Prunasin (BioDeep_00000000847)

   

human metabolite PANOMIX_OTCML-2023 Volatile Flavor Compounds natural product


代谢物信息卡片


(R)-2-Phenyl-2-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)acetonitrile

化学式: C14H17NO6 (295.1055822)
中文名称: 野黑樱苷
谱图信息: 最多检出来源 Viridiplantae(plant) 0.16%

分子结构信息

SMILES: C1=CC=C(C=C1)C(C#N)OC2C(C(C(C(O2)CO)O)O)O
InChI: InChI=1S/C14H17NO6/c15-6-9(8-4-2-1-3-5-8)20-14-13(19)12(18)11(17)10(7-16)21-14/h1-5,9-14,16-19H,7H2/t9-,10+,11+,12-,13+,14+/m0/s1

描述信息

(R)-prunasin is a prunasin.
Prunasin is a natural product found in Polypodium californicum, Chaenorhinum minus, and other organisms with data available.
Prunasin is found in almond. Prunasin is isolated from kernels of Prunus species, immature fruits of Passiflora species and leaves of perilla (Perilla frutescens var. acuta) Prunasin belongs to the family of O-glycosyl Compounds. These are glycosides in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond.
Isolated from kernels of Prunus subspecies, immature fruits of Passiflora subspecies and leaves of perilla (Perilla frutescens variety acuta). Prunasin is found in many foods, some of which are almond, sour cherry, black elderberry, and herbs and spices.
Prunasin is found in almond. Prunasin is isolated from kernels of Prunus species, immature fruits of Passiflora species and leaves of perilla (Perilla frutescens var. acuta
D004791 - Enzyme Inhibitors

同义名列表

41 个代谢物同义名

(R)-2-Phenyl-2-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)acetonitrile; (2R)-2-phenyl-2-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}acetonitrile; (2R)-2-phenyl-2-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyacetonitrile; BENZENEACETONITRILE, .ALPHA.-(.BETA.-D-GLUCOPYRANOSYLOXY)-, (.ALPHA.R)-; Benzeneacetonitrile, .alpha.-(.beta.-D-glucopyranosyloxy)-, (R)-; Benzeneacetonitrile, alpha-(beta-D-glucopyranosyloxy)-, (R)-; (R)-alpha-(beta-D-Glucopyranosyloxy)benzene-acetonitrile; benzeneacetonitrile, alpha-(beta-D-glucopyranosyloxy)-; (2R)-(beta-D-glucopyranosyloxy)(phenyl)acetonitrile; (R)-a-(b-D-Glucopyranosyloxy)benzene-acetonitrile; (R)-Α-(β-D-glucopyranosyloxy)benzene-acetonitrile; (R)-(beta-D-Glucopyranosyloxy)phenylacetonitrile; (R)-(b-D-Glucopyranosyloxy)phenylacetonitrile; (2R)-(beta-D-glucosyloxy)(phenyl)acetonitrile; (R)-(Β-D-glucopyranosyloxy)phenylacetonitrile; 5-17-07-00405 (Beilstein Handbook Reference); (R)-mandelonitrile beta-D-glucopyranoside; (2R)-Prunasin; (R)-Prunasin; D-Prunasin; (R)-Mandelonitrile β-D-glucopyranoside; (R)-Mandelonitrile b-D-glucopyranoside; MANDELONITRILE GLUCOSIDE D-FORM [MI]; (R)-mandelonitrile beta-D-glucoside; D-Mandelonitrile-beta-D-glucoside; (R)-Mandelonitrile b-D-glucoside; (R)-Mandelonitrile β-D-glucoside; MANDELONITRILE GLUCOSIDE D-FORM; mandelonitrile-beta-glucoside; prunasin, (R)-isomer; (-)-(2R)-Prunasin; PRUNASIN [INCI]; UNII-14W4BPM5FB; (2R)-Prunasin; (-)-Prunasin; (R)-prunasin; prulaurasin; 14W4BPM5FB; D-Prunasin; prunasine; Prunasin; Prunasin; Prunasin



