. doi:
10.1046/j.1523-1755.1999.00440.x
. [PMID: 10231436] - M Nishiyama, N Hori, T Watanabe, T Hori, K Ogata, K Watanabe, E Maru, T Shimizu. Lipid peroxides and neuronal plasticity.
Advances in experimental medicine and biology.
1999; 469(?):43-8. doi:
10.1007/978-1-4615-4793-8_7
. [PMID: 10667308] - G S Vartanian, M I Agadzhanov, K G Karagezian. [Regulating effect of trihydroxyoctadecadienoic acids from Bryonia alba on glucose-fatty acids cycle in alloxan diabetes].
Doklady Akademii nauk.
1998 Aug; 361(5):692-4. doi:
"
. [PMID: 9785018] - H Imai, K Narashima, M Arai, H Sakamoto, N Chiba, Y Nakagawa. Suppression of leukotriene formation in RBL-2H3 cells that overexpressed phospholipid hydroperoxide glutathione peroxidase.
The Journal of biological chemistry.
1998 Jan; 273(4):1990-7. doi:
10.1074/jbc.273.4.1990
. [PMID: 9442035] - C Calzada, E Vericel, M Lagarde. Low concentrations of lipid hydroperoxides prime human platelet aggregation specifically via cyclo-oxygenase activation.
The Biochemical journal.
1997 Jul; 325 ( Pt 2)(?):495-500. doi:
10.1042/bj3250495
. [PMID: 9230133] - T D Foley. 5-HPETE is a potent inhibitor of neuronal Na+, K(+)-ATPase activity.
Biochemical and biophysical research communications.
1997 Jun; 235(2):374-6. doi:
10.1006/bbrc.1997.6790
. [PMID: 9199200] - H Okamoto, M Tanabe, M Iwatsuki, M Nishiyama, K Akatsuka, T Watanabe, T Hori, E Nakajima. Role of 12-HPETE in the pathogenesis of cerebral vasospasm.
Advances in experimental medicine and biology.
1997; 407(?):21-5. doi:
10.1007/978-1-4899-1813-0_4
. [PMID: 9321927] - B Kis, Z Mezei, A Gecse, G Telegdy. The effect of substance P on the arachidonate cascade of rat platelets.
Acta physiologica Hungarica.
1997 199; 85(2):89-97. doi:
NULL
. [PMID: 9706302] - H Suzuki, S Yamamoto. Molecular and catalytic properties of mammalian lipoxygenases compared with soybean lipoxygenase-1.
Advances in experimental medicine and biology.
1997; 433(?):371-4. doi:
10.1007/978-1-4899-1810-9_80
. [PMID: 9561173] - S Yamamoto, K Kishimoto, T Arakawa, H Suzuki, M Nakamura, T Yoshimoto, T Takao, Y Shimonishi, T Tanabe. Arachidonate 12-lipoxygenases. Catalytic properties and regulation of the enzyme gene.
Advances in experimental medicine and biology.
1997; 407(?):191-6. doi:
"
. [PMID: 9321952] - G N Rao, W C Glasgow, T E Eling, M S Runge. Role of hydroperoxyeicosatetraenoic acids in oxidative stress-induced activating protein 1 (AP-1) activity.
The Journal of biological chemistry.
1996 Nov; 271(44):27760-4. doi:
10.1074/jbc.271.44.27760
. [PMID: 8910370] - O Berdeaux, J M Chardigny, J L Sébédio, T Mairot, D Poullain, J M Vatèle, J P Noël. Effects of a trans isomer of arachidonic acid on rat platelet aggregation and eicosanoid production.
Journal of lipid research.
1996 Oct; 37(10):2244-50. doi:
. [PMID: 8906600]
- T Yamazaki, K Higuchi, S Kominami, S Takemori. 15-lipoxygenase metabolite(s) of arachidonic acid mediates adrenocorticotropin action in bovine adrenal steroidogenesis.
Endocrinology.
1996 Jul; 137(7):2670-5. doi:
10.1210/endo.137.7.8770885
. [PMID: 8770885] - D G Tang, Y Q Chen, K V Honn. Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis.
