Gene Association: CEBPA

UniProt Search: CEBPA (PROTEIN_CODING)
Function Description: CCAAT enhancer binding protein alpha

found 223 associated metabolites with current gene based on the text mining result from the pubmed database.

Stevioside

(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1R,4S,5R,9S,10R,13S)-13-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0^{1,10}.0^{4,9}]hexadecane-5-carboxylate

C38H60O18 (804.3779)


Stevioside is a diterpene glycoside that is rubusoside in which the hydroxy group at position 2 of the allylic beta-D-glucoside has been converted to the corresponding beta-D-glucoside. It is a natural herbal sweetener that is 250-300 times sweeter than sucrose (though with a bitter aftertaste), extracted from the Stevia rebaudiana plant native to South America. It has a role as a sweetening agent, an antioxidant, an antineoplastic agent, a hypoglycemic agent, an anti-inflammatory agent and a plant metabolite. It is a diterpene glycoside, an ent-kaurane diterpenoid, a beta-D-glucoside, a tetracyclic diterpenoid and a bridged compound. It is functionally related to a steviol and a rubusoside. Stevioside is a natural product found in Asteraceae, Stevia rebaudiana, and Bos taurus with data available. See also: Stevia rebaudiuna Leaf (part of). Stevioside is a constituent of Stevia rebaudiana (stevia). Sweetening agent which is 300 times sweeter than sucrose. Stevia rebaudiana is extensively cultivated in Japan, and Stevioside is a permitted sweetener in that country Rebaudioside B, D, and E may also be present in minute quantities; however, it is suspected that rebaudioside B is a byproduct of the isolation technique. The two majority compounds stevioside and rebaudioside, primarily responsible for the sweet taste of stevia leaves, were first isolated by two French chemists in 1931 A diterpene glycoside that is rubusoside in which the hydroxy group at position 2 of the allylic beta-D-glucoside has been converted to the corresponding beta-D-glucoside. It is a natural herbal sweetener that is 250-300 times sweeter than sucrose (though with a bitter aftertaste), extracted from the Stevia rebaudiana plant native to South America. Constituent of Stevia rebaudiana (stevia). Sweetening agent which is 300 times sweeter than sucrose. Stevia rebaudiana is extensively cultivated in Japan, and Stevioside is a permitted sweetener in that country D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Stevioside is a natural sweetener extracted from leaves of Stevia rebaudiana, with anticancer activity[1]. Stevioside is a natural sweetener extracted from leaves of Stevia rebaudiana, with anticancer activity[1]. Stevioside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57817-89-7 (retrieved 2024-08-26) (CAS RN: 57817-89-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Betulafolienetriol

(3S,5R,8R,9R,10R,12R,13R,14R,17S)-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,12-diol

C30H52O3 (460.3916)


Protopanaxadiol is found in tea. Sapogenin of Ginsenosides Rb1, Rb2 and Re from Panax ginseng (ginseng) Protopanaxadiol (PPD) is an organic coumpound characterizing a group of ginsenosides. It is a dammarane-type tetracyclic terpene sapogenin found in ginseng (Panax ginseng) and in notoginseng (Panax pseudoginseng) (20S)-protopanaxadiol is a diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-S position. (20S)-Protopanaxadiol is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and Aralia elata with data available. 20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, inhibits Akt activity and induces apoptosis in various tumor cells[1]. 20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, inhibits Akt activity and induces apoptosis in various tumor cells[1].

   

Abietic_acid

InChI=1/C20H30O2/c1-13(2)14-6-8-16-15(12-14)7-9-17-19(16,3)10-5-11-20(17,4)18(21)22/h7,12-13,16-17H,5-6,8-11H2,1-4H3,(H,21,22)/t16-,17+,19+,20+/m0/s1

C20H30O2 (302.2246)


Yellowish resinous powder. (NTP, 1992) Abietic acid is an abietane diterpenoid that is abieta-7,13-diene substituted by a carboxy group at position 18. It has a role as a plant metabolite. It is an abietane diterpenoid and a monocarboxylic acid. It is a conjugate acid of an abietate. Abietic acid is a natural product found in Ceroplastes pseudoceriferus, Pinus brutia var. eldarica, and other organisms with data available. An abietane diterpenoid that is abieta-7,13-diene substituted by a carboxy group at position 18. D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents CONFIDENCE standard compound; INTERNAL_ID 8337 Abietic acid, a diterpene isolated from Colophony, possesses antiproliferative, antibacterial, and anti-obesity properties. Abietic acid inhibits lipoxygenase activity for allergy treatment[1][2]. Abietic acid, a diterpene isolated from Colophony, possesses antiproliferative, antibacterial, and anti-obesity properties. Abietic acid inhibits lipoxygenase activity for allergy treatment[1][2].

   

Echinocystic

(4aR,5R,6aS,6bR,8aR,10S,12aR,12bR,14bS)-5,10-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552)


Echinocystic acid is a triterpenoid. Echinocystic acid is a natural product found in Cucurbita foetidissima, Eclipta alba, and other organisms with data available. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties.

   

Genistin

5-hydroxy-3-(4-hydroxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one

C21H20O10 (432.1056)


Genistein 7-O-beta-D-glucoside is a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a genistein. It is a conjugate acid of a genistein 7-O-beta-D-glucoside(1-). Genistin is a natural product found in Ficus septica, Dalbergia sissoo, and other organisms with data available. Genistin is found in fruits. Genistin is present in soy foods. Potential nutriceutical. It is isolated from Prunus avium (wild cherry) Genistin is one of several known isoflavones. Genistin is found in a number of plants and herbs like soy Present in soy foods. Potential nutriceutical. Isolated from Prunus avium (wild cherry) Genistin (Genistine), an isoflavone belonging to the phytoestrogen family, is a potent anti-adipogenic and anti-lipogenic agent. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway[1][2][3]. Genistin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=529-59-9 (retrieved 2024-11-05) (CAS RN: 529-59-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Germacrone

3,7-Cyclodecadien-1-one, 3,7-dimethyl-10-(1-methylethylidene)-, (E,E)-

C15H22O (218.1671)


(E,E)-germacrone is a germacrane sesquiterpenoid that has formula C15H22O. It is a natural product found in traditional medicinal plants of the family Zingiberaceae. The compound exhibits a range of pharmacological activities including anti-inflammatory, anticancer, antiviral, anti-androgenic, antioxidant, antimicrobial, antifungal, neuroprotective and insecticidal activities. It has a role as a volatile oil component, an antiviral agent, an insecticide, an anti-inflammatory agent, an antioxidant, an antineoplastic agent, an apoptosis inducer, an autophagy inducer, an antimicrobial agent, an androgen antagonist, a neuroprotective agent, a plant metabolite, an antifungal agent, an antitussive, an antifeedant and a hepatoprotective agent. It is a germacrane sesquiterpenoid and an olefinic compound. Germacrone is a natural product found in Rhododendron calostrotum, Rhododendron nivale, and other organisms with data available. A germacrane sesquiterpenoid that has formula C15H22O. It is a natural product found in traditional medicinal plants of the family Zingiberaceae. The compound exhibits a range of pharmacological activities including anti-inflammatory, anticancer, antiviral, anti-androgenic, antioxidant, antimicrobial, antifungal, neuroprotective and insecticidal activities. Germacrone is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrone is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Germacrone can be found in common thyme and turmeric, which makes germacrone a potential biomarker for the consumption of these food products. Germacrone is an antiviral isolate of Geranium macrorrhizum . Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1]. Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1].

   

Fucoxanthin

(3S,3′S,5R,5′R,6S,6′R)-3′-(Acetyloxy)-6′,7′-didehydro-5,6-epoxy-5,5′,6,6′,7,8-hexahydro-3,5′-dihydroxy-8-oxo-β,β-carotene

C42H58O6 (658.4233)


Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes. Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available. Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia [HMDB] Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3351-86-8 (retrieved 2024-11-06) (CAS RN: 3351-86-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Geraniin

.beta.-D-Glucopyranose, cyclic 2.fwdarw.7:4.fwdarw.5-(3,6-dihydro-2,9,10,11,11-pentahydroxy-3-oxo-2,6-methano-2H-1-benzoxocin-5,7-dicarboxylate)cyclic 3,6-(4,4,5,5,6,6-hexahydroxy[1,1-biphenyl]-2,2-dicarboxylate) 1-(3,4,5-trihydroxybenzoate), stereoisomer

C41H28O27 (952.0818)


Geraniin is a tannin. Geraniin is a natural product found in Euphorbia makinoi, Macaranga tanarius, and other organisms with data available. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM.

   

Lupenone

(1S,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,3a,4,5,5a,5b,6,7,7a,8,11a,11b,12,13,13a,13b-octadecahydro-9H-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Decursin

CROTONIC ACID, 3-METHYL-, ESTER WITH 7,8-DIHYDRO-7-HYDROXY-8,8-DIMETHYL-2H,6H-BENZO(1,2-B:5,4-B)DIPYRAN-2-ONE, (+)-

C19H20O5 (328.1311)


Decursin is a member of coumarins. Decursin is a natural product found in Scutellaria lateriflora, Angelica glauca, and other organisms with data available. See also: Angelica gigas root (part of). D020536 - Enzyme Activators Decursinol angelate is a natural product found in Angelica glauca and Angelica gigas with data available. See also: Angelica gigas root (part of). Decursin ((+)-Decursin) is a potent anti-tumor agent. Decursin also is a cytotoxic agent and a potent protein kinase C activator. Decursin induces apoptosis and cell cycle arrest at G1 phase. Decursin decreases the expression of CDK2, CDK4, CDK6, cyclin D1 protein at 48 h. Decursin inhibits cell proliferation and migration. Decursin shows anti-tumor, anti-inflammatory and analgesic activities[1][2][3][4]. Decursin ((+)-Decursin) is a potent anti-tumor agent. Decursin also is a cytotoxic agent and a potent protein kinase C activator. Decursin induces apoptosis and cell cycle arrest at G1 phase. Decursin decreases the expression of CDK2, CDK4, CDK6, cyclin D1 protein at 48 h. Decursin inhibits cell proliferation and migration. Decursin shows anti-tumor, anti-inflammatory and analgesic activities[1][2][3][4]. Decursinol angelate, a cytotoxic and protein kinase C (PKC) activating agent from the root of Angelica gigas, possesses anti-tumor and anti-inflammatory activities[1][2].

   

Verbenalin

Methyl (1S,4aS,7S,7aR)-7-methyl-5-oxo-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylate

C17H24O10 (388.1369)


Verbenalin, also known as cornin (glycoside) or cornin iridoid, is a member of the class of compounds known as iridoid o-glycosides. Iridoid o-glycosides are iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton. Thus, verbenalin is considered to be an isoprenoid lipid molecule. Verbenalin is soluble (in water) and a very weakly acidic compound (based on its pKa). Verbenalin is a bitter tasting compound found in common verbena, which makes verbenalin a potential biomarker for the consumption of this food product. Verbenalin is a chemical compound, classified as an iridoid glucoside, that is found in Verbena officinalis. It is one of the sleep-promoting (soporific) components in Verbena officinalis . Verbenalin is a terpene glycoside. Verbenalin is a natural product found in Symplocos glauca, Cornus kousa, and other organisms with data available. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2]. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2].

   

Loganic_acid

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid

C16H24O10 (376.1369)


Loganic acid is a cyclopentapyran that is 1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid substituted at positions 1, 6 and 7 by beta-D-glucosyloxy, hydroxy and methyl groups respectively It has a role as a plant metabolite. It is a cyclopentapyran, an alpha,beta-unsaturated monocarboxylic acid and a glucoside. It is a conjugate acid of a loganate. Loganic acid is a natural product found in Strychnos axillaris, Strychnos cocculoides, and other organisms with data available. A cyclopentapyran that is 1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid substituted at positions 1, 6 and 7 by beta-D-glucosyloxy, hydroxy and methyl groups respectively KEIO_ID L043 Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].

   

Kaempferol_3-O-rutinoside

5,7-Dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C27H30O15 (594.1585)


Kaempferol-3-rutinoside is a kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. It has a role as a metabolite, a radical scavenger and a plant metabolite. It is a rutinoside, a trihydroxyflavone, a disaccharide derivative and a kaempferol O-glucoside. Nicotiflorin is a natural product found in Visnea mocanera, Eupatorium cannabinum, and other organisms with data available. See also: Cocoa (part of). A kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Narirutin

(S)-5-hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O14 (580.1792)


Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). obtained from Camellia sinensis (tea). Narirutin is found in many foods, some of which are lemon, globe artichoke, grapefruit, and grapefruit/pummelo hybrid. Narirutin is found in globe artichoke. Narirutin is obtained from Camellia sinensis (tea Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].

   

p-Synephrine

alpha-(4-Oxyphenyl)alpha-oxy-beta-methylaminoaethan [German]

C9H13NO2 (167.0946)


Synephrine is a phenethylamine alkaloid that is 4-(2-aminoethyl)phenol substituted by a hydroxy group at position 1 and a methyl group at the amino nitrogen. It has a role as a plant metabolite and an alpha-adrenergic agonist. It is a phenethylamine alkaloid, a member of phenols and a member of ethanolamines. It is a conjugate base of a synephrinium. Synephrine, also referred to as, p-synephrine, is naturally occurring alkaloid. It is present in approved drug products as neo-synephrine, its m-substituted analog. p-synephrine and m-synephrine are known for their longer acting adrenergic effects compared to norepinephrine. The similarity of naming between m-synephrine and the unsubstituted form, synephrine, is a source of some confusion however m-synephrine refers to a related drug more commonly known as phenylephrine. While the compounds share some chemical and pharmacological similarities, they are in fact distinct chemical entities. Synephrine is a natural product found in Citrus medica, Ephedra sinica, and other organisms with data available. Sympathetic alpha-adrenergic agonist with actions like PHENYLEPHRINE. It is used as a vasoconstrictor in circulatory failure, asthma, nasal congestion, and glaucoma. Synephrine (or oxedrine) is a drug commonly used for weight loss. While its effectiveness is widely debated, synephrine has gained significant popularity as an alternative to ephedrine, a related substance which has been made illegal or restricted in many countries due to its use as a precursor in the illicit manufacture of methamphetamine. Products containing bitter orange or synephrine: suspected cardiovascular adverse reactions [citation needed]. Synephrine is derived primarily from the fruit of Citrus aurantium, a relatively small citrus tree, of which several of its more common names include Bitter Orange, Sour Orange, and Zhi shi.; There has been some confusion surrounding synephrine and phenylephrine (neosynephrine), one of its positional isomers. The chemicals are similar in structure; the only difference is the location of the aromatic hydroxyl group. In synephrine, the hydroxyl is at the para position, whereas, in neosynephrine, it is at the meta position. Each compound has differing biological properties.; p-Synephrine is an endogenous amine in plasma, in variable levels with a tendency to be higher in hypertensive patients (PMID 8255371). C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents A phenethylamine alkaloid that is 4-(2-aminoethyl)phenol substituted by a hydroxy group at position 1 and a methyl group at the amino nitrogen. p-Synephrine is an endogenous amine in plasma, in variable levels with a tendency to be higher in hypertensive patients (PMID 8255371). 辛弗林(Synephrine),又称为辛弗林碱或对羟福林,是一种生物碱,化学结构与肾上腺素类似。它在中药中是一种重要的活性成分,尤其在某些温热性中药中含量较高,如麻黄(Ephedra sinica)。 在中医中,辛弗林具有发汗解表、宣肺平喘、利水消肿等功效,常用于治疗感冒、哮喘、风水浮肿等症状。此外,辛弗林作为一种强效的α-受体激动剂和较弱的β-受体激动剂,也具有一定的减肥和增强代谢的效果,因此在一些减肥补充剂中也有应用。 p-Synephrine is an organic compound, found in multiple biofluids, such as urine and blood. p-Synephrine is an organic compound, found in multiple biofluids, such as urine and blood. Synephrine (Oxedrine), an alkaloid, is an α-adrenergic and β-adrenergic agonist derived from the Citrus aurantium. Synephrine is a sympathomimetic compound and can be used for weight loss[1][2]. Synephrine (Oxedrine), an alkaloid, is an α-adrenergic and β-adrenergic agonist derived from the Citrus aurantium. Synephrine is a sympathomimetic compound and can be used for weight loss[1][2]. Synephrine (Oxedrine), an alkaloid, is an α-adrenergic and β-adrenergic agonist derived from the Citrus aurantium. Synephrine is a sympathomimetic compound and can be used for weight loss[1][2].

   

Apiin

7-(((2S,3R,4S,5S,6R)-3-(((2S,3R,4R)-3,4-Dihydroxy-4-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C26H28O14 (564.1479)


Apiin is a beta-D-glucoside having a beta-D-apiosyl residue at the 2-position and a 5,4-dihydroxyflavon-7-yl moiety at the anomeric position. It has a role as an EC 3.2.1.18 (exo-alpha-sialidase) inhibitor and a plant metabolite. It is a beta-D-glucoside, a dihydroxyflavone and a glycosyloxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an apiin(1-). Apiin is a natural product found in Crotalaria micans, Limonium axillare, and other organisms with data available. See also: Chamomile (part of); Chamaemelum nobile flower (part of). Apiin is found in celery leaves. Apiin is a constituent of parsley (Petroselinum crispum) and of the flowers of Anthemis nobilis (Roman chamomile). First isolated in 1843 Apiin is a chemical compound isolated from parsley and celery Constituent of parsley (Petroselinum crispum) and of the flowers of Anthemis nobilis (Roman chamomile). First isol. in 1843 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2350 Apiin, a major constituent of Apium graveolens leaves with anti-inflammatory properties. Apiin shows significant inhibitory activity on nitrite (NO) production (IC50 = 0.08 mg/mL) in-vitro and iNOS expression (IC50 = 0.049 mg/ mL) in LPS-activated J774.A1 cells[1]. Apiin, a major constituent of Apium graveolens leaves with anti-inflammatory properties. Apiin shows significant inhibitory activity on nitrite (NO) production (IC50 = 0.08 mg/mL) in-vitro and iNOS expression (IC50 = 0.049 mg/ mL) in LPS-activated J774.A1 cells[1].

