Pinocembrin (BioDeep_00000000144)

 

Secondary id: BioDeep_00000396460

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-

化学式: C15H12O4 (256.0736)
中文名称: 吡菌素, 松属素, 生松素, 乔松素, 分析对照品, 乔松素
谱图信息: 最多检出来源 Homo sapiens(plant) 10.04%

分子结构信息

SMILES: c1(cc(c2c(c1)O[C@@H](CC2=O)c1ccccc1)O)O
InChI: InChI=1S/C15H12O4/c16-10-6-11(17)15-12(18)8-13(19-14(15)7-10)9-4-2-1-3-5-9/h1-7,13,16-17H,8H2

描述信息

Pinocembrin is a dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. It has a role as an antioxidant, an antineoplastic agent, a vasodilator agent, a neuroprotective agent and a metabolite. It is a dihydroxyflavanone and a (2S)-flavan-4-one.
Pinocembrin is a natural product found in Prunus leveilleana, Alpinia rafflesiana, and other organisms with data available.
Pinocembrin is found in mexican oregano and is isolated from many plants including food plants. Pinocembrin belongs to the family of flavanones. These are compounds containing a flavan-3-one moiety, which structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3.
A dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea.
Isolated from many plants including food plants. (S)-Pinocembrin is found in mexican oregano and pine nut.
(±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1].
(±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1].
Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].
Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].

同义名列表

42 个代谢物同义名

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-; 4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (2S)-; 4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (-)-; 4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-; (2S)-5,7-dihydroxy-2-phenyl-3,4-dihydro-2H-1-benzopyran-4-one; (S)-2,3-Dihydro-5,7-dihydroxy-2-phenyl-4H-1-benzopyran-4-one; (2~{S})-5,7-bis(oxidanyl)-2-phenyl-2,3-dihydrochromen-4-one; (2s)-5,7-dihydroxy-2-phenyl-2,3-dihydro-4h-chromen-4-one; (2S)-5,7-dihydroxy-2-phenyl-2,3-dihydrochromen-4-one; Pinocembrin, analytical standard, 95\\% (TLC), solid; (2S)-5,7-dihydroxy-2-phenyl-chroman-4-one; (S)-5,7-dihydroxy-2-phenylchroman-4-one; URFCJEUYXNAHFI-ZDUSSCGKSA-N; (S)-5,7-dihydroxyflavanone; 5,7-dihydroxy-flavanone; 5,7-dihydroxyflavanone; Galangin flavanone; Pinocembrin (6CI); (+)-pinocoembrin; Spectrum3_001635; Spectrum2_001670; Spectrum4_001765; (2S)-pinocembrin; Spectrum5_000349; (+)-Pinocembrin; (s)-pinocembrin; UNII-8T7C8CH791; Dihydrochrysin; Oprea1_508274; DivK1c_006992; pinocembrine; KBio2_007537; KBio1_001936; KBio2_004969; KBio2_002401; KBio3_002549; Pinocembrin; 8T7C8CH791; Pinocembrin; (±)-5,7-Dihydroxyflavanone; NSC 43318; (±)-Pinocembrin



数据库引用编号

29 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(3)

代谢反应

36 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(35)

  • pinocembrin C-glucosylation: (2S)-pinocembrin + H+ + NADPH + O2 ⟶ 2,5,7-trihydroxyflavanone + H2O + NADP+
  • pinocembrin C-glucosylation: (2S)-pinocembrin + H+ + NADPH + O2 ⟶ 2,5,7-trihydroxyflavanone + H2O + NADP+
  • pinocembrin C-glucosylation: (2S)-pinocembrin + H+ + NADPH + O2 ⟶ 2,5,7-trihydroxyflavanone + H2O + NADP+
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: (2S)-pinocembrin + H+ + NADPH + O2 ⟶ 2,5,7-trihydroxyflavanone + H2O + NADP+
  • chrysin biosynthesis: (2S)-pinocembrin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + chrysin + succinate
  • pinocembrin C-glucosylation: (2S)-pinocembrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2,5,7-trihydroxyflavanone + H2O + an oxidized [NADPH-hemoprotein reductase]
  • pinobanksin biosynthesis: (2S)-pinocembrin + SAM ⟶ SAH + pinostrobin
  • pinobanksin biosynthesis: (2S)-pinocembrin + 2-oxoglutarate + O2 ⟶ (+)-pinobanksin + CO2 + succinate
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: (2S)-pinocembrin + H+ + NADPH + O2 ⟶ 2,5,7-trihydroxyflavanone + H2O + NADP+
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinobanksin biosynthesis: (2S)-pinocembrin + 2-oxoglutarate + O2 ⟶ (+)-pinobanksin + CO2 + succinate
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP
  • pinocembrin C-glucosylation: 1-phenyl-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione + UDP-α-D-glucose ⟶ 1-phenyl-3-(3-C-glucosyl-2,4,6-trihydroxyphenyl)propane-1,3-dione + H+ + UDP

COVID-19 Disease Map(0)

PathBank(1)

PharmGKB(0)

