Farnesol (BioDeep_00000406520)
Secondary id: BioDeep_00000001114, BioDeep_00000016571
natural product PANOMIX_OTCML-2023 Volatile Flavor Compounds
代谢物信息卡片
化学式: C15H26O (222.1983546)
中文名称: 法尼醇, 金合欢醇, 法呢醇
谱图信息:
最多检出来源 Macaca mulatta(otcml) 0.45%
Last reviewed on 2024-06-28.
Cite this Page
Farnesol. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/farnesol (retrieved
2024-11-24) (BioDeep RN: BioDeep_00000406520). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(=CCCC(=CCO)C)(CCC=C(C)C)C
InChI: InChI=1S/C15H26O/c1-13(2)7-5-8-14(3)9-6-10-15(4)11-12-16/h7,9,11,16H,5-6,8,10,12H2,1-4H3/b14-9+,15-11+
描述信息
A farnesane sesquiterpenoid that is dodeca-2,6,10-triene substituted by methyl groups at positions 3, 7 and 11 and a hydroxy group at position 1.
Farnesol is a colorless liquid with a delicate floral odor. (NTP, 1992)
Farnesol is a farnesane sesquiterpenoid that is dodeca-2,6,10-triene substituted by methyl groups at positions 3, 7 and 11 and a hydroxy group at position 1. It has a role as a plant metabolite, a fungal metabolite and an antimicrobial agent. It is a farnesane sesquiterpenoid, a primary alcohol and a polyprenol.
trans,trans-Farnesol is a natural product found in Lonicera japonica, Psidium guajava, and other organisms with data available.
(2-trans,6-trans)-Farnesol is a metabolite found in or produced by Saccharomyces cerevisiae.
A colorless liquid extracted from oils of plants such as citronella, neroli, cyclamen, and tuberose. It is an intermediate step in the biological synthesis of cholesterol from mevalonic acid in vertebrates. It has a delicate odor and is used in perfumery. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
The (2-trans,6-trans)-stereoisomer of farnesol.
C26170 - Protective Agent > C275 - Antioxidant
Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria.
Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria.
同义名列表
78 个代谢物同义名
Farnesol; InChI=1/C15H26O/c1-13(2)7-5-8-14(3)9-6-10-15(4)11-12-16/h7,9,11,16H,5-6,8,10,12H2,1-4H3/b14-9+,15-11; trans,trans-3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol, (E,E)-3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol; (2-trans,6-trans)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol; 2,6,10-dodecatrien-1-ol, 3,7,11-trimethyl-, (2E,6E)-; trans,trans-3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol; 3,7,11-TRIMETHYLDODECA-2-TRANS,6-TRANS,10-TRIEN-1-OL; 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl- (8CI,9CI); 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-, (E,E)-; (2E,6E)-3,7,11-trimethyl-dodeca-2,6,10-trien-1-ol; (2E, 6E)-3,7,11-trimethyl2,6,10-dodecatrien-1-ol; (2E,6E)-3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol; (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol; (E,E,)-3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol; (E,E)-3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol; (E,E)-3,7,11-TRIMETHYL-2,6,10-DODECATNEN-1-OL; 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-; trans,trans-Farnesol, analytical standard; 3,7,11-trimethyldodeca-2,6,10-trien-1-ol; 3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol; 3,7,11-Trimethyl-2,6,10-dodecatrienol; trans,trans-Farnesol; trans-Farnesol; FARNESOL TRANS,TRANS-FARNESOL [MI]; Farnesol, analytical standard; trans,trans-Farnesol, 96\\%; trans,trans-alpha-farnesol; trans,trans-Farnesol, 97\\%; 2-trans-S-6-trans-farnesol; (2-trans,6-trans)-farnesol; 2-trans,6-trans-Farnesol; Trimethyl dodecatrienol; Farnesol, trans, trans; 2E,6E-Farnesyl alcohol; 2,6-Di-trans-Farnesol; trans, trans-Farnesol; trans,trans-Farnesol; trans,trans farnesol; (E)-.BETA.-FARNESOL; all-trans farnesol; All-trans-Farnesol; FARNESOL, (2E,6E)-; CIS-TRANS-FARNESOL; Farnesol, (E,E)-; Spectrum5_002027; Farnesol (2E,6E); (2E,6E)-Farnesol; Farnesyl alcohol; .beta.-Farnesol; UNII-EB41QIU6JL; UNII-X23PI60R17; trans- farnesol; (E,E,)-farnesol; Farnesol, 95\\%; trans-Farnesol; ALL-E-FARNESOL; Farnesol (6CI); 2E,6E-farnesol; (E,E)-Farnesol; (E,E)farnesol; transfarnesol; Tox21_302034; Inhibitor A2; (E)-farnesol; E,E-farnesol; (E,)-arnesol; EB41QIU6JL; X23PI60R17; AI3-44561; Nikkosome; FOF; (2-cis,6-cis)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol;(Z,Z)-farnesol; (2Z,6Z)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol; (2-cis,6-cis)-farnesol; cis,cis-farnesol; Farnesol; (2E,6E)-Farnesol; Farnesol; Farnesol
数据库引用编号
40 个数据库交叉引用编号
- ChEBI: CHEBI:28600
- ChEBI: CHEBI:16619
- ChEBI: CHEBI:26199
- ChEBI: CHEBI:42680
- KEGG: C01126
- PubChem: 445070
- PubChem: 1549107
- Metlin: METLIN53355
- DrugBank: DB02509
- ChEMBL: CHEMBL25308
- ChEMBL: CHEMBL1232800
- Wikipedia: Farnesol
- LipidMAPS: LMPR0103010001
- LipidMAPS: LMPR0103010008
- MeSH: Farnesol
- ChemIDplus: 0000106285
- CAS: 4602-84-0
- CAS: 106-28-5
- CAS: 16106-95-9
- MoNA: Bruker_HCD_library001844
- MoNA: VF-NPL-LTQ006152
- MoNA: VF-NPL-LTQ006151
- MoNA: VF-NPL-QEHF002937
- MoNA: VF-NPL-QEHF002936
- MoNA: VF-NPL-QEHF002935
- medchemexpress: HY-Y0248A
- MetaboLights: MTBLC28600
- MetaboLights: MTBLC16619
- KNApSAcK: C00003132
- PDB-CCD: FOF
- 3DMET: B00244
- NIKKAJI: J5.049K
- RefMet: 2E,6E-Farnesol
- RefMet: Farnesol
- KEGG: C01493
- PubChem: 4663
- KNApSAcK: 28600
- PubChem: 4357
- KNApSAcK: 16619
- LOTUS: LTS0059667
分类词条
相关代谢途径
Reactome(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
204 个相关的物种来源信息
- 3319 - Abies: LTS0059667
- 78260 - Abies firma: 10.1016/S0031-9422(00)80837-7
- 78260 - Abies firma: LTS0059667
- 52819 - Acokanthera: LTS0059667
- 52820 - Acokanthera oblongifolia: 10.1055/S-0028-1099492
- 52820 - Acokanthera oblongifolia: LTS0059667