   

Cosmosiin

5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one;Apigenin 7-Glucoside

C21H20O10 (432.1056)


Cosmosiin, also known as apigenin 7-O-glucoside or apigetrin, is a member of the class of compounds known as flavonoid-7-O-glycosides. Flavonoid-7-O-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Cosmosiin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cosmosiin can be found in a number of food items, such as common thyme, white lupine, common oregano, and orange mint. Cosmosiin can also be found in dandelion coffee and in Teucrium gnaphalodes (Wikipedia). Cosmosiin can also be found plants such as wild celery and anise. Cosmosiin has been shown to exhibit anti-platelet function (PMID: 21834233). Apigenin 7-O-beta-D-glucoside is a glycosyloxyflavone that is apigenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a non-steroidal anti-inflammatory drug, a metabolite and an antibacterial agent. It is a beta-D-glucoside, a dihydroxyflavone, a glycosyloxyflavone and a monosaccharide derivative. It is functionally related to an apigenin. It is a conjugate acid of an apigenin 7-O-beta-D-glucoside(1-). It is an enantiomer of an apigenin 7-O-beta-L-glucoside. Cosmosiin is a natural product found in Galeopsis tetrahit, Carex fraseriana, and other organisms with data available. See also: Chamomile (part of). Apiumetrin, also known as 7-O-beta-D-glucosyl-5,7,4-trihydroxyflavone or cosmosiin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apiumetrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Apiumetrin can be found in wild celery, which makes apiumetrin a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Annotation level-1 Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].

   

Gingerol

3-Decanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (5S)-, 5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone

C17H26O4 (294.1831)


Gingerol is a beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. It has a role as an antineoplastic agent and a plant metabolite. It is a beta-hydroxy ketone and a member of guaiacols. Gingerol is a natural product found in Illicium verum, Piper nigrum, and other organisms with data available. See also: Ginger (part of). Gingerol, a plant polyphenol, is the active constituent of fresh ginger. Chemically, gingerol is a relative of capsaicin, the compound that gives chile peppers their spiciness. It is normally found as a pungent yellow oil, but also can form a low-melting crystalline solid. Constituent of ginger Zingiber officinale. (S)-[6]-Gingerol is found in many foods, some of which are caraway, star anise, cumin, and ginger. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.

   

Artemisinic

1-NAPHTHALENEACETIC ACID, 1,2,3,4,4A,5,6,8A-OCTAHYDRO-4,7-DIMETHYL-.ALPHA.-METHYLENE-, (1R-(1.ALPHA.,4.BETA.,4A.BETA.,8A.BETA.))-

C15H22O2 (234.162)


(+)-artemisinic acid is a monocarboxylic acid that is prop-2-enoic acid which is substituted at position 2 by a 4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl group (the 1S,4R,4aS,8aR diastereoisomer). It is a sesquiterpenoid precursor of artemisinin, obtained from sweet wormwood, Artemisia annua. It has a role as a metabolite. It is a monocarboxylic acid, a carbobicyclic compound, a sesquiterpenoid and a member of octahydronaphthalenes. It is functionally related to a (+)-artemisinic alcohol. It is a conjugate acid of a (+)-artemisinate. Artemisinic acid is a natural product found in Artemisia apiacea, Artemisia annua, and other organisms with data available. A monocarboxylic acid that is prop-2-enoic acid which is substituted at position 2 by a 4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl group (the 1S,4R,4aS,8aR diastereoisomer). It is a sesquiterpenoid precursor of artemisinin, obtained from sweet wormwood, Artemisia annua. D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides Artemisinic acid (Qing Hao acid), an amorphane sesquiterpene isolated from Artemisia annua L., possesses a variety of pharmacological activity, such as antimalarial activity, anti-tumor activity, antipyretic effect, antibacterial activity, allelopathy effect and anti-adipogenesis effect[1]. Artemisinic acid (Qing Hao acid), an amorphane sesquiterpene isolated from Artemisia annua L., possesses a variety of pharmacological activity, such as antimalarial activity, anti-tumor activity, antipyretic effect, antibacterial activity, allelopathy effect and anti-adipogenesis effect[1].

   

Vitexin 6'-O-malonyl 2'-O-xyloside

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


Vitexin 6-o-malonyl 2-o-xyloside, also known as apigenin 8-C-glucoside or 8-glycosyl-apigenin, is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin 6-o-malonyl 2-o-xyloside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vitexin 6-o-malonyl 2-o-xyloside can be synthesized from apigenin. Vitexin 6-o-malonyl 2-o-xyloside is also a parent compound for other transformation products, including but not limited to, vitexin 2-O-beta-L-rhamnoside, 7-O-methylvitexin 2-O-beta-L-rhamnoside, and vitexin 2-O-beta-D-glucoside. Vitexin 6-o-malonyl 2-o-xyloside can be found in common beet, which makes vitexin 6-o-malonyl 2-o-xyloside a potential biomarker for the consumption of this food product. Vitexin, also known as apigenin 8-C-glucoside or 8-glycosylapigenin, belongs to the class of organic compounds known as flavonoid 8-C-glycosides. Flavonoid 8-C-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin is also described as an apigenin flavone glucoside. Vitexin has been found in passion flower, chasteberry, bamboo leaves, millet and Hawthorn. Vitexin has shown a wide range of pharmacological effects, such as antioxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects (PMID: 27693342). Vitexin has also been shown to directly inhibit thyroid peroxidase and potentially contributes to goiter (PMID: 1696490). It is sometimes called a goitrogen. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA68_Vitexin_neg_10eV.txt [Raw Data] CBA68_Vitexin_neg_30eV.txt [Raw Data] CBA68_Vitexin_pos_20eV.txt [Raw Data] CBA68_Vitexin_neg_50eV.txt [Raw Data] CBA68_Vitexin_neg_40eV.txt [Raw Data] CBA68_Vitexin_pos_40eV.txt [Raw Data] CBA68_Vitexin_pos_30eV.txt [Raw Data] CBA68_Vitexin_pos_10eV.txt [Raw Data] CBA68_Vitexin_neg_20eV.txt Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Alliin

2-Amino-3-(prop-2-ene-1-sulphinyl)propanoic acid

C6H11NO3S (177.046)


Alliin /ˈæli.ɪn/ is a sulfoxide that is a natural constituent of fresh garlic.[1] It is a derivative of the amino acid cysteine. When fresh garlic is chopped or crushed, the enzyme alliinase converts alliin into allicin, which is responsible for the aroma of fresh garlic. Allicin and other thiosulfinates in garlic are unstable and form a number of other compounds, such as diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DAT), dithiins and ajoene.[2] Garlic powder is not a source of alliin, nor is fresh garlic upon maceration, since the enzymatic conversion to allicin takes place in the order of seconds. Alliin was the first natural product found to have both carbon- and sulfur-centered stereochemistry.[3] Constituent of garlic oil (Allium sativum), also from ramsons (Allium ursinum). (R)C(S)S-Alliin is found in garden onion, garlic, and onion-family vegetables. (R)C(S)S-Alliin is found in garden onion. (R)C(S)S-Alliin is a constituent of garlic oil (Allium sativum), also from ramsons (Allium ursinum). Alliin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=556-27-4 (retrieved 2024-07-01) (CAS RN: 556-27-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].

   

Poncirin

(2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-methoxyphenyl)chroman-4-one

C28H34O14 (594.1948)


(2S)-poncirin is a flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. It has a role as a plant metabolite. It is a monomethoxyflavanone, a flavanone glycoside, a disaccharide derivative, a neohesperidoside and a member of 4-methoxyflavanones. It is functionally related to a 4-methoxy-5,7-dihydroxyflavanone. Poncirin is a natural product found in Citrus medica, Micromeria graeca, and other organisms with data available. Isolated from Citrus subspecies Poncirin is found in many foods, some of which are citrus, grapefruit, lemon, and grapefruit/pummelo hybrid. Acquisition and generation of the data is financially supported in part by CREST/JST. Poncirin is found in citrus. Poncirin is isolated from Citrus specie Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1]. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1].

   

Scopolin

6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-2-one

C16H18O9 (354.0951)


Scopolin is a member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of coumarins and a beta-D-glucoside. It is functionally related to a scopoletin. Scopolin is a natural product found in Artemisia ordosica, Astragalus onobrychis, and other organisms with data available. See also: Chamaemelum nobile flower (part of). A member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].

   

Cytidine

4-amino-1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

C9H13N3O5 (243.0855)


Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as a substrate for the salvage pathway of pyrimidine nucleotide synthesis. It is a precursor of cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathways. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transport of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in the brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP:phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. APOBEC is a family of enzymes that has been discovered with the ability to deaminate cytidines on RNA or DNA. The human apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G protein (APOBEC3G, or hA3G), provides cells with an intracellular antiretroviral activity that is associated with the hypermutation of viral DNA through cytidine deamination. Indeed, hA3G belongs to a family of vertebrate proteins that contains one or two copies of a signature sequence motif unique to cytidine deaminases (CTDAs) (PMID: 16769123, 15780864, 16720547). Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as substrate for the salvage pathway of pyrimidine nucleotide synthesis; as precursor of the cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathway. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transports of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide, which is involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP: phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. Cytidine is a white crystalline powder. (NTP, 1992) Cytidine is a pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a cytosine. Cytidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cytidine is a natural product found in Fritillaria thunbergii, Castanopsis fissa, and other organisms with data available. Cytidine is a pyrimidine nucleoside comprised of a cytosine bound to ribose via a beta-N1-glycosidic bond. Cytidine is a precursor for uridine. Both cytidine and uridine are utilized in RNA synthesis. Cytidine is a metabolite found in or produced by Saccharomyces cerevisiae. A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE. A pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].

   

Platycodin_D

Olean-12-en-28-oic acid, 3-(beta-D-glucopyranosyloxy)-2,16,23,24-tetrahydroxy-, O-D-apio-beta-D-furanosyl-(1-3)-O-beta-D-xylopyranosyl-(1-4)-O-6-deoxy-alpha-L-mannopyranosyl-(1-2)-L-arabinopyranosyl ester, (2beta,3beta,16alpha)-

C57H92O28 (1224.5775)


Platycodin D is a triterpenoid saponin. It has a role as a metabolite. Platycodin D is a natural product found in Platycodon grandiflorus with data available. A natural product found in Platycodon grandiflorum. Platycodin D is a saponin isolated from Platycodon grandiflorus, acts as an activator of AMPKα, with anti-obesity property. WNT/β-catenin pathway mediates the anti-adipogenic effect of platycodin D[1][2]. Platycodin D is a saponin isolated from Platycodon grandiflorus, acts as an activator of AMPKα, with anti-obesity property. WNT/β-catenin pathway mediates the anti-adipogenic effect of platycodin D[1][2]. Platycodin D is a saponin isolated from Platycodon grandiflorus, acts as an activator of AMPKα, with anti-obesity property. WNT/β-catenin pathway mediates the anti-adipogenic effect of platycodin D[1][2].

   

demethylsuberosin

2H-1-Benzopyran-2-one, 7-hydroxy-6-(3-methyl-2-buten-1-yl)-

C14H14O3 (230.0943)


Demethylsuberosin, also known as 7-hydroxy-6-prenylcoumarin or 7-hydroxy-6-prenyl-1-benzopyran-2-one, is a member of the class of compounds known as 7-hydroxycoumarins. 7-hydroxycoumarins are coumarins that contain one or more hydroxyl groups attached to the C7 position the coumarin skeleton. Demethylsuberosin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Demethylsuberosin can be found in a number of food items such as rice, apple, black radish, and cloudberry, which makes demethylsuberosin a potential biomarker for the consumption of these food products. 7-demethylsuberosin is a hydroxycoumarin that is 7-hydroxycoumarin which is substituted at position 6 by a 3-methylbut-2-en-1-yl group. A natural product found in Citropsis articulata. It has a role as a plant metabolite. Demethylsuberosin is a natural product found in Prangos tschimganica, Limonia acidissima, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Demethylsuberosin (7-Demethylsuberosin) is a coumarin compound isolated from Angelica gigas Nakai, and has anti-inflammatory activity[1]. Demethylsuberosin (7-Demethylsuberosin) is a coumarin compound isolated from Angelica gigas Nakai, and has anti-inflammatory activity[1].

   

Shikonin

5,8-dihydroxy-2-[(1R)-1-hydroxy-4-methylpent-3-en-1-yl]-1,4-dihydronaphthalene-1,4-dione

C16H16O5 (288.0998)


Shikonin is a hydroxy-1,4-naphthoquinone. Shikonin is a natural product found in Echium plantagineum, Arnebia hispidissima, and other organisms with data available. See also: Arnebia guttata root (part of); Arnebia euchroma root (part of); Lithospermum erythrorhizon root (part of). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7].

   

Phellopterin

4-methoxy-9-[(3-methylbut-2-en-1-yl)oxy]-7H-furo[3,2-g]chromen-7-one

C17H16O5 (300.0998)


Phellopterin is a member of the class of compounds known as 5-methoxypsoralens. 5-methoxypsoralens are psoralens containing a methoxy group attached at the C5 position of the psoralen group. Phellopterin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Phellopterin can be found in lemon, lime, and wild celery, which makes phellopterin a potential biomarker for the consumption of these food products. Phellopterin is a non-carcinogenic (not listed by IARC) potentially toxic compound. The furocoumarin 8-methoxypsoralen is carcinogenic to humans, and possibly 5-methoxypsoralen as well (L135). There is some evidence from mouse studies that other furocoumarins are carcinogenic when combined with exposure to UVA radiation (A15105). The SKLM regards the additional risk of skin cancer arising from the consumption of typical quantities of furocoumarin-containing foods, which remain significantly below the range of phototoxic doses, as insignificant. However, the consumption of phototoxic quantities cannot be ruled out for certain foods, particularly celery and parsnips, that may lead to significant increases in furocoumarin concentrations, depending on the storage, processing and production conditions (L2157) Furocoumarin photochemotherapy is known to induce a number of side-effects including erythema, edema, hyperpigmentation, and premature aging of skin. All photobiological effects of furocoumarins result from their photochemical reactions. Because many dietary or water soluble furocoumarins are strong inhibitors of cytochrome P450s, they will also cause adverse drug reactions when taken with other drugs. It activates adrenaline-induced lipolysis and activate ACTH-induced lipolysis (L579) (T3DB). Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1]. Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1]. Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1].

   

(S)-[10]-Gingerol

3-Tetradecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (5S)-

C21H34O4 (350.2457)


(10)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (10)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). (S)-[10]-Gingerol is found in ginger. (S)-[10]-Gingerol is a constituent of ginger, the rhizome of Zingiber officinale. Constituent of ginger, the rhizome of Zingiber officinale. (S)-[10]-Gingerol is found in herbs and spices and ginger. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2]. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2].

   

Isofucosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((R,E)-5-Isopropylhept-5-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Isofucosterol, also known as delta5-avenasterol, is a phytosterol. Phytosterols, or plant sterols, are compounds that occur naturally and bear a close structural resemblance to cholesterol but have different side-chain configurations. Phytosterols are relevant in pharmaceuticals (production of therapeutic steroids), nutrition (anti-cholesterol additives in functional foods, anti-cancer properties), and cosmetics (creams, lipstick). Phytosterols can be obtained from vegetable oils or from industrial wastes, which gives an added value to the latter. Considerable efforts have been recently dedicated to the development of efficient processes for phytosterol isolation from natural sources. The present work aims to summarize information on the applications of phytosterols and to review recent approaches, mainly from the industry, for the large-scale recovery of phytosterols (PMID: 17123816, 16481154). Isofucosterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Isofucosterol, also known as (24z)-stigmasta-5,24(28)-dien-3-ol or delta5-avenasterol, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, isofucosterol is considered to be a sterol lipid molecule. Isofucosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Isofucosterol can be found in a number of food items such as globe artichoke, gooseberry, deerberry, and ucuhuba, which makes isofucosterol a potential biomarker for the consumption of these food products. Isofucosterol can be found primarily in blood. Moreover, isofucosterol is found to be associated with sitosterolemia. Isofucosterol is a 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. It has a role as an animal metabolite, a plant metabolite, an algal metabolite and a marine metabolite. It is a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Fucosterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research. Isofucosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=481-14-1 (retrieved 2024-10-08) (CAS RN: 481-14-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. Acquisition and generation of the data is financially supported in part by CREST/JST. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

Astragaloside I

[(2S,3R,4S,5R)-3-acetyloxy-5-hydroxy-2-[[(1S,3R,6S,8R,9S,11S,12S,14S,15R,16R)-14-hydroxy-15-[(2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-pentacyclo[9.7.0.01,3.03,8.012,16]octadecanyl]oxy]oxan-4-yl] acetate

C45H72O16 (868.482)


Astragaloside I is a triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2,3-di-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. It has a role as a plant metabolite. It is a triterpenoid saponin, a monosaccharide derivative, a beta-D-glucoside, a member of oxolanes and a pentacyclic triterpenoid. It is functionally related to a cycloastragenol. Astrasieversianin IV is a natural product found in Astragalus hoantchy, Astragalus lehmannianus, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2,3-di-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. Astragaloside I, one of the main active ingredients in Astragalus membranaceus, has osteogenic properties. Astragaloside I stimulates osteoblast differentiation through the Wnt/β-catenin signaling pathway[1]. Astragaloside I, one of the main active ingredients in Astragalus membranaceus, has osteogenic properties. Astragaloside I stimulates osteoblast differentiation through the Wnt/β-catenin signaling pathway[1].

   

Tannic acid

(2R,3R,4S,5R,6S)-4,5,6-tris({3,4-dihydroxy-5-[(3,4,5-trihydroxyphenyl)carbonyloxy]phenyl}carbonyloxy)-2-[({3,4-dihydroxy-5-[(3,4,5-trihydroxyphenyl)carbonyloxy]phenyl}carbonyloxy)methyl]oxan-3-yl 3,4-dihydroxy-5-[(3,4,5-trihydroxyphenyl)carbonyloxy]benzoate

C76H52O46 (1700.173)


A gallotannin obtained by acylation of the five hydroxy groups of D-glucose by 3,4-dihydroxy-5-[(3,4,5-trihydroxybenzoyl)oxy]benzoic acid (a gallic acid dimer). Same as: D01959 Tannic acid is a light yellow to tan solid with a faint odor. Sinks and mixes with water. (USCG, 1999) Chinese gallotannin is a tannin. Tannic acid is a natural product found in Achillea millefolium, Calluna vulgaris, and other organisms with data available. Tannic acid is a novel hERG channel blocker with IC50 of 3.4 μM. Tannic acid is a novel hERG channel blocker with IC50 of 3.4 μM.