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(2)

代谢反应

6 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(4)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

178 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Virgile Neyman, Maude Quicray, Frédéric Francis, Catherine Michaux. Toxicological, biochemical, and in silico investigations of three trehalase inhibitors for new ways to control aphids. Archives of insect biochemistry and physiology. 2024 Apr; 115(4):e22112. doi: 10.1002/arch.22112. [PMID: 38605672]
  • Cecilie Cetti Hansen, Mette Sørensen, Matteo Bellucci, Wolfgang Brandt, Carl Erik Olsen, Jason Q D Goodger, Ian E Woodrow, Birger Lindberg Møller, Elizabeth H J Neilson. Recruitment of distinct UDP-glycosyltransferase families demonstrates dynamic evolution of chemical defense within Eucalyptus L'Hér. The New phytologist. 2023 02; 237(3):999-1013. doi: 10.1111/nph.18581. [PMID: 36305250]
  • Ryota Akatsuka, Michiho Ito. Content and distribution of prunasin in Perilla frutescens. Journal of natural medicines. 2023 Jan; 77(1):207-218. doi: 10.1007/s11418-022-01654-x. [PMID: 36169782]
  • Erick V S Motta, Alejandra Gage, Thomas E Smith, Kristin J Blake, Waldan K Kwong, Ian M Riddington, Nancy Moran. Host-microbiome metabolism of a plant toxin in bees. eLife. 2022 12; 11(?):. doi: 10.7554/elife.82595. [PMID: 36472498]
  • Tomoya Tanaka, Keisuke Kimura, Kimiko Kan, Yoshiko Katori, Kumi Michishita, Hisako Nakano, Takeo Sasamoto. Quantification of amygdalin, prunasin, total cyanide and free cyanide in powdered loquat seeds. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2020 Sep; 37(9):1503-1509. doi: 10.1080/19440049.2020.1778186. [PMID: 32618500]
  • Sara Thodberg, Jorge Del Cueto, Rosa Mazzeo, Stefano Pavan, Concetta Lotti, Federico Dicenta, Elizabeth H Jakobsen Neilson, Birger Lindberg Møller, Raquel Sánchez-Pérez. Elucidation of the Amygdalin Pathway Reveals the Metabolic Basis of Bitter and Sweet Almonds (Prunus dulcis). Plant physiology. 2018 11; 178(3):1096-1111. doi: 10.1104/pp.18.00922. [PMID: 30297455]
  • Cecilie Cetti Hansen, Mette Sørensen, Thiago A M Veiga, Juliane F S Zibrandtsen, Allison M Heskes, Carl Erik Olsen, Berin A Boughton, Birger Lindberg Møller, Elizabeth H J Neilson. Reconfigured Cyanogenic Glucoside Biosynthesis in Eucalyptus cladocalyx Involves a Cytochrome P450 CYP706C55. Plant physiology. 2018 11; 178(3):1081-1095. doi: 10.1104/pp.18.00998. [PMID: 30297456]
  • Takuya Yamaguchi, Yasuhisa Asano. Prunasin production using engineered Escherichia coli expressing UGT85A47 from Japanese apricot and UDP-glucose biosynthetic enzyme genes. Bioscience, biotechnology, and biochemistry. 2018 Nov; 82(11):2021-2029. doi: 10.1080/09168451.2018.1497942. [PMID: 30027801]
  • Yezhe Cheng, Yanjie Chu, Xitong Su, Kexia Zhang, Yu Zhang, Zhenzhong Wang, Wei Xiao, Longshan Zhao, Xiaohui Chen. Pharmacokinetic-pharmacodynamic modeling to study the anti-dysmenorrhea effect of Guizhi Fuling capsule on primary dysmenorrhea rats. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 Sep; 48(?):141-151. doi: 10.1016/j.phymed.2018.04.041. [PMID: 30195872]