- 155619 - Agaricomycetes: LTS0059667
- 55597 - Ageratum: LTS0059667
- 68299 - Ageratum conyzoides: 10.1080/10412905.1989.9697769
- 68299 - Ageratum conyzoides: LTS0059667
- 94326 - Alpinia: LTS0059667
- 105671 - Alpinia conchigera: 10.1080/10412905.1995.9698499
- 105671 - Alpinia conchigera: LTS0059667
- 125259 - Alpinia hainanensis:
- 22140 - Annonaceae: LTS0059667
- 4037 - Apiaceae: LTS0059667
- 7458 - Apidae: LTS0059667
- 4056 - Apocynaceae: LTS0059667
- 4219 - Artemisia: LTS0059667
- 72348 - Artemisia monosperma: 10.3109/13880209009082827
- 72348 - Artemisia monosperma: LTS0059667
- 6656 - Arthropoda: LTS0059667
- 4890 - Ascomycota: LTS0059667
- 4210 - Asteraceae: LTS0059667
- 40417 - Auriscalpiaceae: LTS0059667
- 5204 - Basidiomycota: LTS0059667
- 85972 - Boletinus: LTS0059667
- 85973 - Boletinus cavipes: 10.1271/BBB.59.1036
- 85973 - Boletinus cavipes: LTS0059667
- 28641 - Bombus: LTS0059667
- 85660 - Bombus hortorum: 10.3891/ACTA.CHEM.SCAND.45-0972
- 85660 - Bombus hortorum: LTS0059667
- 79826 - Bothriochloa: LTS0059667
- 79827 - Bothriochloa bladhii: 10.1016/S0305-1978(97)00103-8
- 79827 - Bothriochloa bladhii: 10.1080/10412905.1993.9698231
- 79827 - Bothriochloa bladhii: LTS0059667
- 5475 - Candida: LTS0059667
- 5476 - Candida albicans: LTS0059667
- 3481 - Cannabaceae: LTS0059667
- 3482 - Cannabis: LTS0059667
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0059667
- 4200 - Caprifoliaceae: LTS0059667
- 43068 - Centella: LTS0059667
- 48106 - Centella asiatica: 10.1080/10412905.1994.9698382
- 48106 - Centella asiatica: LTS0059667
- 170369 - Centromadia: LTS0059667
- 2894882 - Centromadia fitchii: LTS0059667
- 54707 - Chaerophyllum: LTS0059667
- 109104 - Chaerophyllum macrospermum: 10.1007/BF00630022
- 109104 - Chaerophyllum macrospermum: LTS0059667
- 7711 - Chordata: LTS0059667
- 13428 - Cinnamomum: LTS0059667
- 119261 - Cinnamomum burmannii: 10.1248/YAKUSHI1947.106.1_17
- 119266 - Cinnamomum sieboldii: 10.1248/YAKUSHI1947.106.1_17
- 119266 - Cinnamomum sieboldii: LTS0059667
- 128608 - Cinnamomum verum: 10.1021/JF60218A031
- 128608 - Cinnamomum verum: LTS0059667
- 2706 - Citrus: LTS0059667
- 159033 - Citrus aurantiifolia: 10.1016/S0021-9673(01)81970-1
- 43166 - Citrus aurantium: 10.1080/10412905.1990.9697813
- 37334 - Citrus maxima: 10.1002/JSSC.200900267
- 306910 - Cleistopholis: LTS0059667
- 2708762 - Cleistopholis patens: 10.1055/S-2006-962450
- 2708762 - Cleistopholis patens: LTS0059667
- 148888 - Coluria geoides: 10.1042/BST0280790
- 41552 - Conyza: LTS0059667
- 3367 - Cupressaceae: LTS0059667
- 66013 - Cymbopogon: LTS0059667
- 152208 - Cymbopogon distans: 10.1021/NP50042A025
- 152208 - Cymbopogon distans: LTS0059667
- 79837 - Cymbopogon martinii: 10.1080/10412905.1990.9697831
- 79837 - Cymbopogon martinii: LTS0059667
- 79841 - Cymbopogon schoenanthus: 10.1016/J.APJTM.2016.06.009
- 79841 - Cymbopogon schoenanthus: LTS0059667
- 66679 - Daphne: LTS0059667
- 329675 - Daphne odora: 10.1271/BBB1961.47.483
- 329675 - Daphne odora: LTS0059667
- 2715869 - Daphne papyracea: 10.1271/BBB1961.47.483
- 2715869 - Daphne papyracea: LTS0059667
- 766764 - Debaryomycetaceae: LTS0059667
- 9780 - Elephantidae: LTS0059667
- 4392 - Eucommia ulmoides:
- 2759 - Eukaryota: LTS0059667
- 4751 - Fungi: LTS0059667
- 73894 - Gyrodontaceae: LTS0059667
- 616993 - Heteropappus: LTS0059667
- 3484 - Humulus: LTS0059667
- 3486 - Humulus lupulus: 10.1021/JF00118A056
- 3486 - Humulus lupulus: LTS0059667
- 4130 - Hydrophyllaceae: LTS0059667
- 50557 - Insecta: LTS0059667
- 13100 - Juniperus: LTS0059667
- 58039 - Juniperus communis: 10.1139/V69-334
- 58039 - Juniperus communis: LTS0059667
- 313966 - Laggera: LTS0059667
- 441197 - Laggera alata: 10.1002/FFJ.2730050307
- 441197 - Laggera alata: LTS0059667
- 4136 - Lamiaceae: 10.1007/BF01177415
- 4136 - Lamiaceae: LTS0059667
- 126435 - Lantana camara: 10.1002/(SICI)1099-1026(199901/02)14:1<15::AID-FFJ777>3.0.CO;2-M
- 649173 - Lantana strigocamara: 10.1002/(SICI)1099-1026(199901/02)14:1<15::AID-FFJ777>3.0.CO;2-M
- 3325 - Larix: LTS0059667
- 54800 - Larix kaempferi: 10.1021/NP50071A016
- 54800 - Larix kaempferi: LTS0059667
- 3433 - Lauraceae: LTS0059667
- 5354 - Lentinellus: LTS0059667
- 194905 - Lentinellus cochleatus: 10.1515/ZNC-1986-11-1201
- 194905 - Lentinellus cochleatus: LTS0059667
- 4447 - Liliopsida: LTS0059667
- 49606 - Lonicera: LTS0059667
- 105884 - Lonicera japonica: 10.1186/1471-2164-13-195
- 105884 - Lonicera japonica: 10.3390/MOLECULES18021368
- 105884 - Lonicera japonica: LTS0059667
- 9784 - Loxodonta: LTS0059667
- 9785 - Loxodonta africana: 10.1021/NP010647C
- 9785 - Loxodonta africana: LTS0059667
- 85864 - Magnolia Officinalis Rehd Et Wils\uff0e: -
- 3398 - Magnoliopsida: LTS0059667
- 40674 - Mammalia: LTS0059667
- 98504 - Matricaria chamomilla: 10.1021/JF00037A027
- 164925 - Melaleuca: LTS0059667
- 164936 - Melaleuca leucadendra: 10.1021/NP9606052
- 164936 - Melaleuca leucadendra: LTS0059667
- 38859 - Mentha longifolia: 10.1055/S-2006-960356
- 29719 - Mentha spicata: 10.1055/S-2006-960356
- 33208 - Metazoa: LTS0059667
- 3931 - Myrtaceae: LTS0059667
- 4087 - Nicotiana alata: 10.1016/J.PHYTOCHEM.2006.05.038
- 39174 - Origanum: LTS0059667
- 268884 - Origanum majorana: 10.1055/S-2006-960024
- 268884 - Origanum majorana: LTS0059667
- 1132404 - Origanum sipyleum: 10.1080/10412905.1992.9698035
- 1132404 - Origanum sipyleum: LTS0059667
- 13625 - Paeonia: LTS0059667
- 35924 - Paeonia lactiflora: 10.1016/S0031-9422(00)94541-2
- 35924 - Paeonia lactiflora: LTS0059667
- 24943 - Paeoniaceae: LTS0059667
- 48385 - Perilla: LTS0059667