   

Trigonelline (N'-methylnicotinate)

Pyridinium, 3-carboxy-1-methyl-, hydroxide, inner salt

C7H7NO2 (137.0477)


Trigonelline, also known as caffearin or gynesine, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. It is also found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. High amounts of trigonelline have been found in arabica coffee, fenugreeks, and common peas. Another foods such as yellow bell peppers, orange bellpeppers and muskmelons also contain trigonelline but in lower concentrations. Trigonelline has also been detected but not quantified in several different foods, such as rices, triticales, alfalfa, cereals and cereal products, and ryes. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. Alkaloid from fenugreek (Trigonella foenum-graecum) (Leguminosae), and very many other subspecies; also present in coffee beans and many animals. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. It is found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth.; Trigonelline is an alkaloid with chemical formula C7H7NO2. It is an inner salt formed by the addition of a methyl group to the nitrogen atom of niacin. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. N-methylnicotinate is an iminium betaine that is the conjugate base of N-methylnicotinic acid, arising from deprotonation of the carboxy group. It has a role as a plant metabolite, a food component and a human urinary metabolite. It is an iminium betaine and an alkaloid. It is functionally related to a nicotinate. It is a conjugate base of a N-methylnicotinic acid. Trigonelline is a natural product found in Hypoestes phyllostachya, Schumanniophyton magnificum, and other organisms with data available. See also: Fenugreek seed (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 52 KEIO_ID T060 Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis.

   

sulfurein

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

Prunasin

(R)-2-Phenyl-2-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)acetonitrile

C14H17NO6 (295.1056)


(R)-prunasin is a prunasin. Prunasin is a natural product found in Polypodium californicum, Chaenorhinum minus, and other organisms with data available. Prunasin is found in almond. Prunasin is isolated from kernels of Prunus species, immature fruits of Passiflora species and leaves of perilla (Perilla frutescens var. acuta) Prunasin belongs to the family of O-glycosyl Compounds. These are glycosides in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Isolated from kernels of Prunus subspecies, immature fruits of Passiflora subspecies and leaves of perilla (Perilla frutescens variety acuta). Prunasin is found in many foods, some of which are almond, sour cherry, black elderberry, and herbs and spices. Prunasin is found in almond. Prunasin is isolated from kernels of Prunus species, immature fruits of Passiflora species and leaves of perilla (Perilla frutescens var. acuta D004791 - Enzyme Inhibitors

   

Myristicin

1-Methoxy-2,3-methylenedioxy-5-(2-propenyl)benzene

C11H12O3 (192.0786)


Myristicin is an organic molecular entity. It has a role as a metabolite. Myristicin is a natural product found in Chaerophyllum azoricum, Peperomia bracteata, and other organisms with data available. Myristicin is found in anise. Myristicin is a constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicin, 3-methoxy,4,5-methylendioxy-allylbenzene, is a natural organic compound present in the essential oil of nutmeg and to a lesser extent in other spices such as parsley and dill. Myristicin is a naturally occurring insecticide and acaricide with possible neurotoxic effects on dopaminergic neurons[citation needed]. It has hallucinogenic properties at doses much higher than used in cooking. Myristicin is a weak inhibitor of monoamine oxidase.Myristicin has been shown to exhibit apoptotic and hepatoprotective functions (A7836, A7837).Myristicin belongs to the family of Benzodioxoles. These are organic compounds containing a benzene ring fused to either isomers of dioxole. Myristicin is found in anise. Myristicin is a constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicin, 3-methoxy,4,5-methylendioxy-allylbenzene, is a natural organic compound present in the essential oil of nutmeg and to a lesser extent in other spices such as parsley and dill. Myristicin is a naturally occurring insecticide and acaricide with possible neurotoxic effects on dopaminergic neurons[citation needed]. It has hallucinogenic properties at doses much higher than used in cooking. Myristicin is a weak inhibitor of monoamine oxidase Constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1].

   

Yucron

SULFONIUM, ((3S)-3-AMINO-3-CARBOXYPROPYL)DIMETHYL-, CHLORIDE (1:1)

C6H14ClNO2S (199.0434)


Methylmethionine sulfonium salt is an organic molecular entity. Methylmethionine chloride may be useful in helping the healing of gastric ulcers. In Japan, it is used as an over the counter product for gastrointestinal health support. It is also called "Vitamin U", but it is not a true vitamin. A vitamin found in green vegetables. It is used in the treatment of peptic ulcers, colitis, and gastritis and has an effect on secretory, acid-forming, and enzymatic functions of the intestinal tract. A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D018977 - Micronutrients > D014815 - Vitamins Vitamin U (S-Methylmethionine sulfonium) chloride is an orally active anti-ulcer agent with antioxidant activity. Vitamin U inhibits adipocyte differentiation. Vitamin U promotes skin wound healing.Vitamin U can be used in the research of gastrointestinal ulceration[1][2][3][4][5].

   

SAPONIN K3

(4aS,6aR,6aS,6bR,8aR,9R,10S,12aR,14bS)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C35H56O8 (604.3975)


Hederagenin 3-O-arabinoside is a triterpenoid saponin that is hederagenin attached to an alpha-L-arabinopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a triterpenoid saponin, a monosaccharide derivative, a pentacyclic triterpenoid, a hydroxy monocarboxylic acid and an alpha-L-arabinopyranoside. It is functionally related to a hederagenin. It derives from a hydride of an oleanane. Cauloside A is a natural product found in Lonicera japonica, Hedera caucasigena, and other organisms with data available. See also: Caulophyllum robustum Root (part of). A triterpenoid saponin that is hederagenin attached to an alpha-L-arabinopyranosyl residue at position 3 via a glycosidic linkage. D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors Cauloside A (Leontoside A) is a saponin isolated from Dipsacus asper roots. Cauloside A has potent antifungal activity[1][2]. Cauloside A (Leontoside A) is a saponin isolated from Dipsacus asper roots. Cauloside A has potent antifungal activity[1][2].

   

Tomentosin

2H-Cyclohepta(b)furan-2-one, 3,3a,4,7,8,8a-hexahydro-7-methyl-3-methylene-6-(3-oxobutyl)-, (3aR,7S,8aR)-

C15H20O3 (248.1412)


Tomentosin is a sesquiterpene lactone. Tomentosin is a natural product found in Apalochlamys spectabilis, Leucophyta brownii, and other organisms with data available.

   

Neriifolin

3-[(3S,5R,8R,9S,10S,13R,14S,17R)-3-[(2R,3S,4R,5S,6S)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C30H46O8 (534.3193)


Neriifolin is a cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. It has a role as a cardiotonic drug, a toxin and a neuroprotective agent. It is functionally related to a digitoxigenin. Neriifolin is a natural product found in Cerbera manghas, Cerbera odollam, and other organisms with data available. A cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides [Raw Data] CB071_Neriifolin_pos_40eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_10eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_20eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_50eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_30eV_CB000031.txt Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2. Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2.

   

(E)-methyl ester 3-phenyl-2-propenoic acid

methyl cinnamate, propenoic-3-(14)C-labeled, (E)-isomer

C10H10O2 (162.0681)


Flavouring compound [Flavornet] Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

5-Aminoimidazole-4-carboxamide

5-Aminoimidazole-4-carboxamide ribotide

C4H6N4O (126.0542)


5-Aminoimidazole-4-carboxamide is an imidazole derivative which is a metabolite of the antineoplastic agents BIC and DIC. By itself, or as the ribonucleotide, it is used as a condensation agent in the preparation of nucleosides and nucleotides. Compounded with orotic acid, it is used to treat liver diseases. -- Pubchem. An imidazole derivative which is a metabolite of the antineoplastic agents BIC and DIC. By itself, or as the ribonucleotide, it is used as a condensation agent in the preparation of nucleosides and nucleotides. Compounded with orotic acid, it is used to treat liver diseases. -- Pubchem [HMDB] KEIO_ID A136 5-Amino-3H-imidazole-4-Carboxamide (AICA) is an important precursor for the synthesis of purines in general and of the nucleobases adenine and guanine in particular.

   

Aconitate [cis or trans]

(1Z)-prop-1-ene-1,2,3-tricarboxylic acid

C6H6O6 (174.0164)


cis-Aconitic acid is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. The enzyme aconitase (aconitate hydratase; EC 4.2.1.3) catalyses the stereo-specific isomerization of citrate to isocitrate via cis-aconitate in the tricarboxylic acid cycle. Present in apple fruits, maple syrup and passion fruit juice cis-Aconitic acid, also known as (Z)-aconitic acid, plays several important biological roles: Intermediate in the Citric Acid Cycle: cis-Aconitic acid is an intermediate in the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle or citric acid cycle. It is formed from citrate by the enzyme aconitase and is rapidly converted into isocitrate, another key intermediate in the cycle. The TCA cycle is central to cellular respiration, generating energy-rich molecules like NADH and FADH2. Regulation of Aconitase Activity: The conversion of citrate to cis-aconitate and then to isocitrate by aconitase is an important regulatory step in the TCA cycle. This conversion helps in maintaining the balance of the cycle and is influenced by factors like the energy status of the cell. Role in Cholesterol Synthesis: cis-Aconitic acid is also involved in the synthesis of cholesterol. It serves as a precursor for the synthesis of mevalonate, a key intermediate in the cholesterol biosynthesis pathway. Potential Involvement in Disease: Altered metabolism or accumulation of cis-aconitic acid has been associated with certain diseases, including neurodegenerative disorders and cancer. Its role in these conditions is an area of ongoing research. Plant Growth and Development: In plants, cis-aconitic acid has been found to play a role in growth and development, including seed germination and leaf senescence. In summary, cis-aconitic acid is a crucial intermediate in the TCA cycle, impacting energy production and various metabolic pathways in cells. Its role extends to cholesterol synthesis and potentially to various disease processes, highlighting its importance in cellular metabolism and physiology. cis-Aconitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=585-84-2 (retrieved 2024-07-01) (CAS RN: 585-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.

   

Glycitein

7-Hydroxy-3-(4-hydroxyphenyl)-6-methoxy-4H-1-benzopyran-4-one

C16H12O5 (284.0685)


Glycitein is a methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 7 and 4. It has been isolated from the mycelia of the fungus Cordyceps sinensis. It has a role as a plant metabolite, a phytoestrogen and a fungal metabolite. It is a methoxyisoflavone and a 7-hydroxyisoflavone. It is functionally related to an isoflavone. Glycitein is a natural product found in Psidium guajava, Ammopiptanthus mongolicus, and other organisms with data available. Glycitein is a soy isoflavone. It is a minor component in most soy products. Its role of reducing low-density lipoprotein cholesterol is not clear. Glycitein is metabolized by human gut microorganisms and may follow metabolic pathways similar to other soy isoflavones (PMID: 12011578; 16248547). Glycitein is a biomarker for the consumption of soy beans and other soy products. Isoflavone present in soya foods (inc. tofu, miso); potential nutriceutical [DFC]. Glycitein is a biomarker for the consumption of soy beans and other soy products. Glycitein is found in many foods, some of which are miso, soy bean, soy milk, and soy sauce. A methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 7 and 4. It has been isolated from the mycelia of the fungus Cordyceps sinensis. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitein is a soy isoflavone used to study apoptosis and antioxidant. Glycitein is a soy isoflavone used to study apoptosis and antioxidant.

   

L-Histidinol

(2S)-2-amino-3-(1H-imidazol-5-yl)propan-1-ol

C6H11N3O (141.0902)


L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumour cells of animal origin (PMID:8297120). L-Histidinol inhibits human myristoyl-CoA:protein-myristoyltransferase (hNMT), an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate into the NH2-terminal glycine residue of a number of important proteins of diverse function (PMID:9778369). L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumor cells of animal origin. (PMID 8297120)

   

Parathion

p-Nitrophenol O-ester with O,O-diethylphosphorothioic acid

C10H14NO5PS (291.033)


Parathion is a highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors A highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. [HMDB] C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Ephedrine

(1R,2S)-1-Phenyl-1-hydroxy-2-methylaminopropane

C10H15NO (165.1154)


Ephedrine is only found in individuals who have consumed this drug. Ephedrine is an alpha- and beta-adrenergic agonist that may also enhance release of norepinephrine. It has been used in the treatment of several disorders including asthma, heart failure, rhinitis, and urinary incontinence, and for its central nervous system stimulatory effects in the treatment of narcolepsy and depression. It has become less extensively used with the advent of more selective agonists. [PubChem] Ephedrine is similar in molecular structure to the well-known drugs phenylpropanolamine and methamphetamine, as well as to the important neurotransmitter epinephrine (adrenalin). Chemically, it is an alkaloid with a phenethylamine skeleton found in various plants in the genus Ephedra (family Ephedraceae). It works mainly by increasing the activity of norepinephrine (noradrenalin) on adrenergic receptors. It is most usually marketed as the hydrochloride or sulfate salt. R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CA - Alpha- and beta-adrenoreceptor agonists R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FB - Sympathomimetics excl. antiglaucoma preparations D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2758

   

Palmitoleic acid

cis-Delta(9)-Hexadecenoic acid

C16H30O2 (254.2246)


Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as mixed nuts, carrot, hedge mustard, and chanterelle, which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. Palmitoleic acid, or (9Z)-hexadec-9-enoic acid, is an omega-7 monounsaturated fatty acid (16:1n-7) with the formula CH3(CH2)5CH=CH(CH2)7COOH that is a common constituent of the glycerides of human adipose tissue. Present in all tissues, it is generally found in higher concentrations in the liver. Macadamia oil (Macadamia integrifolia) and sea buckthorn oil (Hippophae rhamnoides) are botanical sources of palmitoleic acid, containing 22 and 40\\\\\% respectively. Palmitoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Palmitoleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=373-49-9 (retrieved 2024-07-15) (CAS RN: 373-49-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

Dibutyl succinate

2,4-Dinitrofluorobenzene Sulfonic Acid

C12H22O4 (230.1518)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents

   

3-Isobutyl-1-methylxanthine

1-methyl-3-(2-methylpropyl)-2,3,6,9-tetrahydro-1H-purine-2,6-dione

C10H14N4O2 (222.1117)


D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors

   

Bioallethrin

(1R)-2-methyl-4-oxo-3-(prop-2-en-1-yl)cyclopent-2-en-1-yl (1R,3S)-2,2-dimethyl-3-(2-methylprop-1-en-1-yl)cyclopropanecarboxylate

C19H26O3 (302.1882)


D010575 - Pesticides > D007306 - Insecticides > D000487 - Allethrins D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals

   

Iervin

Jervine

C27H39NO3 (425.293)


D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2330 Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2]. Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2].

   

Aspartame

(3S)-3-amino-4-[[(2S)-1-methoxy-1-oxo-3-phenylpropan-2-yl]amino]-4-oxobutanoic acid

C14H18N2O5 (294.1216)


Aspartame is the name for an artificial, non-carbohydrate sweetener, aspartyl-phenylalanine-1-methyl ester; i.e., the methyl ester of the dipeptide of the amino acids aspartic acid and phenylalanine. It is marketed under a number of trademark names, such as Equal, and Canderel, and is an ingredient of approximately 6,000 consumer foods and beverages sold worldwide. It is commonly used in diet soft drinks, and is often provided as a table condiment. It is also used in some brands of chewable vitamin supplements. In the European Union, it is also known under the E number (additive code) E951. Aspartame is also one of the sugar substitutes used by diabetics. Upon ingestion, aspartame breaks down into several constituent chemicals, including the naturally-occurring essential amino acid phenylalanine which is a health hazard to the few people born with phenylketonuria, a congenital inability to process phenylalanine. Aspartic acid is an amino acid commonly found in foods. Approximately 40\\\% of aspartame (by mass) is broken down into aspartic acid. Because aspartame is metabolized and absorbed very quickly (unlike aspartic acid-containing proteins in foods), it is known that aspartame could spike blood plasma levels of aspartate. Aspartic acid is in a class of chemicals known as excitotoxins. Abnormally high levels of excitotoxins have been shown in hundreds of animals studies to cause damage to areas of the brain unprotected by the blood-brain barrier and a variety of chronic diseases arising out of this neurotoxicity. Compd. with 100 times the sweetness of sucrose. Artificial sweetener permitted in foods in EU at 300-5500 ppmand is also permitted in USA. Widely used in foods, beverages and pharmaceutical formulations D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2770 Aspartame (SC-18862) is a methyl ester of a dipeptide. Aspartame can be used as a synthetic nonnutritive sweetener[1][2].

   

4,4'-Methylenedianiline

4,4-Diaminodiphenylmethane, sodium chloride (3:1)

C13H14N2 (198.1157)


4,4’-Methylenedianiline (MDA) is an industrial chemical that is produced and used industrially as a precursor to polyamides, epoxy resins, and polyurethane foams (PMID: 20621954). It is a primary aromatic amine, belonging to the family of compounds known as Diphenylmethanes. Diphenylmethanes are compounds consisting of methane with two of the hydrogen atoms replaced by phenyl groups. MDA is used mainly as a precursor to 4,4 ́-methylene diphenyl diisocyanate (MDI), which is a precursor to many polyurethane foams. To generate MDI, which is a highly reactive isocyanate, MDA is treated with phosgene. Workers exposed to MDI may develop sensitization, leading to occupational asthma. MDI is metabolized in the body and secreted in the urine as MDA, Therefore MDA is a urinary biomarker of MDI exposure. On its own, MDA is a known animal carcinogen, and human hepatotoxin. MDA produces genotoxic effects by forming DNA adducts in the liver and inducing DNA damage to hepatocytes (PMID: 32038824). The Occupational Safety and Health Administration has set a permissible exposure limit at 0.01 ppm over an eight-hour time-weighted average, and a short-term exposure limit at 0.10 ppm. D009676 - Noxae > D002273 - Carcinogens

   

Fipronil

5-Amino-1-(2,6-dichloro-alpha,alpha,alpha-trifluoro-p-tolyl)-4-trifluoromethylsulfinylpyrazole-3-carbonitile

C12H4Cl2F6N4OS (435.9387)


CONFIDENCE standard compound; INTERNAL_ID 591; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5015; ORIGINAL_PRECURSOR_SCAN_NO 5012 CONFIDENCE standard compound; INTERNAL_ID 591; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5011; ORIGINAL_PRECURSOR_SCAN_NO 5006 CONFIDENCE standard compound; INTERNAL_ID 591; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4981; ORIGINAL_PRECURSOR_SCAN_NO 4979 CONFIDENCE standard compound; INTERNAL_ID 591; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5023; ORIGINAL_PRECURSOR_SCAN_NO 5019 CONFIDENCE standard compound; INTERNAL_ID 591; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5006; ORIGINAL_PRECURSOR_SCAN_NO 5004 D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1041 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8783 CONFIDENCE standard compound; INTERNAL_ID 3464 CONFIDENCE standard compound; INTERNAL_ID 2413 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Fipronil is a broad-spectrum insecticide effective against Lepidoptera species as well as thrips, locusts, ants, cockroaches, fleas and ticks. Fipronil selectively inhibits GABA receptor with IC50s of 30 nM and 1600 nM for cockroach and rat GABA receptors, respectively. Glutamate-gated chloride channels (GluCls), which are present in cockroaches but not in mammals, are sensitive to the blocking effect of Fipronil. Fipronil also induces apoptosis in HepG2 cells and promotes the expression of CYP1A1 and CYP3A4 mRNA in human hepatocytes[1][2].