Proceedings of the National Academy of Sciences of the United States of America.
1996 May; 93(11):5241-6. doi:
10.1073/pnas.93.11.5241
. [PMID: 8643560] - K Kishimoto, M Nakamura, H Suzuki, T Yoshimoto, S Yamamoto, T Takao, Y Shimonishi, T Tanabe. Suicide inactivation of porcine leukocyte 12-lipoxygenase associated with its incorporation of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid derivative.
Biochimica et biophysica acta.
1996 Mar; 1300(1):56-62. doi:
10.1016/0005-2760(95)00241-3
. [PMID: 8608163] - H Ikawa, K Yamamoto, Y Takahashi, N Ueda, Y Hayashi, S Yamamoto, K Ishimura, M Irahara, T Aono. Arachidonate 12-lipoxygenase in porcine anterior pituitary cells: its localization and possible function in gonadotrophs.
The Journal of endocrinology.
1996 Jan; 148(1):33-41. doi:
10.1677/joe.0.1480033
. [PMID: 8568469] - N B Waslidge, D J Hayes. A colorimetric method for the determination of lipoxygenase activity suitable for use in a high throughput assay format.
Analytical biochemistry.
1995 Nov; 231(2):354-8. doi:
10.1006/abio.1995.0063
. [PMID: 8594985] - C R Pace-Asciak, D Reynaud, P Demin. Mechanistic aspects of hepoxilin biosynthesis.
Journal of lipid mediators and cell signalling.
1995 Oct; 12(2-3):307-11. doi:
10.1016/0929-7855(95)00036-p
. [PMID: 8777574] - M Abe, M Klein, D J Steel, A Thekkuveettil, E Shapiro, J H Schwartz, S J Feinmark. Stereochemistry of the Aplysia neuronal 12-lipoxygenase: specific potentiation of FMRFamide action by 12(S)-HPETE.
Brain research.
1995 Jun; 683(2):200-8. doi:
10.1016/0006-8993(95)00375-z
. [PMID: 7552355] - M Laniado-Schwartzman, Y Lavrovsky, R A Stoltz, M S Conners, J R Falck, K Chauhan, N G Abraham. Activation of nuclear factor kappa B and oncogene expression by 12(R)-hydroxyeicosatrienoic acid, an angiogenic factor in microvessel endothelial cells.
The Journal of biological chemistry.
1994 Sep; 269(39):24321-7. doi:
. [PMID: 7523372]
- A Bourdeau, M Moutahir, J C Souberbielle, P Bonnet, P Herviaux, C Sachs, M Lieberherr. Effects of lipoxygenase products of arachidonate metabolism on parathyroid hormone secretion.
Endocrinology.
1994 Sep; 135(3):1109-12. doi:
10.1210/endo.135.3.8070353
. [PMID: 8070353] - C Edenius, S Tornhamre, J A Lindgren. Stimulation of lipoxin synthesis from leukotriene A4 by endogenously formed 12-hydroperoxyeicosatetraenoic acid in activated human platelets.
Biochimica et biophysica acta.
1994 Jan; 1210(3):361-7. doi:
10.1016/0005-2760(94)90241-0
. [PMID: 8305492] - N Mochizuki-Oda, M Negishi, K Mori, S Ito. Arachidonic acid activates cation channels in bovine adrenal chromaffin cells.
Journal of neurochemistry.
1993 Nov; 61(5):1882-90. doi:
10.1111/j.1471-4159.1993.tb09830.x
. [PMID: 7693870] - J Wigren, H Herbertsson, O Tollbom, S Hammarström. Metabolism of 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid by kidney and liver peroxisomes.
Journal of lipid research.
1993 Apr; 34(4):625-31. doi:
10.1016/s0022-2275(20)39986-7
. [PMID: 8496668] - M Lagarde, E Véricel, M Croset, C Calzada, J C Bordet, M Guichardant. Interactions between arachidonic and eicosapentaenoic acids during their dioxygenase-dependent peroxidation.
Prostaglandins, leukotrienes, and essential fatty acids.