- 48386 - Perilla Frutescens: -
- 48386 - Perilla frutescens: 10.1271/BBB.57.792
- 48386 - Perilla frutescens: LTS0059667
- 3318 - Pinaceae: LTS0059667
- 58019 - Pinopsida: LTS0059667
- 77912 - Pinus densiflora: 10.1248/CPB.33.4074
- 3350 - Pinus thunbergii: 10.1248/CPB.33.4074
- 23121 - Pittosporaceae: LTS0059667
- 23129 - Pittosporum: LTS0059667
- 43073 - Pittosporum tobira: 10.1016/0031-9422(89)80285-7
- 43073 - Pittosporum tobira: LTS0059667
- 33090 - Plants: -
- 4479 - Poaceae: LTS0059667
- 23204 - Potentilla: 10.1139/O92-068
- 56534 - Pulicaria: LTS0059667
- 119185 - Pulicaria arabica: 10.3109/13880208709088136
- 119185 - Pulicaria arabica: LTS0059667
- 3764 - Rosa: 10.1139/O92-068
- 3764 - Rosa: LTS0059667
- 74632 - Rosa gallica: 10.1080/10412905.1995.9698472
- 74632 - Rosa gallica: LTS0059667
- 396733 - Rosa × centifolia: 10.1080/10412905.1995.9698472
- 3745 - Rosaceae: LTS0059667
- 48209 - Rudbeckia: LTS0059667
- 52304 - Rudbeckia mollis: 10.1016/0031-9422(92)80361-H
- 52304 - Rudbeckia mollis: LTS0059667
- 23513 - Rutaceae: LTS0059667
- 4891 - Saccharomycetes: LTS0059667
- 35974 - Santalum album: 10.1016/J.GENE.2013.06.080
- 453088 - Santalum spicatum: 10.3390/MOLECULES22060940
- 49986 - Satureja: LTS0059667
- 155231 - Sideritis: LTS0059667
- 155267 - Sideritis tragoriganum: 10.1016/B978-0-444-88558-6.50020-9
- 155267 - Sideritis tragoriganum: LTS0059667
- 41 - Stigmatella aurantiaca: 10.1002/CBIC.200500174
- 35493 - Streptophyta: LTS0059667
- 227336 - Suillaceae: LTS0059667
- 5379 - Suillus: LTS0059667
- 5380 - Suillus cavipes: 10.1271/BBB.59.1036
- 5380 - Suillus cavipes: LTS0059667
- 169606 - Tagetes lucida: 10.1002/(SICI)1099-1026(199701)12:1<47::AID-FFJ610>3.0.CO;2-7
- 99105 - Tanacetum: LTS0059667
- 282775 - Tanacetum millefolium: 10.1055/S-2006-960034
- 282775 - Tanacetum millefolium: LTS0059667
- 25623 - Taxaceae: LTS0059667
- 39987 - Thymelaeaceae: LTS0059667
- 50188 - Torreya: LTS0059667
- 50189 - Torreya nucifera: 10.1016/S0031-9422(00)82385-7
- 50189 - Torreya nucifera: LTS0059667
- 58023 - Tracheophyta: LTS0059667
- 174969 - Uvaria: LTS0059667
- 673193 - Uvaria pandensis: 10.1016/S0031-9422(00)84730-5
- 673193 - Uvaria pandensis: LTS0059667
- 33090 - Viridiplantae: LTS0059667
- 79407 - Wigandia: LTS0059667
- 79409 - Wigandia urens: 10.1016/S0031-9422(00)82225-6
- 79409 - Wigandia urens: LTS0059667
- 67937 - Zanthoxylum: LTS0059667
- 328402 - Zanthoxylum simulans: 10.1021/JF950577D
- 328402 - Zanthoxylum simulans: LTS0059667
- 2099548 - Zanthoxylum zanthoxyloides: 10.1021/NP50046A035
- 483714 - Zieria: LTS0059667
- 483734 - Zieria minutiflora: 10.1016/S0031-9422(00)82268-2
- 483734 - Zieria minutiflora: LTS0059667
- 4642 - Zingiberaceae: LTS0059667
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Anton Möllerke, Diogo Montes Vidal, Hans Petter Leinaas, Stefan Schulz. Socialane, a Nonaprenyl Terpene Hydrocarbon Surface Lipid from the Collembola Hypogastrura socialis.
Chemistry (Weinheim an der Bergstrasse, Germany).
2024 May; 30(27):e202400272. doi:
10.1002/chem.202400272
. [PMID: 38445549] - Raissa Bayker Vieira Silva, Valdeci Geraldo Coelho Júnior, Adolfo de Paula Mattos Júnior, Henrique Julidori Garcia, Ester Siqueira Caixeta Nogueira, Talita Sarah Mazzoni, Juliana Ramos Martins, Lívia Maria Rosatto Moda, Angel Roberto Barchuk. Farnesol, a component of plant-derived honeybee-collected resins, shows JH-like effects in Apis mellifera workers.
Journal of insect physiology.
2024 05; 154(?):104627. doi:
10.1016/j.jinsphys.2024.104627
. [PMID: 38373613] - Ting Shen, Baocheng Tian, Wei Liu, Xuesong Yang, Qi Sheng, Mengxin Li, Haiyan Wang, Xiuwen Wang, Huihui Zhou, Yanchun Han, Chen Ding, Sixiang Sai. Transdermal administration of farnesol-ethosomes enhances the treatment of cutaneous candidiasis induced by Candida albicans in mice.
Microbiology spectrum.
2024 Apr; 12(4):e0424723. doi:
10.1128/spectrum.04247-23
. [PMID: 38415658] - Pei Wang, Miao Liu, Changhong Lv, Zhen Tian, Ruichi Li, Yifan Li, Yalin Zhang, Jiyuan Liu. Identifying the Key Role of Plutella xylostella General Odorant Binding Protein 2 in Perceiving a Larval Attractant, (E,E)-2,6-Farnesol.
Journal of agricultural and food chemistry.
2024 Mar; 72(11):5690-5698. doi:
10.1021/acs.jafc.4c00621
. [PMID: 38447177] - Carlos Jonnathan Castro-Juárez, Silvia Luna-Suárez, Flor de Fátima Rosas-Cárdenas, Nemesio Villa-Ruano. Hernandulcin Production in Elicited Hairy Roots of Phyla scaberrima: Toward Sustainable Production of a Non-Caloric Sweetener with Nutraceutical Properties.
Chemistry & biodiversity.
2024 Mar; 21(3):e202302095. doi:
10.1002/cbdv.202302095
. [PMID: 38334300] - Jill Romer, Katharina Gutbrod, Antonia Schuppener, Michael Melzer, Stefanie J Müller-Schüssele, Andreas J Meyer, Peter Dörmann. Tocopherol and phylloquinone biosynthesis in chloroplasts requires the phytol kinase VTE5 and the farnesol kinase FOLK.
The Plant cell.
2023 Dec; ?(?):. doi:
10.1093/plcell/koad316
. [PMID: 38124486] - Guglielmina Froldi, Francesco Benetti, Andrea Mondin, Marco Roverso, Elisa Pangrazzi, Francine Medjiofack Djeujo, Paolo Pastore. Pterodon emarginatus Seed Preparations: Antiradical Activity, Chemical Characterization, and In Silico ADMET Parameters of β-caryophyllene and Farnesol.
Molecules (Basel, Switzerland).
2023 Nov; 28(22):. doi:
10.3390/molecules28227494
. [PMID: 38005216] - Rodrigo Santos-Pascual, Iván Campoy, David Sanz Mata, María Jesús Martínez, Alicia Prieto, Jorge Barriuso. Deciphering the molecular components of the quorum sensing system in the fungus Ophiostoma piceae.