   

Tolclofos-methyl

Tolclofos-methyl

C9H11Cl2O3PS (299.9544)


CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9291; ORIGINAL_PRECURSOR_SCAN_NO 9287 CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9271; ORIGINAL_PRECURSOR_SCAN_NO 9267 CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9337; ORIGINAL_PRECURSOR_SCAN_NO 9333 CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9322; ORIGINAL_PRECURSOR_SCAN_NO 9318 CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9241; ORIGINAL_PRECURSOR_SCAN_NO 9237

   

Isatidine

retrorsine

C18H25NO6 (351.1682)


Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.363 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.358 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.361 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2325 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 177 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 117 INTERNAL_ID 147; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 147 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 137 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 157 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 167 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 127 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 107 D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].

   

(-)-Maackiain

(1R,12R)-5,7,11,19-tetraoxapentacyclo[10.8.0.02,10.04,8.013,18]icosa-2,4(8),9,13(18),14,16-hexaen-16-ol

C16H12O5 (284.0685)


(-)-maackiain is the (-)-enantiomer of maackiain. It is an enantiomer of a (+)-maackiain. Maackiain is a natural product found in Tephrosia virginiana, Leptolobium bijugum, and other organisms with data available. (-)-Maackiain. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2035-15-6 (retrieved 2024-07-09) (CAS RN: 2035-15-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].

   

Legumelin

(1S,14S)-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.0³,¹².0⁴,⁹.0¹⁵,²⁰]docosa-3(12),4(9),5,10,15,17,19-heptaen-13-one

C23H22O6 (394.1416)


Legumelin, also known as (-)-cis-deguelin, is a member of the class of compounds known as rotenones. Rotenones are rotenoids with a structure based on a 6a,12a-dihydrochromeno[3,4-b]chromen-12(6H)-one skeleton. Thus, legumelin is considered to be a flavonoid lipid molecule. Legumelin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Legumelin can be found in soy bean, which makes legumelin a potential biomarker for the consumption of this food product. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB.

   

Daidzin

3-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O9 (416.1107)


Daidzein 7-O-beta-D-glucoside is a glycosyloxyisoflavone that is daidzein attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It is used in the treatment of alcohol dependency (antidipsotropic). It has a role as a plant metabolite. It is a hydroxyisoflavone, a monosaccharide derivative and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a daidzein. Daidzin is a natural product found in Thermopsis lanceolata, Thermopsis macrophylla, and other organisms with data available. See also: Astragalus propinquus root (part of). Daidzin is found in miso. Daidzin is isolated from soya bean (Glycine max) and soya bean meal, kudzu root (Pueraria lobata), alfalfa (Medicago sativa) and other Leguminosae.Daidzin is a cancer preventive and an alcohol dependency treatment (antidipsotropic) in animal models. Daidzin is a natural organic compound in the class of phytochemicals known as isoflavones. Daidzin can be found in Japanese plant Kudzu (Pueraria lobata, Fabaceae) and from soybean leaves A glycosyloxyisoflavone that is daidzein attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It is used in the treatment of alcohol dependency (antidipsotropic). Isolated from soya bean (Glycine max) and soya bean meal, kudzu root (Pueraria lobata), alfalfa (Medicago sativa) and other Leguminosae D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents D004791 - Enzyme Inhibitors Acquisition and generation of the data is financially supported in part by CREST/JST. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities. Daidzin is a potent and selective inhibitor of mitochondrial ALDH-2. Daidzin reduces ethanol consumption[1]. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities.

   

Glycitin

3-(4-hydroxyphenyl)-6-methoxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C22H22O10 (446.1213)


Glycitin is an isoflavone glycoside present in human diets containing soy. The transformation of glycitin by intestinal microflora produces glycitein, a compound found to scavenge intracellular reactive oxygen species. Diverse bacteria strains from human origin have specific activity (beta-glucosidase activity) in the metabolism of dietary flavonoids. Soy isoflavones are popular supplements based on their potential protection against cancer and their use as alternative hormone replacement therapy. Is one of the isoflavones present in ready-to-feed soy-based infant formula. (PMID: 17516245, 17157426, 17439230, 12607743). Present in soya foods; potential nutriceutical. Glycitin is found in many foods, some of which are soy milk, tofu, miso, and soy sauce. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic. Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic.

   

Glucoraphanin

{[(Z)-(5-methanesulfinyl-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}pentylidene)amino]oxy}sulfonic acid

C12H23NO10S3 (437.0484)


Glucoraphanin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, glucoraphanin has been detected, but not quantified in, several different foods, such as radish, common cabbages, Brassicas, Chinese cabbages, and cabbages. This could make glucoraphanin a potential biomarker for the consumption of these foods. Isolated from radish (Raphanus sativus) and Brassica species seeds or tops. Glucoraphanin is found in many foods, some of which are broccoli, white cabbage, cauliflower, and chinese cabbage. Acquisition and generation of the data is financially supported in part by CREST/JST. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects.

   

C.I. Natural Red 20

InChI=1/C16H16O5/c1-8(2)3-4-10(17)9-7-13(20)14-11(18)5-6-12(19)15(14)16(9)21/h3,5-7,10,17-19H,4H2,1-2H3

C16H16O5 (288.0998)


Red dye component of alkanet root extract used for colouring sausage casings, margarine, confectionery and wine. This extract, formerly FEMA 2016, has been removed from the FEMA GRAS (Generally Recognized As Safe) list. Not permitted in Germany. Japan approved Red dye component of alkanet root extract used for colouring sausage casings, margarine, confectionery and wine. This extract, formerly FEMA 2016, has been removed from the FEMA GRAS list. Not permitted in Germany. Japan approved. C.I. Natural Red 20 is a naphthoquinone. C.I. Natural Red 20 is a natural product found in Boraginaceae, Lithospermum erythrorhizon, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7].

   

dinatin

Scutellarein 6-methyl ether

C16H12O6 (300.0634)


Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Norwogonin

5,7,8-Trihydroxyflavone

C15H10O5 (270.0528)


Norwogonin, isolated from Scutellaria baicalensis Georgi, possesses antiviral activity against Enterovirus 71 (EV71) with an IC50 of 31.83 μg/ml[1] Norwogonin, isolated from Scutellaria baicalensis Georgi, possesses antiviral activity against Enterovirus 71 (EV71) with an IC50 of 31.83 μg/ml[1]

   

Phoxim

alpha-(((Diethoxyphosphinothioyl)oxy)imino)benzeneacetonitrile

C12H15N2O3PS (298.0541)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

D-2-Hydroxyglutaric acid

alpha-Hydroxyglutarate, disodium salt

C5H8O5 (148.0372)


In humans, D-2-hydroxyglutaric acid is formed by a hydroxyacid-oxoacid transhydrogenase whereas in bacteria it is formed by a 2-hydroxyglutarate synthase. D-2-Hydroxyglutaric acid is also formed via the normal activity of hydroxyacid-oxoacid transhydrogenase during conversion of 4-hydroxybutyrate to succinate semialdehyde. The compound can be converted to alpha-ketoglutaric acid through the action of a 2-hydroxyglutarate dehydrogenase (EC 1.1.99.2). In humans, there are two such enzymes (D2HGDH and L2HGDH). Both the D and the L stereoisomers of hydroxyglutaric acid are found in body fluids. D-2-Hydroxyglutaric acid is a biochemical hallmark of the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (OMIM: 600721) and the genetic disorder glutaric aciduria II. D-2-Hydroxyglutaric aciduria (caused by loss of D2HGDH or gain of function of IDH) is rare, with symptoms including cancer, macrocephaly, cardiomyopathy, mental retardation, hypotonia, and cortical blindness. An elevated urine level of D-2-hydroxyglutaric acid has been reported in patients with spondyloenchondrodysplasia (OMIM: 271550). D-2-Hydroxyglutaric acid can be converted to alpha-ketoglutaric acid through the action of 2-hydroxyglutarate dehydrogenase (D2HGDH). Additionally, the enzyme D-3-phosphoglycerate dehydrogenase (PHGDH) can catalyze the NADH-dependent reduction of alpha-ketoglutarate (AKG) to D-2-hydroxyglutarate (D-2HG). Nyhan et al. (1995) described 3 female patients, 2 of them sibs, who were found to have excess accumulation of D-2-hydroxyglutaric acid in the urine. The phenotype was quite variable, even among the sibs, but included mental retardation, macrocephaly with cerebral atrophy, hypotonia, seizures, and involuntary movements. One of the patients developed severe intermittent vomiting and was given a pyloromyotomy. The electroencephalogram demonstrated hypsarrhythmia. There was an increased concentration of protein in cerebrospinal fluid, an unusual finding in inborn errors of metabolism. D-2-Hydroxyglutaric acid can also be produced via gain-of-function mutations in the cytosolic and mitochondrial isoforms of isocitrate dehydrogenase (IDH). IDH is part of the TCA cycle and this compound is generated in high abundance when IDH is mutated. Since D-2-hydroxyglutaric acid is sufficiently similar in structure to 2-oxoglutarate (2OG), it is able to inhibit a range of 2OG-dependent dioxygenases, including histone lysine demethylases (KDMs) and members of the ten-eleven translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. This inhibitory effect leads to alterations in the hypoxia-inducible factor (HIF)-mediated hypoxic response and alterations in gene expression through global epigenetic remodeling. The net effect is that D-2-hydroxyglutaric acid causes a cascading effect that leads genetic perturbations and malignant transformation. Depending on the circumstances, D-2-hydroxyglutaric acid can act as an oncometabolite, a neurotoxin, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumour growth and survival. A neurotoxin is compound that is toxic to neurons or nerual tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. As an oncometabolite, D-2-hydroxyglutaric acid is a competitive inhibitor of multiple alpha-ketoglutarate-dependent dioxygenases, including histone demethylases and the TET family of 5mC hydroxylases. As a result, high levels of 2-hydroxyglutarate lead to genome-wide histone and DNA methylation alterations, which in turn lead to mutations that ultimately cause cancer (PMID: 29038145). As a neurotoxin, D-2-hydroxyglutaric acid mediates its neurotoxicity through activation of N-methyl-D-aspartate receptors. D-2-Hydroxyglutaric acid is structurally similar to the excitatory amino acid glutamate and stimul... Tissue accumulation of high amounts of D 2 hydroxyglutaric acid is the biochemical hallmark of the inherited neurometabolic disorder D 2 hydroxyglutaric aciduria.

   

gamma-Glutamylcysteine

(2S)-2-amino-4-{[(1R)-1-carboxy-2-sulfanylethyl]carbamoyl}butanoic acid

C8H14N2O5S (250.0623)


gamma-Glutamylcysteine is a dipeptide composed of gamma-glutamate and cysteine, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. gamma-Glutamylcysteine is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. gamma-Glutamylcysteine is a product of enzyme glutamate-cysteine ligase [EC 6.3.2.2] and a substrate of enzyme glutathione synthase [EC 6.3.2.3] in the glutamate metabolism pathway (KEGG). G-Glutamylcysteine is a product of enzyme glutamate-cysteine ligase [EC 6.3.2.2] and a substrate of enzyme glutathione synthase [EC 6.3.2.3] in glutamate metabolism pathway (KEGG). gamma-Glutamyl-cysteine is found in many foods, some of which are cardamom, hyacinth bean, oil palm, and pak choy. Acquisition and generation of the data is financially supported in part by CREST/JST. Gamma-glutamylcysteine (γ-Glutamylcysteine), a dipeptide containing cysteine and glutamic acid, is a precursor to glutathione (GSH). Gamma-glutamylcysteine is a cofactor for glutathione peroxidase (GPx) to increase GSH levels[1].

   

Stavudine

1-[(2R,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C10H12N2O4 (224.0797)


Stavudine is only found in individuals that have used or taken this drug. It is a dideoxynucleoside analog that inhibits reverse transcriptase and has in vitro activity against HIV. [PubChem]Stavudine inhibits the activity of HIV-1 reverse transcriptase (RT) both by competing with the natural substrate dGTP and by its incorporation into viral DNA. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent Stavudine (d4T) is an orally active nucleoside reverse transcriptase inhibitor (NRTI). Stavudine has activity against HIV-1 and HIV-2. Stavudine also inhibits the replication of mitochondrial DNA (mtDNA). Stavudine reduces NLRP3 inflammasome activation and modulates Amyloid-β autophagy. Stavudine induces apoptosis[1][2][3][4].

   

6-Chloro-1,3,5-triazine-2,4-diamine

6-chloro-1,2,3,4-tetrahydro-1,3,5-triazine-2,4-diimine

C3H4ClN5 (145.0155)


CONFIDENCE standard compound; INTERNAL_ID 2022

   

Sucralose

2-{[2,5-bis(chloromethyl)-3,4-dihydroxyoxolan-2-yl]oxy}-5-chloro-6-(hydroxymethyl)oxane-3,4-diol

C12H19Cl3O8 (396.0145)


Sucralose is a noncalorific sweetener with good taste properties One report suggests sucralose is a possible trigger for some migraine patients. Another study published in the Journal of Mutation Research linked doses of sucralose equivalent to 11,450 packets per day in a person to DNA damage in mice. Results from over 100 animal and clinical studies in the FDA approval process unanimously indicated a lack of risk associated with sucralose intake. However, some adverse effects were seen at doses that significantly exceeded the estimated daily intake (EDI), which is 1.1 mg/kg/day. When the EDI is compared to the intake at which adverse effects are seen, known as the highest no adverse effects limit (HNEL), at 1500 mg/kg/day, there is a large margin of safety. The bulk of sucralose ingested is not absorbed by the gastrointestinal (GI) tract and is directly excreted in the feces, while 11-27\\% of it is absorbed. The amount that is absorbed from the GI tract is largely removed from the blood stream by the kidneys and eliminated in the urine with 20-30\\% of the absorbed sucralose being metabolized. Sucralose belongs to a class of compounds known as organochlorides (or chlorocarbons). Some organochlorides, particularly those that accumulate in fatty tissues, are toxic to plants or animals, including humans. Sucralose, however, is not known to be toxic in small quantities and is extremely insoluble in fat; it cannot accumulate in fat like chlorinated hydrocarbons. In addition, sucralose does not break down or dechlorinate. Sucralose can be found in more than 4,500 food and beverage products. It is used because it is a no-calorie sweetener, does not promote dental caries, and is safe for consumption by diabetics. Sucralose is used as a replacement for, or in combination with, other artificial or natural sweeteners such as aspartame, acesulfame potassium or high-fructose corn syrup. Sucralose is used in products such as candy, breakfast bars and soft drinks. It is also used in canned fruits wherein water and sucralose take the place of much higher calorie corn syrup based additives. Sucralose mixed with maltodextrin or dextrose (both made from corn) as bulking agents is sold internationally by McNeil Nutritionals under the Splenda brand name. In the United States and Canada, this blend is increasingly found in restaurants, including McDonalds, Tim Hortons and Starbucks, in yellow packets, in contrast to the blue packets commonly used by aspartame and the pink packets used by those containing saccharin sweeteners; though in Canada yellow packets are also associated with the SugarTwin brand of cyclamate sweetener. Sucralose is a highly heat-stable artificial sweetener, allowing it to be used in many recipes with little or no sugar. Sucralose is available in a granulated form that allows for same-volume substitution with sugar. This mix of granulated sucralose includes fillers, all of which rapidly dissolve in liquids.[citation needed] Unlike sucrose which dissolves to a clear state, sucralose suspension in clear liquids such as water results in a cloudy state. For example, gelatin and fruit preserves made with sucrose have a satiny, near jewel-like appearance, whereas the same products made with sucralose (whether cooked or not) appear translucent and marginally glistening.[citation needed] While the granulated sucralose provides apparent volume-for-volume sweetness, the texture in baked products may be noticeably different. Sucralose is non-hygroscopic, meaning it does not attract moisture, which can lead to baked goods that are noticeably drier and manifesting a less dense texture than baked products made with sucrose. Unlike sucrose which melts when baked at high temperatures, sucralose maintains its granular structure when subjected to dry, high heat (e.g., in a 350 ¬?F (177 ¬?C) oven). Thus, in some baking recipes, such as burnt cream, which require sugar sprinkled on top to partially or fully melt and crystallize, substituting sucr... D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 703

   

Tricin

5,7-Dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-1-benzopyran-4-one

C17H14O7 (330.0739)


[Raw Data] CBA24_Tricin_neg_50eV_1-6_01_1424.txt [Raw Data] CBA24_Tricin_pos_50eV_1-6_01_1397.txt [Raw Data] CBA24_Tricin_neg_10eV_1-6_01_1368.txt [Raw Data] CBA24_Tricin_pos_40eV_1-6_01_1396.txt [Raw Data] CBA24_Tricin_pos_20eV_1-6_01_1394.txt [Raw Data] CBA24_Tricin_neg_30eV_1-6_01_1422.txt [Raw Data] CBA24_Tricin_neg_20eV_1-6_01_1421.txt [Raw Data] CBA24_Tricin_pos_10eV_1-6_01_1357.txt [Raw Data] CBA24_Tricin_pos_30eV_1-6_01_1488.txt [Raw Data] CBA24_Tricin_neg_40eV_1-6_01_1423.txt Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3]. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3].