377 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 BCL2, CACNA1C, CASP3, CASP9, GJA1, MAPK14, MTOR, NFE2L2, NLRP3, NOS2, PIK3CA, PTGS2, TLR4
Peripheral membrane protein 3 GORASP1, MTOR, PTGS2
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 5 BCL2, GJA1, HMOX1, MTOR, PTGS2
Nucleus 10 BCL2, CASP3, CASP9, GJA1, HMOX1, MAPK14, MTOR, NFE2L2, NLRP3, NOS2
cytosol 11 BCL2, CASP3, CASP9, GJA1, HMOX1, MAPK14, MTOR, NFE2L2, NLRP3, NOS2, PIK3CA
dendrite 2 CACNA1C, MTOR
phagocytic vesicle 1 MTOR
centrosome 1 NFE2L2
nucleoplasm 7 CASP3, GJA1, HMOX1, MAPK14, MTOR, NFE2L2, NOS2
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 6 CACNA1C, GJA1, KCND2, KCND3, TLR4, TNF
Cytoplasmic side 3 GORASP1, HMOX1, MTOR
lamellipodium 1 PIK3CA
Multi-pass membrane protein 4 CACNA1C, GJA1, KCND2, KCND3
Golgi apparatus membrane 3 GORASP1, MTOR, NLRP3
Synapse 1 KCND2
cell junction 2 GJA1, KCND2
cell surface 2 TLR4, TNF
glutamatergic synapse 3 CASP3, KCND2, MAPK14
Golgi apparatus 3 GJA1, GORASP1, NFE2L2
Golgi membrane 4 GJA1, GORASP1, MTOR, NLRP3
lysosomal membrane 1 MTOR
neuronal cell body 4 CASP3, KCND2, KCND3, TNF
sarcolemma 1 KCND3
Cytoplasm, cytosol 3 NFE2L2, NLRP3, NOS2
Lysosome 1 MTOR
plasma membrane 9 CACNA1C, GJA1, KCND2, KCND3, NFE2L2, NOS2, PIK3CA, TLR4, TNF
Membrane 7 BCL2, CACNA1C, HMOX1, KCND3, MTOR, NLRP3, TLR4
apical plasma membrane 1 GJA1
caveola 1 PTGS2
Lysosome membrane 1 MTOR
endoplasmic reticulum 5 BCL2, GJA1, HMOX1, NLRP3, PTGS2
extracellular space 4 HMOX1, IL10, IL6, TNF
perinuclear region of cytoplasm 4 HMOX1, NOS2, PIK3CA, TLR4
gap junction 1 GJA1
intercalated disc 2 GJA1, PIK3CA
mitochondrion 5 BCL2, CASP9, GJA1, MAPK14, NLRP3
protein-containing complex 3 BCL2, CASP9, PTGS2
intracellular membrane-bounded organelle 1 GJA1
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 2 CACNA1C, CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TLR4
Secreted 3 IL10, IL6, NLRP3
extracellular region 5 IL10, IL6, MAPK14, NLRP3, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
neuronal cell body membrane 1 KCND2
anchoring junction 1 KCND2
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 TLR4, TNF
dendritic spine 2 KCND2, KCND3
T-tubule 1 CACNA1C
perikaryon 2 CACNA1C, KCND2
Z disc 1 CACNA1C
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
Early endosome 1 TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
postsynaptic membrane 2 KCND2, KCND3
Cell membrane, sarcolemma 2 CACNA1C, KCND3
Cytoplasm, perinuclear region 1 NOS2
Membrane raft 2 GJA1, TNF
pore complex 1 BCL2
focal adhesion 1 GJA1
GABA-ergic synapse 2 KCND2, KCND3
cis-Golgi network 1 GORASP1
Peroxisome 1 NOS2
peroxisomal matrix 1 NOS2
Cell projection, dendritic spine 1 KCND2
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Cell junction, gap junction 1 GJA1
connexin complex 1 GJA1
contractile muscle fiber 1 GJA1
fascia adherens 1 GJA1
intermediate filament 1 GJA1
lateral plasma membrane 1 GJA1
nuclear speck 1 MAPK14
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Postsynaptic cell membrane 1 KCND2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 1 TLR4
neuron projection 1 PTGS2
chromatin 1 NFE2L2
mediator complex 1 NFE2L2
phagocytic cup 2 TLR4, TNF
spindle pole 1 MAPK14
nuclear envelope 1 MTOR
Endomembrane system 2 MTOR, NLRP3
microtubule organizing center 1 NLRP3
monoatomic ion channel complex 1 CACNA1C
Cell projection, dendrite 3 CACNA1C, KCND2, KCND3
Golgi-associated vesicle membrane 1 GJA1
myelin sheath 1 BCL2
Cell membrane, sarcolemma, T-tubule 1 CACNA1C
voltage-gated potassium channel complex 2 KCND2, KCND3
lipopolysaccharide receptor complex 1 TLR4
plasma membrane raft 1 KCND2
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 2 IL6, PTGS2
voltage-gated calcium channel complex 1 CACNA1C
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
tight junction 1 GJA1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
postsynaptic density membrane 1 CACNA1C
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
apoptosome 1 CASP9
protein-DNA complex 1 NFE2L2
death-inducing signaling complex 1 CASP3
postsynaptic specialization membrane 2 KCND2, KCND3
Cytoplasmic vesicle, phagosome 1 MTOR
cell-cell contact zone 1 GJA1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
cortical cytoskeleton 1 NOS2
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
L-type voltage-gated calcium channel complex 1 CACNA1C
caspase complex 1 CASP9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
Kv4.2-KChIP2 channel complex 1 KCND2
Kv4.3-KChIP1 channel complex 1 KCND3


文献列表

  • Huixin Tan, Fenghe Wang, Jiahuan Hu, Xiaoyan Duan, Wanting Bai, Xinbo Wang, Baolian Wang, Yan Su, Jinping Hu. Inhibitory interaction of flavonoids with organic cation transporter 2 and their structure-activity relationships for predicting nephroprotective effects. Journal of applied toxicology : JAT. 2023 Apr; ?(?):. doi: 10.1002/jat.4474. [PMID: 37057715]
  • Tingting Ma, Hao Zhang, Tongxi Li, Junjie Bai, Ziming Wu, Tianying Cai, Yifan Chen, Xianming Xia, Yichao Du, Wenguang Fu. Protective effect of pinocembrin from Penthorum chinense Pursh on hepatic ischemia reperfusion injury via regulating HMGB1/TLR4 signal pathway. Phytotherapy research : PTR. 2023 Jan; 37(1):181-194. doi: 10.1002/ptr.7605. [PMID: 36097366]
  • Tong Wang, Hua Tian, Tianqi Pan, Shutong Yao, Huayun Yu, Yumei Wu, Shijun Wang. Pinocembrin suppresses oxidized low-density lipoprotein-triggered NLRP3 inflammasome/GSDMD-mediated endothelial cell pyroptosis through an Nrf2-dependent signaling pathway. Scientific reports. 2022 08; 12(1):13885. doi: 10.1038/s41598-022-18297-3. [PMID: 35974041]
  • Baorui Xing, Nana Feng, Juan Zhang, Yunmei Li, Xiuxiu Hou, Hao Wu, Wendong Liu, Guangpu Han. Pinocembrin relieves hip fracture-induced pain by repressing spinal substance P signaling in aged rats. Journal of neurophysiology. 2022 02; 127(2):397-404. doi: 10.1152/jn.00517.2021. [PMID: 34986062]
  • Hongxia Gong. Pinocembrin suppresses proliferation and enhances apoptosis in lung cancer cells in vitro by restraining autophagy. Bioengineered. 2021 12; 12(1):6035-6044. doi: 10.1080/21655979.2021.1972779. [PMID: 34486470]
  • Ling-Lei Kong, Li Gao, Ke-Xin Wang, Nan-Nan Liu, Cheng-di Liu, Guo-Dong Ma, Hai-Guang Yang, Xue-Mei Qin, Guan-Hua Du. Pinocembrin attenuates hemorrhagic transformation after delayed t-PA treatment in thromboembolic stroke rats by regulating endogenous metabolites. Acta pharmacologica Sinica. 2021 Aug; 42(8):1223-1234. doi: 10.1038/s41401-021-00664-x. [PMID: 33859344]
  • Halil Ibrahim Guler, Gizem Tatar, Oktay Yildiz, Ali Osman Belduz, Sevgi Kolayli. Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by molecular docking study. Archives of microbiology. 2021 Aug; 203(6):3557-3564. doi: 10.1007/s00203-021-02351-1. [PMID: 33950349]
  • Anna R Cappello, Francesca Aiello, Nicoletta Polerà, Biagio Armentano, Ivan Casaburi, Maria Luisa Di Gioia, Monica R Loizzo, Vincenza Dolce, Vincenzo Pezzi, Rosa Tundis. In vitro anti-proliferative and anti-bacterial properties of new C7 benzoate derivatives of pinocembrin. Natural product research. 2021 Jun; 35(11):1783-1791. doi: 10.1080/14786419.2019.1641805. [PMID: 31311327]
  • Wenqi Wang, Xin Feng, Yu Du, Cen Liu, Xinxin Pang, Kunxiu Jiang, Xirui Wang, Yonggang Liu. Synthesis of Novel Pinocembrin Amino Acid Derivatives and Their Antiaging Effect on Caenorhabditis elegans via the Modulating DAF-16/FOXO. Drug design, development and therapy. 2021; 15(?):4177-4193. doi: 10.2147/dddt.s330223. [PMID: 34675482]
  • Jamras Kanchanapiboon, Ubonphan Kongsa, Duangpen Pattamadilok, Sunisa Kamponchaidet, Detmontree Wachisunthon, Subhadhcha Poonsatha, Sasiwan Tuntoaw. Boesenbergia rotunda extract inhibits Candida albicans biofilm formation by pinostrobin and pinocembrin. Journal of ethnopharmacology. 2020 Oct; 261(?):113193. doi: 10.1016/j.jep.2020.113193. [PMID: 32730867]
  • Siwaporn Boonyasuppayakorn, Thanaphon Saelee, Peerapat Visitchanakun, Asada Leelahavanichkul, Kowit Hengphasatporn, Yasuteru Shigeta, Thao Nguyen Thanh Huynh, Justin Jang Hann Chu, Thanyada Rungrotmongkol, Warinthorn Chavasiri. Dibromopinocembrin and Dibromopinostrobin Are Potential Anti-Dengue Leads with Mild Animal Toxicity. Molecules (Basel, Switzerland). 2020 Sep; 25(18):. doi: 10.3390/molecules25184154. [PMID: 32932762]
  • Bei Yue, Junyu Ren, Zhilun Yu, Xiaoping Luo, Yijing Ren, Jing Zhang, Sridhar Mani, Zhengtao Wang, Wei Dou. Pinocembrin alleviates ulcerative colitis in mice via regulating gut microbiota, suppressing TLR4/MD2/NF-κB pathway and promoting intestinal barrier. Bioscience reports. 2020 07; 40(7):. doi: 10.1042/bsr20200986. [PMID: 32687156]
  • Ramiro Quintanilla-Licea, Javier Vargas-Villarreal, María Julia Verde-Star, Verónica Mayela Rivas-Galindo, Ángel David Torres-Hernández. Antiprotozoal Activity against Entamoeba histolytica of Flavonoids Isolated from Lippia graveolens Kunth. Molecules (Basel, Switzerland). 2020 May; 25(11):. doi: 10.3390/molecules25112464. [PMID: 32466359]
  • Alvaro José Hernández Tasco, Román Yesid Ramírez Rueda, Carlos José Alvarez, Fabiana Terezinha Sartori, Ana Claudia B C Sacilotto, Izabel Yoko Ito, Walter Vichnewski, Marcos José Salvador. Antibacterial and antifungal properties of crude extracts and isolated compounds from Lychnophora markgravii. Natural product research. 2020 Mar; 34(6):863-867. doi: 10.1080/14786419.2018.1503263. [PMID: 30445853]
  • Gasper Maeda, Joan J E Munissi, Sofia Lindblad, Sandra Duffy, Jerry Pelletier, Vicky M Avery, Stephen S Nyandoro, Máté Erdélyi. A Meroisoprenoid, Heptenolides, and C-Benzylated Flavonoids from Sphaerocoryne gracilis ssp. gracilis. Journal of natural products. 2020 02; 83(2):316-322. doi: 10.1021/acs.jnatprod.9b00721. [PMID: 32067457]
  • Tianxin Ye, Cui Zhang, Gang Wu, Weiguo Wan, Jinjun Liang, Xin Liu, Dishiwen Liu, Bo Yang. Pinocembrin attenuates autonomic dysfunction and atrial fibrillation susceptibility via inhibition of the NF-κB/TNF-α pathway in a rat model of myocardial infarction. International immunopharmacology. 2019 Dec; 77(?):105926. doi: 10.1016/j.intimp.2019.105926. [PMID: 31704291]
  • Sarvinoz I Rustamova, Nargiza A Tsiferova, Ozoda J Khamidova, Ranokhon Sh Kurbannazarova, Petr G Merzlyak, Zainab A Khushbaktova, Vladimir N Syrov, Erkin Kh Botirov, Kamila A Eshbakova, Ravshan Z Sabirov. Effect of plant flavonoids on the volume regulation of rat thymocytes under hypoosmotic stress. Pharmacological reports : PR. 2019 Dec; 71(6):1079-1087. doi: 10.1016/j.pharep.2019.05.023. [PMID: 31629088]
  • Jun Gao, Shixin Lin, Yao Gao, Xia Zou, Jun Zhu, Man Chen, Hong Wan, Hong Zhu. Pinocembrin inhibits the proliferation and migration and promotes the apoptosis of ovarian cancer cells through down-regulating the mRNA levels of N-cadherin and GABAB receptor. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019 Dec; 120(?):109505. doi: 10.1016/j.biopha.2019.109505. [PMID: 31634778]
  • Jia Le Lee, Marcus Wing Choy Loe, Regina Ching Hua Lee, Justin Jang Hann Chu. Antiviral activity of pinocembrin against Zika virus replication. Antiviral research. 2019 07; 167(?):13-24. doi: 10.1016/j.antiviral.2019.04.003. [PMID: 30959074]
  • Xiaoling Shen, Yeju Liu, Xiaoya Luo, Zhihong Yang. Advances in Biosynthesis, Pharmacology, and Pharmacokinetics of Pinocembrin, a Promising Natural Small-Molecule Drug. Molecules (Basel, Switzerland). 2019 Jun; 24(12):. doi: 10.3390/molecules24122323. [PMID: 31238565]
  • Pornphimol Meesakul, Christopher Richardson, Stephen G Pyne, Surat Laphookhieo. α-Glucosidase Inhibitory Flavonoids and Oxepinones from the Leaf and Twig Extracts of Desmos cochinchinensis. Journal of natural products. 2019 04; 82(4):741-747. doi: 10.1021/acs.jnatprod.8b00581. [PMID: 30835120]
  • Kumju Youn, Mira Jun. Biological Evaluation and Docking Analysis of Potent BACE1 Inhibitors from Boesenbergia rotunda. Nutrients. 2019 Mar; 11(3):. doi: 10.3390/nu11030662. [PMID: 30893825]
  • Loretta Pobłocka-Olech, Iwona Inkielewicz-Stepniak, Mirosława Krauze-Baranowska. Anti-inflammatory and antioxidative effects of the buds from different species of Populus in human gingival fibroblast cells: Role of bioflavanones. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Mar; 56(?):1-9. doi: 10.1016/j.phymed.2018.08.015. [PMID: 30668329]
  • Yoshiharu Okuno, Shinsuke Marumoto, Mitsuo Miyazawa. Antimutagenic activity of flavonoids from Sozuku. Natural product research. 2019 Mar; 33(6):862-865. doi: 10.1080/14786419.2017.1408104. [PMID: 29183163]
  • R Tundis, L Frattaruolo, G Carullo, B Armentano, M Badolato, M R Loizzo, F Aiello, A R Cappello. An ancient remedial repurposing: synthesis of new pinocembrin fatty acid acyl derivatives as potential antimicrobial/anti-inflammatory agents. Natural product research. 2019 Jan; 33(2):162-168. doi: 10.1080/14786419.2018.1440224. [PMID: 29463111]
  • Yannan Li, Jing Ning, Yan Wang, Chao Wang, Chengpeng Sun, Xiaokui Huo, Zhenlong Yu, Lei Feng, Baojing Zhang, Xiangge Tian, Xiaochi Ma. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects. Toxicology letters. 2018 Sep; 294(?):27-36. doi: 10.1016/j.toxlet.2018.05.008. [PMID: 29753067]
  • Peng Zhang, Jin Xu, Wei Hu, Dong Yu, Xiaolu Bai. Effects of Pinocembrin Pretreatment on Connexin 43 (Cx43) Protein Expression After Rat Myocardial Ischemia-Reperfusion and Cardiac Arrhythmia. Medical science monitor : international medical journal of experimental and clinical research. 2018 Jul; 24(?):5008-5014. doi: 10.12659/msm.909162. [PMID: 30022020]
  • Piotr Kuś, Igor Jerković, Martina Jakovljević, Stela Jokić. Extraction of bioactive phenolics from black poplar (Populus nigra L.) buds by supercritical CO2 and its optimization by response surface methodology. Journal of pharmaceutical and biomedical analysis. 2018 Apr; 152(?):128-136. doi: 10.1016/j.jpba.2018.01.046. [PMID: 29414004]
  • Jessica Granados-Pineda, Norma Uribe-Uribe, Patricia García-López, María Del Pilar Ramos-Godinez, J Fausto Rivero-Cruz, Jazmin Marlen Pérez-Rojas. Effect of Pinocembrin Isolated from Mexican Brown Propolis on Diabetic Nephropathy. Molecules (Basel, Switzerland). 2018 Apr; 23(4):. doi: 10.3390/molecules23040852. [PMID: 29642511]
  • Isabel Escriche, Marisol Juan-Borrás. Standardizing the analysis of phenolic profile in propolis. Food research international (Ottawa, Ont.). 2018 04; 106(?):834-841. doi: 10.1016/j.foodres.2018.01.055. [PMID: 29579994]
  • Marwa M Said, Samar S Azab, Noha M Saeed, Ebtehal El-Demerdash. Antifibrotic Mechanism of Pinocembrin: Impact on Oxidative Stress, Inflammation and TGF-β /Smad Inhibition in Rats. Annals of hepatology. 2018 Mar; 17(2):307-317. doi: 10.5604/01.3001.0010.8661. [PMID: 29469035]
  • Beatriz Valenzuela, Felipe E Rodríguez, Brenda Modak, Mónica Imarai. Alpinone exhibited immunomodulatory and antiviral activities in Atlantic salmon. Fish & shellfish immunology. 2018 Mar; 74(?):76-83. doi: 10.1016/j.fsi.2017.12.043. [PMID: 29292197]
  • Nimmy Kumar, Akhila H Shrungeswara, Sanchari B Mallik, Subhankar Biswas, Jesil Mathew, Krishnadas Nandakumar, Jessy Mathew, Richard Lobo. Pinocembrin-Enriched Fractions of Elytranthe parasitica (L.) Danser Modulates Apoptotic and MAPK Cellular Signaling in HepG2 Cells. Anti-cancer agents in medicinal chemistry. 2018; 18(11):1563-1572. doi: 10.2174/1871520618666180911112127. [PMID: 30205805]
  • Xiaoyan Gu, Qian Zhang, Qiang Du, Hong Shen, Zhenghua Zhu. Pinocembrin attenuates allergic airway inflammation via inhibition of NF-κB pathway in mice. International immunopharmacology. 2017 Dec; 53(?):90-95. doi: 10.1016/j.intimp.2017.10.005. [PMID: 29055190]
  • Hamza Hanieh, Villianur Ibrahim Hairul Islam, Subramanian Saravanan, Muthiah Chellappandian, Kessavane Ragul, Arumugam Durga, Kaliyamoorthy Venugopal, Venugopal Senthilkumar, Palanisamy Senthilkumar, Krishnaraj Thirugnanasambantham. Pinocembrin, a novel histidine decarboxylase inhibitor with anti-allergic potential in in vitro. European journal of pharmacology. 2017 Nov; 814(?):178-186. doi: 10.1016/j.ejphar.2017.08.012. [PMID: 28821452]
  • Nanaware Sadhana, Sathiyanarayanan Lohidasan, Kakasaheb Ramoo Mahadik. Marker-based standardization and investigation of nutraceutical potential of Indian propolis. Journal of integrative medicine. 2017 Nov; 15(6):483-494. doi: 10.1016/s2095-4964(17)60360-1. [PMID: 29103419]
  • Francesca Aiello, Biagio Armentano, Nicoletta Polerà, Gabriele Carullo, Monica Rosa Loizzo, Marco Bonesi, Maria Stella Cappello, Loredana Capobianco, Rosa Tundis. From Vegetable Waste to New Agents for Potential Health Applications: Antioxidant Properties and Effects of Extracts, Fractions and Pinocembrin from Glycyrrhiza glabra L. Aerial Parts on Viability of Five Human Cancer Cell Lines. Journal of agricultural and food chemistry. 2017 Sep; 65(36):7944-7954. doi: 10.1021/acs.jafc.7b03045. [PMID: 28862446]
  • Nimmy Kumar, Subhankar Biswas, Akhila Hosur Shrungeswara, Sanchari Basu Mallik, Mathew Hipolith Viji, Jessy Elizabeth Mathew, Jesil Mathew, K Nandakumar, Richard Lobo. Pinocembrin enriched fraction of Elytranthe parasitica (L.) Danser induces apoptosis in HCT 116 colorectal cancer cells. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy. 2017 Jun; 23(6):354-359. doi: 10.1016/j.jiac.2017.02.009. [PMID: 28385566]
  • Marcos Roberto de Oliveira, Alessandra Peres, Gustavo Costa Ferreira. Pinocembrin Attenuates Mitochondrial Dysfunction in Human Neuroblastoma SH-SY5Y Cells Exposed to Methylglyoxal: Role for the Erk1/2-Nrf2 Signaling Pathway. Neurochemical research. 2017 Apr; 42(4):1057-1072. doi: 10.1007/s11064-016-2140-5. [PMID: 28000163]
  • Juan Carlos Romero-Benavides, Ana Lucía Ruano, Ronal Silva-Rivas, Paola Castillo-Veintimilla, Sara Vivanco-Jaramillo, Natalia Bailon-Moscoso. Medicinal plants used as anthelmintics: Ethnomedical, pharmacological, and phytochemical studies. European journal of medicinal chemistry. 2017 Mar; 129(?):209-217. doi: 10.1016/j.ejmech.2017.02.005. [PMID: 28231520]
  • Yelin Kang, Bong-Gyu Kim, Sunghoon Kim, Youngshim Lee, Youngdae Yoon. Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain. Bioorganic & medicinal chemistry letters. 2017 02; 27(3):420-426. doi: 10.1016/j.bmcl.2016.12.051. [PMID: 28049590]
  • Namrita Lall, Elizabeth Mogapi, Marco Nuno de Canha, Bridget Crampton, Mabatho Nqephe, Ahmed A Hussein, Vivek Kumar. Insights into tyrosinase inhibition by compounds isolated from Greyia radlkoferi Szyszyl using biological activity, molecular docking and gene expression analysis. Bioorganic & medicinal chemistry. 2016 11; 24(22):5953-5959. doi: 10.1016/j.bmc.2016.09.054. [PMID: 27720556]
  • Junjun Wu, Xia Zhang, Jingwen Zhou, Mingsheng Dong. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy. Bioresource technology. 2016 Oct; 218(?):999-1007. doi: 10.1016/j.biortech.2016.07.066. [PMID: 27450982]
  • Mohamed A Zaki, N P Dhammika Nanayakkara, Mona H Hetta, Melissa R Jacob, Shabana I Khan, Rabab Mohammed, Mohamed A Ibrahim, Volodymyr Samoylenko, Christina Coleman, Frank R Fronczek, Daneel Ferreira, Ilias Muhammad. Bioactive Formylated Flavonoids from Eugenia rigida: Isolation, Synthesis, and X-ray Crystallography. Journal of natural products. 2016 09; 79(9):2341-9. doi: 10.1021/acs.jnatprod.6b00474. [PMID: 27618204]
  • Yumin Wang, Yingchun Miao, Aamina Zia Mir, Long Cheng, Lina Wang, Linan Zhao, Qifu Cui, Weili Zhao, Hongquan Wang. Inhibition of beta-amyloid-induced neurotoxicity by pinocembrin through Nrf2/HO-1 pathway in SH-SY5Y cells. Journal of the neurological sciences. 2016 Sep; 368(?):223-30. doi: 10.1016/j.jns.2016.07.010. [PMID: 27538638]
  • Sib Sankar Giri, Shib Sankar Sen, Venkatachalam Sukumaran, Se Chang Park. Pinocembrin attenuates lipopolysaccharide-induced inflammatory responses in Labeo rohita macrophages via the suppression of the NF-κB signalling pathway. Fish & shellfish immunology. 2016 Sep; 56(?):459-466. doi: 10.1016/j.fsi.2016.07.038. [PMID: 27492123]
  • Sasivimon Promsan, Krit Jaikumkao, Anchalee Pongchaidecha, Nipon Chattipakorn, Varanuj Chatsudthipong, Phatchawan Arjinajarn, Wilart Pompimon, Anusorn Lungkaphin. Pinocembrin attenuates gentamicin-induced nephrotoxicity in rats. Canadian journal of physiology and pharmacology. 2016 Aug; 94(8):808-18. doi: 10.1139/cjpp-2015-0468. [PMID: 27245556]
  • Wei-Wei Guo, Feng Qiu, Xiao-Qing Chen, Yin-Ying Ba, Xing Wang, Xia Wu. In-vivo absorption of pinocembrin-7-O-β-D-glucoside in rats and its in-vitro biotransformation. Scientific reports. 2016 07; 6(?):29340. doi: 10.1038/srep29340. [PMID: 27378517]
  • Lei Guo, Xi Chen, Li-Na Li, Wei Tang, Yi-Ting Pan, Jian-Qiang Kong. Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering. Microbial cell factories. 2016 Feb; 15(?):27. doi: 10.1186/s12934-016-0424-8. [PMID: 26846670]
  • Jason Q D Goodger, Samiddhi L Seneratne, Dean Nicolle, Ian E Woodrow. Foliar Essential Oil Glands of Eucalyptus Subgenus Eucalyptus (Myrtaceae) Are a Rich Source of Flavonoids and Related Non-Volatile Constituents. PloS one. 2016; 11(3):e0151432. doi: 10.1371/journal.pone.0151432. [PMID: 26977933]
  • Francisca Palomares-Alonso, Irma Susana Rojas-Tomé, Victorino Juárez Rocha, Guadalupe Palencia Hernández, Angélica González-Maciel, Andrea Ramos-Morales, Rosalba Santiago-Reyes, Iliana Elvira González-Hernández, Helgi Jung-Cook. Cysticidal activity of extracts and isolated compounds from Teloxys graveolens: In vitro and in vivo studies. Experimental parasitology. 2015 Sep; 156(?):79-86. doi: 10.1016/j.exppara.2015.06.001. [PMID: 26072200]
  • Guoying Cao, Pengyue Ying, Bei Yan, Wei Xue, Kexin Li, Aixin Shi, Taohua Sun, Jiling Yan, Xin Hu. Pharmacokinetics, safety, and tolerability of single and multiple-doses of pinocembrin injection administered intravenously in healthy subjects. Journal of ethnopharmacology. 2015 Jun; 168(?):31-6. doi: 10.1016/j.jep.2015.03.041. [PMID: 25814318]
  • Lei Guo, Jianqiang Kong. [Progress in synthetic biology of pinocembrin]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology. 2015 Apr; 31(4):451-60. doi: . [PMID: 26380402]
  • Petar Ristivojević, Jelena Trifković, Uroš Gašić, Filip Andrić, Nebojša Nedić, Živoslav Tešić, Dušanka Milojković-Opsenica. Ultrahigh-performance liquid chromatography and mass spectrometry (UHPLC-LTQ/Orbitrap/MS/MS) study of phenolic profile of Serbian poplar type propolis. Phytochemical analysis : PCA. 2015 Mar; 26(2):127-36. doi: 10.1002/pca.2544. [PMID: 25376949]
  • Isha Sarat, Alka Choudhary, Ram Jee Sharma, Karthik Dandia, Karen J Marsh, William J Foley, Inder Pal Singh. Extraction of pinocembrin from leaves of different species of Eucalyptus and its quantitative analysis by qNMR and HPTLC. Natural product communications. 2015 Mar; 10(3):379-82. doi: ". [PMID: 25924509]
  • Muhammed A Saad, Rania M Abdel Salam, Sanaa A Kenawy, Amina S Attia. Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion. Pharmacological reports : PR. 2015 Feb; 67(1):115-22. doi: 10.1016/j.pharep.2014.08.014. [PMID: 25560584]
  • Casey L Sayre, Samaa Alrushaid, Stephanie E Martinez, Hope D Anderson, Neal M Davies. Pre-Clinical Pharmacokinetic and Pharmacodynamic Characterization of Selected Chiral Flavonoids: Pinocembrin and Pinostrobin. Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques. 2015; 18(4):368-95. doi: 10.18433/j3bk5t. [PMID: 26626242]
  • K B Rameshkumar, D B Alan Sheeja, Mangalam S Nair, V George. Curcuma ecalcarata - new natural source of pinocembrin and piperitenone. Natural product research. 2015; 29(13):1276-9. doi: 10.1080/14786419.2014.994210. [PMID: 25553726]
  • Alfred Fernández-Castané, Tamás Fehér, Pablo Carbonell, Cyrille Pauthenier, Jean-Loup Faulon. Computer-aided design for metabolic engineering. Journal of biotechnology. 2014 Dec; 192 Pt B(?):302-13. doi: 10.1016/j.jbiotec.2014.03.029. [PMID: 24704607]
  • Bei Yan, Guoying Cao, Taohua Sun, Xi Zhao, Xin Hu, Jiling Yan, Yueying Peng, Aixin Shi, Yang Li, Wei Xue, Min Li, Kexin Li, Yingfa Liu. Determination of pinocembrin in human plasma by solid-phase extraction and LC/MS/MS: application to pharmacokinetic studies. Biomedical chromatography : BMC. 2014 Dec; 28(12):1601-6. doi: 10.1002/bmc.3186. [PMID: 24733513]
  • Yi Dong, Mouming Zhao, Tiantian Zhao, Mengying Feng, Huiping Chen, Mingzhu Zhuang, Lianzhu Lin. Bioactive profiles, antioxidant activities, nitrite scavenging capacities and protective effects on H2O2-injured PC12 cells of Glycyrrhiza glabra L. leaf and root extracts. Molecules (Basel, Switzerland). 2014 Jun; 19(7):9101-13. doi: 10.3390/molecules19079101. [PMID: 24983860]
  • Meng-Qin Bian, Hong-Qing Wang, Jie Kang, Ruo-Yun Chen, Yan-Fang Yang, He-Zhen Wu. [Flavonoids from the seeds of Alpinia galanga Willd]. Yao xue xue bao = Acta pharmaceutica Sinica. 2014 Mar; 49(3):359-62. doi: . [PMID: 24961107]
  • Sha-Sha Tian, Fu-Sheng Jiang, Kun Zhang, Xue-Xin Zhu, Bo Jin, Jin-Jian Lu, Zhi-Shan Ding. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis. Fitoterapia. 2014 Jan; 92(?):34-40. doi: 10.1016/j.fitote.2013.09.016. [PMID: 24096161]
  • Meng Wang, Yun Jiang, Hao-Long Liu, Xiao-Qing Chen, Xia Wu, Da-Yong Zhang. A new flavanone from the aerial parts of Penthorum chinense. Natural product research. 2014; 28(2):70-3. doi: 10.1080/14786419.2013.828288. [PMID: 24456387]
  • Lanan Wassy Soromou, Lanxiang Jiang, Miaomiao Wei, Na Chen, Meixia Huo, Xiao Chu, Weiting Zhong, Qianchao Wu, Abdourahmane Baldé, Xuming Deng, Haihua Feng. Protection of mice against lipopolysaccharide-induced endotoxic shock by pinocembrin is correlated with regulation of cytokine secretion. Journal of immunotoxicology. 2014 Jan; 11(1):56-61. doi: 10.3109/1547691x.2013.792886. [PMID: 23697399]
  • Antonio J León-González, Margaret M Manson, Miguel López-Lizaro, Inmaculada Navarro, Carmen Martín-Cordero. Induction of apoptosis and cell cycle arrest in human colon carcinoma cells by Corema album leaves. Natural product communications. 2014 Jan; 9(1):55-6. doi: ". [PMID: 24660462]
  • Chul Lee, Jin Woo Lee, Qinghao Jin, Dae Sik Jang, Sung-Joon Lee, Dongho Lee, Jin Tae Hong, Youngsoo Kim, Mi Kyeong Lee, Bang Yeon Hwang. Inhibitory constituents of the heartwood of Dalbergia odorifera on nitric oxide production in RAW 264.7 macrophages. Bioorganic & medicinal chemistry letters. 2013 Jul; 23(14):4263-6. doi: 10.1016/j.bmcl.2013.04.032. [PMID: 23743282]
  • Georgina N Diaz Napal, Sara M Palacios. Phytotoxicity of secondary metabolites isolated from Flourensia oolepis S.F.Blake. Chemistry & biodiversity. 2013 Jul; 10(7):1295-304. doi: 10.1002/cbdv.201200204. [PMID: 23847074]
  • Casey L Sayre, Jody K Takemoto, Stephanie E Martinez, Neal M Davies. Chiral analytical method development and application to pre-clinical pharmacokinetics of pinocembrin. Biomedical chromatography : BMC. 2013 Jun; 27(6):681-4. doi: 10.1002/bmc.2853. [PMID: 23212747]
  • Harry Alvarez-Ospina, Isabel Rivero Cruz, Georgina Duarte, Robert Bye, Rachel Mata. HPLC determination of the major active flavonoids and GC-MS analysis of volatile components of Dysphania graveolens (Amaranthaceae). Phytochemical analysis : PCA. 2013 May; 24(3):248-54. doi: 10.1002/pca.2405. [PMID: 23037638]
  • Aleksandra V Pavlović, Dragana Č Dabić, Nebojša M Momirović, Biljana P Dojčinović, Dušanka M Milojković-Opsenica, Zivoslav Lj Tešić, Maja M Natić. Chemical composition of two different extracts of berries harvested in Serbia. Journal of agricultural and food chemistry. 2013 May; 61(17):4188-94. doi: 10.1021/jf400607f. [PMID: 23600608]
  • Hui Sang, Na Yuan, Shutong Yao, Furong Li, Jiafu Wang, Yongqi Fang, Shucun Qin. Inhibitory effect of the combination therapy of simvastatin and pinocembrin on atherosclerosis in ApoE-deficient mice. Lipids in health and disease. 2012 Dec; 11(?):166. doi: 10.1186/1476-511x-11-166. [PMID: 23216643]
  • Lanan Wassy Soromou, Xiao Chu, Lanxiang Jiang, Miaomiao Wei, Meixia Huo, Na Chen, Shuang Guan, Xiaofeng Yang, Chengzhen Chen, Haihua Feng, Xuming Deng. In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. International immunopharmacology. 2012 Sep; 14(1):66-74. doi: 10.1016/j.intimp.2012.06.009. [PMID: 22713932]
  • David R Katerere, Alexander I Gray, Robert J Nash, Roger D Waigh. Phytochemical and antimicrobial investigations of stilbenoids and flavonoids isolated from three species of Combretaceae. Fitoterapia. 2012 Jul; 83(5):932-40. doi: 10.1016/j.fitote.2012.04.011. [PMID: 22546149]
  • Mariana A Peralta, Maximiliano Calise, M Cecilia Fornari, M Gabriela Ortega, Roberto A Diez, José L Cabrera, Cristina Pérez. A prenylated flavanone from Dalea elegans inhibits rhodamine 6 G efflux and reverses fluconazole-resistance in Candida albicans. Planta medica. 2012 Jun; 78(10):981-7. doi: 10.1055/s-0031-1298627. [PMID: 22673834]
  • Davide Bertelli, Giulia Papotti, Laura Bortolotti, Gian Luigi Marcazzan, Maria Plessi. ¹H-NMR simultaneous identification of health-relevant compounds in propolis extracts. Phytochemical analysis : PCA. 2012 May; 23(3):260-6. doi: 10.1002/pca.1352. [PMID: 21853496]
  • Barbara Gröblacher, Olaf Kunert, Franz Bucar. Compounds of Alpinia katsumadai as potential efflux inhibitors in Mycobacterium smegmatis. Bioorganic & medicinal chemistry. 2012 Apr; 20(8):2701-6. doi: 10.1016/j.bmc.2012.02.039. [PMID: 22459211]
  • Mee-Young Lee, Chang-Seob Seo, Jin-Ah Lee, In-Sik Shin, Su-Jeong Kim, HeyKyung Ha, Hyeun-Kyoo Shin. Alpinia katsumadai H(AYATA) seed extract inhibit LPS-induced inflammation by induction of heme oxygenase-1 in RAW264.7 cells. Inflammation. 2012 Apr; 35(2):746-57. doi: 10.1007/s10753-011-9370-0. [PMID: 21830094]
  • Rui Feng, Zhi Kai Guo, Chun Min Yan, Er Guang Li, Ren Xiang Tan, Hui Ming Ge. Anti-inflammatory flavonoids from Cryptocarya chingii. Phytochemistry. 2012 Apr; 76(?):98-105. doi: 10.1016/j.phytochem.2012.01.007. [PMID: 22277737]
  • Yadira Rufino-González, Martha Ponce-Macotela, Angélica González-Maciel, Rafael Reynoso-Robles, Manuel Jiménez-Estrada, Ángeles Sánchez-Contreras, Mario N Martínez-Gordillo. In vitro activity of the F-6 fraction of oregano against Giardia intestinalis. Parasitology. 2012 Apr; 139(4):434-40. doi: 10.1017/s0031182011002162. [PMID: 22309702]
  • Andresa Aparecida Berretta, Andresa Piacezzi Nascimento, Paula Carolina Pires Bueno, Mirela Mara de Oliveira Lima Leite Vaz, Juliana Maldonado Marchetti. Propolis standardized extract (EPP-AF®), an innovative chemically and biologically reproducible pharmaceutical compound for treating wounds. International journal of biological sciences. 2012; 8(4):512-21. doi: 10.7150/ijbs.3641. [PMID: 22457606]
  • Haiyan Li, Yuanyuan Dong, Jing Yang, Xiuming Liu, Yanfang Wang, Na Yao, Lili Guan, Nan Wang, Jinyu Wu, Xiaokun Li. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids. PloS one. 2012; 7(2):e30987. doi: 10.1371/journal.pone.0030987. [PMID: 22363528]
  • João Henrique G Lago, Alexandre T Ito, César M Fernandes, Maria Claudia M Young, Massuo J Kato. Secondary metabolites isolated from Piper chimonantifolium and their antifungal activity. Natural product research. 2012; 26(8):770-3. doi: 10.1080/14786419.2011.561435. [PMID: 22017282]
  • Akhtar Muhammad, Itrat Anis, Zulfiqar Ali, Sufyan Awadelkarim, Ajmal Khan, Asaad Khalid, Muhammad Raza Shah, M Galal, Ikhlas A Khan, M Iqbal Choudhary. Methylenebissantin: a rare methylene-bridged bisflavonoid from Dodonaea viscosa which inhibits Plasmodium falciparum enoyl-ACP reductase. Bioorganic & medicinal chemistry letters. 2012 Jan; 22(1):610-2. doi: 10.1016/j.bmcl.2011.10.072. [PMID: 22082562]
  • Zhi-Hong Yang, Xiao Sun, Yun Qi, Chao Mei, Xiao-Bo Sun, Guan-Hua Du. Uptake characteristics of pinocembrin and its effect on p-glycoprotein at the blood-brain barrier in in vitro cell experiments. Journal of Asian natural products research. 2012; 14(1):14-21. doi: 10.1080/10286020.2011.620393. [PMID: 22263589]
  • Jean-Philippe Lavigne, Xavier Vitrac, Louis Bernard, Franck Bruyère, Albert Sotto. Propolis can potentialise the anti-adhesion activity of proanthocyanidins on uropathogenic Escherichia coli in the prevention of recurrent urinary tract infections. BMC research notes. 2011 Nov; 4(?):522. doi: 10.1186/1756-0500-4-522. [PMID: 22126300]
  • Tsung-Hsien Chou, Jih-Jung Chen, Chien-Fang Peng, Ming-Jen Cheng, Ih-Sheng Chen. New flavanones from the leaves of Cryptocarya chinensis and their antituberculosis activity. Chemistry & biodiversity. 2011 Nov; 8(11):2015-24. doi: 10.1002/cbdv.201000367. [PMID: 22083914]
  • Nilufar Z Mamadalieva, Florian Herrmann, Mahmoud Z El-Readi, Ahmad Tahrani, Razan Hamoud, Dilfuza R Egamberdieva, Shahnoz S Azimova, Michael Wink. Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. The Journal of pharmacy and pharmacology. 2011 Oct; 63(10):1346-57. doi: 10.1111/j.2042-7158.2011.01336.x. [PMID: 21899551]
  • Monika Barbarić, Katarina Mišković, Mirza Bojić, Mirela Baus Lončar, Asja Smolčić-Bubalo, Zeljko Debeljak, Marica Medić-Šarić. Chemical composition of the ethanolic propolis extracts and its effect on HeLa cells. Journal of ethnopharmacology. 2011 Jun; 135(3):772-8. doi: 10.1016/j.jep.2011.04.015. [PMID: 21515353]
  • Alexandra Christine Helena Frankland Sawaya, Ildenize Barbosa da Silva Cunha, Maria Cristina Marcucci. Analytical methods applied to diverse types of Brazilian propolis. Chemistry Central journal. 2011 Jun; 5(1):27. doi: 10.1186/1752-153x-5-27. [PMID: 21631940]
  • K Boutabet, W Kebsa, M Alyane, M Lahouel. Polyphenolic fraction of Algerian propolis protects rat kidney against acute oxidative stress induced by doxorubicin. Indian journal of nephrology. 2011 Apr; 21(2):101-6. doi: 10.4103/0971-4065.82131. [PMID: 21769172]
  • Xinya Xu, Haihui Xie, Jing Hao, Yueming Jiang, Xiaoyi Wei. Flavonoid Glycosides from the Seeds of Litchi chinensis. Journal of agricultural and food chemistry. 2011 Feb; 59(4):1205-9. doi: 10.1021/jf104387y. [PMID: 21287989]
  • Patrick S Ruddock, Marijo Charland, Sandra Ramirez, Andres López, G H Neil Towers, John T Arnason, Mingmin Liao, Jo-Anne R Dillon. Antimicrobial activity of flavonoids from Piper lanceaefolium and other Colombian medicinal plants against antibiotic susceptible and resistant strains of Neisseria gonorrhoeae. Sexually transmitted diseases. 2011 Feb; 38(2):82-8. doi: 10.1097/olq.0b013e3181f0bdbd. [PMID: 20921932]
  • Saeed Samarghandian, Jalil Tavakkol Afshari, Saiedeh Davoodi. Honey induces apoptosis in renal cell carcinoma. Pharmacognosy magazine. 2011 Jan; 7(25):46-52. doi: 10.4103/0973-1296.75901. [PMID: 21472079]
  • Zachary L Fowler, Karan Shah, John C Panepinto, Amy Jacobs, Mattheos A G Koffas. Development of non-natural flavanones as antimicrobial agents. PloS one. 2011; 6(10):e25681. doi: 10.1371/journal.pone.0025681. [PMID: 22039419]
  • Griselda Wilson-Sanchez, Carolina Moreno-Félix, Carlos Velazquez, Maribel Plascencia-Jatomea, Anita Acosta, Lorena Machi-Lara, María-Lourdes Aldana-Madrid, Josafat-Marina Ezquerra-Brauer, Ramón Robles-Zepeda, Armando Burgos-Hernandez. Antimutagenicity and antiproliferative studies of lipidic extracts from white shrimp (Litopenaeus vannamei). Marine drugs. 2010 Nov; 8(11):2795-809. doi: 10.3390/md8112795. [PMID: 21139845]
  • Igor Jerković, Zvonimir Marijanović. Volatile composition screening of Salix spp. nectar honey: benzenecarboxylic acids, norisoprenoids, terpenes, and others. Chemistry & biodiversity. 2010 Sep; 7(9):2309-25. doi: 10.1002/cbdv.201000021. [PMID: 20860033]
  • Georgina N Diaz Napal, Maria T Defagó, Graciela R Valladares, Sara M Palacios. Response of Epilachna paenulata to two flavonoids, pinocembrin and quercetin, in a comparative study. Journal of chemical ecology. 2010 Aug; 36(8):898-904. doi: 10.1007/s10886-010-9823-1. [PMID: 20589417]
  • Fera Kurniadewi, Lia D Juliawaty, Yana M Syah, Sjamsul A Achmad, Euis H Hakim, Kiyotaka Koyama, Kaoru Kinoshita, Kunio Takahashi. Phenolic compounds from Cryptocarya konishii: their cytotoxic and tyrosine kinase inhibitory properties. Journal of natural medicines. 2010 Apr; 64(2):121-5. doi: 10.1007/s11418-009-0368-y. [PMID: 20091134]