1993 Jan; 48(1):23-5. doi:
10.1016/0952-3278(93)90005-h
. [PMID: 8424119] - M Zozulińska, K Zawilska. [Evaluation of platelet malondialdehyde and 12-hydroperoxyeicosatetraenoic acid in type I and II diabetic patients with ketoacidosis and after clinical complications].
Polskie Archiwum Medycyny Wewnetrznej.
1991 May; 85(5):286-93. doi:
. [PMID: 1910167]
- A E Holley, T F Slater. Measurement of lipid hydroperoxides in normal human blood plasma using HPLC-chemiluminescence linked to a diode array detector for measuring conjugated dienes.
Free radical research communications.
1991; 15(1):51-63. doi:
10.3109/10715769109049125
. [PMID: 1769613] - I Antonipillai. 12-lipoxygenase products are potent inhibitors of prostacyclin-induced renin release.
Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.).
1990 Jul; 194(3):224-30. doi:
10.3181/00379727-194-43083
. [PMID: 1694030] - A B Weitberg. Hydroxy- and hydroperoxy-6,8,11,14-eicosatetraenoic acids induce sister chromatid exchanges in cultured mammalian cells.
The American journal of the medical sciences.
1990 Jan; 299(1):50-3. doi:
10.1097/00000441-199001000-00011
. [PMID: 2105055] - D Chansel, M L Béa, R Ardaillou. Modulation of renin synthesis by lipoxygenase products in cultured human mesangial cells.
Molecular and cellular endocrinology.
1989 Apr; 62(2):263-71. doi:
10.1016/0303-7207(89)90013-0
. [PMID: 2545491] - D Piomelli, S J Feinmark, E Shapiro, J H Schwartz. Formation and biological activity of 12-ketoeicosatetraenoic acid in the nervous system of Aplysia.
The Journal of biological chemistry.
1988 Nov; 263(32):16591-6. doi:
10.1016/s0021-9258(18)37431-3
. [PMID: 3182804] - K Sakai, V Fafeur, B Vulliez-le Normand, F Dray. 12-Hydroperoxyeicosatetraenoic acid (12-HPETE) and 15-HPETE stimulate melatonin synthesis in rat pineals.
Prostaglandins.
1988 Jun; 35(6):969-76. doi:
10.1016/0090-6980(88)90120-7
. [PMID: 3187058] - I Antonipillai, J Nadler, R Horton. Angiotensin feedback inhibition on renin is expressed via the lipoxygenase pathway.
Endocrinology.
1988 Apr; 122(4):1277-81. doi:
10.1210/endo-122-4-1277
. [PMID: 3126033] - B Fruteau de Laclos, P Borgeat. Conditions for the formation of the oxo derivatives of arachidonic acid from platelet 12-lipoxygenase and soybean 15-lipoxygenase.
Biochimica et biophysica acta.
1988 Feb; 958(3):424-33. doi:
10.1016/0005-2760(88)90228-7
. [PMID: 3124882] - I Antonipillai, J L Nadler, E C Robin, R Horton. The inhibitory role of 12- and 15-lipoxygenase products on renin release.
Hypertension (Dallas, Tex. : 1979).
1987 Jul; 10(1):61-6. doi:
10.1161/01.hyp.10.1.61
. [PMID: 3298043] - C M Markey, A Alward, P E Weller, L J Marnett. Quantitative studies of hydroperoxide reduction by prostaglandin H synthase. Reducing substrate specificity and the relationship of peroxidase to cyclooxygenase activities.
The Journal of biological chemistry.
1987 May; 262(13):6266-79. doi:
. [PMID: 3106353]
- C A Rouzer, B Samuelsson. The importance of hydroperoxide activation for the detection and assay of mammalian 5-lipoxygenase.
FEBS letters.
1986 Aug; 204(2):293-6. doi:
10.1016/0014-5793(86)80831-6
. [PMID: 3089841] - A Danon, T V Zenser, D L Thomasson, M O Palmier, B B Davis. Eicosanoid synthesis by rabbit hydronephrotic cortical interstitial cells in culture.
The Journal of pharmacology and experimental therapeutics.