   

Ononin

3-(4-methoxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C22H22O9 (430.1264)


Widely distributed in the Leguminosae subfamily Papilionoideae, e.g. in Medicago sativa (alfalfa) and Trifolium subspecies Formononetin 7-glucoside is found in chickpea, soy bean, and pulses. Ononin is found in chickpea. Ononin is widely distributed in the Leguminosae subfamily Papilionoideae, e.g. in Medicago sativa (alfalfa) and Trifolium species. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 381; CONFIDENCE confident structure Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

Amentoflavone

4H-1-Benzopyran-4-one, 8-(5-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)-2-hydroxyphenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.09)


Amentoflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. It has a role as a cathepsin B inhibitor, an antiviral agent, an angiogenesis inhibitor, a P450 inhibitor and a plant metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Amentoflavone is a natural product found in Podocarpus elongatus, Austrocedrus chilensis, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Amentoflavone is found in fruits. Amentoflavone is obtained from Viburnum prunifolium (black haw Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].

   

2-Hydroxybutyric acid

DL-alpha-Hydroxybutyric acid barium salt

C4H8O3 (104.0473)


2-Hydroxybutyric acid (CAS: 600-15-7), also known as alpha-hydroxybutyrate, is an organic acid derived from alpha-ketobutyrate. alpha-Ketobutyrate is produced by amino acid catabolism (threonine and methionine) and glutathione anabolism (cysteine formation pathway) and is metabolized into propionyl-CoA and carbon dioxide (PMID: 20526369). 2-Hydroxybutyric acid is formed as a byproduct from the formation of alpha-ketobutyrate via a reaction catalyzed by lactate dehydrogenase (LDH) or alpha-hydroxybutyrate dehydrogenase (alphaHBDH). alpha-Hydroxybutyric acid is primarily produced in mammalian hepatic tissues that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification of xenobiotics in the liver can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway (which forms methionine) into the transsulfuration pathway (which forms cystathionine). alpha-Ketobutyrate is released as a byproduct when cystathionine is cleaved into cysteine that is incorporated into glutathione. Chronic shifts in the rate of glutathione synthesis may be reflected by urinary excretion of 2-hydroxybutyrate. 2-Hydroxybutyrate is an early marker for both insulin resistance and impaired glucose regulation that appears to arise due to increased lipid oxidation and oxidative stress (PMID: 20526369). 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g. birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early-stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid-1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydroxybutyric acid (PMID: 168632). 2-Hydroxybutyric acid is an organic acid that is involved in propanoate metabolism. It is produced in mammalian tissues (principaly hepatic) that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification demands can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway forming methionine into the transsulfuration pathway forming cystathionine. 2-Hydroxybutyrate is released as a by-product when cystathionine is cleaved to cysteine that is incorporated into glutathione. 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid 1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydorxybutyric acid (PMID: 168632) [HMDB] 2-Hydroxybutyric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=565-70-8 (retrieved 2024-07-16) (CAS RN: 600-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Tectochrysin

4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-phenyl- (9CI)

C16H12O4 (268.0736)


7-methylchrysin, also known as 5-hydroxy-7-methoxyflavone or techtochrysin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 7-methylchrysin is considered to be a flavonoid lipid molecule. 7-methylchrysin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 7-methylchrysin can be found in pine nut, prunus (cherry, plum), sour cherry, and sweet cherry, which makes 7-methylchrysin a potential biomarker for the consumption of these food products. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.330 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.324 Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB.

   

Chrysophanol

1,8-DIHYDROXY-3-METHYL-9,10-DIHYDROANTHRACENE-9,10-DIONE

C15H10O4 (254.0579)


Chrysophanic acid appears as golden yellow plates or brown powder. Melting point 196 °C. Slightly soluble in water. Pale yellow aqueous solutions turn red on addition of alkali. Solutions in concentrated sulfuric acid are red. (NTP, 1992) Chrysophanol is a trihydroxyanthraquinone that is chrysazin with a methyl substituent at C-3. It has been isolated from Aloe vera and exhibits antiviral and anti-inflammatory activity. It has a role as an antiviral agent, an anti-inflammatory agent and a plant metabolite. It is functionally related to a chrysazin. Chrysophanol is a natural product found in Rumex dentatus, Ageratina altissima, and other organisms with data available. See also: Frangula purshiana Bark (part of). A trihydroxyanthraquinone that is chrysazin with a methyl substituent at C-3. It has been isolated from Aloe vera and exhibits antiviral and anti-inflammatory activity. Constituent of Rumex, Rheum subspecies Chrysophanol is found in dock, garden rhubarb, and sorrel. Chrysophanol is found in dock. Chrysophanol is a constituent of Rumex, Rheum species D009676 - Noxae > D009153 - Mutagens Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.

   

6-Hydroxydaidzein

6,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, 9CI

C15H10O5 (270.0528)


6-Hydroxydaidzein is found in pulses. 6-Hydroxydaidzein is isolated from fermented soybeans (Glycine max Isolated from fermented soybeans (Glycine max). 6-Hydroxydaidzein is found in soy bean and pulses.

   

Neoxanthin

(1R,3S)-6-[(1M,3E,5E,7E,9E,11E,13E,15Z,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-ylidene]-1,5,5-trimethylcyclohexane-1,3-diol

C40H56O4 (600.4178)


Neoxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Neoxanthin is an intermediate in the synthesis of abscisic acid from violaxanthin. Neoxanthin has been detected, but not quantified in, several different foods, such as apples, paprikas, Valencia oranges, kiwis, globe artichokes, sparkleberries, hard wheat, and cinnamon. This could make neoxanthin a potential biomarker for the consumption of these foods. Neoxanthin has been shown to exhibit apoptotic and anti-proliferative functions (PMID: 15333710, 15333710). Neoxanthin is a carotenoid and xanthophyll. In plants, it is an intermediate in the biosynthesis of the plant hormone abscisic acid. It is produced from violaxanthin by the action of neoxanthin synthase. It is a major xanthophyll found in green leafy vegetables such as spinach. [Wikipedia] D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

(-)-Arctigenin

(3R,4R)-4-[(3,4-DIMETHOXYPHENYL)METHYL]DIHYDRO-3-[(4-HYDROXY-3-METHOXYPHENYL)METHYL]-2(3H)-FURANONE;2(3H)-FURANONE,4-[(3,4-DIMETHOXYPHENYL)METHYL]DIHYDRO-3-[(4-HYDROXY-3-METHOXYPHENYL)METHYL]-,(3R,4R);(-)-ARCTIGENIN;ARCTIGENIN;ARCTIGENIN(P)

C21H24O6 (372.1573)


(-)-Arctigenin is found in burdock. (-)-Arctigenin is isolated from Cnicus benedictus, Forsythia viridissima, Arctium lappa, Ipomoea cairica and others (CCD).Arctigenin is a lignan found in certain plants of the Asteraceae , including the Greater burdock (Arctium lappa) and Saussurea heteromalla. It has shown antiviral and anticancer effects. It is the aglycone of arctiin. (Wikipedia (-)-Arctigenin is a lignan. Arctigenin is a natural product found in Centaurea cineraria, Forsythia suspensa, and other organisms with data available. See also: Arctium lappa Root (part of); Arctium lappa fruit (part of); Pumpkin Seed (part of) ... View More ... Isolated from Cnicus benedictus, Forsythia viridissima, Arctium lappa, Ipomoea cairica and others (CCD) Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3]. Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3].

   

Tamarixetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3-hydroxy-4-methoxyphenyl)-

C16H12O7 (316.0583)


Tamarixetin is a monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. It has a role as a metabolite and an antioxidant. It is a 7-hydroxyflavonol, a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. Tamarixetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. See also: Trifolium pratense flower (part of). A monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2]. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2].

   

Chebulagic acid

chebulagic acid

C41H30O27 (954.0974)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23094-71-5 (retrieved 2024-09-27) (CAS RN: 23094-71-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Oleuropein

Methyl (2S,4S,E)-4-(2-(3,4-dihydroxyphenethoxy)-2-oxoethyl)-3-ethylidene-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-3,4-dihydro-2H-pyran-5-carboxylate

C25H32O13 (540.1843)


Oleuropein is a secoiridoid glycoside that is the methyl ester of 3,4-dihydro-2H-pyran-5-carboxylic acid which is substituted at positions 2, 3, and 4 by hydroxy, ethylidene, and carboxymethyl groups, respectively and in which the anomeric hydroxy group at position 2 has been converted into its beta-D-glucoside and the carboxylic acid moiety of the carboxymethyl substituent has been converted to the corresponding 3,4-dihydroxyphenethyl ester (the 2S,3E,4S stereoisomer). The most important phenolic compound present in olive cultivars. It has a role as a plant metabolite, a radical scavenger, an anti-inflammatory agent, an antineoplastic agent, an antihypertensive agent, a NF-kappaB inhibitor, an apoptosis inducer, an antioxidant and a nutraceutical. It is a secoiridoid glycoside, a beta-D-glucoside, a methyl ester, a member of catechols, a diester and a member of pyrans. Oleuropein is a natural product found in Jasminum officinale, Olea capensis, and other organisms with data available. Oleuropein is found in fruits. Oleuropein is a bitter principle of olives. Nutriceutical with antioxidant properties.Oleuropein is a chemical compound found in olive leaf from the olive tree (and leaves of privet) together with other closely related compounds such as 10-hydroxyoleuropein, ligstroside, and 10-hydroxyligstroside. All these compounds are tyrosol esters of elenolic acid that are further hydroxylated and glycosylated. Oleuropein and its metabolite hydroxytyrosol have powerful antioxidant activity both in vivo and in vitro and give extra-virgin olive oil its bitter, pungent taste. Oleuropein preparations have been claimed to strengthen the immune system A secoiridoid glycoside that is the methyl ester of 3,4-dihydro-2H-pyran-5-carboxylic acid which is substituted at positions 2, 3, and 4 by hydroxy, ethylidene, and carboxymethyl groups, respectively and in which the anomeric hydroxy group at position 2 has been converted into its beta-D-glucoside and the carboxylic acid moiety of the carboxymethyl substituent has been converted to the corresponding 3,4-dihydroxyphenethyl ester (the 2S,3E,4S stereoisomer). The most important phenolic compound present in olive cultivars. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000890 - Anti-Infective Agents Oleuropein, found in olive leaves and oil, exerts antioxidant, anti-inflammatory and anti-atherogenic effects through direct inhibition of PPARγ transcriptional activity[1]. Oleuropein induces apoptosis in breast cancer cells via the p53-dependent pathway and through the regulation of Bax and Bcl2 genes. Oleuropein also inhibits aromatase[2]. Oleuropein, found in olive leaves and oil, exerts antioxidant, anti-inflammatory and anti-atherogenic effects through direct inhibition of PPARγ transcriptional activity[1]. Oleuropein induces apoptosis in breast cancer cells via the p53-dependent pathway and through the regulation of Bax and Bcl2 genes. Oleuropein also inhibits aromatase[2]. Oleuropein, found in olive leaves and oil, exerts antioxidant, anti-inflammatory and anti-atherogenic effects through direct inhibition of PPARγ transcriptional activity[1]. Oleuropein induces apoptosis in breast cancer cells via the p53-dependent pathway and through the regulation of Bax and Bcl2 genes. Oleuropein also inhibits aromatase[2].

   

2,6-Dimethoxy-1,4-benzoquinone

3,5-Dimethoxy-1,4-benzoquinone; 3,5-Dimethoxybenzoquinone; NSC 24500

C8H8O4 (168.0423)


2,6-Dimethoxy-1,4-benzoquinone is a natural product found in Diospyros eriantha, Iris milesii, and other organisms with data available. 2,6-Dimethoxyquinone is a methoxy-substituted benzoquinone and bioactive compound found in fermented wheat germ extracts, with potential antineoplastic and immune-enhancing activity. 2,6-Dimethoxyquinone (2,6-DMBQ) inhibits anaerobic glycolysis thereby preventing cellular metabolism and inducing apoptosis. As cancer cells use the anaerobic glycolysis pathway to metabolize glucose and cancer cells proliferate at an increased rate as compared to normal, healthy cells, this agent is specifically cytotoxic towards cancer cells. In addition, 2,6-DMBQ exerts immune-enhancing effects by increasing natural killer (NK) cell and T-cell activity against cancer cells. See also: Acai fruit pulp (part of). 2,6-Dimethoxy-1,4-benzoquinone is found in common wheat. 2,6-Dimethoxy-1,4-benzoquinone is a constituent of bark of Phyllostachys heterocycla var. pubescens (moso bamboo) Constituent of bark of Phyllostachys heterocycla variety pubescens (moso bamboo). 2,6-Dimethoxy-1,4-benzoquinone is found in green vegetables and common wheat. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].

   

Securinine

6,10-METHANOPYRIDO(1,2-A)AZEPINE-.GAMMA.9(6H),.ALPHA.-ACETIC ACID,1,2,3,4,10,10A-HEXAHYDRO-10-HYDROXY-, .GAMMA.-LACTONE

C13H15NO2 (217.1103)


Securinine is a member of indolizines. Securinine is a natural product found in Flueggea suffruticosa, Flueggea virosa, and other organisms with data available. See also: Phyllanthus amarus top (part of). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. Allosecurinine (Phyllochrysine) is a Securinega alkaloid isolated from Phyllanthus glaucus [1].

   

P-Hydroxyphenylethanolamine

alpha-(Aminoethyl)-4-hydroxybenzenemethanol

C8H11NO2 (153.079)


Alkaloid from leaves of tabasco pepper (Capsicum frutescens), nutgrass (Cyperus rotundus) and leaves or fruit of Citrus subspecies Occurs in many animal tissues; found in high concs. in octopus p-Octopamine is an amine in traces quantities in plasma and cerebrospinal fluid in humans with septic encephalopathy (PMID 15932098). D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist

   

Stearoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-[(2-{[2-(octadecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C39H70N7O17P3S (1033.3762)


Stearoyl-CoA is a long-chain acyl CoA ester that acts as an intermediate metabolite in the biosynthesis of monounsaturated fatty acids; a critical committed step in the reaction is the introduction of the cis-configuration double bond into acyl-CoAs (between carbons 9 and 10). This oxidative reaction is catalyzed by the iron-containing, microsomal enzyme, stearoyl-CoA desaturase (SCD, EC 1.14.19.1). NADH supplies the reducing equivalents for the reaction, the flavoprotein is cytochrome b5-reductase and the electron carrier is the heme protein cytochrome b5. Stearoyl-CoA is converted into oleoyl-CoA and then used as a major substrate for the synthesis of various kinds of lipids including phospholipids, triglycerides, cholesteryl esters and wax esters. Oleic acid is the preferred substrate for acyl-CoA cholesterol acyltransferase (ACAT, EC 2.3.1.26) and diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), the enzymes responsible for cholesteryl esters and triglycerides synthesis, respectively. In addition oleate is the major monounsaturated fatty acid in human adipose tissue and in the phospholipid of the red-blood-cell membrane. In the biosynthesis of sphinganine, stearoyl-CoA proceeds through the acyl-CoA + serine -> 3-keto-sphinganine -> sphinganine pathway, with the key enzyme being acyl-CoA serine acyltransferase (EC 2.3.1.50) to yield C20-(3-ketosphinganine) long-chain base. There is growing recognition that acyl-CoA esters could act as signaling molecules in cellular metabolism. (PMID: 12538075, 10998569, Prostaglandins Leukot Essent Fatty Acids. 2003 Feb;68(2):113-21.) [HMDB]. Stearoyl-CoA is found in many foods, some of which are romaine lettuce, grapefruit/pummelo hybrid, radish, and european cranberry. Stearoyl-CoA is a long-chain acyl CoA ester that acts as an intermediate metabolite in the biosynthesis of monounsaturated fatty acids; a critical committed step in the reaction is the introduction of the cis-configuration double bond into acyl-CoAs (between carbons 9 and 10). This oxidative reaction is catalyzed by the iron-containing, microsomal enzyme, stearoyl-CoA desaturase (SCD, EC 1.14.19.1). NADH supplies the reducing equivalents for the reaction, the flavoprotein is cytochrome b5-reductase and the electron carrier is the heme protein cytochrome b5. Stearoyl-CoA is converted into oleoyl-CoA and then used as a major substrate for the synthesis of various kinds of lipids including phospholipids, triglycerides, cholesteryl esters and wax esters. Oleic acid is the preferred substrate for acyl-CoA cholesterol acyltransferase (ACAT, EC 2.3.1.26) and diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), the enzymes responsible for cholesteryl esters and triglycerides synthesis, respectively. In addition oleate is the major monounsaturated fatty acid in human adipose tissue and in the phospholipid of the red-blood-cell membrane. In the biosynthesis of sphinganine, stearoyl-CoA proceeds through the acyl-CoA + serine -> 3-keto-sphinganine -> sphinganine pathway, with the key enzyme being acyl-CoA serine acyltransferase (EC 2.3.1.50) to yield C20-(3-ketosphinganine) long-chain base. There is growing recognition that acyl-CoA esters could act as signaling molecules in cellular metabolism. (PMID: 12538075, 10998569, Prostaglandins Leukot Essent Fatty Acids. 2003 Feb;68(2):113-21.).

   

1,2,6-Trigalloyl-beta-D-glucopyranose

4,5-dihydroxy-2-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxybenzoate

C27H24O18 (636.0963)


Isolated from Rubus fruticosus (blackberry) and Rubus idaeus (raspberry). 1,2,6-Trigalloyl-beta-D-glucopyranose is found in many foods, some of which are fruits, pomegranate, garden rhubarb, and red raspberry. 1,2,6-Trigalloyl-beta-D-glucopyranose is found in fruits. 1,2,6-Trigalloyl-beta-D-glucopyranose is isolated from Rubus fruticosus (blackberry) and Rubus idaeus (raspberry).

   

20alpha-Hydroxycholesterol

(1S,2R,5S,10S,11S,14S,15S)-14-[(2R)-2-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C27H46O2 (402.3498)


20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. [HMDB] 20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. 20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].