  • Jandirk Sendker, Therese Ellendorff, Aljoscha Hölzenbein. Occurrence of Benzoic Acid Esters as Putative Catabolites of Prunasin in Senescent Leaves of Prunus laurocerasus. Journal of natural products. 2016 07; 79(7):1724-9. doi: 10.1021/acs.jnatprod.5b01090. [PMID: 27331617]
  • Pietro Fusani, Jakub P Piwowarski, Christian Zidorn, Anna K Kiss, Fabrizio Scartezzini, Sebastian Granica. Seasonal variation in secondary metabolites of edible shoots of Buck's beard [Aruncus dioicus (Walter) Fernald (Rosaceae)]. Food chemistry. 2016 Jul; 202(?):23-30. doi: 10.1016/j.foodchem.2016.01.103. [PMID: 26920262]
  • Birger L Møller, Carl E Olsen, Mohammed S Motawia. General and Stereocontrolled Approach to the Chemical Synthesis of Naturally Occurring Cyanogenic Glucosides. Journal of natural products. 2016 Apr; 79(4):1198-202. doi: 10.1021/acs.jnatprod.5b01121. [PMID: 26959700]
  • Piotr Robakowski, Ernest Bielinis, Jerzy Stachowiak, Iwona Mejza, Bartosz Bułaj. Seasonal Changes Affect Root Prunasin Concentration in Prunus serotina and Override Species Interactions between P. serotina and Quercus petraea. Journal of chemical ecology. 2016 Mar; 42(3):202-14. doi: 10.1007/s10886-016-0678-y. [PMID: 26961681]
  • Shuai Song, Qinhai Ma, Qingfa Tang, Feilong Chen, Xuefeng Xing, Yang Guo, Shenshen Guo, Xiaomei Tan, Jiabo Luo. Stereoselective metabolism of amygdalin-based study of detoxification of Semen Armeniacae Amarum in the Herba Ephedrae-Semen Armeniacae Amarum herb pair. Journal of ethnopharmacology. 2016 Feb; 179(?):356-66. doi: 10.1016/j.jep.2015.12.019. [PMID: 26719286]
  • Shuai Song, Feilong Chen, Xuefeng Xing, Mengyue Ren, Qinhai Ma, Ying Xie, Qingfa Tang, Jiabo Luo. Concurrent quantification and comparative pharmacokinetic analysis of bioactive compounds in the Herba Ephedrae-Semen Armeniacae Amarum herb pair. Journal of pharmaceutical and biomedical analysis. 2015 May; 109(?):67-73. doi: 10.1016/j.jpba.2015.02.004. [PMID: 25766850]
  • Harald Sauer, Caroline Wollny, Isabel Oster, Erol Tutdibi, Ludwig Gortner, Sven Gottschling, Sascha Meyer. Severe cyanide poisoning from an alternative medicine treatment with amygdalin and apricot kernels in a 4-year-old child. Wiener medizinische Wochenschrift (1946). 2015 May; 165(9-10):185-8. doi: 10.1007/s10354-014-0340-7. [PMID: 25605411]
  • Meng Gao, Yuesheng Wang, Huizhen Wei, Hui Ouyang, Mingzhen He, Lianqing Zeng, Fengyun Shen, Qiang Guo, Yi Rao. [Qualitative and quantitative analysis of amygdalin and its metabolite prunasin in plasma by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry]. Se pu = Chinese journal of chromatography. 2014 Jun; 32(6):591-9. doi: 10.3724/sp.j.1123.2014.01021. [PMID: 25269256]
  • Lúcia P Santos Pimenta, Menno Schilthuizen, Robert Verpoorte, Young Hae Choi. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy. Phytochemical analysis : PCA. 2014 Mar; 25(2):122-6. doi: 10.1002/pca.2476. [PMID: 24115144]
  • Tan Hooi Poay, Ling Sui Kiong, Chuah Cheng Hock. Characterisation of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of Phyllagathis rotundifolia by LC-ESI-MS/MS. Phytochemical analysis : PCA. 2011 Nov; 22(6):516-25. doi: 10.1002/pca.1312. [PMID: 21495106]
  • Su Yang Jeong, Do Youn Jun, Young Ho Kim, Byung-Sun Min, Bo Kyung Min, Mi Hee Woo. Monoterpenoids from the aerial parts of Aruncus dioicus var. kamtschaticus and their antioxidant and cytotoxic activities. Bioorganic & medicinal chemistry letters. 2011 Jun; 21(11):3252-6. doi: 10.1016/j.bmcl.2011.04.043. [PMID: 21546250]
  • Soon-Mi Shim, Hoonjeong Kwon. Metabolites of amygdalin under simulated human digestive fluids. International journal of food sciences and nutrition. 2010 Dec; 61(8):770-9. doi: 10.3109/09637481003796314. [PMID: 20528582]
  • Jandirk Sendker, Adolf Nahrstedt. Generation of primary amide glucosides from cyanogenic glucosides. Phytochemistry. 2009 Feb; 70(3):388-93. doi: 10.1016/j.phytochem.2008.11.008. [PMID: 19195667]
  • Hye-Jeong Hwang, Hye-Jung Lee, Chang-Ju Kim, Insop Shim, Dae-Hyun Hahm. Inhibitory effect of amygdalin on lipopolysaccharide-inducible TNF-alpha and IL-1beta mRNA expression and carrageenan-induced rat arthritis. Journal of microbiology and biotechnology. 2008 Oct; 18(10):1641-7. doi: . [PMID: 18955812]
  • Myoung-Chong Song, Hye-Joung Yang, Tae-Sook Jeong, Kyong-Tai Kim, Nam-In Baek. Heterocyclic compounds from Chrysanthemum coronarium L. and their inhibitory activity on hACAT-1, hACAT-2, and LDL-oxidation. Archives of pharmacal research. 2008 May; 31(5):573-8. doi: 10.1007/s12272-001-1195-4. [PMID: 18481011]
  • Raquel Sánchez-Pérez, Kirsten Jørgensen, Carl Erik Olsen, Federico Dicenta, Birger Lindberg Møller. Bitterness in almonds. Plant physiology. 2008 Mar; 146(3):1040-52. doi: 10.1104/pp.107.112979. [PMID: 18192442]
  • T D Fitzgerald. Larvae of the fall webworm, Hyphantria cunea, inhibit cyanogenesis in Prunus serotina. The Journal of experimental biology. 2008 Mar; 211(Pt 5):671-7. doi: 10.1242/jeb.013664. [PMID: 18281329]
  • Jason Q D Goodger, Thereis Y S Choo, Ian E Woodrow. Ontogenetic and temporal trajectories of chemical defence in a cyanogenic eucalypt. Oecologia. 2007 Oct; 153(4):799-808. doi: 10.1007/s00442-007-0787-y. [PMID: 17605051]
  • T K Franks, Y Hayasaka, S Choimes, R van Heeswijck. Cyanogenic glucosides in grapevine: polymorphism, identification and developmental patterns. Phytochemistry. 2005 Jan; 66(2):165-73. doi: 10.1016/j.phytochem.2004.11.017. [PMID: 15652573]
  • Roslyn M Gleadow, Anita C Vecchies, Ian E Woodrow. Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific beta-glucosidases. Phytochemistry. 2003 Jul; 63(6):699-704. doi: 10.1016/s0031-9422(03)00245-0. [PMID: 12842143]
  • V Berenguer-Navarro, R M Giner-Galván, N Grané-Teruel, G Arrazola-Paternina. Chromatographic determination of cyanoglycosides prunasin and amygdalin in plant extracts using a porous graphitic carbon column. Journal of agricultural and food chemistry. 2002 Nov; 50(24):6960-3. doi: 10.1021/jf0256081. [PMID: 12428943]
