N-Acetyl-Muramic Acid (BioDeep_00001868680)

Main id: BioDeep_00000003358

 


代谢物信息卡片


N-Acetyl-Muramic Acid

化学式: C11H19NO8 (293.1111)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C(=O)O)OC1C(C(OC(C1O)CO)O)NC(=O)C
InChI: InChI=1S/C11H19NO8/c1-4(10(16)17)19-9-7(12-5(2)14)11(18)20-6(3-13)8(9)15/h4,6-9,11,13,15,18H,3H2,1-2H3,(H,12,14)(H,16,17)/t4-,6-,7-,8-,9-,11?/m1/s1

描述信息

同义名列表

2 个代谢物同义名

N-Acetyl-Muramic Acid; N-Acetylmuramate



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(5)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 MVD, NOD1, NOD2, SYK, TLR2
Peripheral membrane protein 1 AP1S2
Endosome membrane 1 CD14
Nucleus 1 SYK
cytosol 7 AP1S2, CLEC5A, GPT, MVD, NOD1, NOD2, SYK
phagocytic vesicle 2 NOD1, NOD2
Cell membrane 6 CD14, CLEC5A, NOD1, NOD2, SYK, TNF
Lipid-anchor 2 NOD1, NOD2
Cytoplasmic side 1 AP1S2
Cytoplasmic granule 1 PGLYRP1
cell surface 4 CLEC5A, NOD2, TLR2, TNF
Golgi apparatus 4 AP1S2, CD14, NOD2, TLR2
Golgi membrane 1 AP1S2
lysosomal membrane 1 AP1S2
neuronal cell body 1 TNF
Cytoplasm, cytosol 1 SYK
plasma membrane 7 CD14, CLEC5A, NOD1, NOD2, SYK, TLR2, TNF
Membrane 4 CLEC5A, PGLYRP2, PGLYRP3, TLR2
apical plasma membrane 1 NOD1
basolateral plasma membrane 2 NOD1, NOD2
extracellular exosome 7 CD14, CPVL, GPT, LYZ, PGLYRP1, PGLYRP2, WFDC2
extracellular space 8 CD14, CXCL8, IL10, IL6, LYZ, PGLYRP1, TNF, WFDC2
mitochondrion 1 NOD2
protein-containing complex 3 NOD2, PGLYRP3, SYK
intracellular membrane-bounded organelle 1 AP1S2
Single-pass type I membrane protein 1 TLR2
Secreted 7 CD14, CXCL8, IL10, IL6, PGLYRP1, PGLYRP3, WFDC2
extracellular region 10 CD14, CXCL8, IL10, IL6, LYZ, PGLYRP1, PGLYRP2, PGLYRP3, TNF, WFDC2
Single-pass membrane protein 1 CLEC5A
external side of plasma membrane 2 CD14, TNF
Early endosome 1 AP1S2
Membrane, clathrin-coated pit 1 AP1S2
clathrin-coated pit 1 AP1S2
recycling endosome 1 TNF
Single-pass type II membrane protein 2 CLEC5A, TNF
vesicle 1 NOD2
Apical cell membrane 1 NOD1
Membrane raft 3 CD14, TLR2, TNF
Cytoplasm, cytoskeleton 1 NOD2
lateral plasma membrane 1 NOD1
receptor complex 1 TLR2
Cytoplasmic vesicle, phagosome membrane 1 TLR2
cell projection 1 TLR2
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 TLR2
cytoskeleton 1 NOD2
Basolateral cell membrane 2 NOD1, NOD2
Lipid-anchor, GPI-anchor 1 CD14
Endomembrane system 1 AP1S2
Cytoplasmic vesicle membrane 1 AP1S2
specific granule membrane 1 CLEC5A
tertiary granule membrane 1 CLEC5A
cell body 1 TLR2
side of membrane 1 CD14
[Isoform 3]: Cytoplasm 1 NOD2
trans-Golgi network membrane 1 AP1S2
lipopolysaccharide receptor complex 1 CD14
secretory granule membrane 2 CD14, TLR2
endoplasmic reticulum lumen 1 IL6
specific granule lumen 2 LYZ, PGLYRP1
tertiary granule lumen 2 LYZ, PGLYRP1
azurophil granule lumen 1 LYZ
phagocytic vesicle lumen 1 PGLYRP1
AP-type membrane coat adaptor complex 1 AP1S2
membrane coat 1 AP1S2
early phagosome 1 SYK
AP-1 adaptor complex 1 AP1S2
Toll-like receptor 1-Toll-like receptor 2 protein complex 1 TLR2
Toll-like receptor 2-Toll-like receptor 6 protein complex 1 TLR2
extrinsic component of plasma membrane 1 NOD2