   

(R)-Mandelamide

2-Hydroxy-2-phenylacetamide

C8H9NO2 (151.0633)


D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids

   

Pipobroman

3-bromo-1-[4-(3-bromopropanoyl)piperazin-1-yl]propan-1-one

C10H16Br2N2O2 (353.9578)


Pipobroman is only found in individuals that have used or taken this drug. It is an antineoplastic agent that acts by alkylation. [PubChem]The mechanism of action is uncertain but pipobroman is thought to alkylate DNA leading to disruption of DNA synthesis and eventual cell death. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents

   

Fucosterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(E,2R)-5-propan-2-ylhept-5-en-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Characteristic sterol of seaweeds; isolated from bladderwrack Fucus vesiculosus. Fucosterol is found in lemon grass and coconut. Fucosterol is found in coconut. Characteristic sterol of seaweeds; isolated from bladderwrack Fucus vesiculosu Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].

   

Zaluzanin C

Zaluzanin C

C15H18O3 (246.1256)


A sesquiterpene lactone that is decahydroazuleno[4,5-b]furan-2(3H)-one substituted by methylidene groups at positions 3, 6 and 9 and a hydroxy group at position 8.

   

Valerenic acid

2-Propenoic acid, 3-[(4S,7R,7aR)-2,4,5,6,7,7a-hexahydro-3,7-dimethyl-1H-inden-4-yl]-2-methyl-, (2E)-

C15H22O2 (234.162)


Valerenic acid is found in fats and oils. Valerenic acid is a constituent of Valeriana officinalis (valerian) Valerenic acid is a sesquiterpenoid constituent of the essential oil of the Valerian plant Constituent of Valeriana officinalis (valerian) Valerenic acid ((-)-Valerenic Acid), a sesquiterpenoid, is an orally active positive allosteric modulator of GABAA receptors. Valerenic acid is also a partial agonist of the 5-HT5a receptor. Valerenic acid mediates anxiolytic activity via GABAA receptors containing the β3 subunit. Valerenic acid also exhibits potent antioxidant properties[1][2][3].

   

Ginkgetin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)-

C32H22O10 (566.1213)


Ginkgetin is a biflavonoid that is the 7,4-dimethyl ether derivative of amentoflavone. Isolated from Ginkgo biloba and Dioon, it exhibits anti-HSV-1, antineoplastic and inhibitory activities towards arachidonate 5-lipoxygenase and cyclooxygenase 2. It has a role as an anti-HSV-1 agent, a cyclooxygenase 2 inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antineoplastic agent and a metabolite. It is a biflavonoid, a hydroxyflavone, a methoxyflavone and a ring assembly. It is functionally related to an amentoflavone. Ginkgetin is a natural product found in Selaginella sinensis, Selaginella willdenowii, and other organisms with data available. A biflavonoid that is the 7,4-dimethyl ether derivative of amentoflavone. Isolated from Ginkgo biloba and Dioon, it exhibits anti-HSV-1, antineoplastic and inhibitory activities towards arachidonate 5-lipoxygenase and cyclooxygenase 2. From Ginkgo biloba (ginkgo). Ginkgetin is found in ginkgo nuts and fats and oils. Ginkgetin is found in fats and oils. Ginkgetin is from Ginkgo biloba (ginkgo Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5]. Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5].

   

1,3,5,8-Tetrahydroxyxanthone

1,3,5,8-Tetrahydroxy-9H-xanthen-9-one

C13H8O6 (260.0321)


   

Hinokiflavone

6-[4-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)phenoxy]-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C30H18O10 (538.09)


Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1]. Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1].

   

(R)-Oxypeucedanin

7H-Furo[3,2-g][1]benzopyran-7-one, 4-((3,3-dimethyloxiranyl)methoxy)-, (S-)-

C16H14O5 (286.0841)


(r)-oxypeucedanin, also known as hishigado or phosphine, is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one (r)-oxypeucedanin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (r)-oxypeucedanin can be found in carrot, lemon, parsley, and wild carrot, which makes (r)-oxypeucedanin a potential biomarker for the consumption of these food products. (R)-Oxypeucedanin is a member of psoralens. 4-[(3,3-Dimethyloxiran-2-yl)methoxy]furo[3,2-g]chromen-7-one is a natural product found in Prangos latiloba, Citrus medica, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (R)-Oxypeucedanin is found in herbs and spices. (R)-Oxypeucedanin is isolated from Angelica glauc Oxypeucedanin is a furocoumarin derivative isolated from Angelica dahurica. Oxypeucedanin is a selective open-channel blocker, inhibits the hKv1.5 current with an IC50 value of 76 nM.?Oxypeucedanin prolongs cardiac action potential duration (APD), is a potential antiarrhythmic agent for atrial fibrillation[1]. Oxypeucedanin induces cell?apoptosis through inhibition of cancer cell migration[2]. Oxypeucedanin is a furocoumarin derivative isolated from Angelica dahurica. Oxypeucedanin is a selective open-channel blocker, inhibits the hKv1.5 current with an IC50 value of 76 nM.?Oxypeucedanin prolongs cardiac action potential duration (APD), is a potential antiarrhythmic agent for atrial fibrillation[1]. Oxypeucedanin induces cell?apoptosis through inhibition of cancer cell migration[2].

   

Hypolaetin

2-(3,4-dihydroxyphenyl)-5,7,8-trihydroxy-4H-chromen-4-one

C15H10O7 (302.0427)


A pentahydroxyflavone that consists of luteolin substituted by an additional hydroxy group at position 8.

   

Isoscutellarein

5,7,8-Trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O6 (286.0477)


   

1-O-Galloylpedunculagin

7,8,9,12,13,14,28,29,30,33,34,35-dodecahydroxy-4,17,25,38-tetraoxo-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.0^{2,19}.0^{5,10}.0^{11,16}.0^{26,31}.0^{32,37}]nonatriaconta-5(10),6,8,11,13,15,26(31),27,29,32,34,36-dodecaen-20-yl 3,4,5-trihydroxybenzoate

C41H28O26 (936.0869)


Tannin from Rubus fruticosus (blackberry) and Rubus idaeus (raspberry). 1-O-Galloylpedunculagin is found in fruits, red raspberry, and cloves. Casuarictin is found in acorn. Casuarictin is isolated from Corylus heterophylla (Siberian filbert).

   

tellimagrandin I

1-Desgalloyleugeniin

C34H26O22 (786.0916)


   

Batatasin I

6-hydroxy-2,4,7-trimethoxyphenanthrene

C17H16O4 (284.1049)


Batatasin I is found in root vegetables. Batatasin I is a constituent of Dioscorea batatas (Chinese yam). Constituent of Dioscorea batatas (Chinese yam). Batatasin I is found in root vegetables.

   

[6]-Gingerdione

1-(4-hydroxy-3-methoxyphenyl)decane-3,5-dione

C17H24O4 (292.1675)


[6]-Gingerdione is found in ginger. [6]-Gingerdione is a constituent of Zingiber officinale (ginger). Constituent of Zingiber officinale (ginger). [6]-Gingerdione is found in herbs and spices and ginger.

   

Aziridine

Aziridine, conjugate acid

C2H5N (43.0422)


Glucosidase, also known as ethyleneimine or azacyclopropane, is a member of the class of compounds known as aziridines. Aziridines are organic compounds containing a saturated three-member heterocycle with one amino group and two methylene groups. Glucosidase is soluble (in water) and a very strong basic compound (based on its pKa). Glucosidase can be found in soy bean and wild celery, which makes glucosidase a potential biomarker for the consumption of these food products. Glucosidases are glycoside hydrolase enzymes categorized under the EC number 3.2.1 . C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent

   

Tannic acid

2,3-dihydroxy-5-[({3,4,5,6-tetrakis[3,4-dihydroxy-5-(3,4,5-trihydroxybenzoyloxy)benzoyloxy]oxan-2-yl}methoxy)carbonyl]phenyl 3,4,5-trihydroxybenzoate

C76H52O46 (1700.173)


Clarifying agent for beer and wine; flavour enhancer, colour modifier, pH control agent. Permitted boiler water additive in generation of steam for use in food contact processes Same as: D01959 Tannic acid is a novel hERG channel blocker with IC50 of 3.4 μM. Tannic acid is a novel hERG channel blocker with IC50 of 3.4 μM.

   

IAA-94

(S)-2-((6,7-Dichloro-2-cyclopentyl-2-methyl-1-oxo-2,3-dihydro-1H-inden-5-yl)oxy)acetic acid

C17H18Cl2O4 (356.0582)


D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics

   

alfaxalone

3-Hydroxypregnane-11,20-dione

C21H32O3 (332.2351)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D018377 - Neurotransmitter Agents > D000081227 - Neurosteroids

   

3-NITROFLUORANTHENE

3-NITROFLUORANTHENE

C16H9NO2 (247.0633)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

CITCO

6-(4-Chlorophenyl)imidazo[2,1-B][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime

C19H12Cl3N3OS (434.9767)


   

Methylnissolin

14,15-dimethoxy-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2(7),3,5,11(16),12,14-hexaen-5-ol

C17H16O5 (300.0998)


Methylnissolin is a member of pterocarpans. Methylnissolin is a natural product found in Lathyrus nissolia and Dalbergia odorifera with data available. Methylnissolin is found in alfalfa. Methylnissolin is isolated from Medicago sativa (alfalfa). Isolated from Medicago sativa (alfalfa). Methylnissolin is found in alfalfa and pulses. Methylnissolin (Astrapterocarpan), isolated from Astragalus membranaceus, inhibits platelet-derived growth factor (PDGF)-BB-induced cell proliferation with an IC50 of 10 μM. Methylnissolin inhibits PDGF-BB-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERIC1/2) mitogen-activated protein (MAP) kinase. Methylnissolin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation by inhibition of the ERK1/2 MAP kinase cascade[1]. Methylnissolin (Astrapterocarpan), isolated from Astragalus membranaceus, inhibits platelet-derived growth factor (PDGF)-BB-induced cell proliferation with an IC50 of 10 μM. Methylnissolin inhibits PDGF-BB-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERIC1/2) mitogen-activated protein (MAP) kinase. Methylnissolin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation by inhibition of the ERK1/2 MAP kinase cascade[1]. Methylnissolin (Astrapterocarpan), isolated from Astragalus membranaceus, inhibits platelet-derived growth factor (PDGF)-BB-induced cell proliferation with an IC50 of 10 μM. Methylnissolin inhibits PDGF-BB-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERIC1/2) mitogen-activated protein (MAP) kinase. Methylnissolin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation by inhibition of the ERK1/2 MAP kinase cascade[1].

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Vitexin is an apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet It has a role as a platelet aggregation inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an antineoplastic agent and a plant metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a vitexin-7-olate. Vitexin is a natural product found in Itea chinensis, Salacia chinensis, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Cytisus scoparius flowering top (part of); Fenugreek seed (part of) ... View More ... An apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Alliin

(2R)-2-Amino-3-(prop-2-ene-1-sulphinyl)propanoic acid

C6H11NO3S (177.046)


Alliin, also known as (S)-S-allyl-L-cysteine sulfoxide or (S)-3-(allylsulphinyl)-L-alanine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Alliin is soluble (in water) and a moderately acidic compound (based on its pKa). Alliin can be found in a number of food items such as red rice, mandarin orange (clementine, tangerine), ceylon cinnamon, and olive, which makes alliin a potential biomarker for the consumption of these food products. Garlic has been used since antiquity as a therapeutic remedy for certain conditions now associated with oxygen toxicity, and, when this was investigated, garlic did indeed show strong antioxidant and hydroxyl radical-scavenging properties, it is presumed owing to the alliin contained within. Alliin has also been found to affect immune responses in blood . 3-(Allylsulphinyl)-L-alanine is a L-alpha-amino acid. Alliin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=556-27-4 (retrieved 2024-07-01) (CAS RN: 556-27-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Alliin is the main active component of garlic. (±)-Alliin is a putative inhibitor of the main protease of SARS-CoV-2 (Mpro)[1]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].

   

Phelloterin

7H-Furo[3,2-g][1]benzopyran-7-one, 4-methoxy-9-[(3-methyl-2-buten-1-yl)oxy]-

C17H16O5 (300.0998)


Phellopterin is a member of psoralens. Phellopterin is a natural product found in Amyris pinnata, Heracleum candolleanum, and other organisms with data available. A naturally occurring furanocoumarin found in roots of Angelica dahurica and in Seseli elatum (L579). Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs. Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1]. Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1]. Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1].

   

Methyl_cinnamate

InChI=1/C10H10O2/c1-12-10(11)8-7-9-5-3-2-4-6-9/h2-8H,1H3/b8-7

C10H10O2 (162.0681)


Methyl cinnamate is a methyl ester resulting from the formal condensation of methyl cinnamic acid with methanol. It is found naturally in the essential oils of Alpinia and Basil leaf oil, and widely used in the flavor and perfume industries. It has a role as a flavouring agent, a fragrance, an insect attractant, a volatile oil component and an anti-inflammatory agent. It is a methyl ester and an alkyl cinnamate. Methyl cinnamate is a natural product found in Melaleuca viridiflora, Alpinia formosana, and other organisms with data available. Methyl cinnamate is a metabolite found in or produced by Saccharomyces cerevisiae. The E (trans) isomer of methyl cinnamate. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Methyl cinnamate

3-Phenyl-methyl ester(2E)-2-propenoic acid

C10H10O2 (162.0681)


Methyl cinnamate is found in ceylan cinnamon. Methyl cinnamate occurs in essential oils e.g. from Ocimum and Alpinia species Also present in various fruits, e.g. guava, feijoa, strawberry. Methyl cinnamate is a flavouring agent.Methyl cinnamate is the methyl ester of cinnamic acid and is a white or transparent solid with a strong, aromatic odor. It is found naturally in a variety of plants, including in fruits, like strawberry, and some culinary spices, such as Sichuan pepper and some varieties of basil. Eucalyptus olida has the highest known concentrations of methyl cinnamate (98\\\\\%) with a 2-6\\\\\% fresh weight yield in the leaf and twigs. Occurs in essential oils e.g. from Ocimum and Alpinia subspecies Also present in various fruits, e.g. guava, feijoa, strawberry. Flavouring agent Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Vitexin

8-beta-D-Glucopyranosyl-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C21H20O10 (432.1056)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Chebulagic acid

2-[13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11,13,15,17,19,21,34(38),35-nonaen-29-yl]acetic acid

C41H30O27 (954.0974)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM.

   

Histidinol

2-amino-3-(3H-imidazol-4-yl)propan-1-ol

C6H11N3O (141.0902)


   

Indirubin-3'-monoxime

3-nitroso-1H,1H-[2,3-biindole]-2-ol

C16H11N3O2 (277.0851)


Indirubin-3'-monoxime is a potent GSK-3β inhibitor, and weakly inhibits 5-Lipoxygenase, with IC50s of 22 nM and 7.8-10 μM, respectively; Indirubin-3'-monoxime also shows inhibitory activities against CDK5/p25 and CDK1/cyclin B, with IC50s of 100 and 180 nM.

   

beta-D-Glucopyranose, 1-thio-, 1-(5-(methylsulfinyl)-N-(sulfooxy)pentanimidate)

{[(5-methanesulphinyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulphanyl}pentylidene)amino]oxy}sulphonic acid

C12H23NO10S3 (437.0484)


   

Anthemoside

5-hydroxy-2-(4-hydroxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O10 (432.1056)


Constituent of Anthemis nobilis (Roman chamomile). Anthemoside is found in herbs and spices.

   

FA(16:1)

cis-9-hexadecenoic acid

C16H30O2 (254.2246)


Palmitoleic acid (FA 16:1), also known as hexadecenoic acid, is a monounsaturated omega-7 fatty acid with a 16-carbon chain and a double bond at the 9th position. In biological terms, palmitoleic acid serves several important functions: 1. **Energy Source:** Like other fatty acids, palmitoleic acid is a significant source of energy. It can be oxidized through beta-oxidation to produce ATP, the energy currency of the cell. 2. **Cell Membrane Structure:** Palmitoleic acid is a component of phospholipids, which are major constituents of cell membranes. The presence of monounsaturated fatty acids like palmitoleic acid helps maintain the fluidity and flexibility of cell membranes, which is crucial for various cellular processes. 3. **Lipid Signaling:** Palmitoleic acid and its derivatives can act as signaling molecules. For example, it is converted into the lipid mediator called palmitoleoyl-lysophosphatidylcholine (LPC), which plays a role in inflammation and blood clotting. 4. **Insulin Sensitivity:** Palmitoleic acid has been shown to improve insulin sensitivity, which is important for glucose metabolism and can help in the prevention and treatment of type 2 diabetes. 5. **Inflammation Modulation:** Some studies suggest that palmitoleic acid may have anti-inflammatory effects, which could be beneficial in reducing the risk of chronic diseases associated with inflammation. 6. **Skin Health:** Palmitoleic acid is naturally present in the skin and is considered a component of the skin's surface lipids, contributing to the skin's barrier function and helping to prevent water loss. 7. **Biosynthesis of Other Lipids:** Palmitoleic acid serves as a precursor for the synthesis of other complex lipids, including prostaglandins and other eicosanoids, which are involved in a wide range of physiological processes such as inflammation and blood pressure regulation. 8. **Cardiovascular Health:** The consumption of monounsaturated fatty acids like palmitoleic acid is often associated with a lower risk of cardiovascular diseases, although the direct role of palmitoleic acid in this context is still under investigation. It's important to note that while palmitoleic acid has these potential biological functions, the overall impact on health can depend on the balance of fatty acids in the diet and the context of the individual's overall metabolic health. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

2-Hydroxybutyric acid

DL-alpha-Hydroxybutyric acid

C4H8O3 (104.0473)


(S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].

   

Bellidin

1,3,5,8-Tetrahydroxyxanthone; Desmethylbellidifolin

C13H8O6 (260.0321)


Bellidin is a member of the class of xanthones that is xanthone which is substituted by hydroxy groups at positions 1, 3, 5, and 8. A natural product found particularly in Iris nigricans and Gentiana campestris. It has a role as a metabolite, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a mutagen, an antioxidant and a radical scavenger. It is a member of xanthones and a tetrol. It is functionally related to a xanthone. 1,3,5,8-Tetrahydroxyxanthone is a natural product found in Gentiana orbicularis, Swertia teres, and other organisms with data available. A member of the class of xanthones that is xanthone which is substituted by hydroxy groups at positions 1, 3, 5, and 8. A natural product found particularly in Iris nigricans and Gentiana campestris.