Microbiology spectrum.
2023 Oct; ?(?):e0029023. doi:
10.1128/spectrum.00290-23
. [PMID: 37796004] - Marta Balsells-Llauradó, Núria Vall-Llaura, Josep Usall, Christian J Silva, Barbara Blanco-Ulate, Neus Teixidó, Maria Caballol, Rosario Torres. Transcriptional profiling of the terpenoid biosynthesis pathway and in vitro tests reveal putative roles of linalool and farnesal in nectarine resistance against brown rot.
Plant science : an international journal of experimental plant biology.
2023 Feb; 327(?):111558. doi:
10.1016/j.plantsci.2022.111558
. [PMID: 36493930] - Liliane Sena Pinheiro, Valter Viana Andrade-Neto, Marcio Mantuano-Barradas, Elisa Cavalcante Pereira, Rodrigo Cesar Fernandes Barbosa, Marcia Cristina Campos de Oliveira, Rubem Figueiredo Sadok Menna-Barreto, Edézio Ferreira Cunha-Júnior, Eduardo Caio Torres-Santos. Biological effects of trans, trans-farnesol in Leishmania amazonensis.
Frontiers in cellular and infection microbiology.
2023; 13(?):1221246. doi:
10.3389/fcimb.2023.1221246
. [PMID: 38035328] - Bruna Colombari, Davide Tagliazucchi, Alessandra Odorici, Eva Pericolini, Ismaela Foltran, Diego Pinetti, Aida Meto, Samuele Peppoloni, Elisabetta Blasi. Pomegranate Extract Affects Fungal Biofilm Production: Consumption of Phenolic Compounds and Alteration of Fungal Autoinducers Release.
International journal of environmental research and public health.
2022 10; 19(21):. doi:
10.3390/ijerph192114146
. [PMID: 36361021] - Varun Dwivedi, Sarma Rajeev Kumar, H B Shilpashree, Ram Krishna, Srinivas Rao, Ajit K Shasany, Shannon B Olsson, Dinesh A Nagegowda. An inducible potato (E,E)-farnesol synthase confers tolerance against bacterial pathogens in potato and tobacco.
The Plant journal : for cell and molecular biology.
2022 09; 111(5):1308-1323. doi:
10.1111/tpj.15890
. [PMID: 35778946] - Sayoko Oiki, Ryo Nasuno, Syun-Ichi Urayama, Hiroshi Takagi, Daisuke Hagiwara. Intracellular production of reactive oxygen species and a DAF-FM-related compound in Aspergillus fumigatus in response to antifungal agent exposure.
Scientific reports.
2022 08; 12(1):13516. doi:
10.1038/s41598-022-17462-y
. [PMID: 35933435] - Yuyang Ma, Xue Liu, Defu Liu, Zihao Yin, Xinyi Yang, Mingyong Zeng. Oyster (Crassostrea gigas) Polysaccharide Ameliorates High-Fat-Diet-Induced Oxidative Stress and Inflammation in the Liver via the Bile Acid-FXR-AMPKα Pathway.
Journal of agricultural and food chemistry.
2022 Jul; 70(28):8662-8671. doi:
10.1021/acs.jafc.2c02490
. [PMID: 35797440] - Mohammed Ali, Elsayed Nishawy, Walaa A Ramadan, Mohamed Ewas, Mokhtar Said Rizk, Ahmed G M Sief-Eldein, Mohamed Abd S El-Zayat, Ahmed H M Hassan, Mingquan Guo, Guang-Wan Hu, Shengwei Wang, Fatma A Ahmed, Mohamed Hamdy Amar, Qing-Feng Wang. Molecular characterization of a Novel NAD+-dependent farnesol dehydrogenase SoFLDH gene involved in sesquiterpenoid synthases from Salvia officinalis.
PloS one.
2022; 17(6):e0269045. doi:
10.1371/journal.pone.0269045
. [PMID: 35657794] - Gopalakrishnan Balaraman, Jagan Sundaram, Ashok Mari, Palanisamy Krishnan, Sharmila Salam, Nirmala Subramaniam, Immaduddin Sirajduddin, Devaki Thiruvengadam. Farnesol alleviates diethyl nitrosamine induced inflammation and protects experimental rat hepatocellular carcinoma.
Environmental toxicology.
2021 Dec; 36(12):2467-2474. doi:
10.1002/tox.23359
. [PMID: 34473392] - Luz Díaz-Storani, Anaelle A Clary, Diego M Moreno, María Sol Ballari, Exequiel O J Porta, Andrea B J Bracca, Jonathan B Johnston, Guillermo R Labadie. Synthesis and interaction of terminal unsaturated chemical probes with Mycobacterium tuberculosis CYP124A1.
Bioorganic & medicinal chemistry.
2021 08; 44(?):116304. doi:
10.1016/j.bmc.2021.116304
. [PMID: 34289431] - Brad R Baker, Callum M Ives, Ashley Bray, Martin Caffrey, Stephen A Cochrane. Undecaprenol kinase: Function, mechanism and substrate specificity of a potential antibiotic target.
European journal of medicinal chemistry.
2021 Jan; 210(?):113062. doi:
10.1016/j.ejmech.2020.113062
. [PMID: 33310291] - Hui Huang, Qinhui Liu, Ting Zhang, Jinhang Zhang, Jian Zhou, Xiandan Jing, Qin Tang, Cuiyuan Huang, Zijing Zhang, Yingnan Zhao, Guorong Zhang, Jiamin Yan, Yan Xia, Ying Xu, Jiahui Li, Yanping Li, Jinhan He. Farnesylthiosalicylic Acid-Loaded Albumin Nanoparticle Alleviates Renal Fibrosis by Inhibiting Ras/Raf1/p38 Signaling Pathway.
International journal of nanomedicine.
2021; 16(?):6441-6453. doi:
10.2147/ijn.s318124
. [PMID: 34584410] - Diego Santos Souza, Tatiane de Oliveira Barreto, José Evaldo Rodrigues de Menezes-Filho, Luana Heimfarth, Paula Rhana, Thallita Kelly Rabelo, Michael Nadson Santos Santana, Aimée Obolari Durço, Michael Ramon de Lima Conceição, Lucindo José Quintans-Júnior, Adriana Gibara Guimarães, Jader Santos Cruz, Carla Maria Lins de Vasconcelos. Myocardial hypertrophy is prevented by farnesol through oxidative stress and ERK1/2 signaling pathways.
European journal of pharmacology.
2020 Nov; 887(?):173583. doi:
10.1016/j.ejphar.2020.173583
. [PMID: 32956645] - Pulu Sun, Clément Dégut, Stéphane Réty, Jean-Claude Caissard, Laurence Hibrand-Saint Oyant, Aurélie Bony, Saretta N Paramita, Corentin Conart, Jean-Louis Magnard, Julien Jeauffre, Ahmed M Abd-El-Haliem, Jordan Marie-Magdelaine, Tatiana Thouroude, Raymonde Baltenweck, Carine Tisné, Fabrice Foucher, Michel Haring, Philippe Hugueney, Robert C Schuurink, Sylvie Baudino. Functional diversification in the Nudix hydrolase gene family drives sesquiterpene biosynthesis in Rosa × wichurana.
The Plant journal : for cell and molecular biology.
2020 09; 104(1):185-199. doi:
10.1111/tpj.14916
. [PMID: 32639596] - Lin Marcellin Messi, Olivier Placide Noté, Joséphine Ngo Mbing, Marieke Vansteelandt, Pierre Lavedan, Marc Vedrenne, Dieudonné Emmanuel Pegnyemb, Mohamed Haddad. Farnesyl glycosides and one new triterpenoid saponin from the roots of Lecaniodiscus cupanioides Planch. ex Benth.