  • Jiming Zhou, Stefanie Hartmann, Brianne K Shepherd, Jonathan E Poulton. Investigation of the microheterogeneity and aglycone specificity-conferring residues of black cherry prunasin hydrolases. Plant physiology. 2002 Jul; 129(3):1252-64. doi: 10.1104/pp.010863. [PMID: 12114579]
  • F Dicenta, P Martínez-Gómez, N Grané, M L Martín, A León, J A Cánovas, V Berenguer. Relationship between cyanogenic compounds in kernels, leaves, and roots of sweet and bitter kernelled almonds. Journal of agricultural and food chemistry. 2002 Mar; 50(7):2149-52. doi: 10.1021/jf0113070. [PMID: 11902971]
  • C Ressler, J G Tatake. Vicianin, prunasin, and beta-cyanoalanine in common vetch seed as sources of urinary thiocyanate in the rat. Journal of agricultural and food chemistry. 2001 Oct; 49(10):5075-80. doi: 10.1021/jf010343w. [PMID: 11600069]
  • J Christensen, J W Jaroszewski. Natural glycosides containing allopyranose from the passion fruit plant and circular dichroism of benzaldehyde cyanohydrin glycosides. Organic letters. 2001 Jul; 3(14):2193-5. doi: 10.1021/ol016044+. [PMID: 11440577]
  • Y Mizushina, N Takahashi, A Ogawa, K Tsurugaya, H Koshino, M Takemura, S Yoshida, A Matsukage, F Sugawara, K Sakaguchi. The cyanogenic glucoside, prunasin (D-mandelonitrile-beta-D-glucoside), is a novel inhibitor of DNA polymerase beta. Journal of biochemistry. 1999 Aug; 126(2):430-6. doi: 10.1093/oxfordjournals.jbchem.a022468. [PMID: 10423540]
  • C R Wulff-Strobel, D B Wilson. Cloning, sequencing, and characterization of a membrane-associated Prevotella ruminicola B(1)4 beta-glucosidase with cellodextrinase and cyanoglycosidase activities. Journal of bacteriology. 1995 Oct; 177(20):5884-90. doi: 10.1128/jb.177.20.5884-5890.1995. [PMID: 7592339]
  • J F Gough. Black cherry poisoning in an Angora goat. The Canadian veterinary journal = La revue veterinaire canadienne. 1995 Jan; 36(1):45. doi: ". [PMID: 7859216]
  • S L Górniak, M Haraguchi, H de S Spinosa, D Nobre. Experimental intoxication in rats from a HCN-free extract of Holocalyx glaziovii Taub.: probable participation of the cyanogenic glycoside. Journal of ethnopharmacology. 1993 Jan; 38(1):85-8. doi: 10.1016/0378-8741(93)90082-g. [PMID: 8386789]
  • L B Lai, V Gopalan, R H Glew. Continuous spectrophotometric assays for beta-glucosidases acting on the plant glucosides L-picein and prunasin. Analytical biochemistry. 1992 Feb; 200(2):365-9. doi: 10.1016/0003-2697(92)90480-u. [PMID: 1632501]
  • M Sakata, A Yoshida, C Yuasa, K Sakata, M Haga. Toxicity of D, L-mandelonitrile-beta-D-glucoside, 'prulaurasin' in rat. The Journal of toxicological sciences. 1987 Feb; 12(1):47-55. doi: 10.2131/jts.12.47. [PMID: 3599103]
  • A G Rauws, L G Gramberg, M Olling. Determination of amygdalin and its major metabolite prunasin in plasma and urine by high pressure liquid chromatography. Pharmaceutisch weekblad. Scientific edition. 1982 Dec; 4(6):172-5. doi: 10.1007/bf01959135. [PMID: 7155786]
  • A Freese, R O Brady, A E Gal. A beta-glucosidase in feline kidney that hydrolyzes amygdalin (laetrile). Archives of biochemistry and biophysics. 1980 May; 201(2):363-8. doi: 10.1016/0003-9861(80)90523-8. [PMID: 6772107]