1986 Jul; 238(1):95-9. doi:
. [PMID: 3088262]
- S A Metz. A re-interpretation of lipoxygenase-dependent insulin release: which metabolites of arachidonic acid, or none?.
Life sciences.
1986 Jun; 38(23):2069-76. doi:
10.1016/0024-3205(86)90205-5
. [PMID: 3086649] - S Yamamoto, C Yokoyama, N Ueda, F Shinjo, S Kaneko, T Yoshimoto. Reactions of hydroperoxy-eicosatetraenoic acids with arachidonate 12- and 5-lipoxygenases purified from porcine leukocytes.
Advances in prostaglandin, thromboxane, and leukotriene research.
1986; 16(?):17-26. doi:
"
. [PMID: 2949547] - J L Humes, E E Opas, M Galavage, D Soderman, R J Bonney. Regulation of macrophage eicosanoid production by hydroperoxy-and hydroxy-eicosatetraenoic acids.
The Biochemical journal.
1986 Jan; 233(1):199-206. doi:
10.1042/bj2330199
. [PMID: 3082323] - E F Smith, H Darius, H Ferber, K Schrör. Inhibition of thromboxane and 12-HPETE formation by dazoxiben and its two thiophenic acid-substituted derivatives.
European journal of pharmacology.
1985 Jun; 112(2):161-9. doi:
10.1016/0014-2999(85)90492-3
. [PMID: 3896821] - L Baud, J Sraer, F Delarue, M Bens, F Balavoine, D Schlondorff, R Ardaillou, J D Sraer. Lipoxygenase products mediate the attachment of rat macrophages to glomeruli in vitro.
Kidney international.
1985 Jun; 27(6):855-63. doi:
10.1038/ki.1985.92
. [PMID: 3927056] - R W Bryant, T C Simon, J M Bailey. Hydroperoxy fatty acid formation in selenium deficient rat platelets: coupling of glutathione peroxidase to the lipoxygenase pathway.
Biochemical and biophysical research communications.
1983 Nov; 117(1):183-9. doi:
10.1016/0006-291x(83)91558-9
. [PMID: 6419734] - D Aharony, J B Smith, E F Smith, A M Lefer. Effects of arachidonic acid hydroperoxides on vascular and non-vascular smooth muscle.
Prostaglandins and medicine.
1981 Dec; 7(6):527-35. doi:
10.1016/0161-4630(81)90043-4
. [PMID: 7323211] - G J Trachte, A M Lefer, D Aharony, J B Smith. Potent constriction of cat coronary arteries by hydroperoxides of arachidonic acid and its blockade by anti-inflammatory agents.
Prostaglandins.
1979 Dec; 18(6):909-14. doi:
10.1016/0090-6980(79)90127-8
. [PMID: 547310] - M De Wolf, H J Hilderson, A Lagrou, W Dierick. Lipolytic enzymes in bovine thyroid tissue. III. Lysophospholipase activity.
Archives internationales de physiologie et de biochimie.
1979 Feb; 87(1):1-18. doi:
10.3109/13813457909070481
. [PMID: 92222] - K M Lovette, H Y Chuang, A F Mohammad, R G Mason. The subcellular distribution and partial characterization of cholinesterase activities of canine platelets.
Biochimica et biophysica acta.
1976 Apr; 428(2):355-68. doi:
10.1016/0304-4165(76)90043-x
. [PMID: 6047] - I M Nilsson, S E Bergentz, U Hedner, K Kullenberg. Gastric fibrinolysis.
Thrombosis et diathesis haemorrhagica.
1975 Nov; 34(2):409-18. doi:
10.1055/s-0038-1651400
. [PMID: 807] - I N Golovistikov. [Ability of antilymphocyte sera to counteract the allogeneic inhibition of hematopoietic stem cells].
Doklady Akademii nauk SSSR.
1975 Aug; 223(5):1245-7. doi:
NULL
. [PMID: 222] - A C Buck. Disorders of micturition in bacterial prostatitis.
Proceedings of the Royal Society of Medicine.
1975 Aug; 68(8):508-11. doi:
NULL
. [PMID: 681] - . .
.
. doi:
. [PMID: 18570379]