Carbohydrate research.
2020 Sep; 495(?):108092. doi:
10.1016/j.carres.2020.108092
. [PMID: 32755723] - Mohammad H Abukhalil, Omnia E Hussein, May Bin-Jumah, Sultan A M Saghir, Mousa O Germoush, Hassan A Elgebaly, Nermeen M Mosa, Ismail Hamad, Moath M Qarmush, Emad M Hassanein, Emadeldin M Kamel, Rene Hernandez-Bautista, Ayman M Mahmoud. Farnesol attenuates oxidative stress and liver injury and modulates fatty acid synthase and acetyl-CoA carboxylase in high cholesterol-fed rats.
Environmental science and pollution research international.
2020 Aug; 27(24):30118-30132. doi:
10.1007/s11356-020-09296-w
. [PMID: 32449150] - Anna Wróblewska-Kurdyk, Katarzyna Dancewicz, Anna Gliszczyńska, Beata Gabryś. New insight into the behaviour modifying activity of two natural sesquiterpenoids farnesol and nerolidol towards Myzus persicae (Sulzer) (Homoptera: Aphididae).
Bulletin of entomological research.
2020 Apr; 110(2):249-258. doi:
10.1017/s0007485319000609
. [PMID: 31559933] - Tejas Barot, Deepak Rawtani, Pratik Kulkarni, Chaudhery Mustansar Hussain, Satyaprasad Akkireddy. Physicochemical and biological assessment of flowable resin composites incorporated with farnesol loaded halloysite nanotubes for dental applications.
Journal of the mechanical behavior of biomedical materials.
2020 04; 104(?):103675. doi:
10.1016/j.jmbbm.2020.103675
. [PMID: 32174431] - A Špičáková, V Bazgier, L Skálová, M Otyepka, P Anzenbacher. beta-caryophyllene oxide and trans-nerolidol affect enzyme activity of CYP3A4 - in vitro and in silico studies.
Physiological research.
2019 11; 68(Suppl 1):S51-S58. doi:
10.33549/physiolres.934323
. [PMID: 31755290] - Michaela Šadibolová, Tomáš Zárybnický, Tomáš Smutný, Petr Pávek, Zdeněk Šubrt, Petra Matoušková, Lenka Skálová, Iva Boušová. Sesquiterpenes Are Agonists of the Pregnane X Receptor but Do Not Induce the Expression of Phase I Drug-Metabolizing Enzymes in the Human Liver.
International journal of molecular sciences.
2019 Sep; 20(18):. doi:
10.3390/ijms20184562
. [PMID: 31540101] - Mummadireddy Ramya, Pue Hee Park, Yu-Chen Chuang, Oh Keun Kwon, Hye Ryun An, Pil Man Park, Yun Su Baek, Byoung-Chorl Kang, Wen-Chieh Tsai, Hong-Hwa Chen. RNA sequencing analysis of Cymbidium goeringii identifies floral scent biosynthesis related genes.
BMC plant biology.
2019 Aug; 19(1):337. doi:
10.1186/s12870-019-1940-6
. [PMID: 31375064] - Miklós Tóth, Lorenzo Furlan, István Szarukán, Antal Nagy, József Vuts, Teodora Toshova, Dimitar Velchev, Zsófia Lohonyai, Zoltán Imrei. The Addition of a Pheromone to a Floral Lure Increases Catches of Females of the Click Beetle Agriotes ustulatus (Schaller) (Coleoptera: Elateridae).
Journal of chemical ecology.
2019 Aug; 45(8):667-672. doi:
10.1007/s10886-019-01087-z
. [PMID: 31313134] - Zohreh Nassimi, Parissa Taheri, Saeed Tarighi. Farnesol altered morphogenesis and induced oxidative burst-related responses in Rhizoctonia solani AG1-IA.
Mycologia.
2019 May; 111(3):359-370. doi:
10.1080/00275514.2019.1600315
. [PMID: 31021706] - Asmita Pant, Elizabeth A Rondini, Thomas A Kocarek. Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells.
Toxicology and applied pharmacology.
2019 02; 365(?):61-70. doi:
10.1016/j.taap.2019.01.003
. [PMID: 30611723] - Emine Sekerdag, Sevda Lüle, Sibel Bozdağ Pehlivan, Naile Öztürk, Aslı Kara, Abbas Kaffashi, Imran Vural, Ilkay Işıkay, Burҫin Yavuz, Kader Karlı Oguz, Figen Söylemezoğlu, Yasemin Gürsoy-Özdemir, Melike Mut. A potential non-invasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles.
Journal of controlled release : official journal of the Controlled Release Society.
2017 09; 261(?):187-198. doi:
10.1016/j.jconrel.2017.06.032
. [PMID: 28684169] - Abbas Kaffashi, Sevda Lüle, Sibel Bozdağ Pehlivan, Can Sarısözen, İmran Vural, Hüsnü Koşucu, Taner Demir, Kadir Emre Buğdaycı, Figen Söylemezoğlu, Kader Karlı Oğuz, Melike Mut. Farnesylthiosalicylic acid-loaded lipid-polyethylene glycol-polymer hybrid nanoparticles for treatment of glioblastoma.
The Journal of pharmacy and pharmacology.
2017 Aug; 69(8):1010-1021. doi:
10.1111/jphp.12740
. [PMID: 28471040] - Rui-Huan Liu, Zhi-Chun Shang, Tian-Xiao Li, Ming-Hua Yang, Ling-Yi Kong. In Vitro Antibiofilm Activity of Eucarobustol E against Candida albicans.
Antimicrobial agents and chemotherapy.
2017 08; 61(8):. doi:
10.1128/aac.02707-16
. [PMID: 28584159] - Alessandro Passera, Giovanni Venturini, Giovanna Battelli, Paola Casati, Francesca Penaca, Fabio Quaglino, Piero Attilio Bianco. Competition assays revealed Paenibacillus pasadenensis strain R16 as a novel antifungal agent.
Microbiological research.
2017 May; 198(?):16-26. doi:
10.1016/j.micres.2017.02.001
. [PMID: 28285658] - Cecilia Cagliero, Carlo Bicchi, Chiara Cordero, Erica Liberto, Patrizia Rubiolo, Barbara Sgorbini. Analysis of essential oils and fragrances with a new generation of highly inert gas chromatographic columns coated with ionic liquids.
Journal of chromatography. A.
2017 Apr; 1495(?):64-75. doi:
10.1016/j.chroma.2017.03.029
. [PMID: 28343686] - Alena Špičáková, Barbora Szotáková, Diana Dimunová, Zuzana Myslivečková, Vladimír Kubíček, Martin Ambrož, Kateřina Lněničková, Kristýna Krasulová, Pavel Anzenbacher, Lenka Skálová. Nerolidol and Farnesol Inhibit Some Cytochrome P450 Activities but Did Not Affect Other Xenobiotic-Metabolizing Enzymes in Rat and Human Hepatic Subcellular Fractions.
Molecules (Basel, Switzerland).
2017 Mar; 22(4):. doi:
10.3390/molecules22040509
. [PMID: 28338641] - Lisa Kirchhoff, Maike Olsowski, Katrin Zilmans, Silke Dittmer, Gerhard Haase, Ludwig Sedlacek, Eike Steinmann, Jan Buer, Peter-Michael Rath, Joerg Steinmann. Biofilm formation of the black yeast-like fungus Exophiala dermatitidis and its susceptibility to antiinfective agents.
Scientific reports.
2017 02; 7(?):42886. doi:
10.1038/srep42886
. [PMID: 28211475] - Alexandre Huchelmann, Mathieu Semir Brahim, Esther Gerber, Denis Tritsch, Thomas J Bach, Andréa Hemmerlin. Farnesol-mediated shift in the metabolic origin of prenyl groups used for protein prenylation in plants.
Biochimie.
2016 Aug; 127(?):95-102. doi:
10.1016/j.biochi.2016.04.021
. [PMID: 27138105] - Xiang Chen, Yuwei Wang, Jia Sun, Jin Wang, Hang Xun, Feng Tang. Cloning, expression and functional characterization of two sesquiterpene synthase genes from moso bamboo (Phyllostachys edulis).
Protein expression and purification.
2016 Apr; 120(?):1-6. doi:
10.1016/j.pep.2015.11.019
. [PMID: 26626450] - Benjamin Lemaire, Akira Kubota, Conor M O'Meara, David C Lamb, Robert L Tanguay, Jared V Goldstone, John J Stegeman. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders.
Toxicology and applied pharmacology.
2016 Apr; 296(?):73-84. doi:
10.1016/j.taap.2016.02.001
. [PMID: 26853319] - Anna Gliszczyńska, Witold Gładkowski, Marta Świtalska, Joanna Wietrzyk, Antoni Szumny, Elżbieta Gębarowska, Czesław Wawrzeńczyk. Dehalogenation Activity of Selected Fungi Toward δ-Iodo-γ-Lactone Derived from trans,trans-Farnesol.
Chemistry & biodiversity.
2016 Apr; 13(4):477-82. doi:
10.1002/cbdv.201500127
. [PMID: 26923572] - Sheida Torabi, Huanbiao Mo. Trans, trans-farnesol as a mevalonate-derived inducer of murine 3T3-F442A pre-adipocyte differentiation.
Experimental biology and medicine (Maywood, N.J.).
2016 Mar; 241(5):493-500. doi:
10.1177/1535370215620855
. [PMID: 26660152] - C-M Ku, J-Y Lin. Farnesol, a sesquiterpene alcohol in essential oils, ameliorates serum allergic antibody titres and lipid profiles in ovalbumin-challenged mice.
Allergologia et immunopathologia.
2016 Mar; 44(2):149-59. doi:
10.1016/j.aller.2015.05.009
. [PMID: 26318416] - Ahmad-Faris Seman-Kamarulzaman, Zeti-Azura Mohamed-Hussein, Chyan Leong Ng, Maizom Hassan. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant.
PloS one.
2016; 11(8):e0161707. doi:
10.1371/journal.pone.0161707
. [PMID: 27560927] - Yoshihiro Inoue, Naoko Togashi, Hajime Hamashima. Farnesol-Induced Disruption of the Staphylococcus aureus Cytoplasmic Membrane.
Biological & pharmaceutical bulletin.
2016; 39(5):653-6. doi:
10.1248/bpb.b15-00416
. [PMID: 27150138] - Daniel B Raudabaugh, Andrew N Miller. Effect of Trans, Trans-Farnesol on Pseudogymnoascus destructans and Several Closely Related Species.
Mycopathologia.
2015 Dec; 180(5-6):325-32. doi:
10.1007/s11046-015-9921-2
. [PMID: 26162644] - R Santhanasabapathy, S Vasudevan, K Anupriya, R Pabitha, G Sudhandiran. Farnesol quells oxidative stress, reactive gliosis and inflammation during acrylamide-induced neurotoxicity: Behavioral and biochemical evidence.
Neuroscience.
2015 Nov; 308(?):212-27. doi:
10.1016/j.neuroscience.2015.08.067
. [PMID: 26341906] - Iffat Parveen, Mei Wang, Jianping Zhao, Amar G Chittiboyina, Nurhayat Tabanca, Abbas Ali, Scott R Baerson, Natascha Techen, Joe Chappell, Ikhlas A Khan, Zhiqiang Pan. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E)-farnesol and α-bisabolene synthases.
Plant molecular biology.
2015 Nov; 89(4-5):451-62. doi:
10.1007/s11103-015-0381-3
. [PMID: 26442918] - Lunzhao Yi, Naiping Dong, Shao Liu, Zhibiao Yi, Yi Zhang. Chemical features of Pericarpium Citri Reticulatae and Pericarpium Citri Reticulatae Viride revealed by GC-MS metabolomics analysis.
Food chemistry.
2015 Nov; 186(?):192-9. doi:
10.1016/j.foodchem.2014.07.067
. [PMID: 25976810] - Joung Hyuck Joo, Eiichiro Ueda, Carl D Bortner, Xiao-Ping Yang, Grace Liao, Anton M Jetten. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells.
Biochemical pharmacology.
2015 Oct; 97(3):256-68. doi:
10.1016/j.bcp.2015.08.086
. [PMID: 26275811] - Mohaddeseh Abouhosseini Tabari, Mohammad Reza Youssefi, Alireza Barimani, Atefeh Araghi. Carvacrol as a potent natural acaricide against Dermanyssus gallinae.
Parasitology research.
2015 Oct; 114(10):3801-6. doi:
10.1007/s00436-015-4610-0
. [PMID: 26143865] - Rajasekaran Santhanasabapathy, Ganapasam Sudhandiran. Farnesol attenuates lipopolysaccharide-induced neurodegeneration in Swiss albino mice by regulating intrinsic apoptotic cascade.
Brain research.
2015 Sep; 1620(?):42-56. doi:
10.1016/j.brainres.2015.04.043
. [PMID: 25935694] - Zhao-Qun Li, Shuai Zhang, Jun-Yu Luo, Si-Bao Wang, Shuang-Lin Dong, Jin-Jie Cui. Odorant-binding proteins display high affinities for behavioral attractants and repellents in the natural predator Chrysopa pallens.
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.
2015 Jul; 185(?):51-7. doi:
10.1016/j.cbpa.2015.03.011
. [PMID: 25810363] - Cheryl A Stoddart, Sofiya A Galkina, Pheroze Joshi, Galina Kosikova, Mary E Moreno, Jose M Rivera, Barbara Sloan, Aaron B Reeve, Stefan G Sarafianos, Michael Murphey-Corb, Michael A Parniak. Oral administration of the nucleoside EFdA (4'-ethynyl-2-fluoro-2'-deoxyadenosine) provides rapid suppression of HIV viremia in humanized mice and favorable pharmacokinetic properties in mice and the rhesus macaque.
Antimicrobial agents and chemotherapy.
2015 Jul; 59(7):4190-8. doi:
10.1128/aac.05036-14
. [PMID: 25941222] - Jessie Moniodis, Christopher G Jones, E Liz Barbour, Julie A Plummer, Emilio L Ghisalberti, Joerg Bohlmann. The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum).
Phytochemistry.
2015 May; 113(?):79-86. doi:
10.1016/j.phytochem.2014.12.009
. [PMID: 25624157] - Eya Wolfson, Eran Schmukler, Sari Trangle Schokoroy, Yoel Kloog, Ronit Pinkas-Kramarski. Enhancing FTS (Salirasib) efficiency via combinatorial treatment.
Biology of the cell.
2015 May; 107(5):130-43. doi:
10.1111/boc.201400087
. [PMID: 25735913] - Avinash Bhadani, Jayant Rane, Cristina Veresmortean, Sanjoy Banerjee, George John. Bio-inspired surfactants capable of generating plant volatiles.
Soft matter.
2015 Apr; 11(15):3076-82. doi:
10.1039/c5sm00157a
. [PMID: 25739905] - Raimunda Sâmia Nogueira Brilhante, Natalya Fechine Silva, Francisca Jakelyne de Farias Marques, Débora de Souza Collares Maia Castelo-Branco, Rita Amanda Chaves de Lima, Angela Donato Maia Malaquias, Erica Pacheco Caetano, Giovanna Riello Barbosa, Zoilo Pires de Camargo, Anderson Messias Rodrigues, André Jalles Monteiro, Tereza de Jesus Pinheiro Gomes Bandeira, Rossana de Aguiar Cordeiro, José Júlio Costa Sidrim, José Luciano Bezerra Moreira, Marcos Fábio Gadelha Rocha. In vitro inhibitory activity of terpenic derivatives against clinical and environmental strains of the Sporothrix schenkii complex.
Medical mycology.
2015 Feb; 53(2):93-8. doi:
10.1093/mmy/myu085
. [PMID: 25541558] - Martin F Strube-Bloss, Austin Brown, Johannes Spaethe, Thomas Schmitt, Wolfgang Rössler. Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris.
PloS one.
2015; 10(9):e0137413. doi:
10.1371/journal.pone.0137413
. [PMID: 26340263] - V Makovski, J Jacob-Hirsch, C Gefen-Dor, B Shai, M Ehrlich, G Rechavi, Y Kloog. Analysis of gene expression array in TSC2-deficient AML cells reveals IRF7 as a pivotal factor in the Rheb/mTOR pathway.
Cell death & disease.
2014 Dec; 5(?):e1557. doi:
10.1038/cddis.2014.502
. [PMID: 25476905] - S Zafar, D E Coates, M P Cullinan, B K Drummond, T Milne, G J Seymour. Zoledronic acid and geranylgeraniol regulate cellular behaviour and angiogenic gene expression in human gingival fibroblasts.
Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology.
2014 Oct; 43(9):711-21. doi:
10.1111/jop.12181
. [PMID: 24762323] - René F Ramos Alvarenga, Baojie Wan, Taichi Inui, Scott G Franzblau, Guido F Pauli, Birgit U Jaki. Airborne antituberculosis activity of Eucalyptus citriodora essential oil.
Journal of natural products.
2014 Mar; 77(3):603-10. doi:
10.1021/np400872m
. [PMID: 24641242] - E Aizman, E Blacher, O Ben-Moshe, T Kogan, Y Kloog, A Mor. Therapeutic effect of farnesylthiosalicylic acid on adjuvant-induced arthritis through suppressed release of inflammatory cytokines.
Clinical and experimental immunology.
2014 Mar; 175(3):458-67. doi:
10.1111/cei.12235
. [PMID: 24215151] - Patrícia Martins Botelho Nunes, Silvia Maria da Rocha, Priscilla Filomena Fonseca Amaral, Maria Helena Miguez da Rocha-Leão. Study of trans-trans farnesol effect on hyphae formation by Yarrowia lipolytica.
Bioprocess and biosystems engineering.
2013 Dec; 36(12):1967-75. doi:
10.1007/s00449-013-0973-8
. [PMID: 23715764] - Sheila Jones, Nicolle V Fernandes, Hoda Yeganehjoo, Rajasekhar Katuru, Haibin Qu, Zhiling Yu, Huanbiao Mo. β-ionone induces cell cycle arrest and apoptosis in human prostate tumor cells.
Nutrition and cancer.
2013; 65(4):600-10. doi:
10.1080/01635581.2013.776091
. [PMID: 23659452] - A Mor, E Aizman, J Chapman, Y Kloog. Immunomodulatory properties of farnesoids: the new steroids?.
Current medicinal chemistry.
2013; 20(10):1218-24. doi:
10.2174/0929867311320100002
. [PMID: 23432580] - Milena Cotoras, Paulo Castro, Herman Vivanco, Ricardo Melo, Leonora Mendoza. Farnesol induces apoptosis-like phenotype in the phytopathogenic fungus Botrytis cinerea.
Mycologia.
2013 Jan; 105(1):28-33. doi:
10.3852/12-012
. [PMID: 22962358] - A Jamalian, M Shams-Ghahfarokhi, K Jaimand, N Pashootan, A Amani, M Razzaghi-Abyaneh. Chemical composition and antifungal activity of Matricaria recutita flower essential oil against medically important dermatophytes and soil-borne pathogens.
Journal de mycologie medicale.
2012 Dec; 22(4):308-15. doi:
10.1016/j.mycmed.2012.09.003
. [PMID: 23518164] - Ting-Li Han, Richard D Cannon, Silas G Villas-Bôas. The metabolic response of Candida albicans to farnesol under hyphae-inducing conditions.
FEMS yeast research.
2012 Dec; 12(8):879-89. doi:
10.1111/j.1567-1364.2012.00837.x
. [PMID: 22846172] - Daniel Laheru, Preeti Shah, N V Rajeshkumar, Florencia McAllister, Gretchen Taylor, Howard Goldsweig, Dung T Le, Ross Donehower, Antonio Jimeno, Sheila Linden, Ming Zhao, Dongweon Song, Michelle A Rudek, Manuel Hidalgo. Integrated preclinical and clinical development of S-trans, trans-Farnesylthiosalicylic Acid (FTS, Salirasib) in pancreatic cancer.
Investigational new drugs.
2012 Dec; 30(6):2391-9. doi:
10.1007/s10637-012-9818-6
. [PMID: 22547163] - Rossana de Aguiar Cordeiro, George Cândido Nogueira, Raimunda Sâmia Nogueira Brilhante, Carlos Eduardo Cordeiro Teixeira, Charles Ielpo Mourão, Débora de Souza Collares Maia Castelo-Branco, Manoel de Araújo Neto Paiva, Joyce Fonteles Ribeiro, André Jalles Monteiro, José Júlio Costa Sidrim, Marcos Fábio Gadelha Rocha. Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes.
Veterinary microbiology.
2012 Oct; 159(3-4):375-80. doi:
10.1016/j.vetmic.2012.04.008
. [PMID: 22580194] - Najla Nasr, Susan Maddocks, Stuart G Turville, Andrew N Harman, Natalie Woolger, Karla J Helbig, John Wilkinson, Chris R Bye, Thomas K Wright, Dharshini Rambukwelle, Heather Donaghy, Michael R Beard, Anthony L Cunningham. HIV-1 infection of human macrophages directly induces viperin which inhibits viral production.
Blood.
2012 Jul; 120(4):778-88. doi:
10.1182/blood-2012-01-407395
. [PMID: 22677126] - Ibolya E András, Sung Yong Eum, Michal Toborek. Lipid rafts and functional caveolae regulate HIV-induced amyloid beta accumulation in brain endothelial cells.
Biochemical and biophysical research communications.
2012 May; 421(2):177-83. doi:
10.1016/j.bbrc.2012.03.128
. [PMID: 22490665] - Kyong-Oh Shin, Myong-Yong Park, Cho-Hee Seo, Yong-Ill Lee, Hyun Sik Kim, Hwan-Soo Yoo, Jin Tae Hong, Jae-Kyung Jung, Yong-Moon Lee. Terpene alcohols inhibit de novo sphingolipid biosynthesis.
Planta medica.
2012 Mar; 78(5):434-9. doi:
10.1055/s-0031-1298155
. [PMID: 22274813] - Sol A Green, Xiuyin Chen, Niels J Nieuwenhuizen, Adam J Matich, Mindy Y Wang, Barry J Bunn, Yar-Khing Yauk, Ross G Atkinson. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis).
Journal of experimental botany.
2012 Mar; 63(5):1951-67. doi:
10.1093/jxb/err393
. [PMID: 22162874] - Mohan Pammi, Rong Liang, John M Hicks, Jim Barrish, James Versalovic. Farnesol decreases biofilms of Staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin.
Pediatric research.
2011 Dec; 70(6):578-83. doi:
10.1203/pdr.0b013e318232a984
. [PMID: 21857375] - Tsuyoshi Goto, Young-Il Kim, Kozue Funakoshi, Aki Teraminami, Taku Uemura, Shizuka Hirai, Joo-Young Lee, Makoto Makishima, Rieko Nakata, Hiroyasu Inoue, Hiroyuki Senju, Masayoshi Matsunaga, Fumihiko Horio, Nobuyuki Takahashi, Teruo Kawada. Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARα-dependent and -independent pathways.
American journal of physiology. Endocrinology and metabolism.
2011 Nov; 301(5):E1022-32. doi:
10.1152/ajpendo.00061.2011
. [PMID: 21862726] - Amy E Piispanen, Ophelie Bonnefoi, Sarah Carden, Aurelie Deveau, Martine Bassilana, Deborah A Hogan. Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response.
Eukaryotic cell.
2011 Nov; 10(11):1473-84. doi:
10.1128/ec.05153-11
. [PMID: 21908593] - A Heather Fitzpatrick, Nisha Shrestha, Jayaram Bhandari, Dring N Crowell. Roles for farnesol and ABA in Arabidopsis flower development.
Plant signaling & behavior.
2011 Aug; 6(8):1189-91. doi:
10.4161/psb.6.8.15772
. [PMID: 21758018] - Rehan Khan, Sarwat Sultana. Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats.
Chemico-biological interactions.
2011 Jul; 192(3):193-200. doi:
10.1016/j.cbi.2011.03.009
. [PMID: 21453689] - A Heather Fitzpatrick, Jayaram Bhandari, Dring N Crowell. Farnesol kinase is involved in farnesol metabolism, ABA signaling and flower development in Arabidopsis.
The Plant journal : for cell and molecular biology.
2011 Jun; 66(6):1078-88. doi:
10.1111/j.1365-313x.2011.04572.x
. [PMID: 21395888] - Fernanda Gomes, Bruna Leite, Pilar Teixeira, Nuno Cerca, Joana Azeredo, Rosário Oliveira. Farnesol as antibiotics adjuvant in Staphylococcus epidermidis control in vitro.
The American journal of the medical sciences.
2011 Mar; 341(3):191-5. doi:
10.1097/maj.0b013e3181fcf138
. [PMID: 21107231] - Jin Zhou, Timothy S Tracy, Rory P Remmel. Correlation between bilirubin glucuronidation and estradiol-3-gluronidation in the presence of model UDP-glucuronosyltransferase 1A1 substrates/inhibitors.
Drug metabolism and disposition: the biological fate of chemicals.
2011 Feb; 39(2):322-9. doi:
10.1124/dmd.110.035030
. [PMID: 21030469] - Guillaume Charron, Lun K Tsou, William Maguire, Jacob S Yount, Howard C Hang. Alkynyl-farnesol reporters for detection of protein S-prenylation in cells.
Molecular bioSystems.
2011 Jan; 7(1):67-73. doi:
10.1039/c0mb00183j
. [PMID: 21107478] - Adi Mor, Elizabeta Aizman, Jacob George, Yoel Kloog. Ras inhibition induces insulin sensitivity and glucose uptake.
PloS one.
2011; 6(6):e21712. doi:
10.1371/journal.pone.0021712
. [PMID: 21738773] - S Yoo, R M Murata, S Duarte. Antimicrobial traits of tea- and cranberry-derived polyphenols against Streptococcus mutans.
Caries research.
2011; 45(4):327-35. doi:
10.1159/000329181
. [PMID: 21720161] - Sung-Jae Lee, Hyung-In Moon. Immunotoxicity activity of the major essential oil of Filipendula glaberrima against Aedes aegypti L.
Immunopharmacology and immunotoxicology.
2010 Dec; 32(4):617-9. doi:
10.3109/08923971003652983
. [PMID: 20175741] - Pinkesh Bhagatji, Rania Leventis, Rebecca Rich, Chen-ju Lin, John R Silvius. Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane.
Biophysical journal.
2010 Nov; 99(10):3327-35. doi:
10.1016/j.bpj.2010.10.001
. [PMID: 21081081] - Stanimir S Ivanov, Guillaume Charron, Howard C Hang, Craig R Roy. Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins.
The Journal of biological chemistry.
2010 Nov; 285(45):34686-98. doi:
10.1074/jbc.m110.170746
. [PMID: 20813839] - Jayaram Bhandari, A Heather Fitzpatrick, Dring N Crowell. Identification of a novel abscisic acid-regulated farnesol dehydrogenase from Arabidopsis.
Plant physiology.
2010 Nov; 154(3):1116-27. doi:
10.1104/pp.110.157784
. [PMID: 20807998] - Nicolas Charette, Christine De Saeger, Valérie Lannoy, Yves Horsmans, Isabelle Leclercq, Peter Stärkel. Salirasib inhibits the growth of hepatocarcinoma cell lines in vitro and tumor growth in vivo through ras and mTOR inhibition.
Molecular cancer.
2010 Sep; 9(?):256. doi:
10.1186/1476-4598-9-256
. [PMID: 20860815] - K Weber, B Schulz, M Ruhnke. The quorum-sensing molecule E,E-farnesol--its variable secretion and its impact on the growth and metabolism of Candida species.
Yeast (Chichester, England).
2010 Sep; 27(9):727-39. doi:
10.1002/yea.1769
. [PMID: 20641010] - Ernesto Bustinza-Linares, Razelle Kurzrock, Apostolia-Maria Tsimberidou. Salirasib in the treatment of pancreatic cancer.
Future oncology (London, England).
2010 Jun; 6(6):885-91. doi:
10.2217/fon.10.71
. [PMID: 20528225] - Marta Moya, M José Gómez-Lechón, José V Castell, Ramiro Jover. Enhanced steatosis by nuclear receptor ligands: a study in cultured human hepatocytes and hepatoma cells with a characterized nuclear receptor expression profile.
Chemico-biological interactions.
2010 Mar; 184(3):376-87. doi:
10.1016/j.cbi.2010.01.008
. [PMID: 20079722] - Pu Liu, Li Luo, Junhong Guo, Huimin Liu, Baoquan Wang, Boxun Deng, Chao-an Long, Yunjiang Cheng. Farnesol induces apoptosis and oxidative stress in the fungal pathogen Penicillium expansum.
Mycologia.
2010 Mar; 102(2):311-8. doi:
10.3852/09-176
. [PMID: 20361499] - Cristina Rodríguez, Javier F Alcudia, José Martínez-González, Anna Guadall, Berta Raposo, Sonia Sánchez-Gómez, Lina Badimon. Statins normalize vascular lysyl oxidase down-regulation induced by proatherogenic risk factors.
Cardiovascular research.
2009 Aug; 83(3):595-603. doi:
10.1093/cvr/cvp136
. [PMID: 19406911] - Ryan Rhome, Maurizio Del Poeta. Lipid signaling in pathogenic fungi.
Annual review of microbiology.
2009; 63(?):119-31. doi:
10.1146/annurev.micro.091208.073431
. [PMID: 19450140] - Wajhul Qamar, Sarwat Sultana. Farnesol ameliorates massive inflammation, oxidative stress and lung injury induced by intratracheal instillation of cigarette smoke extract in rats: an initial step in lung chemoprevention.
Chemico-biological interactions.
2008 Nov; 176(2-3):79-87. doi:
10.1016/j.cbi.2008.08.011
. [PMID: 18793622]