   

Techtochrysin

5-Hydroxy-7-methylflavone; 7-O-Methylchrysin; Tectochrysine

C16H12O4 (268.0736)


Tectochrysin is a monohydroxyflavone that is flavone substituted by a hydroxy group at position 4 and a methoxy group at position 7 respectively. It has a role as a plant metabolite, an antidiarrhoeal drug and an antineoplastic agent. It is a monohydroxyflavone and a monomethoxyflavone. It is functionally related to a flavone. Tectochrysin is a natural product found in Hedychium spicatum, Populus laurifolia, and other organisms with data available. A monohydroxyflavone that is flavone substituted by a hydroxy group at position 4 and a methoxy group at position 7 respectively. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB.

   

6-Hydroxydaidzein

6,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, 9CI

C15H10O5 (270.0528)


4,6,7-trihydroxyisoflavone is a hydroxyisoflavone that is daidzein bearing an additional hydroxy substituent at position 6. It has a role as a metabolite, a PPARalpha agonist, a PPARgamma agonist, an anti-inflammatory agent, an antimutagen and an EC 1.14.18.1 (tyrosinase) inhibitor. It is functionally related to a daidzein. 6,7,4-Trihydroxyisoflavone is a natural product found in Capsicum annuum with data available. 6-Hydroxydaidzein is found in pulses. 6-Hydroxydaidzein is isolated from fermented soybeans (Glycine max Isolated from fermented soybeans (Glycine max). 6-Hydroxydaidzein is found in soy bean and pulses. A hydroxyisoflavone that is daidzein bearing an additional hydroxy substituent at position 6.

   

Alkannin

5,8-dihydroxy-2-[(1S)-1-hydroxy-4-methylpent-3-en-1-yl]-1,4-dihydronaphthalene-1,4-dione

C16H16O5 (288.0998)


Alkannin is a hydroxy-1,4-naphthoquinone. Alkannin is a natural product found in Arnebia hispidissima, Alkanna cappadocica, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3].

   

Hispidulin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.0634)


Hispidulin is a monomethoxyflavone that is scutellarein methylated at position 6. It has a role as an apoptosis inducer, an anti-inflammatory agent, an antioxidant, an anticonvulsant, an antineoplastic agent and a plant metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a scutellarein. Hispidulin (4,5,7-trihydroxy-6-methoxyflavone) is a potent benzodiazepine (BZD) receptor ligand with positive allosteric properties. Hispidulin is a natural product found in Eupatorium cannabinum, Eupatorium perfoliatum, and other organisms with data available. See also: Arnica montana Flower (part of). A monomethoxyflavone that is scutellarein methylated at position 6. 6-methylscutellarein, also known as 4,5,7-trihydroxy-6-methoxyflavone or dinatin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 6-methylscutellarein is considered to be a flavonoid lipid molecule. 6-methylscutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-methylscutellarein can be found in a number of food items such as italian oregano, common sage, sunflower, and common thyme, which makes 6-methylscutellarein a potential biomarker for the consumption of these food products. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Deguelin

(1S,14S)-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.03,12.04,9.015,20]docosa-3(12),4(9),5,10,15,17,19-heptaen-13-one

C23H22O6 (394.1416)


Deguelin is a rotenone that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted by methoxy groups at positions 9 and 10, and by two methyl groups at position 3 (the 7aS,13aS-stereoisomer). It exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants and reported to exert anti-tumour effects in various cancers. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite, an angiogenesis inhibitor, an antiviral agent, a mitochondrial NADH:ubiquinone reductase inhibitor, an anti-inflammatory agent and an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor. It is a member of rotenones, an aromatic ether, an organic heteropentacyclic compound and a diether. Deguelin is a natural product found in Tephrosia vogelii, Derris montana, and other organisms with data available. A rotenone that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted by methoxy groups at positions 9 and 10, and by two methyl groups at position 3 (the 7aS,13aS-stereoisomer). It exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants and reported to exert anti-tumour effects in various cancers. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB.

   

Jervine

(2R,3S,3R,3aS,6S,6aS,6bS,7aR,11aS,1 1bR)-2,3,3a,4,4,5,6,6,6a,6b,7,7,7a,8,11a,11b-hexad ecahydro-3-hydroxy-3,6,10,11b-tetramethyl-Spiro[9H -benzo[a]fluorene-9,2(3H)-furo[3,2-b]pyridin]-11(1 H)-one

C27H39NO3 (425.293)


Jervine is a member of piperidines. Jervine is a natural product found in Veratrum stamineum, Veratrum grandiflorum, and other organisms with data available. Jervine is a steroidal alkaloid with molecular formula C27H39NO3 which is derived from the Veratrum plant genus. Similar to cyclopamine, which also occurs in the Veratrum genus, it is a teratogen implicated in birth defects when consumed by animals during a certain period of their gestation. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2]. Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2].

   

Ononin

3-(4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C22H22O9 (430.1264)


Ononin is a 4-methoxyisoflavone that is formononetin attached to a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of 4-methoxyisoflavones and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a formononetin. Ononin is a natural product found in Cicer chorassanicum, Thermopsis lanceolata, and other organisms with data available. See also: Astragalus propinquus root (part of). A 4-methoxyisoflavone that is formononetin attached to a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

Glucoraphanin

(((5-(Methylsulfinyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)thio)pentylidene)amino)oxy)sulfonic acid

C12H23NO10S3 (437.0484)


A thia-glucosinolic acid that is glucoerucin in which the sulfur atom of the methyl thioether group has been oxidised to the corresponding sulfoxide. Acquisition and generation of the data is financially supported by the Max-Planck-Society Glucoraphanin is under investigation in clinical trial NCT01879878 (Pilot Study Evaluating Broccoli Sprouts in Advanced Pancreatic Cancer [POUDER Trial]). Glucoraphanin is a natural product found in Arabidopsis thaliana, Brassica, and Raphanus sativus with data available. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects.

   

Glycitin

7-(?-D-Glucopyranosyloxy)-3-(4-hydroxyphenyl)-6-methoxy-4H-1-benzopyran-4-one; Glycitein 7-O-glucoside; Glycitein 7-O-?-glucoside; Glycitein-7-?-O-glucoside; Glycitin

C22H22O10 (446.1213)


Glycitin is a glycosyloxyisoflavone that is isoflavone substituted by a methoxy group at position 6, a hydroxy group at position 4 and a beta-D-glucopyranosyloxy group at position 7. It has a role as a plant metabolite. It is a methoxyisoflavone, a hydroxyisoflavone, a monosaccharide derivative and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. Glycitin is a natural product found in Sorbus cuspidata, Ziziphus spina-christi, and other organisms with data available. A glycosyloxyisoflavone that is isoflavone substituted by a methoxy group at position 6, a hydroxy group at position 4 and a beta-D-glucopyranosyloxy group at position 7. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic. Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic.

   

Protopanaxadiol

(3S,5R,8R,9R,10R,12R,13R,14R,17S)-17-[(2R)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,12-diol

C30H52O3 (460.3916)


(20R)-protopanaxadiol is a diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-R position. 20(R)-Protopanaxadiol is a natural product found in Panax ginseng with data available. A diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-R position. (20S)-protopanaxadiol is a diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-S position. (20S)-Protopanaxadiol is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and Aralia elata with data available. A diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-S position. (20R)-Protopanaxadiol is a triterpenoid saponin metabolite of 20(R)-ginsenoside Rg3 in black ginseng. (20R)-Protopanaxadiol exhibits anti-tumor activity and cytotoxicity, and potently inhibits the growth of Helicobacter pylori[1][2][3]. (20R)-Protopanaxadiol is a triterpenoid saponin metabolite of 20(R)-ginsenoside Rg3 in black ginseng. (20R)-Protopanaxadiol exhibits anti-tumor activity and cytotoxicity, and potently inhibits the growth of Helicobacter pylori[1][2][3]. 20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, inhibits Akt activity and induces apoptosis in various tumor cells[1]. 20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, inhibits Akt activity and induces apoptosis in various tumor cells[1].

   

Hinokiflavone

4H-1-Benzopyran-4-one, 6-(4-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)phenoxy)-5,7-dihyd- roxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.09)


Hinokiflavone is a biflavonoid that is apigenin substituted by a 4-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)phenoxy group at position 6. A diflavonyl ether, it is isolated from Rhus succedanea and has been found to possess significant cytotoxic potential. It has a role as a neuroprotective agent, an antineoplastic agent and a metabolite. It is a biflavonoid, an aromatic ether and a hydroxyflavone. It is functionally related to an apigenin. Hinokiflavone is a natural product found in Garcinia multiflora, Podocarpus elongatus, and other organisms with data available. A biflavonoid that is apigenin substituted by a 4-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)phenoxy group at position 6. A diflavonyl ether, it is isolated from Rhus succedanea and has been found to possess significant cytotoxic potential. Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1]. Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C21H20O10 (432.1056)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Apiin

7-(((2S,3R,4S,5S,6R)-3-(((2S,3R,4R)-3,4-Dihydroxy-4-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C26H28O14 (564.1479)


Apiin is a beta-D-glucoside having a beta-D-apiosyl residue at the 2-position and a 5,4-dihydroxyflavon-7-yl moiety at the anomeric position. It has a role as an EC 3.2.1.18 (exo-alpha-sialidase) inhibitor and a plant metabolite. It is a beta-D-glucoside, a dihydroxyflavone and a glycosyloxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an apiin(1-). Apiin is a natural product found in Crotalaria micans, Limonium axillare, and other organisms with data available. See also: Chamomile (part of); Chamaemelum nobile flower (part of). A beta-D-glucoside having a beta-D-apiosyl residue at the 2-position and a 5,4-dihydroxyflavon-7-yl moiety at the anomeric position. Apiin, a major constituent of Apium graveolens leaves with anti-inflammatory properties. Apiin shows significant inhibitory activity on nitrite (NO) production (IC50 = 0.08 mg/mL) in-vitro and iNOS expression (IC50 = 0.049 mg/ mL) in LPS-activated J774.A1 cells[1]. Apiin, a major constituent of Apium graveolens leaves with anti-inflammatory properties. Apiin shows significant inhibitory activity on nitrite (NO) production (IC50 = 0.08 mg/mL) in-vitro and iNOS expression (IC50 = 0.049 mg/ mL) in LPS-activated J774.A1 cells[1].

   

Daidzin

3-(4-hydroxyphenyl)-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O9 (416.1107)


D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents D004791 - Enzyme Inhibitors Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities. Daidzin is a potent and selective inhibitor of mitochondrial ALDH-2. Daidzin reduces ethanol consumption[1]. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities.

   

dinatin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.0634)


Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Methylnissolin

3-Hydroxy-9,10-Dimethoxypterocarpan

C17H16O5 (300.0998)


Methylnissolin (Astrapterocarpan), isolated from Astragalus membranaceus, inhibits platelet-derived growth factor (PDGF)-BB-induced cell proliferation with an IC50 of 10 μM. Methylnissolin inhibits PDGF-BB-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERIC1/2) mitogen-activated protein (MAP) kinase. Methylnissolin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation by inhibition of the ERK1/2 MAP kinase cascade[1]. Methylnissolin (Astrapterocarpan), isolated from Astragalus membranaceus, inhibits platelet-derived growth factor (PDGF)-BB-induced cell proliferation with an IC50 of 10 μM. Methylnissolin inhibits PDGF-BB-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERIC1/2) mitogen-activated protein (MAP) kinase. Methylnissolin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation by inhibition of the ERK1/2 MAP kinase cascade[1]. Methylnissolin (Astrapterocarpan), isolated from Astragalus membranaceus, inhibits platelet-derived growth factor (PDGF)-BB-induced cell proliferation with an IC50 of 10 μM. Methylnissolin inhibits PDGF-BB-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERIC1/2) mitogen-activated protein (MAP) kinase. Methylnissolin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation by inhibition of the ERK1/2 MAP kinase cascade[1].

   

ononin

3-(4-methoxyphenyl)-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C22H22O9 (430.1264)


Origin: Plant; Formula(Parent): C22H22O9; Bottle Name:Ononin; PRIME Parent Name:Formononetin-7-O-glucoside; PRIME in-house No.:S0305, Pyrans Annotation level-1 Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

Isoscutellarein

5,7,8-Trihydroxy-2- (4-hydroxyphenyl) -4H-1-benzopyran-4-one

C15H10O6 (286.0477)


A tetrahydroxyflavone that is apigenin with an extra hydroxy group at position 8.

   

Narirutin

(S)-5-hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O14 (580.1792)


Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). A disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].

   

Norwogonin

4H-1-Benzopyran-4-one, 2-phenyl-5,7,8-trihydroxy- (9CI)

C15H10O5 (270.0528)


Norwogonin is a trihydroxyflavone with the hydroxy groups at positions C-5, -7 and -8. It has a role as an antioxidant and a metabolite. Norwogonin is a natural product found in Scutellaria discolor, Scutellaria strigillosa, and other organisms with data available. A trihydroxyflavone with the hydroxy groups at positions C-5, -7 and -8. Norwogonin, isolated from Scutellaria baicalensis Georgi, possesses antiviral activity against Enterovirus 71 (EV71) with an IC50 of 31.83 μg/ml[1] Norwogonin, isolated from Scutellaria baicalensis Georgi, possesses antiviral activity against Enterovirus 71 (EV71) with an IC50 of 31.83 μg/ml[1]

   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. A flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

sulfurein

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

Tricin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-HYDROXY-3,5-DIMETHOXYPHENYL)-

C17H14O7 (330.0739)


3,5-di-O-methyltricetin is the 3,5-di-O-methyl ether of tricetin. Known commonly as tricin, it is a constituent of rice bran and has been found to potently inhibit colon cancer cell growth. It has a role as an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is a trihydroxyflavone, a dimethoxyflavone and a member of 3-methoxyflavones. It is functionally related to a tricetin. It is a conjugate acid of a 3,5-di-O-methyltricetin(1-). Tricin is a natural product found in Carex fraseriana, Smilax bracteata, and other organisms with data available. See also: Arnica montana Flower (part of); Elymus repens root (part of). The 3,5-di-O-methyl ether of tricetin. Known commonly as tricin, it is a constituent of rice bran and has been found to potently inhibit colon cancer cell growth. Isolated from Triticum dicoccum (emmer). Tricin 5-diglucoside is found in wheat and cereals and cereal products. From leaves of Oryza sativa (rice). 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one, also known as 3,5-O-dimethyltricetin or 5,7,4-trihydroxy-3,5-dimethoxy-flavone, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one can be synthesized from tricetin. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, tricin 7-O-glucoside, 4-O-beta-glucosyl-7-O-(6-O-sinapoylglucosyl)tricin, and tricin 7-O-(6-O-malonyl)-beta-D-glucopyranoside. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one can be found in barley, common wheat, oat, and rice, which makes 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3]. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3].

   

Ephedrine

2-(methylamino)-1-phenylpropan-1-ol

C10H15NO (165.1154)


R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CA - Alpha- and beta-adrenoreceptor agonists R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FB - Sympathomimetics excl. antiglaucoma preparations D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.064 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.062

   

Fucosterol

(24E)-24-n-propylidenecholesterol;(3beta,24E)-stigmasta-5,24(28)-dien-3-ol;(E)-stigmasta-5,24(28)-dien-3beta-ol;24E-ethylidene-cholest-5-en-3beta-ol;fucosterin;trans-24-ethylidenecholesterol

C29H48O (412.3705)


A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24 (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol can be found in horseradish tree and sunflower, which makes (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol a potential biomarker for the consumption of these food products. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].

   

Genistin

5-hydroxy-3-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.1056)


Genistein 7-O-beta-D-glucoside is a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a genistein. It is a conjugate acid of a genistein 7-O-beta-D-glucoside(1-). Genistin is a natural product found in Ficus septica, Dalbergia sissoo, and other organisms with data available. Genistin (Genistine), an isoflavone belonging to the phytoestrogen family, is a potent anti-adipogenic and anti-lipogenic agent. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway[1][2][3]. Genistin (Genistine), an isoflavone belonging to the phytoestrogen family, is a potent anti-adipogenic and anti-lipogenic agent. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway[1][2][3].

   

Neoxanthin

(1R,3S)-6-[(3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenylidene]-1,5,5-trimethyl-cyclohexane-1,3-diol

C40H56O4 (600.4178)


9-cis-neoxanthin is a neoxanthin in which all of the double bonds have trans geometry except for that at the 9 position, which is cis. It is a 9-cis-epoxycarotenoid and a neoxanthin. Neoxanthin is a natural product found in Hibiscus syriacus, Cladonia rangiferina, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

valerenic acid

valerenic acid

C15H22O2 (234.162)


A monocarboxylic acid that is 2-methylprop-2-enoic acid which is substituted at position 3 by a 3,7-dimethyl-2,4,5,6,7,7a-hexahydro-1H-inden-4-yl group. A bicyclic sesquiterpenoid constituent of the essential oil of the Valerian plant. Valerenic acid ((-)-Valerenic Acid), a sesquiterpenoid, is an orally active positive allosteric modulator of GABAA receptors. Valerenic acid is also a partial agonist of the 5-HT5a receptor. Valerenic acid mediates anxiolytic activity via GABAA receptors containing the β3 subunit. Valerenic acid also exhibits potent antioxidant properties[1][2][3].

   

tellimagrandin I

tellimagrandin I

C34H26O22 (786.0916)


   

Lupenone

(1R,3aR,4S,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Amentoflavone

4H-1-Benzopyran-4-one, 8-(5-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)-2-hydroxyphenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.09)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 4341; CONFIDENCE confident structure Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].

   

Phellopterin

7H-Furo(3,2-g)(1)benzopyran-7-one, 4-methoxy-9-((3-methyl-2-butenyl)oxy)-

C17H16O5 (300.0998)


Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1]. Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1]. Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1].

   

Glycitein

4H-1-Benzopyran-4-one, 7-hydroxy-3-(4-hydroxyphenyl)-6-methoxy-

C16H12O5 (284.0685)


A natural product found in Cordyceps sinensis. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitein is a soy isoflavone used to study apoptosis and antioxidant. Glycitein is a soy isoflavone used to study apoptosis and antioxidant.