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 1 SYK
interleukin-6 receptor complex 1 IL6
B cell receptor complex 1 SYK
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Ashlyn S Hillman, Stephen N Hyland, Kimberly A Wodzanowski, DeVonte L Moore, Sushanta Ratna, Andrew Jemas, Liam-Michael D Sandles, Timothy Chaya, Arit Ghosh, Joseph M Fox, Catherine L Grimes. Minimalist Tetrazine N-Acetyl Muramic Acid Probes for Rapid and Efficient Labeling of Commensal and Pathogenic Peptidoglycans in Living Bacterial Culture and During Macrophage Invasion. Journal of the American Chemical Society. 2024 Mar; 146(10):6817-6829. doi: 10.1021/jacs.3c13644. [PMID: 38427023]
  • Sébastien Crépin, Elizabeth N Ottosen, Katharina Peters, Sara N Smith, Stephanie D Himpsl, Waldemar Vollmer, Harry L T Mobley. The lytic transglycosylase MltB connects membrane homeostasis and in vivo fitness of Acinetobacter baumannii. Molecular microbiology. 2018 09; 109(6):745-762. doi: 10.1111/mmi.14000. [PMID: 29884996]
  • Hathairat Rachniyom, Atsuko Matsumoto, Yuki Inahashi, Akira Take, Yoko Takahashi, Arinthip Thamchaipenet. Actinomadura barringtoniae sp. nov., an endophytic actinomycete isolated from the roots of Barringtonia acutangula (L.) Gaertn. International journal of systematic and evolutionary microbiology. 2018 May; 68(5):1584-1590. doi: 10.1099/ijsem.0.002714. [PMID: 29543147]
  • Ausra Gaidelyte, Virginija Cvirkaite-Krupovic, Rimantas Daugelavicius, Jaana K H Bamford, Dennis H Bamford. The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis. Journal of bacteriology. 2006 Aug; 188(16):5925-34. doi: 10.1128/jb.00107-06. [PMID: 16885461]
  • Jeya Nadesalingam, Alister W Dodds, Kenneth B M Reid, Nades Palaniyar. Mannose-binding lectin recognizes peptidoglycan via the N-acetyl glucosamine moiety, and inhibits ligand-induced proinflammatory effect and promotes chemokine production by macrophages. Journal of immunology (Baltimore, Md. : 1950). 2005 Aug; 175(3):1785-94. doi: 10.4049/jimmunol.175.3.1785. [PMID: 16034120]
  • Yves Bourne, Corinne Houlès Astoul, Véronique Zamboni, Willy J Peumans, Laurence Menu-Bouaouiche, Els J M Van Damme, Annick Barre, Pierre Rougé. Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. The Biochemical journal. 2002 May; 364(Pt 1):173-80. doi: 10.1042/bj3640173. [PMID: 11988090]
  • E Bokma, G A van Koningsveld, M Jeronimus-Stratingh, J J Beintema. Hevamine, a chitinase from the rubber tree Hevea brasiliensis, cleaves peptidoglycan between the C-1 of N-acetylglucosamine and C-4 of N-acetylmuramic acid and therefore is not a lysozyme. FEBS letters. 1997 Jul; 411(2-3):161-3. doi: 10.1016/s0014-5793(97)00682-0. [PMID: 9271197]
  • A Ayouba, C Chatelain, P Rougé. Legume lectins interact with muramic acid and N-acetylmuramic acid. FEBS letters. 1991 Sep; 289(1):102-4. doi: 10.1016/0014-5793(91)80918-s. [PMID: 1893996]
  • H Harz, K Burgdorf, J V Höltje. Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Analytical biochemistry. 1990 Oct; 190(1):120-8. doi: 10.1016/0003-2697(90)90144-x. [PMID: 2285138]