   

INDIRUBIN-3-MONOXIME

3-[1,3-dihydro-3-(hydroxyimino)-2H-indol-2-ylidene]-1,3-dihydro-2H-indol-2-one

C16H11N3O2 (277.0851)


A member of the class of biindoles that is indirubin in which the keto group at position 3 has undergone condensation with hydroxylamine to form the corresponding oxime. Indirubin-3'-monoxime is a potent GSK-3β inhibitor, and weakly inhibits 5-Lipoxygenase, with IC50s of 22 nM and 7.8-10 μM, respectively; Indirubin-3'-monoxime also shows inhibitory activities against CDK5/p25 and CDK1/cyclin B, with IC50s of 100 and 180 nM.

   

Batatasin I

6-hydroxy-2,4,7-trimethoxyphenanthrene

C17H16O4 (284.1049)


Batatasin I is a phenanthrol. Batatasin I is a natural product found in Dioscorea cayenensis, Dioscorea bulbifera, and other organisms with data available. Batatasin I is found in root vegetables. Batatasin I is a constituent of Dioscorea batatas (Chinese yam). Constituent of Dioscorea batatas (Chinese yam). Batatasin I is found in root vegetables.

   

1ST40320

(1,6)Dioxacyclododecino(2,3,4-gh)pyrrolizine-2,7-dione, 3-ethylidene-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-6-(hydroxymethyl)-5-methyl-, (3Z,5R,6S,14aR,14bR)-

C18H25NO6 (351.1682)


Retrorsine is a macrolide. Retrorsine is a natural product found in Crotalaria spartioides, Senecio malacitanus, and other organisms with data available. D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].

   

Loganic acid

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid

C16H24O10 (376.1369)


8-Epiloganic acid is a natural product found in Plantago atrata, Lonicera japonica, and other organisms with data available. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].

   

Aspartame

Aspartame

C14H18N2O5 (294.1216)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; IAOZJIPTCAWIRG-QWRGUYRKSA-N_STSL_0231_Aspartame_0031fmol_190114_S2_LC02MS02_038; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 5809 Aspartame (SC-18862) is a methyl ester of a dipeptide. Aspartame can be used as a synthetic nonnutritive sweetener[1][2].

   

Fipronil

Pesticide5_Fipronil_C12H4Cl2F6N4OS_5-Amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile

C12H4Cl2F6N4OS (435.9387)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2666 EAWAG_UCHEM_ID 2666; CONFIDENCE standard compound Fipronil is a broad-spectrum insecticide effective against Lepidoptera species as well as thrips, locusts, ants, cockroaches, fleas and ticks. Fipronil selectively inhibits GABA receptor with IC50s of 30 nM and 1600 nM for cockroach and rat GABA receptors, respectively. Glutamate-gated chloride channels (GluCls), which are present in cockroaches but not in mammals, are sensitive to the blocking effect of Fipronil. Fipronil also induces apoptosis in HepG2 cells and promotes the expression of CYP1A1 and CYP3A4 mRNA in human hepatocytes[1][2].

   

Sucralose

Sucralose

C12H19Cl3O8 (396.0145)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents CONFIDENCE Reference Standard (Level 1)

   

Kaempferol-3-rutinoside

Kaempferol-7-O-neohesperidoside

C27H30O15 (594.1585)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Gingerol

3-Decanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C17H26O4 (294.1831)


Gingerol is a beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. It has a role as an antineoplastic agent and a plant metabolite. It is a beta-hydroxy ketone and a member of guaiacols. Gingerol is a natural product found in Illicium verum, Piper nigrum, and other organisms with data available. See also: Ginger (part of). A beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. Annotation level-1 [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.

   

Rosin

Abietic acid

C20H30O2 (302.2246)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.566 D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.569 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.570 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.573 Abietic acid, a diterpene isolated from Colophony, possesses antiproliferative, antibacterial, and anti-obesity properties. Abietic acid inhibits lipoxygenase activity for allergy treatment[1][2]. Abietic acid, a diterpene isolated from Colophony, possesses antiproliferative, antibacterial, and anti-obesity properties. Abietic acid inhibits lipoxygenase activity for allergy treatment[1][2].

   

Chrysophanic acid

Chrysophanic acid

C15H10O4 (254.0579)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.321 D009676 - Noxae > D009153 - Mutagens relative retention time with respect to 9-anthracene Carboxylic Acid is 1.322 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.318 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.324 Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.

   

Histidinol

Histidinol

C6H11N3O (141.0902)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.044 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.041 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.040

   

L-Histidinol

L-Histidinol

C6H11N3O (141.0902)


An amino alcohol that is propanol substituted by 1H-imidazol-4-yl group at position 3 and an amino group at position 2 (the 2S stereoisomer).

   

Poncirin

(2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-methoxyphenyl)chroman-4-one

C28H34O14 (594.1948)


(2S)-poncirin is a flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. It has a role as a plant metabolite. It is a monomethoxyflavanone, a flavanone glycoside, a disaccharide derivative, a neohesperidoside and a member of 4-methoxyflavanones. It is functionally related to a 4-methoxy-5,7-dihydroxyflavanone. Poncirin is a natural product found in Citrus medica, Micromeria graeca, and other organisms with data available. A flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1]. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1].

   

Palmitoleic acid

Trans-Hexa-dec-2-enoic acid

C16H30O2 (254.2246)


A hexadec-9-enoic acid in which the double bond at position C-9 has cis configuration. In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation. Trans-hexa-dec-2-enoic acid is an intermediate in fatty acid biosynthesis. Specifically, trans-hexa-dec-2-enoic acid converted from (R)-3-Hydroxy-hexadecanoic acid via two enzymes; fatty-acid Synthase and 3- Hydroxypalmitoyl- [acyl-carrier-protein] dehydratase (EC: 2.3.1.85 and EC: 4.2.1.61). [HMDB] Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as red huckleberry, highbush blueberry, butternut, and macadamia nut (m. tetraphylla), which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including blood, saliva, feces, and urine, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5949; ORIGINAL_PRECURSOR_SCAN_NO 5948 INTERNAL_ID 900; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5959; ORIGINAL_PRECURSOR_SCAN_NO 5958 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5959; ORIGINAL_PRECURSOR_SCAN_NO 5958 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5926; ORIGINAL_PRECURSOR_SCAN_NO 5924 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5944; ORIGINAL_PRECURSOR_SCAN_NO 5943 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5997; ORIGINAL_PRECURSOR_SCAN_NO 5996 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5943; ORIGINAL_PRECURSOR_SCAN_NO 5941 Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

10-gingerol

3-Tetradecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-

C21H34O4 (350.2457)


10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2]. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2].

   

Gamma-glutamylcysteine

Gamma-glutamylcysteine

C8H14N2O5S (250.0623)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RITKHVBHSGLULN_STSL_0116_5-Glutamylcysteine_8000fmol_180506_S2_LC02_MS02_219; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Gamma-glutamylcysteine (γ-Glutamylcysteine), a dipeptide containing cysteine and glutamic acid, is a precursor to glutathione (GSH). Gamma-glutamylcysteine is a cofactor for glutathione peroxidase (GPx) to increase GSH levels[1].

   

5-Aminoimidazole-4-carboxamide

5-Aminoimidazole-4-carboxamide

C4H6N4O (126.0542)


An aminoimidazole in which the amino group is at C-5 with a carboxamido group at C-4. 5-Amino-3H-imidazole-4-Carboxamide (AICA) is an important precursor for the synthesis of purines in general and of the nucleobases adenine and guanine in particular.

   

Fucoxanthin

InChI=1/C42H58O6/c1-29(18-14-19-31(3)22-23-37-38(6,7)26-35(47-33(5)43)27-40(37,10)46)16-12-13-17-30(2)20-15-21-32(4)36(45)28-42-39(8,9)24-34(44)25-41(42,11)48-42/h12-22,34-35,44,46H,24-28H2,1-11H3/b13-12+,18-14+,20-15+,29-16+,30-17+,31-19+,32-21+/t23?,34-

C42H58O6 (658.4233)


Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes. Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available. An epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width to select the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities.

   

Stavudine

Stavudine

C10H12N2O4 (224.0797)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2238; ORIGINAL_PRECURSOR_SCAN_NO 2235 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2232; ORIGINAL_PRECURSOR_SCAN_NO 2230 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2236; ORIGINAL_PRECURSOR_SCAN_NO 2234 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2225; ORIGINAL_PRECURSOR_SCAN_NO 2224 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2291; ORIGINAL_PRECURSOR_SCAN_NO 2290 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2235; ORIGINAL_PRECURSOR_SCAN_NO 2233 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9439; ORIGINAL_PRECURSOR_SCAN_NO 9434 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9398; ORIGINAL_PRECURSOR_SCAN_NO 9395 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9567; ORIGINAL_PRECURSOR_SCAN_NO 9562 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9454; ORIGINAL_PRECURSOR_SCAN_NO 9450 Stavudine (d4T) is an orally active nucleoside reverse transcriptase inhibitor (NRTI). Stavudine has activity against HIV-1 and HIV-2. Stavudine also inhibits the replication of mitochondrial DNA (mtDNA). Stavudine reduces NLRP3 inflammasome activation and modulates Amyloid-β autophagy. Stavudine induces apoptosis[1][2][3][4].

   

2,6-Dimethoxyquinone

2,6-Dimethoxy-1,4-benzoquinone

C8H8O4 (168.0423)


2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].

   

Esbiothrin

S-Bioallethrin

C19H26O3 (302.1882)


D010575 - Pesticides > D007306 - Insecticides > D000487 - Allethrins D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 2459

   

Betulafolienetriol

Betulafolienetriol

C30H52O3 (460.3916)


Origin: Plant; SubCategory_DNP: Triterpenoids

   

Maackiain

(-)-Maackiain

C16H12O5 (284.0685)


Widespread in the Leguminosae subfamily. Constituent of Trifolium pratense (red clover). (-)-Maackiain is found in many foods, some of which are nectarine, chickpea, alaska blueberry, and adzuki bean. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].

   

Betulafolientriol

14-(2-hydroxy-6-methylhept-5-en-2-yl)-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecane-5,16-diol

C30H52O3 (460.3916)


   

1-O-Galloylpedunculagin

7,8,9,12,13,14,28,29,30,33,34,35-dodecahydroxy-4,17,25,38-tetraoxo-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.0^{2,19}.0^{5,10}.0^{11,16}.0^{26,31}.0^{32,37}]nonatriaconta-5(10),6,8,11,13,15,26,28,30,32(37),33,35-dodecaen-20-yl 3,4,5-trihydroxybenzoate

C41H28O26 (936.0869)


   

CoA 18:0

C18:0-CoA;C18:0-coenzyme A;S-stearoyl-CoA;S-stearoylcoenzyme A;octadecanoyl-CoA;octadecanoyl-coenzyme A;stearoyl-coenzyme A

C39H70N7O17P3S (1033.3762)


   

3-Isobutyl-1-methylxanthine

3-Isobutyl-1-methylxanthine

C10H14N4O2 (222.1117)


D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors

   

Liquidambar styraciflua

Liquidambar styraciflua

C76H52O46 (1700.173)


   

AI3-00579

InChI=1\C10H10O2\c1-12-10(11)8-7-9-5-3-2-4-6-9\h2-8H,1H3\b8-7

C10H10O2 (162.0681)


Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Myristicin

1,3-Benzodioxole, 4-methoxy-6-(2-propenyl)- (9CI)

C11H12O3 (192.0786)


Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1].

   

Arctigenen

2(3H)-furanone, 4-((3,4-dimethoxyphenyl)methyl)dihydro-3-((4-hydroxy-3-methoxyphenyl)methyl)-, (3R-trans)-

C21H24O6 (372.1573)


Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3]. Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3].

   

germacron

3,7-Cyclodecadien-1-one, 3,7-dimethyl-10-(1-methylethylidene)-, (E,E)-

C15H22O (218.1671)


Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1]. Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1].

   

Crysophanol

Chrysophanic acid (1,8-dihydroxy-3-methylanthraquinone)

C15H10O4 (254.0579)


D009676 - Noxae > D009153 - Mutagens Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.

   

Zoomaric acid

cis-Delta(9)-Hexadecenoic acid

C16H30O2 (254.2246)


Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

Cauloside A

(4aS,6aR,6aS,6bR,8aR,9R,10S,12aR,14bS)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[[(2S,3R,4S,5S)-3,4,5-trihydroxy-2-tetrahydropyranyl]oxy]-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C35H56O8 (604.3975)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors Cauloside A (Leontoside A) is a saponin isolated from Dipsacus asper roots. Cauloside A has potent antifungal activity[1][2]. Cauloside A (Leontoside A) is a saponin isolated from Dipsacus asper roots. Cauloside A has potent antifungal activity[1][2].

   

Inokiflavone

4H-1-Benzopyran-4-one, 6-(4-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)phenoxy)-5,7-dihyd- roxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.09)


Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1]. Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1].

   

Ginkgetin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)-

C32H22O10 (566.1213)


Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5]. Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5].

   

Echinocystic acid

aster saponin F_qt

C30H48O4 (472.3552)


Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties.

   

530-55-2

2,5-Cyclohexadiene-1,4-dione, 2,6-dimethoxy-, radical ion(1-)

C8H8O4 (168.0423)


2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].

   

Batatasin I

3-Phenanthrenol, 2,5,7-trimethoxy-

C17H16O4 (284.1049)


   

Cornin

(1S,4aS,7S,7aR)-7-methyl-5-oxo-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4a,6,7,7a-tetrahydro-1H-cyclopenta[d]pyran-4-carboxylic acid methyl ester

C17H24O10 (388.1369)


Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2]. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2].

   

Gingerdione

3,5-Decanedione, 1-(4-hydroxy-3-methoxyphenyl)-

C17H24O4 (292.1675)


   

Eciphin

Benzenemethanol, alpha-((1S)-1-(methylamino)ethyl)-, (alphaR)-

C10H15NO (165.1154)


R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CA - Alpha- and beta-adrenoreceptor agonists R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FB - Sympathomimetics excl. antiglaucoma preparations D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents

   

beta-D-Glucopyranose, 1-thio-, 1-(5-(methylsulfinyl)-N-(sulfooxy)pentanimidate)

{[(5-methanesulphinyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulphanyl}pentylidene)amino]oxy}sulphonic acid

C12H23NO10S3 (437.0484)


4-methylsulfinylbutyl glucosinolate is a member of the class of compounds known as alkylglucosinolates. Alkylglucosinolates are organic compounds containing a glucosinolate moiety that carries an alkyl chain. 4-methylsulfinylbutyl glucosinolate is soluble (in water) and an extremely strong acidic compound (based on its pKa). 4-methylsulfinylbutyl glucosinolate can be found in a number of food items such as sweet cherry, japanese chestnut, macadamia nut (m. tetraphylla), and oriental wheat, which makes 4-methylsulfinylbutyl glucosinolate a potential biomarker for the consumption of these food products.

   

Verbenalin

Methyl (1S,4aS,7S,7aR)-7-methyl-5-oxo-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylate

C17H24O10 (388.1369)


Verbenalin is a terpene glycoside. Verbenalin is a natural product found in Symplocos glauca, Cornus kousa, and other organisms with data available. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2]. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2].

   

Demethylsuberosin

2H-1-Benzopyran-2-one, 7-hydroxy-6-(3-methyl-2-buten-1-yl)-

C14H14O3 (230.0943)


7-demethylsuberosin is a hydroxycoumarin that is 7-hydroxycoumarin which is substituted at position 6 by a 3-methylbut-2-en-1-yl group. A natural product found in Citropsis articulata. It has a role as a plant metabolite. Demethylsuberosin is a natural product found in Prangos tschimganica, Limonia acidissima, and other organisms with data available. A hydroxycoumarin that is 7-hydroxycoumarin which is substituted at position 6 by a 3-methylbut-2-en-1-yl group. A natural product found in Citropsis articulata. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Demethylsuberosin (7-Demethylsuberosin) is a coumarin compound isolated from Angelica gigas Nakai, and has anti-inflammatory activity[1]. Demethylsuberosin (7-Demethylsuberosin) is a coumarin compound isolated from Angelica gigas Nakai, and has anti-inflammatory activity[1].

   

Gingerol

3-Tetradecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (5S)-

C21H34O4 (350.2457)


(10)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (10)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2]. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2].

   

pipobroman

pipobroman

C10H16Br2N2O2 (353.9578)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents

   

DIBUTYL SUCCINATE

DIBUTYL SUCCINATE

C12H22O4 (230.1518)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents

   

(S)-2-Hydroxybutyric acid

(S)-2-Hydroxybutyric acid

C4H8O3 (104.0473)


An optically active form of 2-hydroxybutyric acid having (S)-configuration. (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].

   

(2R)-2-hydroxypentanedioic acid

(2R)-2-hydroxypentanedioic acid

C5H8O5 (148.0372)


   

4-[(1R)-2-amino-1-hydroxyethyl]phenol

4-[(1R)-2-amino-1-hydroxyethyl]phenol

C8H11NO2 (153.079)


D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Deethyldeisopropylatrazine

6-Chloro-1,3,5-triazine-2,4-diamine

C3H4ClN5 (145.0155)


   

stearoyl-CoA

stearoyl-CoA

C39H70N7O17P3S (1033.3762)


A long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of stearic acid.

   

20-Hydroxycholesterol

20(S)-Hydroxycholesterol

C27H46O2 (402.3498)


An oxysterol that is cholesterol substituted by a hydroxy group at position 20. 20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].

   

1,2,6-Trigalloylglucose

1,2,6-Trigalloylglucose

C27H24O18 (636.0963)


   

all-trans-neoxanthin

all-trans-neoxanthin

C40H56O4 (600.4178)


A neoxanthin in which all of the double bonds have trans geometry. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Aziridine

Polyethyleneimine

C2H5N (43.0422)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent

   

4,4-Methylenedianiline

4,4′-methylenedianiline

C13H14N2 (198.1157)


D009676 - Noxae > D002273 - Carcinogens

   

3-(Allylsulfinyl)-L-alanine

2-amino-3-prop-2-enylsulfinylpropanoic acid

C6H11NO3S (177.046)


D000970 - Antineoplastic Agents D007004 - Hypoglycemic Agents Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].

   

(+/-)-Mandelamide

2-Hydroxy-2-phenylacetamide

C8H9NO2 (151.0633)


D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids