Gene Association: TAT
UniProt Search:
TAT (PROTEIN_CODING)
Function Description: tyrosine aminotransferase
found 245 associated metabolites with current gene based on the text mining result from the pubmed database.
Danshensu
(2R)-3-(3,4-dihydroxyphenyl)lactic acid is a (2R)-2-hydroxy monocarboxylic acid that is (R)-lactic acid substituted at position 3 by a 3,4-dihydroxyphenyl group. It is a (2R)-2-hydroxy monocarboxylic acid and a 3-(3,4-dihydroxyphenyl)lactic acid. It is a conjugate acid of a (2R)-3-(3,4-dihydroxyphenyl)lactate. Danshensu is a natural product found in Salvia miltiorrhiza, Melissa officinalis, and other organisms with data available. Salvianic acid A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=76822-21-4 (retrieved 2024-06-29) (CAS RN: 76822-21-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Danshensu, an active ingredient of?Salvia miltiorrhiza, shows wide cardiovascular benefit by activating Nrf2 signaling pathway. Danshensu, an active ingredient of?Salvia miltiorrhiza, shows wide cardiovascular benefit by activating Nrf2 signaling pathway.
Rosmarinic acid
Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. It is commonly found in species of the Boraginaceae and the subfamily Nepetoideae of the Lamiaceae. It is a red-orange powder that is slightly soluble in water, but well soluble is most organic solvents. Rosmarinic acid is one of the polyphenolic substances contained in culinary herbs such as perilla (Perilla frutescens L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), mint (Mentha arvense L.), and basil (Ocimum basilicum L.). These herbs are commonly grown in the garden as kitchen herbs, and while used to add flavor in cooking, are also known to have several potent physiological effects (PMID: 12482446, 15120569). BioTransformer predicts that rosmarinic acid is a product of methylrosmarinic acid metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in humans and human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). (R)-rosmarinic acid is a stereoisomer of rosmarinic acid having (R)-configuration. It has a role as a plant metabolite and a geroprotector. It is a conjugate acid of a (R)-rosmarinate. It is an enantiomer of a (S)-rosmarinic acid. Rosmarinic acid is a natural product found in Dimetia scandens, Scrophularia scorodonia, and other organisms with data available. See also: Rosemary Oil (part of); Comfrey Root (part of); Holy basil leaf (part of) ... View More ... D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors Isolated from rosemary, mint, sage, thyme, lemon balm and other plants D002491 - Central Nervous System Agents > D000700 - Analgesics A stereoisomer of rosmarinic acid having (R)-configuration. D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.
Cordycepin
Cordycepin is a 3-deoxyribonucleoside and a member of adenosines. It has a role as an antimetabolite and a nucleoside antibiotic. Cordycepin has been used in trials studying the treatment of Leukemia. Cordycepin is a natural product found in Aspergillus nidulans, Streptomyces sparsogenes, and other organisms with data available. Cordycepin is a purine nucleoside antimetabolite and antibiotic isolated from the fungus Cordyceps militaris with potential antineoplastic, antioxidant, and anti-inflammatory activities. Cordycepin is an inhibitor of polyadenylation, activates AMP-activated protein kinase (AMPK) and reduces mammalian target of rapamycin (mTOR) signaling, which may result in both the induction of tumor cell apoptosis and a decrease in tumor cell proliferation. mTOR, a serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family, plays an important role in the PI3K/AKT/mTOR signaling pathway that regulates cell growth and proliferation, and its expression or activity is frequently dysregulated in human cancers. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D009676 - Noxae > D009153 - Mutagens D000970 - Antineoplastic Agents Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2]. Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2]. Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2].
L-Tryptophan
Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnups disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnups disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnups disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed th... L-tryptophan is a white powder with a flat taste. An essential amino acid; occurs in isomeric forms. (NTP, 1992) L-tryptophan is the L-enantiomer of tryptophan. It has a role as an antidepressant, a nutraceutical, a micronutrient, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tryptophan and a L-alpha-amino acid. It is a conjugate base of a L-tryptophanium. It is a conjugate acid of a L-tryptophanate. It is an enantiomer of a D-tryptophan. It is a tautomer of a L-tryptophan zwitterion. An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals. L-Tryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Tryptophan is the least plentiful of all 22 amino acids and an essential amino acid in humans (provided by food), Tryptophan is found in most proteins and a precursor of serotonin. Tryptophan is converted to 5-hydroxy-tryptophan (5-HTP), converted in turn to serotonin, a neurotransmitter essential in regulating appetite, sleep, mood, and pain. Tryptophan is a natural sedative and present in dairy products, meats, brown rice, fish, and soybeans. (NCI04) Tryptophan is an essential amino acid which is the precursor of serotonin. Serotonin is a brain neurotransmitter, platelet clotting factor and neurohormone found in organs throughout the body. Metabolism of tryptophan to serotonin requires nutrients such as vitamin B6, niacin and glutathione. Niacin is an important metabolite of tryptophan. High corn or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea and dementia. Inborn errors of tryptophan metabolism exist where a tumor (carcinoid) makes excess serotonin. Hartnups disease is a disease where tryptophan and other amino acids are not absorbed properly. Tryptophan supplements may be useful in each condition, in carcinoid replacing the over-metabolized nutrient and in Hartnups supplementing a malabsorbed nutrient. Some disorders of excess tryptophan in the blood may contribute to mental retardation. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan fragments correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension and anxiety states. The requirement for tryptophan and protein decreases with age. Adults minimum daily requirement is 3 mg/kg/day or about 200 mg a day. This may be an underestimation, for there are 400 mg of tryptophan in just a cup of wheat germ. A cup of low fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg per pound. An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. See also: Serotonin; tryptophan (component of); Chamomile; ginger; melatonin; thiamine; tryptophan (component of) ... View More ... Constituent of many plants. Enzymatic hydrolysis production of most plant and animal proteins. Dietary supplement, nutrient D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants COVID info from PDB, Protein Data Bank The L-enantiomer of tryptophan. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA09_Tryptophan_pos_30eV_1-1_01_662.txt [Raw Data] CBA09_Tryptophan_pos_20eV_1-1_01_661.txt [Raw Data] CBA09_Tryptophan_neg_30eV_1-1_01_716.txt [Raw Data] CBA09_Tryptophan_pos_10eV_1-1_01_660.txt [Raw Data] CBA09_Tryptophan_neg_10eV_1-1_01_714.txt [Raw Data] CBA09_Tryptophan_neg_40eV_1-1_01_717.txt [Raw Data] CBA09_Tryptophan_neg_20eV_1-1_01_715.txt [Raw Data] CBA09_Tryptophan_pos_50eV_1-1_01_664.txt [Raw Data] CBA09_Tryptophan_neg_50eV_1-1_01_718.txt [Raw Data] CBA09_Tryptophan_pos_40eV_1-1_01_663.txt IPB_RECORD: 253; CONFIDENCE confident structure KEIO_ID T003 DL-Tryptophan is an endogenous metabolite. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].
Cycloheximide
Cycloheximide appears as colorless crystals. Used as a fungicide and as a anticancer drug. (EPA, 1998) Cycloheximide is a dicarboximide that is 4-(2-hydroxyethyl)piperidine-2,6-dione in which one of the hydrogens attached to the carbon bearing the hydroxy group is replaced by a 3,5-dimethyl-2-oxocyclohexyl group. It is an antibiotic produced by the bacterium Streptomyces griseus. It has a role as a bacterial metabolite, a protein synthesis inhibitor, a neuroprotective agent, an anticoronaviral agent and a ferroptosis inhibitor. It is a member of piperidones, a piperidine antibiotic, an antibiotic fungicide, a dicarboximide, a secondary alcohol and a cyclic ketone. It is functionally related to a piperidine-2,6-dione. Cycloheximide is a natural product found in Streptomyces, Streptomyces griseus, and Streptomyces pulveraceus with data available. Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. A dicarboximide that is 4-(2-hydroxyethyl)piperidine-2,6-dione in which one of the hydrogens attached to the carbon bearing the hydroxy group is replaced by a 3,5-dimethyl-2-oxocyclohexyl group. It is an antibiotic produced by the bacterium Streptomyces griseus. D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Origin: Microbe; SubCategory_DNP: Alkaloids derived from lysine, Piperidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.773 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.776 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.777 [Raw Data] CBA53_Cycloheximid_pos_50eV.txt [Raw Data] CBA53_Cycloheximid_pos_20eV.txt [Raw Data] CBA53_Cycloheximid_pos_10eV.txt [Raw Data] CBA53_Cycloheximid_pos_40eV.txt [Raw Data] CBA53_Cycloheximid_pos_30eV.txt
Shikimic acid
Shikimic acid is a cyclohexenecarboxylic acid that is cyclohex-1-ene-1-carboxylic acid substituted by hydroxy groups at positions 3, 4 and 5 (the 3R,4S,5R stereoisomer). It is an intermediate metabolite in plants and microorganisms. It has a role as an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite and a plant metabolite. It is a cyclohexenecarboxylic acid, a hydroxy monocarboxylic acid and an alpha,beta-unsaturated monocarboxylic acid. It is a conjugate acid of a shikimate. Shikimic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Shikimic acid is a natural product found in Quercus mongolica, Populus tremula, and other organisms with data available. Shikimic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A tri-hydroxy cyclohexene carboxylic acid important in biosynthesis of so many compounds that the shikimate pathway is named after it. Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical intermediate in plants and microorganisms. Its name comes from the Japanese flower shikimi (the Japanese star anise, Illicium anisatum), from which it was first isolated. Shikimic acid is a precursor for: the aromatic amino acids phenylalanine and tyrosine; indole, indole derivatives and tryptophan; many alkaloids and other aromatic metabolites; tannins; and lignin. In pharmaceutical industry, shikimic acid from chinese star anise is used as a base material for production of Tamiflu (oseltamivir). Although shikimic acid is present in most autotrophic organisms, it is a biosynthetic intermediate and generally found in very low concentrations. A cyclohexenecarboxylic acid that is cyclohex-1-ene-1-carboxylic acid substituted by hydroxy groups at positions 3, 4 and 5 (the 3R,4S,5R stereoisomer). It is an intermediate metabolite in plants and microorganisms. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 175 KEIO_ID S012 Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants. Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants.
L-Phenylalanine
Phenylalanine (Phe), also known as L-phenylalanine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-phenylalanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Phenylalanine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aromatic, non-polar amino acid. In humans, phenylalanine is an essential amino acid and the precursor of the amino acid tyrosine. Like tyrosine, phenylalanine is also a precursor for catecholamines including tyramine, dopamine, epinephrine, and norepinephrine. Catecholamines are neurotransmitters that act as adrenalin-like substances. Interestingly, several psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper, and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in a number of high protein foods, such as meat, cottage cheese, and wheat germ. An additional dietary source of phenylalanine is artificial sweeteners containing aspartame (a methyl ester of the aspartic acid/phenylalanine dipeptide). As a general rule, aspartame should be avoided by phenylketonurics and pregnant women. When present in sufficiently high levels, phenylalanine can act as a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of phenylalanine are associated with at least five inborn errors of metabolism, including Hartnup disorder, hyperphenylalaninemia due to guanosine triphosphate cyclohydrolase deficiency, phenylketonuria (PKU), tyrosinemia type 2 (or Richner-Hanhart syndrome), and tyrosinemia type III (TYRO3). Phenylketonurics have elevated serum plasma levels of phenylalanine up to 400 times normal. High plasma concentrations of phenylalanine influence the blood-brain barrier transport of large neutral amino acids. The high plasma phenylalanine concentrations increase phenylalanine entry into the brain and restrict the entry of other large neutral amino acids (PMID: 19191004). Phenylalanine has been found to interfere with different cerebral enzyme systems. Untreated phenylketonuria (PKU) can lead to intellectual disability, seizures, behavioural problems, and mental disorders. It may also result in a musty smell and lighter skin. Classic PKU dramatically affects myelination and white matter tracts in untreated infants; this may be one major cause of neurological disorders associated with phenylketonuria. Mild phenylketonuria can act as an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. It has been recently suggested that PKU may resemble amyloid diseases, such as Alzheimers disease and Parkinsons disease, due to the formation of toxic amyloid-like assemblies of phenylalanine (PMID: 22706200). Phenylalanine also has some potential benefits. Phenylalanine can act as an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-DOPA, produce a catecholamine-like effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. For instance, some tumours use more phen... L-phenylalanine is an odorless white crystalline powder. Slightly bitter taste. pH (1\\\\\\% aqueous solution) 5.4 to 6. (NTP, 1992) L-phenylalanine is the L-enantiomer of phenylalanine. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a plant metabolite, an algal metabolite, a mouse metabolite, a human xenobiotic metabolite and an EC 3.1.3.1 (alkaline phosphatase) inhibitor. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a phenylalanine and a L-alpha-amino acid. It is a conjugate base of a L-phenylalaninium. It is a conjugate acid of a L-phenylalaninate. It is an enantiomer of a D-phenylalanine. It is a tautomer of a L-phenylalanine zwitterion. Phenylalanine is an essential aromatic amino acid that is a precursor of melanin, [dopamine], [noradrenalin] (norepinephrine), and [thyroxine]. L-Phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phenylalanine is an essential aromatic amino acid in humans (provided by food), Phenylalanine plays a key role in the biosynthesis of other amino acids and is important in the structure and function of many proteins and enzymes. Phenylalanine is converted to tyrosine, used in the biosynthesis of dopamine and norepinephrine neurotransmitters. The L-form of Phenylalanine is incorporated into proteins, while the D-form acts as a painkiller. Absorption of ultraviolet radiation by Phenylalanine is used to quantify protein amounts. (NCI04) Phenylalanine is an essential amino acid and the precursor for the amino acid tyrosine. Like tyrosine, it is the precursor of catecholamines in the body (tyramine, dopamine, epinephrine and norepinephrine). The psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is a precursor of the neurotransmitters called catecholamines, which are adrenalin-like substances. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in high protein foods, such as meat, cottage cheese and wheat germ. A new dietary source of phenylalanine is artificial sweeteners containing aspartame. Aspartame appears to be nutritious except in hot beverages; however, it should be avoided by phenylketonurics and pregnant women. Phenylketonurics, who have a genetic error of phenylalanine metabolism, have elevated serum plasma levels of phenylalanine up to 400 times normal. Mild phenylketonuria can be an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. Phenylalanine can be an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-dopa, produce a catecholamine effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. Some tumors use more phenylalanine (particularly melatonin-producing tumors called melanoma). One strategy is to exclude this amino acid from the diet, i.e., a Phenylketonuria (PKU) diet (compliance is a difficult issue; it is hard to quantify and is under-researched). The other strategy is just to increase phenylalanines competing amino acids, i.e., tryptophan, valine, isoleucine and leucine, but not tyrosine. An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. See also: Plovamer (monomer of); Plovamer Acetate (monomer of) ... View More ... L-phenylalanine, also known as phe or f, belongs to phenylalanine and derivatives class of compounds. Those are compounds containing phenylalanine or a derivative thereof resulting from reaction of phenylalanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-phenylalanine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). L-phenylalanine can be found in watermelon, which makes L-phenylalanine a potential biomarker for the consumption of this food product. L-phenylalanine can be found primarily in most biofluids, including sweat, blood, urine, and cerebrospinal fluid (CSF), as well as throughout all human tissues. L-phenylalanine exists in all living species, ranging from bacteria to humans. In humans, L-phenylalanine is involved in a couple of metabolic pathways, which include phenylalanine and tyrosine metabolism and transcription/Translation. L-phenylalanine is also involved in few metabolic disorders, which include phenylketonuria, tyrosinemia type 2 (or richner-hanhart syndrome), and tyrosinemia type 3 (TYRO3). Moreover, L-phenylalanine is found to be associated with viral infection, dengue fever, hypothyroidism, and myocardial infarction. L-phenylalanine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylalanine (Phe or F) is an α-amino acid with the formula C 9H 11NO 2. It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amino acid is classified as neutral, and nonpolar because of the inert and hydrophobic nature of the benzyl side chain. The L-isomer is used to biochemically form proteins, coded for by DNA. The codons for L-phenylalanine are UUU and UUC. Phenylalanine is a precursor for tyrosine; the monoamine neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline); and the skin pigment melanin . Hepatic. L-phenylalanine that is not metabolized in the liver is distributed via the systemic circulation to the various tissues of the body, where it undergoes metabolic reactions similar to those that take place in the liver (DrugBank). If PKU is diagnosed early, an affected newborn can grow up with normal brain development, but only by managing and controlling phenylalanine levels through diet, or a combination of diet and medication. The diet requires severely restricting or eliminating foods high in phenylalanine, such as meat, chicken, fish, eggs, nuts, cheese, legumes, milk and other dairy products. Starchy foods, such as potatoes, bread, pasta, and corn, must be monitored. Optimal health ranges (or "target ranges") of serum phenylalanine are between 120 and 360 µmol/L, and aimed to be achieved during at least the first 10 years of life. Recently it has been found that a chiral isomer of L-phenylalanine (called D-phenylalanine) actually arrests the fibril formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent amyloid formation by L-phenylalanine. D-phenylalanine may qualify as a therapeutic molecule in phenylketonuria (A8161) (T3DB). L-Phenylalanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-91-2 (retrieved 2024-07-01) (CAS RN: 63-91-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
Tyrosol
Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285). 2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol. 2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available. Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents A phenol substituted at position 4 by a 2-hydroxyethyl group. D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].
Theophylline
Theophylline is an odorless white crystalline powder. Odorless. Bitter taste. (NTP, 1992) Theophylline is a dimethylxanthine having the two methyl groups located at positions 1 and 3. It is structurally similar to caffeine and is found in green and black tea. It has a role as a vasodilator agent, a bronchodilator agent, a muscle relaxant, an EC 3.1.4.* (phosphoric diester hydrolase) inhibitor, an anti-asthmatic drug, an anti-inflammatory agent, an immunomodulator, an adenosine receptor antagonist, a drug metabolite, a fungal metabolite and a human blood serum metabolite. A methylxanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Mechanistically, theophylline acts as a phosphodiesterase inhibitor, adenosine receptor blocker, and histone deacetylase activator. Theophylline is marketed under several brand names such as Uniphyl and Theochron, and it is indicated mainly for asthma, bronchospasm, and COPD. Theophylline anhydrous is a Methylxanthine. Theophylline is an orally administered xanthine derivative that induces relaxation of smooth muscle in the bronchial tree causing bronchodilation. Theophylline is widely used in therapy of asthma and is not believed to cause liver injury. Theophylline is a natural product found in Theobroma grandiflorum, Coffea arabica, and other organisms with data available. Theophylline is a natural alkaloid derivative of xanthine isolated from the plants Camellia sinensis and Coffea arabica. Theophylline appears to inhibit phosphodiesterase and prostaglandin production, regulate calcium flux and intracellular calcium distribution, and antagonize adenosine. Physiologically, this agent relaxes bronchial smooth muscle, produces vasodilation (except in cerebral vessels), stimulates the CNS, stimulates cardiac muscle, induces diuresis, and increases gastric acid secretion; it may also suppress inflammation and improve contractility of the diaphragm. (NCI04) A methylxanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Mechanistically, theophylline acts as a phosphodiesterase inhibitor, adenosine receptor blocker, and histone deacetylase activator. Theophylline is marketed under several brand names such as Uniphyl and Theochron, and it is indicated mainly for asthma, bronchospasm, and COPD. A methyl xanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Theophylline inhibits the 3,5-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE that degrades CYCLIC AMP thus potentiates the actions of agents that act through ADENYLYL CYCLASES and cyclic AMP. See also: Paullinia cupana seed (part of). Theophylline, also known as quibron TSR or uniphyl, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Theophylline also binds to the adenosine A2B receptor and blocks adenosine mediated bronchoconstriction. Theophylline is a drug which is used for the treatment of the symptoms and reversible airflow obstruction associated with chronic asthma and other chronic lung diseases, such as emphysema and chronic bronchitis. Theophylline is marketed under several brand names such as Theophylline and Theochron, and it is indicated mainly for asthma, bronchospasm, and COPD. Within humans, theophylline participates in a number of enzymatic reactions. In particular, theophylline and formaldehyde can be biosynthesized from caffeine; which is mediated by the enzymes cytochrome P450 1A2, cytochrome P450 3A4, cytochrome P450 2C8, cytochrome P450 2C9, and cytochrome P450 2E1. In addition, theophylline can be converted into 1-methylxanthine and formaldehyde; which is mediated by the enzyme cytochrome P450 1A2. In humans, theophylline is involved in caffeine metabolism. Theophylline is a bitter tasting compound. Outside of the human body, Theophylline is found, on average, in the highest concentration within cocoa beans and tea. Theophylline has also been detected, but not quantified in a few different foods, such as arabica coffee, lemons, and pummelo. This could make theophylline a potential biomarker for the consumption of these foods. Theophylline is a potentially toxic compound. A dimethylxanthine having the two methyl groups located at positions 1 and 3. It is structurally similar to caffeine and is found in green and black tea. Theophylline, also known as 1,3-dimethylxanthine, is a drug that inhibits phosphodiesterase and blocks adenosine receptors.[1] It is used to treat chronic obstructive pulmonary disease (COPD) and asthma.[2] Its pharmacology is similar to other methylxanthine drugs (e.g., theobromine and caffeine).[1] Trace amounts of theophylline are naturally present in tea, coffee, chocolate, yerba maté, guarana, and kola nut.[1][3] The name 'theophylline' derives from "Thea"—the former genus name for tea + Legacy Greek φύλλον (phúllon, "leaf") + -ine. The use of theophylline is complicated by its interaction with various drugs and by the fact that it has a narrow therapeutic window (<20 mcg/mL).[2] Its use must be monitored by direct measurement of serum theophylline levels to avoid toxicity. It can also cause nausea, diarrhea, increase in heart rate, abnormal heart rhythms, and CNS excitation (headaches, insomnia, irritability, dizziness and lightheadedness).[2][11] Seizures can also occur in severe cases of toxicity, and are considered to be a neurological emergency.[2] Its toxicity is increased by erythromycin, cimetidine, and fluoroquinolones, such as ciprofloxacin. Some lipid-based formulations of theophylline can result in toxic theophylline levels when taken with fatty meals, an effect called dose dumping, but this does not occur with most formulations of theophylline.[12] Theophylline toxicity can be treated with beta blockers. In addition to seizures, tachyarrhythmias are a major concern.[13] Theophylline should not be used in combination with the SSRI fluvoxamine.[14][15] Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5].
L-Dopa
L-dopa is an optically active form of dopa having L-configuration. Used to treat the stiffness, tremors, spasms, and poor muscle control of Parkinsons disease It has a role as a prodrug, a hapten, a neurotoxin, an antiparkinson drug, a dopaminergic agent, an antidyskinesia agent, an allelochemical, a plant growth retardant, a human metabolite, a mouse metabolite and a plant metabolite. It is a dopa, a L-tyrosine derivative and a non-proteinogenic L-alpha-amino acid. It is a conjugate acid of a L-dopa(1-). It is an enantiomer of a D-dopa. It is a tautomer of a L-dopa zwitterion. Levodopa is a prodrug of dopamine that is administered to patients with Parkinsons due to its ability to cross the blood-brain barrier. Levodopa can be metabolised to dopamine on either side of the blood-brain barrier and so it is generally administered with a dopa decarboxylase inhibitor like carbidopa to prevent metabolism until after it has crossed the blood-brain barrier. Once past the blood-brain barrier, levodopa is metabolized to dopamine and supplements the low endogenous levels of dopamine to treat symptoms of Parkinsons. The first developed drug product that was approved by the FDA was a levodopa and carbidopa combined product called Sinemet that was approved on May 2, 1975. 3,4-Dihydroxy-L-phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Levodopa is an Aromatic Amino Acid. Levodopa is an amino acid precursor of dopamine with antiparkinsonian properties. Levodopa is a prodrug that is converted to dopamine by DOPA decarboxylase and can cross the blood-brain barrier. When in the brain, levodopa is decarboxylated to dopamine and stimulates the dopaminergic receptors, thereby compensating for the depleted supply of endogenous dopamine seen in Parkinsons disease. To assure that adequate concentrations of levodopa reach the central nervous system, it is administered with carbidopa, a decarboxylase inhibitor that does not cross the blood-brain barrier, thereby diminishing the decarboxylation and inactivation of levodopa in peripheral tissues and increasing the delivery of dopamine to the CNS. L-Dopa is used for the treatment of Parkinsonian disorders and Dopa-Responsive Dystonia and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. Peripheral tissue conversion may be the mechanism of the adverse effects of levodopa. It is standard clinical practice to co-administer a peripheral DOPA decarboxylase inhibitor - carbidopa or benserazide - and often a catechol-O-methyl transferase (COMT) inhibitor, to prevent synthesis of dopamine in peripheral tissue.The naturally occurring form of dihydroxyphenylalanine and the immediate precursor of dopamine. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. It is used for the treatment of parkinsonian disorders and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. [PubChem]L-Dopa is the naturally occurring form of dihydroxyphenylalanine and the immediate precursor of dopamine. Unlike dopamine itself, L-Dopa can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. In particular, it is metabolized to dopamine by aromatic L-amino acid decarboxylase. Pyridoxal phosphate (vitamin B6) is a required cofactor for this decarboxylation, and may be administered along with levodopa, usually as pyridoxine. The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside ... L-DOPA, also known as levodopa or 3,4-dihydroxyphenylalanine is an alpha amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). L-DOPA is found naturally in both animals and plants. It is made via biosynthesis from the amino acid L-tyrosine by the enzyme tyrosine hydroxylase.. L-DOPA is the precursor to the neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline), which are collectively known as catecholamines. The Swedish scientist Arvid Carlsson first showed in the 1950s that administering L-DOPA to animals with drug-induced (reserpine) Parkinsonian symptoms caused a reduction in the intensity of the animals symptoms. Unlike dopamine itself, L-DOPA can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. In particular, it is metabolized to dopamine by aromatic L-amino acid decarboxylase. Pyridoxal phosphate (vitamin B6) is a required cofactor for this decarboxylation, and may be administered along with levodopa, usually as pyridoxine. As a result, L-DOPA is a drug that is now used for the treatment of Parkinsonian disorders and DOPA-Responsive Dystonia. It is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. It is standard clinical practice in treating Parkinsonism to co-administer a peripheral DOPA decarboxylase inhibitor - carbidopa or benserazide - and often a catechol-O-methyl transferase (COMT) inhibitor, to prevent synthesis of dopamine in peripheral tissue. Side effects of L-DOPA treatment may include: hypertension, arrhythmias, nausea, gastrointestinal bleeding, disturbed respiration, hair loss, disorientation and confusion. L-DOPA can act as an L-tyrosine mimetic and be incorporated into proteins by mammalian cells in place of L-tyrosine, generating protease-resistant and aggregate-prone proteins in vitro and may contribute to neurotoxicity with chronic L-DOPA administration. L-phenylalanine, L-tyrosine, and L-DOPA are all precursors to the biological pigment melanin. The enzyme tyrosinase catalyzes the oxidation of L-DOPA to the reactive intermediate dopaquinone, which reacts further, eventually leading to melanin oligomers. An optically active form of dopa having L-configuration. Used to treat the stiffness, tremors, spasms, and poor muscle control of Parkinsons disease DOPA. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-92-7 (retrieved 2024-07-01) (CAS RN: 59-92-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Dopa is a beta-hydroxylated derivative of phenylalanine. DL-Dopa is a beta-hydroxylated derivative of phenylalanine.
L-Canaline
L-canaline, also known as L-2-amino-4-(aminooxy)butyric acid, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-canaline is soluble (in water) and a moderately acidic compound (based on its pKa). L-canaline can be found in a number of food items such as mulberry, rape, grape, and black chokeberry, which makes L-canaline a potential biomarker for the consumption of these food products. L-canaline is a substrate for ornithine aminotransferase resulting in the synthesis of L-ureidohomoserine (the corresponding analog of L-citrulline). In turn, the latter forms L-canavaninosuccinic acid in a reaction mediated by argininosuccinic acid synthetase. L-Canavaninosuccinic acid is cleaved to form L-canavanine by argininosuccinic acid synthetase. By these sequential reactions, the canaline-urea cycle (analogous to the ornithine-urea cycle) is formed. Every time a canavanine molecule runs through the canaline-urea cycle, the two terminal nitrogen atoms are released as urea. Urea is an important by-product of this reaction sequence because it makes ammonicial ammonia (urease-mediated) that is available to support intermediary nitrogen metabolism. L-canaline can by reductively cleaved to L-homoserine, a non-protein amino acid of great importance in the formation of a host of essential amino acids. In this way, the third nitrogen atom of canavanine enters into the reactions of nitrogen metabolism of the plant. As homoserine, its carbon skeleton also finds an important use . L-canaline is a non-proteinogenic L-alpha-amino acid that is L-homoserine in which the hydroxy group at position 4 is substituted by an aminooxy group. It has been isolated from legumes and plays an essential role in lugume chemical defense against insects. It has a role as a plant metabolite, an antineoplastic agent, an antimetabolite and a phytogenic insecticide. It is functionally related to a L-homoserine. It is a tautomer of a L-canaline zwitterion. Canavanine reacts with water to produce L-canaline and urea. The reaction is catalyzed by arginase. L-canaline reacts with carbamoyl-phosphate to produce O-ureidohomoserine and phosphate. The reaction is catalyzed by ornithine carbamoyltransferase. A non-proteinogenic L-alpha-amino acid that is L-homoserine in which the hydroxy group at position 4 is substituted by an aminooxy group. It has been isolated from legumes and plays an essential role in lugume chemical defense against insects.
4-hydroxyphenylacetate
p-Hydroxyphenylacetic acid, also known as 4-hydroxybenzeneacetate, is classified as a member of the 1-hydroxy-2-unsubstituted benzenoids. 1-Hydroxy-2-unsubstituted benzenoids are phenols that are unsubstituted at the 2-position. p-Hydroxyphenylacetic acid is considered to be slightly soluble (in water) and acidic. p-Hydroxyphenylacetic acid can be synthesized from acetic acid. It is also a parent compound for other transformation products, including but not limited to, methyl 2-(4-hydroxyphenyl)acetate, ixerochinolide, and lactucopicrin 15-oxalate. p-Hydroxyphenylacetic acid can be found in numerous foods such as olives, cocoa beans, oats, and mushrooms. p-Hydroxyphenylacetic acid can be found throughout all human tissues and in all biofluids. Within a cell, p-hydroxyphenylacetic acid is primarily located in the cytoplasm and in the extracellular space. p-Hydroxyphenylacetic acid is also a microbial metabolite produced by Acinetobacter, Clostridium, Klebsiella, Pseudomonas, and Proteus. Higher levels of this metabolite are associated with an overgrowth of small intestinal bacteria from Clostridia species including C. difficile, C. stricklandii, C. lituseburense, C. subterminale, C. putrefaciens, and C. propionicum (PMID: 476929, 12173102). p-Hydroxyphenylacetic acid is detected after the consumption of whole grain. 4-hydroxyphenylacetic acid is a monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. It has a role as a plant metabolite, a fungal metabolite, a human metabolite and a mouse metabolite. It is a monocarboxylic acid and a member of phenols. It is functionally related to an acetic acid. It is a conjugate acid of a 4-hydroxyphenylacetate. 4-Hydroxyphenylacetic acid is a natural product found in Guanomyces polythrix, Forsythia suspensa, and other organisms with data available. 4-Hydroxyphenylacetic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. Constituent of sweet clover (Melilotus officinalis) and yeast Hydroxyphenylacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=156-38-7 (retrieved 2024-07-02) (CAS RN: 156-38-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].
Gamma-tocopherol
Gamma-tocopherol is a tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 7 and 8. It is found particularly in maize (corn) oil and soya bean (soybean) oils. It has a role as a plant metabolite, a food antioxidant and an algal metabolite. It is a vitamin E and a tocopherol. gamma-Tocopherol is under investigation in clinical trial NCT00836368 (In Vitro Basophil Responsiveness to Allergen Challenge After Gamma-tocopherol Supplementation in Allergic Asthmatics). gamma-Tocopherol is a natural product found in Hypericum perfoliatum, Hypericum tomentosum, and other organisms with data available. Gamma-Tocopherol is the orally bioavailable gamma form of the naturally-occurring fat-soluble vitamin E, found in certain nuts and seeds, with potential antioxidant activity. Although the exact mechanism of action of this tocopherol has yet to be fully identified, gamma-tocopherol appears to have the ability to scavenge free radicals, thereby protecting against oxidative damage. A natural tocopherol with less antioxidant activity than ALPHA-TOCOPHEROL. It exhibits antioxidant activity by virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus. As in BETA-TOCOPHEROL, it also has three methyl groups on the 6-chromanol nucleus but at different sites. gamma-Tocopherol, also known as 7,8-dimethyltocol, belongs to the class of organic compounds known as tocopherols. These are vitamin E derivatives containing a saturated trimethyltridecyl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocotrienols which contain an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain. It is estimated that 50\\\\\% of gamma-tocopherol is metabolized into gamma-CEHC and excreted into the urine. gamma-Tocopherol is the predominant form of vitamin E in plant seeds and derived products (e.g. nuts and vegetable oils). Unlike alpha-tocopherol, gamma-tocopherol inhibits cyclooxygenase activity and, therefore, exhibit anti-inflammatory properties (PMID: 11722951). Occurs in many nut and other vegetable oils such as soya and sunflower oil. It is used as antioxidant food additive. Member of Vitamin E group. Added to fats and oils to prevent rancidity. The naturally occurring tocopherol is a single steroisomer; synthetic forms are a mixture of all eight possible isomers [DFC] A tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 7 and 8. It is found particularly in maize (corn) oil and soya bean (soybean) oils. (+)-γ-Tocopherol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=54-28-4 (retrieved 2024-07-01) (CAS RN: 54-28-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1]. γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1].
2-Aminoisobutyric acid
2-Aminoisobutyric acid, also known as alpha-methylalanine or a-aminoisobutanoate, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). 2-Aminoisobutyric acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2-Aminoisobutyric acid exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 2-Aminoisobutyric acid has been detected, but not quantified in cow milk. Aminoisobutyric acid is a nonprotein amino acid (is an end product of pyrimidine metabolism) excreted in the urine of about 5\\\\\% of healthy individuals (PMID 14806475), and high excretion is an autosomal recessive phenotype (PMID 13058271). 2-aminoisobutyric acid is a rare, non-protein amino acid and end-product of pyrimidine metabolism, excreted in urine and found in some antibiotics of fungal origin. With the exception of a few bacteria, it is non-metabolisable, and therefore used in bioassays. It is functionally related to a propionic acid and an isobutyric acid. It is a tautomer of a 2-aminoisobutanoic acid zwitterion. 2-Aminoisobutyric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Aminoisobutyric acid is a nonprotein amino acid (is an end product of pyrimidine metabolism) excreted in the urine of about 5\\\\\% of healthy individuals (PMID 14806475), and high excretion is an autosomal recessive phenotype (PMID 13058271) [HMDB] A rare, non-protein amino acid and end-product of pyrimidine metabolism, excreted in urine and found in some antibiotics of fungal origin. With the exception of a few bacteria, it is non-metabolisable, and therefore used in bioassays. Aminoisobutyric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=765258-64-8 (retrieved 2024-07-01) (CAS RN: 62-57-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). NSC 16590 inhibits the production of endogenous ethylene in the cotyledonary segments of cocklebur. NSC 16590 inhibits the production of endogenous ethylene in the cotyledonary segments of cocklebur.
2-Oxo-4-methylthiobutanoic acid
2-oxo-4-methylthiobutanoate, also known as 2-keto-4-methylthiobutyric acid, 2-keto-4-methylthiobutyrate or 4-(methylsulfanyl)-2-oxobutanoic acid, is a member of the class of compounds known as thia- fatty acids. Thia-fatty acids are fatty acid derivatives obtained by insertion of a sulfur atom at specific positions in the chain. Thus, 2-oxo-4-methylthiobutanoate is a fatty acid lipid molecule. 2-oxo-4-methylthiobutanoate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-oxo-4-methylthiobutanoate can be synthesized from L-methionine and butyric acid. 2-oxo-4-methylthiobutanoate can also be synthesized into S-adenosyl-4-methylthio-2-oxobutanoic acid. 2-oxo-4-methylthiobutanoate can be found in a number of food items such as cloves, highbush blueberries, common beets, and cashew nuts. 2-oxo-4-methylthiobutanoate can be found in urine. Within the cell, 2-oxo-4-methylthiobutanoate is primarily located in the cytoplasm and in the membrane. 2-oxo-4-methylthiobutanoate has been found in all living species, from bacteria to humans. In humans, 2-oxo-4-methylthiobutanoate is found to be involved in several metabolic disorders, some of those are S-adenosylhomocysteine (SAH) hydrolase deficiency, methylenetetrahydrofolate reductase deficiency (MTHFRD), methionine adenosyltransferase deficiency, and glycine N-methyltransferase deficiency. 4-Methylthio-2-oxobutanoic acid is the direct precursor of methional, which is a potent inducer of apoptosis in a BAF3 murine lymphoid cell line which is interleukin-3 (IL3)-dependent (PMID: 7848263). 2-oxo-4-methylthiobutanoic acid, also known as 2-keto-4-methylthiobutyrate or 4-methylthio-2-oxobutanoate, is a member of the class of compounds known as thia fatty acids. Thia fatty acids are fatty acid derivatives obtained by insertion of a sulfur atom at specific positions in the chain. Thus, 2-oxo-4-methylthiobutanoic acid is considered to be a fatty acid lipid molecule. 2-oxo-4-methylthiobutanoic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-oxo-4-methylthiobutanoic acid can be synthesized from L-methionine and butyric acid. 2-oxo-4-methylthiobutanoic acid can also be synthesized into S-adenosyl-4-methylthio-2-oxobutanoic acid. 2-oxo-4-methylthiobutanoic acid can be found in a number of food items such as leek, hickory nut, brussel sprouts, and giant butterbur, which makes 2-oxo-4-methylthiobutanoic acid a potential biomarker for the consumption of these food products. 2-oxo-4-methylthiobutanoic acid can be found primarily in urine. 2-oxo-4-methylthiobutanoic acid exists in all living species, ranging from bacteria to humans. In humans, 2-oxo-4-methylthiobutanoic acid is involved in the methionine metabolism. 2-oxo-4-methylthiobutanoic acid is also involved in several metabolic disorders, some of which include s-adenosylhomocysteine (SAH) hydrolase deficiency, homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, glycine n-methyltransferase deficiency, and cystathionine beta-synthase deficiency.
Oxoglutaric acid
Oxoglutaric acid, also known as alpha-ketoglutarate, alpha-ketoglutaric acid, AKG, or 2-oxoglutaric acid, is classified as a gamma-keto acid or a gamma-keto acid derivative. gamma-Keto acids are organic compounds containing an aldehyde substituted with a keto group on the C4 carbon atom. alpha-Ketoglutarate is considered to be soluble (in water) and acidic. alpha-Ketoglutarate is a key molecule in the TCA cycle, playing a fundamental role in determining the overall rate of this important metabolic process (PMID: 26759695). In the TCA cycle, AKG is decarboxylated to succinyl-CoA and carbon dioxide by AKG dehydrogenase, which functions as a key control point of the TCA cycle. Additionally, AKG can be generated from isocitrate by oxidative decarboxylation catalyzed by the enzyme known as isocitrate dehydrogenase (IDH). In addition to these routes of production, AKG can be produced from glutamate by oxidative deamination via glutamate dehydrogenase, and as a product of pyridoxal phosphate-dependent transamination reactions (mediated by branched-chain amino acid transaminases) in which glutamate is a common amino donor. AKG is a nitrogen scavenger and a source of glutamate and glutamine that stimulates protein synthesis and inhibits protein degradation in muscles. In particular, AKG can decrease protein catabolism and increase protein synthesis to enhance bone tissue formation in skeletal muscles (PMID: 26759695). Interestingly, enteric feeding of AKG supplements can significantly increase circulating plasma levels of hormones such as insulin, growth hormone, and insulin-like growth factor-1 (PMID: 26759695). It has recently been shown that AKG can extend the lifespan of adult C. elegans by inhibiting ATP synthase and TOR (PMID: 24828042). In combination with molecular oxygen, alpha-ketoglutarate is required for the hydroxylation of proline to hydroxyproline in the production of type I collagen. A recent study has shown that alpha-ketoglutarate promotes TH1 differentiation along with the depletion of glutamine thereby favouring Treg (regulatory T-cell) differentiation (PMID: 26420908). alpha-Ketoglutarate has been found to be associated with fumarase deficiency, 2-ketoglutarate dehydrogenase complex deficiency, and D-2-hydroxyglutaric aciduria, which are all inborn errors of metabolism (PMID: 8338207). Oxoglutaric acid has been found to be a metabolite produced by Corynebacterium and yeast (PMID: 27872963) (YMDB). [Spectral] 2-Oxoglutarate (exact mass = 146.02152) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] 2-Oxoglutarate (exact mass = 146.02152) and (S)-Malate (exact mass = 134.02152) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Flavouring ingredient
Corticosterone
Corticosterone, also known as 17-deoxycortisol, belongs to the class of organic compounds known as 21-hydroxysteroids. These are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, corticosterone is considered to be a steroid lipid molecule. Corticosterone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. In many species, including amphibians, reptiles, rodents and birds, corticosterone is a main glucocorticoid,[3] involved in regulation of energy, immune reactions, and stress responses. Corticosterone is the precursor molecule to the mineralocorticoid aldosterone, one of the major homeostatic modulators of sodium and potassium levels in vivo. Corticosterone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-22-6 (retrieved 2024-07-15) (CAS RN: 50-22-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Corticosterone (17-Deoxycortisol) is an orally active and adrenal cortex-produced glucocorticoid, which plays an important role in regulating neuronal functions of the limbic system (including hippocampus, prefrontal cortex, and amygdala). Corticosterone increases the Rab-mediated AMPAR membrane traffic via SGK-induced phosphorylation of GDI. Corticosterone also interferes with the maturation of dendritic cells and shows a good immunosuppressive effect[1][2][3][4]. Corticosterone (17-Deoxycortisol) is an orally active and adrenal cortex-produced glucocorticoid, which plays an important role in regulating neuronal functions of the limbic system (including hippocampus, prefrontal cortex, and amygdala). Corticosterone increases the Rab-mediated AMPAR membrane traffic via SGK-induced phosphorylation of GDI. Corticosterone also interferes with the maturation of dendritic cells and shows a good immunosuppressive effect[1][2][3][4]. Corticosterone (17-Deoxycortisol) is an orally active and adrenal cortex-produced glucocorticoid, which plays an important role in regulating neuronal functions of the limbic system (including hippocampus, prefrontal cortex, and amygdala). Corticosterone increases the Rab-mediated AMPAR membrane traffic via SGK-induced phosphorylation of GDI. Corticosterone also interferes with the maturation of dendritic cells and shows a good immunosuppressive effect[1][2][3][4].
L-Cystathionine
Cystathionine is a dipeptide formed by serine and homocysteine. Cystathioninuria is a prominent manifestation of vitamin-B6 deficiency. The transsulfuration of methionine yields homocysteine, which combines with serine to form cystathionine, the proximate precursor of cysteine through the enzymatic activity of cystathionase. In conditions in which cystathionine gamma-synthase or cystathionase is deficient, for example, there is cystathioninuria. Although cystathionine has not been detected in normal human serum or plasma by most conventional methods, gas chromatographic/mass spectrometric methodology detected a mean concentration of cystathionine in normal human serum of 140 nM, with a range of 65 to 301 nM. Cystathionine concentrations in CSF have been 10, 1, and 0.5 uM, and "not detected". Only traces (i.e., <1 uM) of cystathionine are present in normal CSF.587. Gamma-cystathionase deficiency (also known as Cystathioninuria), which is an autosomal recessive disorder (NIH: 2428), provided the first instance in which, in a human, the major biochemical abnormality due to a defined enzyme defect was clearly shown to be alleviated by administration of large doses of pyridoxine. The response in gamma-cystathionase-deficient patients is not attributable to correction of a preexisting deficiency of this vitamin (OMMBID, Chap. 88). Isolated from Phallus impudicus (common stinkhorn) CONFIDENCE standard compound; INTERNAL_ID 146 KEIO_ID C019; [MS2] KO008910 KEIO_ID C047 KEIO_ID C019 Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 30 L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2]. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2].
Indole-3-lactic acid
Indolelactic acid (CAS: 1821-52-9) is a tryptophan metabolite found in human plasma, serum, and urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical fetal plasma than in maternal plasma in the protein-bound form (PMID 2361979, 1400722, 3597614, 11060358, 1400722). Indolelactic acid is also a microbial metabolite; urinary indole-3-lactate is produced by Clostridium sporogenes (PMID: 29168502). Indolelactic acid is a tryptophan metabolite found in human plasma and serum and normal urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical foetal plasma than in maternal plasma in the protein-bound form. (PMID 2361979, 1400722, 3597614, 11060358, 1400722) [HMDB] Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
Orotic acid
Orotic acid is classified as a pyrimidinemonocarboxylic acid. That is it is a uracil bearing a carboxy substituent at position C-6. It is also classified as a pyrimidinedione and a carboxylic acid. Orotic acid is a minor dietary constituent. Indeed, until it was realized that it could be synthesized by humans, orotic acid was known as vitamin B-13. The richest dietary sources of orotic acid are cows milk and other dairy products as well as root vegetables such as carrots and beets. Dietary intake probably contributes to a basal rate of orotic acid excretion in urine because fasting decreases excretion by ~50\\\\%. However, it is now apparent that most urinary orotic acid is synthesized in the body, where it arises as an intermediate in the pathway for the synthesis of pyrimidine nucleotides. Orotic acid is converted to UMP by UMP synthase, a multifunctional protein with both orotate phosphoribosyltransferase and orotidylate decarboxylase activity. The most frequently observed inborn error of pyrimidine nucleotide synthesis is a mutation of the multifunctional protein UMP synthase (UMP synthase deficiency or orotic aciduria). This disorder prevents the conversion of orotic acid to UMP, and thus to other pyrimidines. As a result, plasma orotic acid accumulates to high concentrations, and increased quantities appear in the urine. Indeed, urinary orotic acid is so markedly increased in individuals harboring a mutation in UMP synthase that orotic acid crystals can form in the urine. The urinary concentration of orotic acid in individuals suffering from orotic aciduria can be of the order of millimoles of orotic acid per millimole creatinine. By comparison, the urinary level in unaffected individuals is ~ 1 ¬umol/mmol creatinine (PMID: 17513443). Orotic aciduria is characterized by megaloblastic anemia and orotic acid crystalluria that is frequently associated with some degree of physical and mental retardation. These features respond to appropriate pyrimidine replacement therapy and most cases appear to have a good prognosis. When present in sufficiently high levels, orotic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of orotic acid are associated with at least seven inborn errors of metabolism, including argininemia, LPI syndrome (lysinuric protein intolerance), hyperornithinemia-hyperammonemia-homocitrullinuria (HHH), OTC deficiency, citrullinemia type I, purine nucleoside phosphorylase deficiency, and orotic aciduria. Orotic acid is broadly classified as an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Orotic acid, also known as orotate or orotsaeure, is a member of the class of compounds known as pyrimidinecarboxylic acids. Pyrimidinecarboxylic acids are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Orotic acid can be synthesized from uracil. Orotic acid can also be synthesized into dihydroorotic acid. Orotic acid can be found in a number of food items such as okra, atlantic herring, black chokeberry, and prunus (cherry, plum), which makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid can be found primarily in most biofluids, including saliva, amniotic fluid, blood, and urine, as well as in human liver and pancreas tissues. Orotic acid exists in all living species, ranging from bacteria to humans. In humans, orotic acid is involved in the pyrimidine metabolism. Orotic acid is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, orotic acid is found to be associated with hyperornithinemia-hyperammonemia-homocitrullinuria, orotic aciduria I, ornithine transcarbamylase deficiency, and n-acetylglutamate synthetase deficiency. Orotic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. The compound is manufactured in the body via a mitochondrial enzyme, dihydroorotate dehydrogenase or a cytoplasmic enzyme of pyrimidine synthesis pathway. It is sometimes used as a mineral carrier in some dietary supplements (to increase their bioavailability), most commonly for lithium orotate . Chronically high levels of orotic acid are associated with at least 4 inborn errors of metabolism including: Argininemia, Citrullinemia Type I, Purine nucleoside phosphorylase deficiency and Orotic Aciduria (T3DB). Orotic acid (6-Carboxyuracil), a precursor in biosynthesis of pyrimidine nucleotides and RNA, is released from the mitochondrial dihydroorotate dehydrogenase (DHODH) for conversion to UMP by the cytoplasmic UMP synthase enzyme. Orotic acid is a marker for measurement in routine newborn screening for urea cycle disorders. Orotic acid can induce hepatic steatosis and hepatomegaly in rats[1][2][3].
Pyridoxal
Pyridoxal is a pyridinecarbaldehyde that is pyridine-4-carbaldehyde bearing methyl, hydroxy and hydroxymethyl substituents at positions 2, 3 and 5 respectively. Pyridoxal, also known as pyridoxaldehyde, belongs to the class of organic compounds known as pyridoxals and derivatives. Pyridoxals and derivatives are compounds containing a pyridoxal moiety, which consists of a pyridine ring substituted at positions 2, 3, 4, and 5 by a methyl group, a hydroxyl group, a carbaldehyde group, and a hydroxymethyl group, respectively. Pyridoxal is one form of vitamin B6. Pyridoxal exists in all living species, ranging from bacteria to humans. In humans, pyridoxal is involved in glycine and serine metabolism. Pyridoxal has been detected, but not quantified in several different foods, such as sourdoughs, lichee, arctic blackberries, watercress, and cottonseeds. Some medically relevant bacteria, such as those in the genera Granulicatella and Abiotrophia, require pyridoxal for growth. This nutritional requirement can lead to the culture phenomenon of satellite growth. In in vitro culture, these pyridoxal-dependent bacteria may only grow in areas surrounding colonies of bacteria from other genera ("satellitism") that are capable of producing pyridoxal. Pridoxal has a role as a cofactor, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite.
Pyridoxamine 5'-phosphate
Pyridoxamine 5-phosphate belongs to the class of organic compounds known as pyridoxamine 5-phosphates. These are heterocyclic aromatic compounds containing a pyridoxamine that carries a phosphate group at the 5-position. Vitamin B6 is a water-soluble compound that was discovered in 1930s during nutrition studies on rats. The vitamin was named pyridoxine to indicate its structural homology to pyridine. Later it was shown that vitamin B6 could exist in two other, slightly different, chemical forms, termed pyridoxal and pyridoxamine. All three forms of vitamin B6 are precursors of an activated compound known as pyridoxal 5-phosphate (PLP), which plays a vital role as the cofactor of a large number of essential enzymes in the human body. Vitamin B6 is a water-soluble vitamin. The three major forms of vitamin B6 are pyridoxine (also known as pyridoxol), pyridoxal, and pyridoxamine, which are all converted in the liver to pyridoxal 5-phosphate (PLP) a cofactor in many reactions of amino acid metabolism. PLP also is necessary for the enzymatic reaction governing the release of glucose from glycogen. Vitamin B6 is a water-soluble compound that was discovered in 1930s during nutrition studies on rats. The vitamin was named pyridoxine to indicate its structural homology to pyridine. Later it was shown that vitamin B6 could exist in two other, slightly different, chemical forms, termed pyridoxal and pyridoxamine. All three forms of vitamin B6 are precursors of an activated compound known as pyridoxal 5-phosphate (PLP), which plays a vital role as the cofactor of a large number of essential enzymes in the human body. KEIO_ID P113; [MS3] KO009146 KEIO_ID P113; [MS2] KO009143 KEIO_ID P113
Pyridoxine
Pyridoxine, also known vitamin B6, is commonly found in food and is used as a dietary supplement. Pyridoxine is an essential nutrient, meaning the body cannot synthesize it, and it must be obtained from the diet. Sources in the diet include fruit, vegetables, and grain. Although pyridoxine and vitamin B6 are still frequently used as synonyms, especially by medical researchers, this practice is sometimes misleading (PMID: 2192605). Technically, pyridoxine is one of the compounds that can be called vitamin B6 or it is a member of the family of B6 vitamins. Healthy human blood levels of pyridoxine are 2.1 - 21.7 ng/mL. Pyridoxine is readily converted to pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids and aminolevulinic acid. Pyridoxine assists in the balancing of sodium and potassium as well as promoting red blood cell production. Therefore pyridoxine is required by the body to make amino acids, carbohydrates, and lipids. It is linked to cancer immunity and helps fight the formation of homocysteine. It has been suggested that pyridoxine might help children with learning difficulties, and may also prevent dandruff, eczema, and psoriasis. In addition, pyridoxine can help balance hormonal changes in women and aid in immune system. Lack of pyridoxine may cause anemia, nerve damage, seizures, skin problems, and sores in the mouth (Wikipedia). Deficiency of pyridoxine, though rare because of widespread distribution in foods, leads to the development of peripheral neuritis in adults and affects the central nervous system in children (DOSE - 3rd edition). As a supplement pyridoxine is used to treat and prevent pyridoxine deficiency, sideroblastic anaemia, pyridoxine-dependent epilepsy, certain metabolic disorders, problems from isoniazid, and certain types of mushroom poisoning. Pyridoxine in combination with doxylamine is used as a treatment for morning sickness in pregnant women. Found in rice husks, cane molasses, yeast, wheat germ and cod liver oils. Vitamin, dietary supplement, nutrient. Pyridoxine is one of the compounds that can be called vitamin B6, along with pyridoxal and pyridoxamine. It differs from pyridoxamine by the substituent at the 4 position. It is often used as pyridoxine hydrochloride. Pyridoxine in the urine is a biomarker for the consumption of soy products. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map KEIO_ID P053 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.
Cortisol
Cortisol is the main glucocorticoid secreted by the adrenal cortex and it is involved in the stress response. Its synthetic counterpart hydrocortisone is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Hydrocortisone is synthesized from pregnenolone and is used as an immunosuppressive drug given by injection in the treatment of severe allergic reactions such as anaphylaxis and angioedema, in place of prednisolone in patients who need steroid treatment but cannot take oral medication, and peri-operatively in patients on long-term steroid treatment to prevent an Addisonian crisis. Cortisol increases blood pressure, blood sugar levels, may cause infertility in women, and suppresses the immune system. The amount of cortisol present in the serum undergoes diurnal variation, with the highest levels present in the early morning and lower levels in the evening, several hours after the onset of sleep. Cortisol is found to be associated with ACTH deficiency and glucocorticoid deficiency, which are inborn errors of metabolism. Cortisol binds to the cytosolic glucocorticoid receptor. After binding the receptor, the newly formed receptor-ligand complex translocates itself into the cell nucleus where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA-bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically, glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes and prevents phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. The cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In other words, the two main products of inflammation, prostaglandins and leukotrienes, are inhibited by the action of glucocorticoids. Glucocorticoids also stimulate the escape of lipocortin-1 into the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst, and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines, etc.) from neutrophils, macrophages, and mastocytes. Additionally, the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Cortisol is a steroid hormone, in the glucocorticoid class of hormones and a stress hormone. When used as a medication, it is known as hydrocortisone. It is produced in many animals, mainly by the zona fasciculata of the adrenal cortex in the adrenal gland.[1] It is produced in other tissues in lower quantities.[2] It is released with a diurnal cycle and its release is increased in response to stress and low blood-glucose concentration.[1] It functions to increase blood sugar through gluconeogenesis, to suppress the immune system, and to aid in the metabolism of fat, protein, and carbohydrates.[3] It also decreases bone formation.[4] Many of these functions are carried out by cortisol binding to glucocorticoid or mineralocorticoid receptors inside the cell, which then bind to DNA to affect gene expression.[1][5] Hydrocortisone (Cortisol) is a steroid hormone or glucocorticoid secreted by the adrenal cortex[1].
Iodotyrosine
Iodotyrosine is an iodated derivative of L-tyrosine. This is an early precursor to L-thyroxine, one of the primary thyroid hormones. In the thyroid gland, iodide is trapped, transported, and concentrated in the follicular lumen for thyroid hormone synthesis. Before trapped iodide can react with tyrosine residues, it must be oxidized by thyroid peroxidase. Iodotyrosine is made from tyrosine via thyroid peroxidase and then further iodinated by this enzyme to make the di-iodo and tri-iodo variants. Two molecules of di-iodotyrosine combine to form T4, and one molecule of mono-iodotyrosine combines with one molecule of di-iodotyrosine to form T3. An iodated derivative of L-tyrosine. This is an early precursor to L-thyroxine, one of the primary thyroid hormones. In the thyroid gland, iodide is trapped, transported, and concentrated in the follicular lumen for thyroid hormone synthesis. Before trapped iodide can react with tyrosine residues, it must be oxidized by thyroid peroxidase. Iodotyrosine is made from tyrosine via thyroid peroxidase and then further iodinated by this enzyme to make the di-iodo and tri-iodo variants. Two molecules of di-iodotyrosine combine to form T4, and one molecule of mono-iodotyrosine combines with one molecule of di-iodotyrosine to form T3. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones KEIO_ID I050; [MS3] KO009007 KEIO_ID I050; [MS2] KO009006 KEIO_ID I050; [MS3] KO009008 KEIO_ID I050 H-Tyr(3-I)-OH is a potent and effective tyrosine hydroxylase inhibitor. H-Tyr(3-I)-OH is an intermediate in the production of thyroid hormones and has a role as a human or mouse metabolite[1][2].
Cortisone
A naturally occurring glucocorticoid. It has been used in replacement therapy for adrenal insufficiency and as an anti-inflammatory agent. Cortisone itself is inactive. It is converted in the liver to the active metabolite hydrocortisone. (From Martindale, The Extra Pharmacopoeia, 30th ed, p726) -- Pubchem; Cortisone is a hormone. Chemically it is a corticosteroid with formula C21H28O5 and IUPAC name 17-hydroxy-11-dehydrocorticosterone. It is closely related to corticosterone. -- Wikipedia; One of cortisones effects on the body, and a potentially harmful side effect when administered clinically, is the suppression of the immune system. This is an explanation for the apparent correlation between high stress and sickness. -- Wikipedia [HMDB] Cortisone is a naturally occurring glucocorticoid. It has been used in replacement therapy for adrenal insufficiency and as an anti-inflammatory agent. Cortisone itself is inactive. It is converted in the liver into the active metabolite cortisol. Cortisone is a corticosteroid hormone released by the adrenal gland in response to stress. One of cortisones effects on the body, and a potentially harmful side effect when administered clinically, is the suppression of the immune system. This is an explanation for the apparent correlation between high stress and sickness. Cortisone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=53-06-5 (retrieved 2024-07-16) (CAS RN: 53-06-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cortisone (17-Hydroxy-11-dehydrocorticosterone), an oxidized metabolite of Cortisol (a Glucocorticoid). Cortisone acts as an immunosuppressant and anti-inflammatory agent. Cortisone can partially intervene in binding of Glucocorticoid to Glucocorticoid-receptor at high concentrations[1][3][4].
Betamethasone
A glucocorticoid given orally, parenterally, by local injection, by inhalation, or applied topically in the management of various disorders in which corticosteroids are indicated. Its lack of mineralocorticoid properties makes betamethasone particularly suitable for treating cerebral edema and congenital adrenal hyperplasia. (From Martindale, The Extra Pharmacopoeia, 30th ed, p724) CONFIDENCE standard compound; INTERNAL_ID 552; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8694; ORIGINAL_PRECURSOR_SCAN_NO 8691 CONFIDENCE standard compound; INTERNAL_ID 552; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8605; ORIGINAL_PRECURSOR_SCAN_NO 8603 CONFIDENCE standard compound; INTERNAL_ID 552; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8664; ORIGINAL_PRECURSOR_SCAN_NO 8662 CONFIDENCE standard compound; INTERNAL_ID 552; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8652; ORIGINAL_PRECURSOR_SCAN_NO 8651 CONFIDENCE standard compound; INTERNAL_ID 552; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8702; ORIGINAL_PRECURSOR_SCAN_NO 8699 CONFIDENCE standard compound; INTERNAL_ID 552; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8704; ORIGINAL_PRECURSOR_SCAN_NO 8702 A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01C - Antiinflammatory agents and antiinfectives in combination > S01CB - Corticosteroids/antiinfectives/mydriatics in combination D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XC - Corticosteroids, potent, other combinations R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids S - Sensory organs > S03 - Ophthalmological and otological preparations > S03B - Corticosteroids > S03BA - Corticosteroids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid S - Sensory organs > S02 - Otologicals > S02B - Corticosteroids > S02BA - Corticosteroids D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3242 D000893 - Anti-Inflammatory Agents
Azacitidine
Azacitidine is only found in individuals that have used or taken this drug. It is a pyrimidine nucleoside analogue that inhibits DNA methyltransferase, impairing DNA methylation. It is also an antimetabolite of cytidine, incorporated primarily into RNA. Azacytidine has been used as an antineoplastic agent. [PubChem]Azacitidine (5-azacytidine) is a chemical analogue of the cytosine nucleoside used in DNA and RNA. Azacitidine is thought to induce antineoplastic activity via two mechanisms; inhibition of DNA methyltransferase at low doses, causing hypomethylation of DNA, and direct cytotoxicity in abnormal hematopoietic cells in the bone marrow through its incorporation into DNA and RNA at high doses, resulting in cell death. As azacitidine is a ribonucleoside, it incoporates into RNA to a larger extent than into DNA. The incorporation into RNA leads to the dissembly of polyribosomes, defective methylation and acceptor function of transfer RNA, and inhibition of the production of protein. Its incorporation into DNA leads to a covalent binding with DNA methyltransferases, which prevents DNA synthesis and subsequent cytotoxicity. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2083 - DNA Methyltransferase Inhibitor C274 - Antineoplastic Agent > C132686 - Demethylating Agent D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 5-Azacytidine (Azacitidine; 5-AzaC; Ladakamycin) is a nucleoside analogue of cytidine that specifically inhibits DNA methylation. 5-Azacytidine is incorporated into DNA to covalently trap DNA methyltransferases and contributes to reverse epigenetic changes[1][2]. 5-Azacytidine induces cell autophagy[4].
Dactinomycin
A compound composed of a two cyclic peptides attached to a phenoxazine that is derived from streptomyces parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DA - Actinomycines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents
Inosine triphosphate
Inosine triphosphate (ITP) is an intermediate in the purine metabolism pathway. Relatively high levels of ITP in red cells are found in individuals as result of deficiency of inosine triphosphatase (EC 3.1.3.56, ITPase) ITPase is a cytosolic nucleoside triphosphate pyrophosphohydrolase specific for ITP catalysis to inosine monophosphate (IMP) and deoxy-inosine triphosphate (dITP) to deoxy-inosine monophosphate. ITPase deficiency is not associated with any defined pathology other than the characteristic and abnormal accumulation of ITP in red blood cells. Nevertheless, ITPase deficiency may have pharmacogenomic implications, and the abnormal metabolism of 6-mercaptopurine in ITPase-deficient patients may lead to thiopurine drug toxicity. ITPases function is not clearly understood but possible roles for ITPase could be to prevent the accumulation of rogue nucleotides which would be otherwise incorporated into DNA and RNA, or compete with nucleotides such as GTP in signalling processes. (PMID : 170291, 1204209, 17113761, 17924837) [HMDB] Inosine triphosphate (ITP) is an intermediate in the purine metabolism pathway. Relatively high levels of ITP in red cells are found in individuals as result of deficiency of inosine triphosphatase (EC 3.1.3.56, ITPase) ITPase is a cytosolic nucleoside triphosphate pyrophosphohydrolase specific for ITP catalysis to inosine monophosphate (IMP) and deoxy-inosine triphosphate (dITP) to deoxy-inosine monophosphate. ITPase deficiency is not associated with any defined pathology other than the characteristic and abnormal accumulation of ITP in red blood cells. Nevertheless, ITPase deficiency may have pharmacogenomic implications, and the abnormal metabolism of 6-mercaptopurine in ITPase-deficient patients may lead to thiopurine drug toxicity. ITPases function is not clearly understood but possible roles for ITPase could be to prevent the accumulation of rogue nucleotides which would be otherwise incorporated into DNA and RNA, or compete with nucleotides such as GTP in signalling processes. (PMID: 170291, 1204209, 17113761, 17924837).
PUROMYCIN
An aminonucleoside antibiotic, derived from the Streptomyces alboniger bacterium, that causes premature chain termination during translation taking place in the ribosome. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D009676 - Noxae > D000963 - Antimetabolites C784 - Protein Synthesis Inhibitor D000970 - Antineoplastic Agents KEIO_ID P075; [MS2] KO009213 KEIO_ID P075
Pyridoxal 5'-phosphate
Pyridoxal phosphate, also known as PLP, pyridoxal 5-phosphate or P5P, is the active form of vitamin B6. It is a coenzyme in a variety of enzymatic reactions. Pyridoxal 5-phosphate belongs to the class of organic compounds known as pyridoxals and derivatives. Pyridoxals and derivatives are compounds containing a pyridoxal moiety, which consists of a pyridine ring substituted at positions 2,3,4, and 5 by a methyl group, a hydroxyl group, a carbaldehyde group, and a hydroxymethyl group, respectively. Pyridoxal 5-phosphate is a drug which is used for nutritional supplementation and for treating dietary shortage or imbalance. Pyridoxal 5-phosphate exists in all living species, ranging from bacteria to humans. In humans, pyridoxal 5-phosphate is involved in glycine and serine metabolism. Outside of the human body, pyridoxal 5-phosphate is found, on average, in the highest concentration within cow milk. Pyridoxal 5-phosphate has also been detected, but not quantified in several different foods, such as soursops, italian sweet red peppers, muscadine grapes, european plums, and blackcurrants. Pyridoxal 5-phosphate, with regard to humans, has been found to be associated with several diseases such as epilepsy, early-onset, vitamin B6-dependent, odontohypophosphatasia, pyridoxamine 5-prime-phosphate oxidase deficiency, and hypophosphatasia. Pyridoxal 5-phosphate has also been linked to the inborn metabolic disorder celiac disease. This is the active form of vitamin B6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (pyridoxamine). -- Pubchem; Pyridoxal-phosphate (PLP, pyridoxal-5-phosphate) is a cofactor of many enzymatic reactions. It is the active form of vitamin B6 which comprises three natural organic compounds, pyridoxal, pyridoxamine and pyridoxine. -- Wikipedia [HMDB]. Pyridoxal 5-phosphate is found in many foods, some of which are linden, kai-lan, nance, and rose hip. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins KEIO_ID P038 Pyridoxal phosphate is the active form of vitamin B6, acts as an inhibitor of reverse transcriptases, and is used for the treatment of tardive dyskinesia.
Gibberellin A4
A C19-gibberellin, initially identified in Gibberella fujikuroi and differing from gibberellin A1 by the substitution of the OH at C-7 (gibbane numbering) by H. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 16
Homogentisic acid
Homogentisic acid, also known as melanic acid, is an intermediate in the breakdown or catabolism of tyrosine and phenylalanine. It is generated from the compound p-hydroxyphenylpyruvate through the enzyme p-hydroxyphenylpyruvate dehydrogenase. The resulting homogentisic acid is then broken down into 4-maleylacetoacetate via the enzyme homogentisate 1,2-dioxygenase. Homogentisic acid is also found in other organisms. For instance, it can found in Arbutus unedo (strawberry-tree) honey, in the bacterial plant pathogen Xanthomonas campestris as well as in the yeast Yarrowia lipolytica where it is associated with the production of brown pigments. Homogentisic acid can be oxidatively dimerized to form hipposudoric acid, one of the main constituents of the blood sweat of hippopotamuses. When present in sufficiently high levels, homogentisic acid can function as an osteotoxin and a renal toxin. An osteotoxin is a substance that causes damage to bones and/or joints. A renal toxin causes damage to the kidneys. Chronically high levels of homogentisic acid are associated with alkaptonuria (OMIM: 203500), an inborn error of metabolism. Alkaptonuria is a rare inherited genetic disorder in which the body cannot process the amino acids phenylalanine and tyrosine. It is caused by a mutation in the enzyme homogentisate 1,2-dioxygenase (EC 1.13.11.5), which leads to an accumulation of homogentisic acid in the blood and tissues. Homogentisic acid and its oxidized form benzoquinone acetic acid are excreted in the urine, giving it an unusually dark color. The accumulating homogentisic acid (and benzoquinone acetic acid) causes damage to cartilage (ochronosis, leading to osteoarthritis) and heart valves as well as precipitating as kidney stones and stones in other organs. More specifically, homogentisic acid can be converted to benzoquinone acetic acid (BQA), and the resulting BQA can be readily converted to polymers that resemble the dark skin pigment melanin. These polymers are deposited in the collagen, a connective tissue protein, of particular tissues such as cartilage. This process is called ochronosis (as the tissue looks ochre); ochronotic tissue is stiffened and unusually brittle, impairing its normal function and causing damage. Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae. 2-(3,6-dihydroxyphenyl)acetic acid, also known as homogentisic acid or homogentisate, is a member of the class of compounds known as 2(hydroxyphenyl)acetic acids. 2(hydroxyphenyl)acetic acids are phenylacetic acids that carry a hydroxyl group at the 2-position. 2-(3,6-dihydroxyphenyl)acetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-(3,6-dihydroxyphenyl)acetic acid can be found in a number of food items such as gooseberry, angelica, chinese broccoli, and cucumber, which makes 2-(3,6-dihydroxyphenyl)acetic acid a potential biomarker for the consumption of these food products. 2-(3,6-dihydroxyphenyl)acetic acid can be found primarily in blood, feces, and urine, as well as in human cartilage, connective tissue and kidney tissues. In humans, 2-(3,6-dihydroxyphenyl)acetic acid is involved in few metabolic pathways, which include disulfiram action pathway, phenylalanine and tyrosine metabolism, and tyrosine metabolism. 2-(3,6-dihydroxyphenyl)acetic acid is also involved in several metabolic disorders, some of which include dopamine beta-hydroxylase deficiency, tyrosinemia type 3 (TYRO3), alkaptonuria, and tyrosinemia type 2 (or richner-hanhart syndrome). Moreover, 2-(3,6-dihydroxyphenyl)acetic acid is found to be associated with alkaptonuria. 2-(3,6-dihydroxyphenyl)acetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Apart from treatment of the complications (such as pain relief using NSAIDs and joint replacement for the cartilage damage), vitamin C has been used to reduce the ochronosis and lowering of the homogentisic acid levels may be attempted with a low-protein diet. Recently the drug nitisinone has been found to suppress homogentisic acid production. Nitrisinone inhibits the enzyme, 4-hydroxyphenylpyruvate dioxygenase, responsible for converting tyrosine to homogentisic acid, thereby blocking the production and accumulation of homogentisic acid. Nitisinone treatment has been shown to cause a 95\\\\% reduction in plasma and urinary homogentisic acid (T3DB). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 118 KEIO_ID H060 Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.
4-Hydroxyphenylpyruvic acid
3-(4-hydroxy-phenyl)pyruvic acid, also known as 4-hydroxy a-oxobenzenepropanoate or 3-(p-hydroxyphenyl)-2-oxopropanoate, belongs to phenylpyruvic acid derivatives class of compounds. Those are compounds containing a phenylpyruvic acid moiety, which consists of a phenyl group substituted at the second position by an pyruvic acid. 3-(4-hydroxy-phenyl)pyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-(4-hydroxy-phenyl)pyruvic acid can be synthesized from pyruvic acid. 3-(4-hydroxy-phenyl)pyruvic acid can also be synthesized into 4-hydroxyphenylpyruvic acid oxime. 3-(4-hydroxy-phenyl)pyruvic acid can be found in a number of food items such as garden onion (variety), rose hip, sourdough, and horseradish tree, which makes 3-(4-hydroxy-phenyl)pyruvic acid a potential biomarker for the consumption of these food products. 3-(4-hydroxy-phenyl)pyruvic acid can be found primarily in blood and urine, as well as in human prostate tissue. 3-(4-hydroxy-phenyl)pyruvic acid exists in all eukaryotes, ranging from yeast to humans. In humans, 3-(4-hydroxy-phenyl)pyruvic acid is involved in few metabolic pathways, which include disulfiram action pathway, phenylalanine and tyrosine metabolism, and tyrosine metabolism. 3-(4-hydroxy-phenyl)pyruvic acid is also involved in several metabolic disorders, some of which include tyrosinemia type I, phenylketonuria, tyrosinemia, transient, of the newborn, and alkaptonuria. Moreover, 3-(4-hydroxy-phenyl)pyruvic acid is found to be associated with hawkinsinuria and phenylketonuria. 4-Hydroxyphenylpyruvic acid (4-HPPA) is a keto acid that is involved in the tyrosine catabolism pathway. It is a product of the enzyme (R)-4-hydroxyphenyllactate dehydrogenase (EC 1.1.1.222) and is formed during tyrosine metabolism. The conversion from tyrosine to 4-HPPA is catalyzed by tyrosine aminotransferase. Additionally, 4-HPPA can be converted to homogentisic acid which is one of the precursors to ochronotic pigment. The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction that converts 4-hydroxyphenylpyruvic acid to homogentisic acid. A deficiency in the catalytic activity of HPD is known to lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been shown that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of hawkinsin, may also be a result of HPD deficiency (PMID: 11073718). Moreover, 4-hydroxyphenylpyruvic acid is also found to be associated in phenylketonuria, which is also an inborn error of metabolism. There are two isomers of HPPA, specifically 4HPPA and 3HPPA, of which 4HPPA is the most common. 4-HPPA has been found to be a microbial metabolite in Escherichia (ECMDB). KEIO_ID H007 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine. 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine.
Oxaloacetate
Oxalacetic acid, also known as oxaloacetic acid, keto-oxaloacetate or 2-oxobutanedioate, belongs to the class of organic compounds known as short-chain keto acids and derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms. Oxalacetic acid is a metabolic intermediate in many processes that occur in animals and plants. It takes part in gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, fatty acid synthesis and the citric acid cycle. Oxalacetic acid exists in all living species, ranging from bacteria to plants to humans. Within humans, oxalacetic acid participates in a number of enzymatic reactions. In particular, oxalacetic acid is an intermediate of the citric acid cycle, where it reacts with acetyl-CoA to form citrate, catalyzed by citrate synthase. It is also involved in gluconeogenesis and the urea cycle. In gluconeogenesis oxaloacetate is decarboxylated and phosphorylated by phosphoenolpyruvate carboxykinase and becomes 2-phosphoenolpyruvate using guanosine triphosphate (GTP) as phosphate source. In the urea cycle, malate is acted on by malate dehydrogenase to become oxaloacetate, producing a molecule of NADH. After that, oxaloacetate can be recycled to aspartate, as this recycling maintains the flow of nitrogen into the cell. In mice, injections of oxalacetic acid have been shown to promote brain mitochondrial biogenesis, activate the insulin signaling pathway, reduce neuroinflammation and activate hippocampal neurogenesis (PMID: 25027327). Oxalacetic acid has also been reported to reduce hyperglycemia in type II diabetes and to extend longevity in C. elegans (PMID: 25027327). Outside of the human body, oxalacetic acid has been detected, but not quantified in, several different foods, such as Persian limes, lemon balms, wild rice, canola, and peanuts. This could make oxalacetic acid a potential biomarker for the consumption of these foods. Oxalacetic acid, also known as ketosuccinic acid or oxaloacetate, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Thus, oxalacetic acid is considered to be a fatty acid lipid molecule. Oxalacetic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Oxalacetic acid can be synthesized from succinic acid. Oxalacetic acid can also be synthesized into oxaloacetic acid 4-methyl ester. Oxalacetic acid can be found in a number of food items such as daikon radish, sacred lotus, cucurbita (gourd), and tarragon, which makes oxalacetic acid a potential biomarker for the consumption of these food products. Oxalacetic acid can be found primarily in cellular cytoplasm, cerebrospinal fluid (CSF), and urine, as well as in human liver tissue. Oxalacetic acid exists in all living species, ranging from bacteria to humans. In humans, oxalacetic acid is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of 2-hydroxyglutarate, glycogenosis, type IB, and the oncogenic action of fumarate. Oxalacetic acid is also involved in several metabolic disorders, some of which include the oncogenic action of l-2-hydroxyglutarate in hydroxygluaricaciduria, transfer of acetyl groups into mitochondria, argininemia, and 2-ketoglutarate dehydrogenase complex deficiency. Moreover, oxalacetic acid is found to be associated with anoxia. C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism C26170 - Protective Agent > C1509 - Neuroprotective Agent Oxaloacetic acid (2-Oxosuccinic acid) is a metabolic intermediate involved in several ways, such as citric acid cycle, gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, and fatty acid synthesis[1][2]. Oxaloacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=328-42-7 (retrieved 2024-10-17) (CAS RN: 328-42-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
N-acetylmethionine
N-Acetyl-L-methionine or N-Acetylmethionine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylmethionine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylmethionine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-methionine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylmethionine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free methionine can also occur. In particular, N-Acetylmethionine can be biosynthesized from L-methionine and acetyl-CoA by the enzyme methionine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylmethionine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylmethionine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Nutrient supplement used as a source of L-methionine. KEIO_ID A065 N-Acetyl-DL-methionine is an endogenous metabolite. N-Acetyl-L-methionine, a human metabolite, is nutritionally and metabolically equivalent to L-methionine. L-methionine is an indispensable amino acid required for normal growth and development[1].
Phenylpyruvate
Phenylpyruvic acid is a keto-acid that is an intermediate or catabolic byproduct of phenylalanine metabolism. It has a slight honey-like odor. Levels of phenylpyruvate are normally very low in blood or urine. High levels of phenylpyruvic acid can be found in the urine of individuals with phenylketonuria (PKU), an inborn error of metabolism. PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid. In particular, excessive phenylalanine can be metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. Phenylpyruvic acid is also a microbial metabolite, it can be produced by Lactobacillus plantarum (PMID: 9687465). Flavouring ingredient Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1]. Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1].
3-Hydroxyl kyneurenine
Hydroxykynurenine is a free radical generator and a bioprecursor quinolinic acid which is a endogenous excitotoxin (PMID 16697652). It is a product of enzyme kynurenine 3-monooxygenase in the tryptophan catabolism pathway (Reactome http://www.reactome.org). [HMDB] Hydroxykynurenine is a free radical generator and a bioprecursor quinolinic acid which is a endogenous excitotoxin (PMID 16697652). It is a product of enzyme kynurenine 3-monooxygenase in the tryptophan catabolism pathway (Reactome http://www.reactome.org). Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA12_3-OH-kynurenine_pos_20eV_1-4_01_802.txt [Raw Data] CBA12_3-OH-kynurenine_pos_10eV_1-4_01_801.txt [Raw Data] CBA12_3-OH-kynurenine_pos_50eV_1-4_01_805.txt [Raw Data] CBA12_3-OH-kynurenine_pos_40eV_1-4_01_804.txt [Raw Data] CBA12_3-OH-kynurenine_pos_30eV_1-4_01_803.txt C26170 - Protective Agent > C275 - Antioxidant KEIO_ID H050; [MS3] KO009001 KEIO_ID H050; [MS2] KO009000 KEIO_ID H050
Bolandione
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Biperiden
A muscarinic antagonist that has effects in both the central and peripheral nervous systems. It has been used in the treatment of arteriosclerotic, idiopathic, and postencephalitic parkinsonism. It has also been used to alleviate extrapyramidal symptoms induced by phenothiazine derivatives and reserpine. [PubChem] D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].
Chlorprothixene
Chlorprothixene is only found in individuals that have used or taken this drug. It is a typical antipsychotic drug of the thioxanthene (tricyclic) class. Chlorprothixene exerts strong blocking effects by blocking the 5-HT2 D1, D2, D3, histamine H1, muscarinic and alpha1 adrenergic receptors. Chlorprothixene blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AF - Thioxanthene derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Chlorprothixene is a dopamine and histamine receptors antagonist with Kis of 18 nM, 2.96 nM, 4.56 nM, 9 nM and 3.75 nM for hD1, hD2, hD3, hD5 and hH1 receptors, respectively. Antipsychotic activity[1].
Emetine
A pyridoisoquinoline comprising emetam having methoxy substituents at the 6-, 7-, 10- and 11-positions. It is an antiprotozoal agent and emetic. It inhibits SARS-CoV2, Zika and Ebola virus replication and displays antimalarial, antineoplastic and antiamoebic properties. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics D005765 - Gastrointestinal Agents > D004639 - Emetics D002491 - Central Nervous System Agents Origin: Plant; Formula(Parent): C29H40N2O4; Bottle Name:Emetine dihydrochloride; PRIME Parent Name:Emetine; PRIME in-house No.:V0282; SubCategory_DNP: Isoquinoline alkaloids, Emetine alkaloids Annotation level-1 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2501; CONFIDENCE confident structure
Extracort
CONFIDENCE standard compound; INTERNAL_ID 637; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8728; ORIGINAL_PRECURSOR_SCAN_NO 8723 CONFIDENCE standard compound; INTERNAL_ID 637; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8791; ORIGINAL_PRECURSOR_SCAN_NO 8789 CONFIDENCE standard compound; INTERNAL_ID 637; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8741; ORIGINAL_PRECURSOR_SCAN_NO 8739 CONFIDENCE standard compound; INTERNAL_ID 637; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8700; ORIGINAL_PRECURSOR_SCAN_NO 8699 CONFIDENCE standard compound; INTERNAL_ID 637; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8788; ORIGINAL_PRECURSOR_SCAN_NO 8786 CONFIDENCE standard compound; INTERNAL_ID 637; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8777; ORIGINAL_PRECURSOR_SCAN_NO 8775 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents CONFIDENCE standard compound; INTERNAL_ID 2826 D000893 - Anti-Inflammatory Agents
Trenbolone
A 3-oxo-Delta(4) steroid that is estra-4,9,11-triene carrying an oxo group at position 3 and a hydroxy group at position 17beta. It is a synthetic anabolic steroid used for muscle growth in livestock. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid CONFIDENCE standard compound; INTERNAL_ID 2824 CONFIDENCE standard compound; INTERNAL_ID 8746 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8822; ORIGINAL_PRECURSOR_SCAN_NO 8819 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8842; ORIGINAL_PRECURSOR_SCAN_NO 8840 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4804; ORIGINAL_PRECURSOR_SCAN_NO 4803 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8845; ORIGINAL_PRECURSOR_SCAN_NO 8842 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8903; ORIGINAL_PRECURSOR_SCAN_NO 8901 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4774; ORIGINAL_PRECURSOR_SCAN_NO 4772 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4796; ORIGINAL_PRECURSOR_SCAN_NO 4794 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4817; ORIGINAL_PRECURSOR_SCAN_NO 4815 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8823; ORIGINAL_PRECURSOR_SCAN_NO 8820 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4834; ORIGINAL_PRECURSOR_SCAN_NO 4832 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8866; ORIGINAL_PRECURSOR_SCAN_NO 8863
Fludrocortisone
Fludrocortisone is only found in individuals that have used or taken this drug. It is a synthetic mineralocorticoid with anti-inflammatory activity. [PubChem]Fludrocortisone binds the mineralocorticoid receptor (aldosterone receptor). This binding (or activation of the mineralocorticoid receptor by fludrocortisone) in turn causes an increase in ion and water transport and thus raises extracellular fluid volume and blood pressure and lowers potassium levels. H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents
Mifepristone
A progestational and glucocorticoid hormone antagonist. Its inhibition of progesterone induces bleeding during the luteal phase and in early pregnancy by releasing endogenous prostaglandins from the endometrium or decidua. As a glucocorticoid receptor antagonist, the drug has been used to treat hypercortisolism in patients with nonpituitary cushing syndrome. [PubChem] G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03X - Other sex hormones and modulators of the genital system > G03XB - Progesterone receptor modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C1891 - Progesterone Antagonist D012102 - Reproductive Control Agents > D008600 - Menstruation-Inducing Agents D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents D012102 - Reproductive Control Agents > D008186 - Luteolytic Agents
(E)-Monocrotophos
(e)-monocrotophos, also known as azodrin or dimethyl (E)-3-hydroxy-N-methylcrotonamide, is a member of the class of compounds known as dialkyl phosphates. Dialkyl phosphates are organic compounds containing a phosphate group that is linked to exactly two alkyl chain (e)-monocrotophos is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Within the cell, (e)-monocrotophos is primarily located in the cytoplasm. It can also be found in the extracellular space (e)-monocrotophos is a non-carcinogenic (not listed by IARC) potentially toxic compound. If the compound has been ingested, rapid gastric lavage should be performed using 5\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors (E)-Monocrotophos is an Agricultural insecticide with both systemic and contact actio D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; INTERNAL_ID 3133 D010575 - Pesticides > D007306 - Insecticides D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals
Pentachlorophenol
Pentachlorophenol (PCP) is an organochlorine compound used as a pesticide and a disinfectant. First produced in the 1930s, it is marketed under many trade names. It can be found in two forms: PCP itself or as the sodium salt of PCP, which dissolves easily in water. CONFIDENCE standard compound; INTERNAL_ID 364; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5807; ORIGINAL_PRECURSOR_SCAN_NO 5804 CONFIDENCE standard compound; INTERNAL_ID 364; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5819; ORIGINAL_PRECURSOR_SCAN_NO 5816 CONFIDENCE standard compound; INTERNAL_ID 364; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5811; ORIGINAL_PRECURSOR_SCAN_NO 5808 CONFIDENCE standard compound; INTERNAL_ID 364; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5885; ORIGINAL_PRECURSOR_SCAN_NO 5882 CONFIDENCE standard compound; INTERNAL_ID 364; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5784; ORIGINAL_PRECURSOR_SCAN_NO 5781 Acquisition and generation of the data is financially supported in part by CREST/JST. D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3718 D010575 - Pesticides > D007306 - Insecticides D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D011042 - Poisons D004785 - Environmental Pollutants D016573 - Agrochemicals
o-Aminoazotoluene
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004396 - Coloring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1221; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9258; ORIGINAL_PRECURSOR_SCAN_NO 9257 CONFIDENCE standard compound; INTERNAL_ID 1221; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9761; ORIGINAL_PRECURSOR_SCAN_NO 9760 CONFIDENCE standard compound; INTERNAL_ID 1221; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9293; ORIGINAL_PRECURSOR_SCAN_NO 9292 CONFIDENCE standard compound; INTERNAL_ID 1221; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9314; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 1221; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9340; ORIGINAL_PRECURSOR_SCAN_NO 9339 CONFIDENCE standard compound; INTERNAL_ID 1221; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9313; ORIGINAL_PRECURSOR_SCAN_NO 9312
Acephate
CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1493; ORIGINAL_PRECURSOR_SCAN_NO 1491 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3008; ORIGINAL_PRECURSOR_SCAN_NO 3003 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1469; ORIGINAL_PRECURSOR_SCAN_NO 1467 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1489; ORIGINAL_PRECURSOR_SCAN_NO 1488 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3023; ORIGINAL_PRECURSOR_SCAN_NO 3020 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3022; ORIGINAL_PRECURSOR_SCAN_NO 3018 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3000; ORIGINAL_PRECURSOR_SCAN_NO 2996 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1491; ORIGINAL_PRECURSOR_SCAN_NO 1488 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1478; ORIGINAL_PRECURSOR_SCAN_NO 1476 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3021; ORIGINAL_PRECURSOR_SCAN_NO 3018 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3035; ORIGINAL_PRECURSOR_SCAN_NO 3030 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1488; ORIGINAL_PRECURSOR_SCAN_NO 1486 C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; INTERNAL_ID 3111 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Deoxycorticosterone
11-Deoxycorticosterone (also called desoxycortone, 21-hydroxyprogesterone, DOC, or simply deoxycorticosterone) is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as a precursor to aldosterone. It is classified as a member of the 21-hydroxysteroids. 21-hydroxysteroids are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Deoxycorticosterone is very hydrophobic, practically insoluble (in water), and relatively neutral. Deoxycorticosterone can be synthesized from progesterone by 21-beta-hydroxylase and is then converted to corticosterone by 11-beta-hydroxylase. Corticosterone is then converted to aldosterone by aldosterone synthase. Deoxycorticosterone stimulates the collecting tubules in the kidney to continue to excrete potassium in much the same way that aldosterone does. Deoxycorticosterone has about 1/20 of the sodium retaining power of aldosterone and about 1/5 the potassium excreting power of aldosterone (Wikipedia). Deoxycorticosterone can be found throughout all human tissues and has been detected in amniotic fluid and blood. When present in sufficiently high levels, deoxycorticosterone can act as a hypertensive agent and a metabotoxin. A hypertensive agent increases blood pressure and causes the production of more urine. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxycorticosterone are associated with congenital adrenal hyperplasia (CAH) and with adrenal tumors producing deoxycorticosterone (PMID: 20671982). High levels of this mineralocorticoid are associated with resistant hypertension, which can result in polyuria, polydipsia, increased blood volume, edema, and cardiac enlargement. Deoxycorticosterone can be used to treat adrenal insufficiency. In particular, desoxycorticosterone acetate (DOCA) is used as replacement therapy in Addisons disease. Desoxycorticosterol, also known as 21-hydroxy-4-pregnene-3,20-dione or 21-hydroxyprogesterone, is a member of the class of compounds known as 21-hydroxysteroids. 21-hydroxysteroids are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, desoxycorticosterol is considered to be a steroid lipid molecule. Desoxycorticosterol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Desoxycorticosterol can be synthesized from progesterone. Desoxycorticosterol can also be synthesized into 11-deoxycorticosterone-21-hemisuccinate and 5beta-dihydrodeoxycorticosterone. Desoxycorticosterol can be found in rice, which makes desoxycorticosterol a potential biomarker for the consumption of this food product. Desoxycorticosterol can be found primarily in amniotic fluid and blood, as well as throughout all human tissues. In humans, desoxycorticosterol is involved in the steroidogenesis. Desoxycorticosterol is also involved in several metabolic disorders, some of which include corticosterone methyl oxidase I deficiency (CMO I), 21-hydroxylase deficiency (CYP21), corticosterone methyl oxidase II deficiency - CMO II, and 11-beta-hydroxylase deficiency (CYP11B1). Desoxycorticosterol is a non-carcinogenic (not listed by IARC) potentially toxic compound. CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9334; ORIGINAL_PRECURSOR_SCAN_NO 9329 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9427; ORIGINAL_PRECURSOR_SCAN_NO 9423 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9386; ORIGINAL_PRECURSOR_SCAN_NO 9384 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9356; ORIGINAL_PRECURSOR_SCAN_NO 9353 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9399; ORIGINAL_PRECURSOR_SCAN_NO 9396 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9378; ORIGINAL_PRECURSOR_SCAN_NO 9376 H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D008901 - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor. Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor.
Isatidine
Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.363 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.358 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.361 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2325 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 177 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 117 INTERNAL_ID 147; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 147 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 137 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 157 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 167 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 127 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 107 D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].
Trihexyphenidyl
Trihexyphenidyl is only found in individuals that have used or taken this drug. It is one of the centrally acting muscarinic antagonists used for treatment of parkinsonian disorders and drug-induced extrapyramidal movement disorders and as an antispasmodic. [PubChem]Trihexyphenidyl is a selective M1 muscarinic acetylcholine receptor antagonist. It is able to discriminate between the M1 (cortical or neuronal) and the peripheral muscarinic subtypes (cardiac and glandular). Trihexyphenidyl partially blocks cholinergic activity in the CNS, which is responsible for the symptoms of Parkinsons disease. It is also thought to increase the availability of dopamine, a brain chemical that is critical in the initiation and smooth control of voluntary muscle movement. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent
Phenobarbital
Phenobarbital is only found in individuals that have used or taken this drug. It is a barbituric acid derivative that acts as a nonselective central nervous system depressant.Phenobarbital acts on GABAA receptors, increasing synaptic inhibition. This has the effect of elevating seizure threshold and reducing the spread of seizure activity from a seizure focus. Phenobarbital may also inhibit calcium channels, resulting in a decrease in excitatory transmitter release. The sedative-hypnotic effects of phenobarbital are likely the result of its effect on the polysynaptic midbrain reticular formation, which controls CNS arousal. Phenobarbital appears as odorless white crystalline powder or colorless crystals. A saturated aqueous solution is acid to litmus (approximately pH 5). Slightly bitter taste. (NTP, 1992) Phenobarbital is a member of the class of barbiturates, the structure of which is that of barbituric acid substituted at C-5 by ethyl and phenyl groups. It has a role as an anticonvulsant, a sedative, an excitatory amino acid antagonist and a drug allergen. Phenobarbital is a DEA Schedule IV controlled substance. Substances in the DEA Schedule IV have a low potential for abuse relative to substances in Schedule III. It is a Depressants substance. A barbituric acid derivative that acts as a nonselective central nervous system depressant. It promotes binding to inhibitory gamma-aminobutyric acid subtype receptors, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenobarbital is a barbiturate that is widely used as a sedative and an antiseizure medication. Phenobarbital has been linked to rare instances of idiosyncratic liver injury that can be severe and even fatal. Phenobarbital is a long-acting barbituric acid derivative with antipsychotic property. Phenobarbital binds to and activates the gamma-aminobutyric acid (GABA)-A receptor, thereby mimicking the inhibitory actions of GABA in the brain. The activation effects of the phenobarbital-receptor-ionophore complex include increased frequency of chloride channel openings, membrane hyperpolarization and ultimately synaptic inhibition and decreased neuronal excitability. In addition, this agent inhibits glutamate induced depolarization. Phenobarbital is only found in individuals that have used or taken this drug. It is a barbituric acid derivative that acts as a nonselective central nervous system depressant. It promotes binding to inhibitory gamma-aminobutyric acid subtype receptors, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. [PubChem] Phenobarbital acts on GABAA receptors, increasing synaptic inhibition. This has the effect of elevating seizure threshold and reducing the spread of seizure activity from a seizure focus. Phenobarbital may also inhibit calcium channels, resulting in a decrease in excitatory transmitter release. The sedative-hypnotic effects of phenobarbital are likely the result of its effect on the polysynaptic midbrain reticular formation, which controls CNS arousal. A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations.
Dichlorvos
Dichlorvos is used as a household and public health fumigant, for crop protection and as an anthelmintic in animal feeds.Dichlorvos or 2,2-dichlorovinyl dimethyl phosphate (DDVP) is a highly volatile organophosphate, widely used as a insecticide to control household pests, in public health, and protecting stored product from insects. It is effective against mushroom flies, aphids, spider mites, caterpillars, thrips, and whiteflies in greenhouse, outdoor fruit, and vegetable crops. (Wikipedia It is used as a household and public health fumigant, for crop protection and as an anthelmintic in animal feeds D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3047 CONFIDENCE standard compound; INTERNAL_ID 8472 CONFIDENCE standard compound; INTERNAL_ID 2600 CONFIDENCE standard compound; INTERNAL_ID 4001 D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Tyrosine methylester
Tyrosine methylester, also known as Tyrosine methyl ester hydrochloride, (L)-isomer or Tyr-ome, is classified as a tyrosine or a Tyrosine derivative. Tyrosines are compounds containing tyrosine or a derivative thereof resulting from reaction of tyrosine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Tyrosine methylester is considered to be a slightly soluble (in water) and a very weak acidic compound. Tyrosine methylester can be found in humans. KEIO_ID T032 H-Tyr-OMe, an amino acid, is an endogenous metabolite[1].
Prednisolone
Prednisolone is only found in individuals that have used or taken this drug. It is a glucocorticoid with the general properties of the corticosteroids. It is the drug of choice for all conditions in which routine systemic corticosteroid therapy is indicated, except adrenal deficiency states. [PubChem]Glucocorticoids such as Prednisolone can inhibit leukocyte infiltration at the site of inflammation, interfere with mediators of inflammatory response, and suppress humoral immune responses. The antiinflammatory actions of glucocorticoids are thought to involve phospholipase A2 inhibitory proteins, lipocortins, which control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes. Prednisolone reduces inflammatory reaction by limiting the capillary dilatation and permeability of the vascular structures. These compounds restrict the accumulation of polymorphonuclear leukocytes and macrophages and reduce the release of vasoactive kinins. Recent research suggests that corticosteroids may inhibit the release of arachidonic acid from phospholipids, thereby reducing the formation of prostaglandins. Prednisolone is a glucocorticoid receptor agonist. On binding, the corticoreceptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing an increase or decrease in expression of specific target genes, including suppression of IL2 (interleukin 2) expression. CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10371; ORIGINAL_PRECURSOR_SCAN_NO 10370 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10290; ORIGINAL_PRECURSOR_SCAN_NO 10289 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10345; ORIGINAL_PRECURSOR_SCAN_NO 10344 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10328; ORIGINAL_PRECURSOR_SCAN_NO 10327 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10352; ORIGINAL_PRECURSOR_SCAN_NO 10350 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3958; ORIGINAL_PRECURSOR_SCAN_NO 3956 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3963; ORIGINAL_PRECURSOR_SCAN_NO 3958 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3968; ORIGINAL_PRECURSOR_SCAN_NO 3965 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3987; ORIGINAL_PRECURSOR_SCAN_NO 3983 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3980; ORIGINAL_PRECURSOR_SCAN_NO 3979 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3991; ORIGINAL_PRECURSOR_SCAN_NO 3989 A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01C - Antiinflammatory agents and antiinfectives in combination > S01CB - Corticosteroids/antiinfectives/mydriatics in combination D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XA - Corticosteroids, weak, other combinations A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AC - Corticosteroids for local oral treatment C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AA - Corticosteroids, weak (group i) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids S - Sensory organs > S03 - Ophthalmological and otological preparations > S03B - Corticosteroids > S03BA - Corticosteroids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid S - Sensory organs > S02 - Otologicals > S02B - Corticosteroids > S02BA - Corticosteroids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; EAWAG_UCHEM_ID 2783 CONFIDENCE standard compound; INTERNAL_ID 2398 D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Prednisolone is a potent, orally active corticosteroid and a glucocorticoid. Prednisolone possesses about four times the anti-inflammatory activity of hydrocortisone while causing less salt and water retention. Prednisolone can be used for ocular, anti-inflammatory research[1][2].
Flunisolide
Flunisolide is only found in individuals that have used or taken this drug. It is a corticosteroid often prescribed as treatment for allergic rhinitis.Flunisolide is a glucocorticoid receptor agonist. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Flunisolide binds to plasma transcortin, and it becomes active when it is not bound to transcortin. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents CONFIDENCE standard compound; INTERNAL_ID 2812 D000893 - Anti-Inflammatory Agents
17-Hydroxyprogesterone
17-Hydroxyprogesterone also known as 17-OH progesterone (17-OHP), or hydroxyprogesterone (OHP), is an endogenous progestogen steroid hormone related to progesterone. Formally it is a 17alpha-hydroxy steroid that is the 17alpha-hydroxy derivative of progesterone. 17-Hydroxyprogesterone is found in all vertebrates. It is a chemical intermediate in the biosynthesis of many endogenous steroids, including androgens, estrogens, glucocorticoids, mineralocorticoids and neurosteroids. In particular, 17-Hydroxyprogesterone serves as an intermediate in the biosynthesis of hydrocortisone and gonadal steroid hormones. It is derived from progesterone via the enzyme known as 17-hydroxylase, a cytochrome P450 enzyme also known as CYP17A1. It can also be biosynthesized from 17-hydroxypregnenolone via the enzyme 3beta-hydroxysteroid dehydrogenase/delta5-4 isomerase (PMID: 1955079). 17-OHP is an agonist of the progesterone receptor (PR). It is also an antagonist of the mineralocorticoid receptor (MR) as well as a partial agonist of the glucocorticoid receptor (GR). 17-Hydroxyprogesterone is a natural progestin and in pregnancy it increases in the third trimester primarily due to fetal adrenal production. 17-Hydroxyprogesterone is primarily produced in the adrenal glands and to some degree in the gonads, specifically the corpus luteum of the ovary. Normal levels are 3-90 ng/dl in children, and in women, 15-70 ng/dl prior to ovulation, and 35-290 ng/dl during the luteal phase. Measurements of levels of 17-hydroxyprogesterone are useful in the evaluation of patients with suspected congenital adrenal hyperplasia as the typical enzymes that are defective, namely 21-hydroxylase, lead to a build-up of 17-OHP. 17-OHP levels can also be used to measure contribution of progestational activity of the corpus luteum during pregnancy as progesterone but not 17-OHP is also contributed by the placenta. It serves as an intermediate in the biosynthesis of hydrocortisone and gonadal steroid hormones. It is derived from progesterone via 17-hydroxylase, a P450c17 enzyme, or from 17-hydroxypregnenolone via 3β-hydroxysteroid dehydrogenase/Δ5-4 isomerase. 17-Hydroxyprogesterone is a natural progestin and in pregnancy increases in the third trimester primarily due to fetal adrenal production. CONFIDENCE standard compound; INTERNAL_ID 1144; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9336; ORIGINAL_PRECURSOR_SCAN_NO 9331 CONFIDENCE standard compound; INTERNAL_ID 1144; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9427; ORIGINAL_PRECURSOR_SCAN_NO 9423 CONFIDENCE standard compound; INTERNAL_ID 1144; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9386; ORIGINAL_PRECURSOR_SCAN_NO 9384 CONFIDENCE standard compound; INTERNAL_ID 1144; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9371; ORIGINAL_PRECURSOR_SCAN_NO 9370 CONFIDENCE standard compound; INTERNAL_ID 1144; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9334; ORIGINAL_PRECURSOR_SCAN_NO 9329 CONFIDENCE standard compound; INTERNAL_ID 1144; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9378; ORIGINAL_PRECURSOR_SCAN_NO 9376 G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DA - Pregnen (4) derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 17α-Hydroxyprogesterone (17-Hydroxyprogesterone) is an endogenous progesterone that serves as a chemical intermediate in the biosynthesis of other steroid hormones, including glucocorticoids, androgens, and estrogens.
3b-Allotetrahydrocortisol
3b-Allotetrahydrocortisol is one of the tetrahydrometabolites of cortisol. The 11-beta-hydroxysteroid dehydrogenase (11beta-HSD) is responsible for the interconversion of both the hormonally inactive cortisone and the active cortisol, which has implications in the pathogenesis of numerous diseases, as reflected in the ratio of tetrahydrometabolites of cortisol. (PMID: 16310418). The daily excretion of allotetrahydrocortisol is above normal in hyperthyroid patients; In contrast, in hyperthyroidism the excretion is diminished below normal levels to approximately half that of normal subjects. (PMID 13906284). A decreased activity of the enzyme 11beta-HSD produces a pattern of urinary steroid metabolites with an abnormal elevation of tetrahydrocortisol and allo-tetrahydrocortisol compared to tetrahydrocortisone; this pattern of steroid excretion is essential for the diagnosis of the syndrome of apparent mineralocorticoid excess type 1. (PMID: 8834992). 3b-Allotetrahydrocortisol is one of the tetrahydrometabolites of cortisol. The 11-beta-hydroxysteroid dehydrogenase (11beta-HSD) is responsible for the interconversion of both the hormonally inactive cortisone and the active cortisol, which has implications in the pathogenesis of numerous diseases, as reflected in the ratio of tetrahydrometabolites of cortisol. (PMID: 16310418) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].
Acetohydroxamic Acid
Acetohydroxamic Acid, a synthetic drug derived from hydroxylamine and ethyl acetate, is similar in structure to urea. In the urine, it acts as an antagonist of the bacterial enzyme urease. Acetohydroxamic Acid has no direct antimicrobial action and does not acidify urine directly. It is used, in addition to antibiotics or medical procedures, to treat chronic urea-splitting urinary infections. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals D004791 - Enzyme Inhibitors
1,3-Diaminopropane
1,3-Diaminopropane, also known as DAP or trimethylenediamine, belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing a primary aliphatic amine group. 1,3-Diaminopropane is a stable, flammable, and highly hygroscopic fluid. It is a polyamine that is normally quite toxic if swallowed, inhaled, or absorbed through the skin. It is a catabolic byproduct of spermidine. It is also a precursor in the enzymatic synthesis of beta-alanine. 1,3-Diaminopropane is involved in the arginine/proline metabolic pathways and the beta-alanine metabolic pathway. 1,3-Diaminopropane has been detected, but not quantified in, several different foods, such as cassava, shiitakes, oyster mushrooms, muscadine grapes, and cinnamons. This could make 1,3-diaminopropane a potential biomarker for the consumption of these foods. 1,3-Propanediamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=109-76-2 (retrieved 2024-07-09) (CAS RN: 109-76-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
3-(4-hydroxyphenyl)lactate
Hydroxyphenyllactic acid or 4-hydroxyphenyllactate (the L-form) is a tyrosine metabolite. The level of L-hydroxyphenyllactic acid is elevated in patients with a deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2) (PMID: 4720815). L-hydroxyphenyllactate is present in relatively higher concentrations in the cerebrospinal fluid and urine of patients with phenylketonuria (PKU) and tyrosinemia (PMID: 3126358). However, the D-form of hydroxyphenyllactate is of bacterial origin and is also found in individuals with bacterial overgrowth or unusual gut microflora (PMID: 3126358). Microbial hydroxyphenyllactate is likely derived from phenolic or polyphenolic compounds in the diet. Bifidobacteria and lactobacilli produce considerable amounts of phenyllactic and p-hydroxyphenyllactic acids (PMID: 23061754). It has also been shown that hydroxyphenyllactate decreases ROS (reactive oxygen species) production in both mitochondria and neutrophils and so hydroxyphenyllactate may function as a natural anti-oxidant (PMID: 23061754). Hydroxyphenyllactic acid is a microbial metabolite found in Acinetobacter, Bacteroides, Bifidobacteria, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas and Staphylococcus (PMID: 19961416). Acquisition and generation of the data is financially supported in part by CREST/JST. Hydroxyphenyllactic acid is an antifungal metabolite.
Ginkgolide C
Ginkgolide C is found in fats and oils. Ginkgolide C is a bitter principle from Ginkgo biloba (ginkgo). Bitter principle from Ginkgo biloba (ginkgo). Ginkgolide C is found in ginkgo nuts and fats and oils. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease.
Epsilon-caprolactam
Caprolactam, also known as aminocaproic lactam or hexahydro-2h-azepin-2-one, is a member of the class of compounds known as caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Caprolactam is soluble (in water) and a very weakly acidic compound (based on its pKa). Caprolactam is an amine, bitter, and spicy tasting compound found in sunflower, which makes caprolactam a potential biomarker for the consumption of this food product. Caprolactam (CPL) is an organic compound with the formula (CH2)5C(O)NH. This colourless solid is a lactam (a cyclic amide) of caproic acid. Global demand for this compound is approximately 5 million tons per year, and the vast majority is used to make Nylon 6 filament, fiber, and plastics . Epsilon-caprolactam, also known as Caprolactam or Aminocaproic lactam, is classified as a member of the Caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Epsilon-caprolactam is considered to be soluble (in water) and relatively neutral. Epsilon-caprolactam is an amine, bitter, and spicy tasting compound found in Sunflowers D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
Hydrocortisoni acetas
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Hydrocortisone acetate is a corticosteroid used to reduce swelling, itching and pain caused by minor skin irritations or hemorrhoids.
Meta-Tyrosine
Meta-Tyrosine, or M-Tyrosine for short, is a natural weed suppressant found in certain Fine fescue grass. M-tyrosine exudes out of the grass plants roots and is then absorbed by neighbouring weed seedlings. The weed plants will either die or be stunted from the toxic acid. DL-m-Tyrosine shows effects on Arabidopsis root growth. Carbidopa combination with DL-m-tyrosine shows a potent hypotensive effect[1][2].
Cortexolone
Cortexolone, also known as cortodoxone or 11-deoxycortisol, belongs to the class of organic compounds known as 21-hydroxysteroids. These are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, cortexolone is considered to be a steroid molecule. Cortexolone is an endogenous glucocorticoid steroid hormone, and a metabolic intermediate in the synthesis of cortisol. It was first described by Tadeusz Reichstein in 1938 and named as Substance S. It has also been referred to as Reichsteins Substance S or Compound S. Cortexolone acts as a glucocorticoid, though it is less potent than cortisol. Cortexolone is synthesized from 17α-hydroxyprogesterone by 21-hydroxylase and is converted to cortisol by 11β-hydroxylase. As a result, the level of cortexolone is often measured in patients to diagnose impaired cortisol synthesis, to identify any enzyme deficiency that may be causing impairment along the pathway to cortisol, and to differentiate adrenal disorders. Cortexolone in mammals has limited biological activity and mainly acts as metabolic intermediate within the glucocorticoid pathway, leading to cortisol. On the other hand, in sea lampreys, cortexolone is the major glucocorticoid, with mineralocorticoid activity. Cortexolone in sea lampreys binds to specific corticosteroid receptors and is involved in intestinal osmoregulation and in sea lamprey at metamorphosis, a process in which they develop seawater tolerance before downstream migration. Cortexolone is the precursor of cortisol. Accumulation of Cortexolone can happen in a defect known as congenital adrenal hyperplasia, which is due to 11-beta-hydroxylase deficiency, resulting in androgen excess, virilization, and hypertension. (PMID: 2022736) C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Cortodoxone is a glucocorticoid that can be oxidized to cortisone (Hydrocortisone).
Methyl jasmonate
Acquisition and generation of the data is financially supported in part by CREST/JST. Flavouring ingredient. From Jasminum grandiflorum (royal jasmine) D006133 - Growth Substances > D010937 - Plant Growth Regulators lo Methyl 2-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)acetate is an endogenous metabolite. Methyl 2-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)acetate is an endogenous metabolite.
Homoserine, O-succinyl-
Acquisition and generation of the data is financially supported in part by CREST/JST.
Phenelzine
Phenelzine is only found in individuals that have used or taken this drug. It is an irreversible non-selective inhibitor of monoamine oxidase. May be used to treat major depressive disorder.Although the exact mechanism of action has not been determined, it appears that the irreversible, nonselective inhibition of MAO by phenelzine relieves depressive symptoms by causing an increase in the levels of serotonin, norepinephrine, and dopamine in the neuron. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor
Ginkgolide A
Ginkgolide A is found in fats and oils. Ginkgolide A is a bitter principle from Ginkgo biloba (ginkgo). Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.
1-Methoxy-4-(2-propenyl)benzene
1-Methoxy-4-(2-propenyl)benzene, also known as methylchavicol or estragol, belongs to the class of organic compounds known as anisoles. These are organic compounds containing a methoxybenzene or a derivative thereof. 1-Methoxy-4-(2-propenyl)benzene is a sweet, alcohol, and anise tasting compound. 1-Methoxy-4-(2-propenyl)benzene is found, on average, in the highest concentration within a few different foods, such as anises, fennels, and sweet basils and in a lower concentration in cumins, tarragons, and parsley. 1-Methoxy-4-(2-propenyl)benzene has also been detected, but not quantified, in several different foods, such as citrus, chinese cinnamons, caraway, fats and oils, and cloves. This could make 1-methoxy-4-(2-propenyl)benzene a potential biomarker for the consumption of these foods. 1-Methoxy-4-(2-propenyl)benzene, with regard to humans, has been linked to the inborn metabolic disorder celiac disease. Constituent of many essential oils. Found in apple, bilberry and orange fruits and juices. Flavouring agent. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].
α-Muricholic acid
alpha-Muricholic acid is a hydroxylated bile acid present in normal human urine (PMID: 1629271), and in free glycine-conjugated, taurine-conjugated, and sulfated forms in human feces (PMID: 3667743). Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). a-Muricholic acid is an hydroxylated bile acid present in normal human urine (PMID 1629271), and free, glycine-conjugated, taurine-conjugated and sulphated forms in human feces (PMID 3667743). α-Muricholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2393-58-0 (retrieved 2024-06-29) (CAS RN: 2393-58-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
12-oxo-PDA
12-oxo-pda, also known as (15z)-12-oxophyto-10,15-dienoate or 12-oxo-10,15(Z)-phytodienoic acid, is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Thus, 12-oxo-pda is considered to be an octadecanoid lipid molecule. 12-oxo-pda is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 12-oxo-pda can be found in corn, which makes 12-oxo-pda a potential biomarker for the consumption of this food product. D006133 - Growth Substances > D010937 - Plant Growth Regulators
3-deoxy-D-arabino-heptulosonate-7-phosphate
2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate, also known as 2-dahp or 3-deoxy-arabino-heptulonic acid 7-phosphoric acid, is a member of the class of compounds known as monosaccharide phosphates. Monosaccharide phosphates are monosaccharides comprising a phosphated group linked to the carbohydrate unit. 2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). 2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate can be found in a number of food items such as prairie turnip, horned melon, bilberry, and biscuit, which makes 2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate a potential biomarker for the consumption of these food products. 2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate exists in E.coli (prokaryote) and yeast (eukaryote).
1-Phenyl-1,2-propanedione
1-Phenyl-1,2-propanedione is found in coffee and coffee products. 1-Phenyl-1,2-propanedione is present in coffee aroma. 1-Phenyl-1,2-propanedione is a flavouring ingredient. Present in coffee aroma. Flavouring ingredient. 1-Phenyl-1,2-propanedione is found in coffee and coffee products. 1-Phenylpropane-1,2-dione, isolated from young Ephedra sinica Stapf (Ephedraceae), is biosynthetic precursors of the ephedrine alkaloids[1][2]. 1-Phenylpropane-1,2-dione, isolated from young Ephedra sinica Stapf (Ephedraceae), is biosynthetic precursors of the ephedrine alkaloids[1][2].
Pyridoxine 5'-phosphate
Pyridoxine phosphate, also known as pyridoxine 5-phosphoric acid or pyridoxine 5-(dihydrogen phosphate), is a member of the class of compounds known as pyridoxine-5-phosphates. Pyridoxine-5-phosphates are pyridoxines that carry a phosphate group at the 5-position. Pyridoxine phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Pyridoxine phosphate can be found primarily in blood. Within the cell, pyridoxine phosphate is primarily located in the cytoplasm (predicted from logP). Pyridoxine phosphate exists in all living species, ranging from bacteria to humans. In humans, pyridoxine phosphate is involved in the vitamin B6 metabolism. Pyridoxine phosphate is also involved in hypophosphatasia, which is a metabolic disorder. Moreover, pyridoxine phosphate is found to be associated with obesity. Pyridoxine 5-phosphate is a substrate for Pyridoxine-5-phosphate oxidase and Pyridoxal kinase.
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
Barbituric acid
Barbituric acid or malonylurea or 6-hydroxyuracil is an organic compound based on a pyrimidine heterocyclic skeleton. It is an odorless powder soluble in water. Barbituric acid is the parent compound of barbiturate drugs, although barbituric acid itself is not pharmacologically active. The compound was discovered by the German chemist Adolf von Baeyer on December 4, 1864, the feast of Saint Barbara (who gave the compound its namesake), by combining urea and malonic acid in a condensation reaction. Malonic acid has since been replaced by diethyl malonate, as using the ester avoids the problem of having to deal with the acidity of the carboxylic acid and its unreactive carboxylate.
L-histidinol-phosphate
L-histidinol-phosphate is a member of the class of compounds known as phosphoethanolamines. Phosphoethanolamines are compounds containing a phosphate linked to the second carbon of an ethanolamine. L-histidinol-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). L-histidinol-phosphate can be found in a number of food items such as sorghum, devilfish, spearmint, and deerberry, which makes L-histidinol-phosphate a potential biomarker for the consumption of these food products. L-histidinol-phosphate exists in E.coli (prokaryote) and yeast (eukaryote).
18-Hydroxycorticosterone
18-Hydroxycorticosterone is a corticosteroid and a derivative of corticosterone. If it is present in sufficiently high concentrations, it can lead to serious electrolyte imbalances (an electrolyte toxin). 18-Hydroxycorticosterone serves as an intermediate in the synthesis of aldosterone by the enzyme aldosterone synthase in the zona glomerulosa. Chronically high levels of 18-hydroxycorticosterone are associated with at least three inborn errors of metabolism including adrenal hyperplasia type V, corticosterone methyl oxidase I deficiency, and corticosterone methyl oxidase II deficiency. Each of these conditions is characterized by excessive amounts of sodium being released in the urine (salt wasting), along with insufficient release of potassium in the urine, usually beginning in the first few weeks of life. This imbalance leads to low levels of sodium and high levels of potassium in the blood (hyponatremia and hyperkalemia, respectively). Individuals with corticosterone methyloxidase deficiency can also have high levels of acid in the blood (metabolic acidosis). Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). The hyponatremia, hyperkalemia, and metabolic acidosis associated with corticosterone methyloxidase deficiency can cause nausea, vomiting, dehydration, low blood pressure, extreme tiredness (fatigue), and muscle weakness. 11 beta,18,21-Trihydroxypregn-4-ene-3,20-dione. 18-Hydroxycorticosterone is a derivative of corticosterone. It serves as an intermediate in the synthesis of aldosterone by the enzyme aldosterone synthase in the zona glomerulosa. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
6-Phosphonoglucono-D-lactone
6-phosphonoglucono-d-lactone, also known as D-glucono-1,5-lactone 6-phosphate or 6-pgdl, is a member of the class of compounds known as hexose phosphates. Hexose phosphates are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. 6-phosphonoglucono-d-lactone is soluble (in water) and a moderately acidic compound (based on its pKa). 6-phosphonoglucono-d-lactone can be found in a number of food items such as chicory leaves, pepper (c. chinense), opium poppy, and green bell pepper, which makes 6-phosphonoglucono-d-lactone a potential biomarker for the consumption of these food products. 6-phosphonoglucono-d-lactone can be found primarily in cellular cytoplasm. 6-phosphonoglucono-d-lactone exists in all living species, ranging from bacteria to humans. In humans, 6-phosphonoglucono-d-lactone is involved in warburg effect, which is a metabolic disorder. 6-phosphoglucono-delta-lactone (d-6PGL) is the immediate product of the Glucose-6-phosphate dehydrogenase (G-6-PD), the first enzyme of the hexose monophosphate pathway. (PMID 3711719). The pentose-phosphate pathway provides reductive power and nucleotide precursors to the cell through oxidative and nonoxidative branches. 6-Phosphogluconolactonase is the second enzyme of the oxidative branch and catalyzes the hydrolysis of 6-phosphogluconolactones, the products of glucose 6-phosphate oxidation by glucose-6-phosphate dehydrogenase. By efficiently catalyzing the hydrolysis of d-6PGL, 6-phosphogluconolactonase prevents the reaction between d-6PGL and intracellular nucleophiles; such a reaction would interrupt the functioning of the pentose-phosphate pathway. (PMID 11457850).
Imidazole acetol-phosphate
Imidazole acetol-phosphate is involved in the histidine biosynthesis I pathway. Imidazole acetol-phosphate is created by the breakdown of D-erythro-imidazole-glycerol-phosphate into imidazole acetol-phosphate and H2O. Imidazoleglycerol-phosphate dehydratase catalyzes this reaction. Imidazole acetol-phosphate reacts with L-glutamate to produce L-histidinol-phosphate and 2-ketoglutarate. Histidinol-phosphate aminotransferase catalyzes this reaction. Imidazole acetol-phosphate is involved in the histidine biosynthesis I pathway. Imidazole acetol-phosphate is created by the breakdown of D-erythro-imidazole-glycerol-phosphate into imidazole acetol-phosphate and H2O. Imidazoleglycerol-phosphate dehydratase catalyzes this reaction.
Thiocysteine
The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665) [HMDB] The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665).
Cortisol 21-sulfate
Cortisol 21-sulfate is also known as Cortisol-21-sulfuric acid or 4-Pregnen-11,17,21-triol-3,20-dione 21-sulfate. Cortisol 21-sulfate is considered to be practically insoluble (in water) and acidic. Cortisol 21-sulfate is a steroid conjugate lipid molecule D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
(R)-Methylphosphonofluoridic acid 1,2,2-trimethylpropyl ester
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents D004791 - Enzyme Inhibitors
Ginkgolide J
Isolated from Ginkgo biloba (ginkgo). Ginkgolide J is found in ginkgo nuts and fats and oils. Ginkgolide J is found in fats and oils. Ginkgolide J is isolated from Ginkgo biloba (ginkgo Ginkgolide J is a main constituent of the non-flavone fraction of Ginkgo biloba with an IC50 range of 12-54 μM, has neuroprotective and anti neuronal apoptotic ability[1][2]. Ginkgolide J is a main constituent of the non-flavone fraction of Ginkgo biloba with an IC50 range of 12-54 μM, has neuroprotective and anti neuronal apoptotic ability[1][2].
Reverse-triiodthyronine
This compound belongs to the family of Phenylpropanoic Acids. These are compounds whose structure contain a benzene ring conjugated to a propanoic acid. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Beclometasone dipropionate
Beclometasone dipropionate is a prodrug of the free form, beclometasone. An anti-inflammatory, synthetic glucocorticoid, it is used topically as an anti-inflammatory agent and in aerosol form for the treatment of asthma. Beclometasone dipropionate is also being investigated for oral treatment in mild-to-moderate Crohns disease of ileal or ileal-right colonic localisation and for topical use mild-to-moderate graft versus host disease. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents
Metyrosine
Metyrosine is only found in individuals that have used or taken this drug. It is an inhibitor of the enzyme tyrosine 3-monooxygenase, and consequently of the synthesis of catecholamines. It is used to control the symptoms of excessive sympathetic stimulation in patients with pheochromocytoma. (Martindale, The Extra Pharmacopoeia, 30th ed)Metyrosine inhibits tyrosine hydroxylase, which catalyzes the first transformation in catecholamine biosynthesis, i.e., the conversion of tyrosine to dihydroxyphenylalanine (DOPA). Because the first step is also the rate-limiting step, blockade of tyrosine hydroxylase activity results in decreased endogenous levels of catecholamines and their synthesis. This consequently, depletes the levels of the catecholamines dopamine, adrenaline and noradrenaline in the body,usually measured as decreased urinary excretion of catecholamines and their metabolites. One main end result of the catecholamine depletion is a decrease in blood presure. C - Cardiovascular system > C02 - Antihypertensives > C02K - Other antihypertensives > C02KB - Tyrosine hydroxylase inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C2155 - Tyrosine Hydroxylase Inhibitor D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor
Nandrolone phenpropionate
Nandrolone phenpropionate is only found in individuals that have used or taken this drug. It is a C18 steroid with androgenic and anabolic properties. It is generally prepared from alkyl ethers of estradiol to resemble testosterone but less one carbon at the 19 position. It is a schedule III drug in the U.S. Nandrolone is an androgen receptor agonist. The drug bound to the receptor complexes which allows it to enter the nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Cortisone acetate
Cortisone acetate is a steroid hormone that has both glucocoriticoid and mineral corticoid activities. Corticosteroids are used to provide relief for inflamed areas of the body. They lessen swelling, redness, itching, and allergic reactions. They are often used as part of the treatment for a number of different diseases, such as severe allergies or skin problems, asthma, or arthritis. Endogenous glucocorticoids and some synthetic corticoids have high affinity to the protein transcortin (also called CBG, corticosteroid-binding protein), whereas all of them bind albumin. Glucocorticoids also bind to the cytosolic glucocorticoid receptor. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Cortisone acetate (Cortisone 21-acetate), an oxidized metabolite of Cortisol (a Glucocorticoid). Cortisone acetate acts as an immunosuppressant and anti-inflammatory agent. Cortisone acetate can partially intervene in binding of Glucocorticoid to Glucocorticoid-receptor at high concentrations[1][3][4].
Amanitin
D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000546 - Amanitins
Cinmethylin
Chymostatin
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors
ST 25:5;O8
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000893 - Anti-Inflammatory Agents Same as: D01442 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
ST 24:5;O4
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Same as: D01617 D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D01294
Promegestone
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DB - Pregnadien derivatives Same as: D08431
Nafoxidine
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent
Metribolone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
3-Methylcholanthrene
ST 21:3;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins 11beta-Hydroxyprogesterone is a potent inhibitors of 11β-Hydroxysteroid dehydrogenase; also activates human mineralocorticoid receptor in COS-7 cells with an ED50 of 10 nM.
Pregnenolone carbonitrile
11beta-Hydroxyprogesterone
11beta-Hydroxyprogesterone is a normal human metabolite. Plasma 11beta-Hydroxyprogesterone concentrations does not vary significantly as a function of age, sex, or phase of the menstrual cycle, in contrast to 17-hydroxyprogesterone. Increased plasma 11beta-Hydroxyprogesterone levels in late-onset adrenal 21-hydroxylase deficiency suggest a mild defect of the mineralocorticoid pathway. 21-hydroxylase deficiency (OMIM 201910) is probably the most frequent (if not the most frequent) autosomal recessive genetic disease, occurring in almost 1\\\% of Caucasians and about 3\\\% of Ashkenazi Jews. 21-hydroxylase deficiency is unusual among genetic diseases in that approximately 95\\\% of the mutant alleles have apparently been generated by recombination between a normally active gene (CYP21) and a closely linked pseudogene (CYP21P). There are 4 recognized clinical forms of congenital adrenal hyperplasia, the majority of cases being associated with 21-hydroxylase deficiency: salt-wasting (SW), simple virilizing (SV), nonclassic (NC) late-onset (also called attenuated and acquired), and cryptic. (PMID: 3546944, 2537337). 11beta-hydroxyprogesterone acts as a mineralocorticoid agonist in stimulating Na+ absorption in mammalian principal cortical collecting duct cells.It activates the transiently expressed hMR in COS-7 cells in a dose-dependent manner (ED(50): 10(-8) M) and, like aldosterone, stimulated Ams I(sc) in mpkCCD(cl4) cells. Docking 11OHP within the hMR-ligand-binding domain homology model revealed that the agonist activity of 11OHP is caused by contacts between its 11 beta-hydroxyl group and Asn770. Furthermore, 11OHP was unable to activate the mutant hMR/N770A, in which Ala is substituted for Asn at position 770. These findings demonstrate that in the absence of the 21-hydroxyl group, the 11 beta-hydroxyl group can produce the contact with the hMR-Asn770 required for the hMR activation leading to stimulated Na(+) absorption. 11beta-Hydroxyprogesterone is a normal human metabolite. Plasma 11beta-Hydroxyprogesterone concentrations does not vary significantly as a function of age, sex, or phase of the menstrual cycle, in contrast to 17-hydroxyprogesterone. Increased plasma 11beta-Hydroxyprogesterone levels in late-onset adrenal 21-hydroxylase deficiency suggest a mild defect of the mineralocorticoid pathway. 21-hydroxylase deficiency (OMIM 201910) is probably the most frequent (if not the most frequent) autosomal recessive genetic disease, occurring in almost 1\\\% of Caucasians and about 3\\\% of Ashkenazi Jews. 21-hydroxylase deficiency is unusual among genetic diseases in that approximately 95\\\% of the mutant alleles have apparently been generated by recombination between a normally active gene (CYP21) and a closely linked pseudogene (CYP21P). There are 4 recognized clinical forms of congenital adrenal hyperplasia, the majority of cases being associated with 21-hydroxylase deficiency: salt-wasting (SW), simple virilizing (SV), nonclassic (NC) late-onset (also called attenuated and acquired), and cryptic. (PMID: 3546944, 2537337) [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins 11beta-Hydroxyprogesterone is a potent inhibitors of 11β-Hydroxysteroid dehydrogenase; also activates human mineralocorticoid receptor in COS-7 cells with an ED50 of 10 nM.
(±)-Tryptophan
(±)-Tryptophan is a dietary supplement, nutrient.Tryptophan is one of the 20 standard amino acids, as well as an essential amino acid in the human diet. Only the L-stereoisomer of tryptophan is used in structural or enzyme proteins, but the D-stereoisomer is occasionally found in naturally produced peptides (for example, the marine venom peptide contryphan). (Wikipedia Dietary supplement, nutrient DL-Tryptophan is an endogenous metabolite.
Racemetirosine
C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor
actinomycin D
D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents
alpha-amanitin
D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000546 - Amanitins
o-Aminoazotoluene
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004396 - Coloring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Cystathione
Cystathione, also known as dl-cystathionine, belongs to cysteine and derivatives class of compounds. Those are compounds containing cysteine or a derivative thereof resulting from reaction of cysteine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Cystathione is soluble (in water) and a moderately acidic compound (based on its pKa). Cystathione can be found in corn, which makes cystathione a potential biomarker for the consumption of this food product. Cystathione may be a unique E.coli metabolite.
Hydrocortisone
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01C - Antiinflammatory agents and antiinfectives in combination > S01CB - Corticosteroids/antiinfectives/mydriatics in combination D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XA - Corticosteroids, weak, other combinations A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AC - Corticosteroids for local oral treatment C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AA - Corticosteroids, weak (group i) S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid S - Sensory organs > S02 - Otologicals > S02B - Corticosteroids > S02BA - Corticosteroids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 1.008 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.006 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3201 CONFIDENCE standard compound; INTERNAL_ID 2809 D000893 - Anti-Inflammatory Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hydrocortisone (Cortisol) is a steroid hormone or glucocorticoid secreted by the adrenal cortex[1].
Tryptophan
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].
Indolelactic acid
Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
Theophylline
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5].
Hydroxyphenyllactic acid
Hydroxyphenyllactic acid is an antifungal metabolite.
Phenylalanine
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
ginkgolide A
Bitter principle from Ginkgo biloba (ginkgo). Ginkgolide A is found in ginkgo nuts and fats and oils. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.715 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.712 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.714 Ginkgolide A is a highly active PAF antagonist cage molecule that is isolated from the leaves of the Ginkgo biloba tree. Shows potential in a wide variety of inflammatory and immunological disorders. ginkgolide-A is a natural product found in Ginkgo biloba and Machilus wangchiana with data available. See also: Ginkgo (part of). Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.
Ginkgolide J
ginkgolide-J is a natural product found in Ginkgo biloba with data available. See also: Ginkgo (part of). Ginkgolide J is a main constituent of the non-flavone fraction of Ginkgo biloba with an IC50 range of 12-54 μM, has neuroprotective and anti neuronal apoptotic ability[1][2]. Ginkgolide J is a main constituent of the non-flavone fraction of Ginkgo biloba with an IC50 range of 12-54 μM, has neuroprotective and anti neuronal apoptotic ability[1][2].
Ginkgolide A
9H-1,7a-(Epoxymethano)-1H,6aH-cyclopenta[c]furo[2,3-b]furo[3,2:3,4]cyclopenta[1,2-d]furan-5,9,12(4H)-trione, 3-tert-butylhexahydro-4,7b-dihydroxy-8-methyl- is a diterpene lactone. Ginkgolide A is a natural product found in Ginkgo biloba with data available. Ginkgolide A is found in fats and oils. Ginkgolide A is a bitter principle from Ginkgo biloba (ginkgo). Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.
alpha-muricholic acid
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids [Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz; In-suorce decay
1-Methoxy-4-(2-propenyl)benzene
1-Methoxy-4-(2-propenyl)benzene, also known as methylchavicol or estragol, belongs to the class of organic compounds known as anisoles. These are organic compounds containing a methoxybenzene or a derivative thereof. 1-Methoxy-4-(2-propenyl)benzene is a sweet, alcohol, and anise tasting compound. 1-Methoxy-4-(2-propenyl)benzene is found, on average, in the highest concentration within a few different foods, such as anises, fennels, and sweet basils and in a lower concentration in cumins, tarragons, and parsley. 1-Methoxy-4-(2-propenyl)benzene has also been detected, but not quantified, in several different foods, such as citrus, chinese cinnamons, caraway, fats and oils, and cloves. This could make 1-methoxy-4-(2-propenyl)benzene a potential biomarker for the consumption of these foods. 1-Methoxy-4-(2-propenyl)benzene, with regard to humans, has been linked to the inborn metabolic disorder celiac disease. Estragole is a colorless liquid with odor of anise. Insoluble in water. Isolated from rind of persea gratissima grath. and from oil of estragon. Found in oils of Russian anise, basil, fennel turpentine, tarragon oil, anise bark oil. (NTP, 1992) Estragole is a phenylpropanoid that is chavicol in which the hydroxy group is replaced by a methoxy group. It has a role as a flavouring agent, an insect attractant, a plant metabolite, a genotoxin and a carcinogenic agent. It is an alkenylbenzene, a monomethoxybenzene and a phenylpropanoid. It is functionally related to a chavicol. Estragole is a natural product found in Vitis rotundifolia, Chaerophyllum macrospermum, and other organisms with data available. See also: Anise Oil (part of). Constituent of many essential oils. Found in apple, bilberry and orange fruits and juices. Flavouring agent. A phenylpropanoid that is chavicol in which the hydroxy group is replaced by a methoxy group. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].
1ST40320
Retrorsine is a macrolide. Retrorsine is a natural product found in Crotalaria spartioides, Senecio malacitanus, and other organisms with data available. D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].
Phenylalanine
An aromatic amino acid that is alanine in which one of the methyl hydrogens is substituted by a phenyl group. Annotation level-2 Acquisition and generation of the data is financially supported by the Max-Planck-Society COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS IPB_RECORD: 2701; CONFIDENCE confident structure L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
Tryptophan
An alpha-amino acid that is alanine bearing an indol-3-yl substituent at position 3. Annotation level-2 D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 57 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 5 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2721; CONFIDENCE confident structure H-D-Trp-OH is a D-stereoisomer of tryptophan and occasionally found in naturally produced peptides such as the marine venom peptide. H-D-Trp-OH is a D-stereoisomer of tryptophan and occasionally found in naturally produced peptides such as the marine venom peptide. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].
prednisolone
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01C - Antiinflammatory agents and antiinfectives in combination > S01CB - Corticosteroids/antiinfectives/mydriatics in combination A glucocorticoid that is prednisone in which the oxo group at position 11 has been reduced to the corresponding beta-hydroxy group. It is a drug metabolite of prednisone. D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XA - Corticosteroids, weak, other combinations A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AC - Corticosteroids for local oral treatment C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AA - Corticosteroids, weak (group i) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids S - Sensory organs > S03 - Ophthalmological and otological preparations > S03B - Corticosteroids > S03BA - Corticosteroids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid S - Sensory organs > S02 - Otologicals > S02B - Corticosteroids > S02BA - Corticosteroids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Prednisolone is a potent, orally active corticosteroid and a glucocorticoid. Prednisolone possesses about four times the anti-inflammatory activity of hydrocortisone while causing less salt and water retention. Prednisolone can be used for ocular, anti-inflammatory research[1][2].
isosafrole
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.089
pyridoxal
A pyridinecarbaldehyde that is pyridine-4-carbaldehyde bearing methyl, hydroxy and hydroxymethyl substituents at positions 2, 3 and 5 respectively. The 4-carboxyaldehyde form of vitamin B6, it is converted into pyridoxal phosphate, a coenzyme for the synthesis of amino acids, neurotransmitters, sphingolipids and aminolevulinic acid. D018977 - Micronutrients > D014815 - Vitamins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053
Hydrocortisone
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01C - Antiinflammatory agents and antiinfectives in combination > S01CB - Corticosteroids/antiinfectives/mydriatics in combination D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XA - Corticosteroids, weak, other combinations A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AC - Corticosteroids for local oral treatment C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AA - Corticosteroids, weak (group i) S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid S - Sensory organs > S02 - Otologicals > S02B - Corticosteroids > S02BA - Corticosteroids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000893 - Anti-Inflammatory Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hydrocortisone (Cortisol) is a steroid hormone or glucocorticoid secreted by the adrenal cortex[1].
Hydrocortisone hemisuccinate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000893 - Anti-Inflammatory Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Cortisone acetate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Cortisone acetate (Cortisone 21-acetate), an oxidized metabolite of Cortisol (a Glucocorticoid). Cortisone acetate acts as an immunosuppressant and anti-inflammatory agent. Cortisone acetate can partially intervene in binding of Glucocorticoid to Glucocorticoid-receptor at high concentrations[1][3][4].
chlorprothixene
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AF - Thioxanthene derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Chlorprothixene is a dopamine and histamine receptors antagonist with Kis of 18 nM, 2.96 nM, 4.56 nM, 9 nM and 3.75 nM for hD1, hD2, hD3, hD5 and hH1 receptors, respectively. Antipsychotic activity[1].
Pyridoxine
A hydroxymethylpyridine with hydroxymethyl groups at positions 4 and 5, a hydroxy group at position 3 and a methyl group at position 2. The 4-methanol form of vitamin B6, it is converted intoto pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters, sphingolipids and aminolevulinic acid. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.
Theophylline
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ZFXYFBGIUFBOJW-UHFFFAOYSA-N_STSL_0031_Theophylline_0500fmol_180416_S2_LC02_MS02_19; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5].
4-Hydroxyphenylpyruvic acid
A 2-oxo monocarboxylic acid that is pyruvic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. 4-Hydroxyphenylpyruvic acid (4-HPPA) is a keto acid. It is a product of the enzyme (R)-4-hydroxyphenyllactate dehydrogenase [EC 1.1.1.222] and is formed during tyrosine metabolism (KEGG). There are two isomers of HPPA, specifically 4HPPA and 3HPPA, of which 4HPPA is the most common. The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction of 4-hydroxyphenylpyruvic acid to homogentisic acid in the tyrosine catabolism pathway. A deficiency in the catalytic activity of HPD is known to lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been shown that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of hawkinsin, may also be a result of HPD deficiency (PMID: 11073718). [HMDB] 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine. 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine.
Cystathionine
A modified amino acid generated by enzymic means from homocysteine and serine. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2]. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2].
Orotic acid
A pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. Orotic acid (6-Carboxyuracil), a precursor in biosynthesis of pyrimidine nucleotides and RNA, is released from the mitochondrial dihydroorotate dehydrogenase (DHODH) for conversion to UMP by the cytoplasmic UMP synthase enzyme. Orotic acid is a marker for measurement in routine newborn screening for urea cycle disorders. Orotic acid can induce hepatic steatosis and hepatomegaly in rats[1][2][3].
pyridoxal phosphate
A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins Pyridoxal phosphate is the active form of vitamin B6, acts as an inhibitor of reverse transcriptases, and is used for the treatment of tardive dyskinesia.
Peratox
A chlorophenol that is phenol substituted by 5 chloro groups. D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D007306 - Insecticides D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D011042 - Poisons D004785 - Environmental Pollutants D016573 - Agrochemicals
Homogentisic acid
A dihydroxyphenylacetic acid having the two hydroxy substituents at the 2- and 5-positions. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.
Methyl Jasmonate
D006133 - Growth Substances > D010937 - Plant Growth Regulators Methyl 2-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)acetate is an endogenous metabolite. Methyl 2-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)acetate is an endogenous metabolite.
Hydroxyphenyllactic acid
Hydroxyphenyllactic acid is a tyrosine metabolite. It is carcinogenic. The level of hydroxyphenyllactic acid is elevated in patients with deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2). (PMID 4720815) [HMDB] Hydroxyphenyllactic acid is an antifungal metabolite.
Hydrocortisonacetate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2828 D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 8748 Hydrocortisone acetate is a corticosteroid used to reduce swelling, itching and pain caused by minor skin irritations or hemorrhoids.
MONOCROTOPHOS
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 3133
acephate
C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 3111
Inosine triphosphate
The inosine phosphate that has a triphosphate group at the 5-position. It is an intermediate in the metabolism of purine.
Phenylpyruvic acid
Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1]. Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1].
Oxalacetic acid
C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism C26170 - Protective Agent > C1509 - Neuroprotective Agent Oxaloacetic acid (2-Oxosuccinic acid) is a metabolic intermediate involved in several ways, such as citric acid cycle, gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, and fatty acid synthesis[1][2]. Oxaloacetic acid (2-Oxosuccinic acid) is a metabolic intermediate involved in several ways, such as citric acid cycle, gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, and fatty acid synthesis[1][2].
11,21-Dihydroxyprogesterone
A 21-hydroxy steroid that consists of pregn-4-ene substituted by hydroxy groups at positions 11 and 21 and oxo groups at positions 3 and 20. Corticosterone is a 21-carbon steroid hormone of the corticosteroid type produced in the cortex of the adrenal glands. Corticosterone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-22-6 (retrieved 2024-07-15) (CAS RN: 50-22-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Corticosterone (17-Deoxycortisol) is an orally active and adrenal cortex-produced glucocorticoid, which plays an important role in regulating neuronal functions of the limbic system (including hippocampus, prefrontal cortex, and amygdala). Corticosterone increases the Rab-mediated AMPAR membrane traffic via SGK-induced phosphorylation of GDI. Corticosterone also interferes with the maturation of dendritic cells and shows a good immunosuppressive effect[1][2][3][4]. Corticosterone (17-Deoxycortisol) is an orally active and adrenal cortex-produced glucocorticoid, which plays an important role in regulating neuronal functions of the limbic system (including hippocampus, prefrontal cortex, and amygdala). Corticosterone increases the Rab-mediated AMPAR membrane traffic via SGK-induced phosphorylation of GDI. Corticosterone also interferes with the maturation of dendritic cells and shows a good immunosuppressive effect[1][2][3][4]. Corticosterone (17-Deoxycortisol) is an orally active and adrenal cortex-produced glucocorticoid, which plays an important role in regulating neuronal functions of the limbic system (including hippocampus, prefrontal cortex, and amygdala). Corticosterone increases the Rab-mediated AMPAR membrane traffic via SGK-induced phosphorylation of GDI. Corticosterone also interferes with the maturation of dendritic cells and shows a good immunosuppressive effect[1][2][3][4].
Cortisone
H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids A C21-steroid that is pregn-4-ene substituted by hydroxy groups at positions 17 and 21 and oxo group at positions 3, 11 and 20. S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Origin: Animal, Pregnanes Cortisone (17-Hydroxy-11-dehydrocorticosterone), an oxidized metabolite of Cortisol (a Glucocorticoid). Cortisone acts as an immunosuppressant and anti-inflammatory agent. Cortisone can partially intervene in binding of Glucocorticoid to Glucocorticoid-receptor at high concentrations[1][3][4].
N-acetyl-L-methionine
An L-methionine derivative that is L-methionine in which one of the amine hydrogens is substituted by an acetyl group. N-Acetyl-L-methionine, a human metabolite, is nutritionally and metabolically equivalent to L-methionine. L-methionine is an indispensable amino acid required for normal growth and development[1].
acetohydroxamic acid
A member of the class of acetohydroxamic acids that is acetamide in which one of the amino hydrogens has been replaced by a hydroxy group. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals D004791 - Enzyme Inhibitors
Cortodoxone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Cortodoxone is a glucocorticoid that can be oxidized to cortisone (Hydrocortisone).
Mifepristone
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03X - Other sex hormones and modulators of the genital system > G03XB - Progesterone receptor modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C1891 - Progesterone Antagonist D012102 - Reproductive Control Agents > D008600 - Menstruation-Inducing Agents D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents D012102 - Reproductive Control Agents > D008186 - Luteolytic Agents CONFIDENCE standard compound; INTERNAL_ID 997; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8513; ORIGINAL_PRECURSOR_SCAN_NO 8509 CONFIDENCE standard compound; INTERNAL_ID 997; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8510; ORIGINAL_PRECURSOR_SCAN_NO 8508 CONFIDENCE standard compound; INTERNAL_ID 997; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8508; ORIGINAL_PRECURSOR_SCAN_NO 8506 CONFIDENCE standard compound; INTERNAL_ID 997; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8530; ORIGINAL_PRECURSOR_SCAN_NO 8528 CONFIDENCE standard compound; INTERNAL_ID 997; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8550; ORIGINAL_PRECURSOR_SCAN_NO 8547 CONFIDENCE standard compound; INTERNAL_ID 997; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8539; ORIGINAL_PRECURSOR_SCAN_NO 8537
Phenelzine
N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor
Dactinomycin
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DA - Actinomycines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents
hydroxyprogesterone
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DA - Pregnen (4) derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 17α-Hydroxyprogesterone (17-Hydroxyprogesterone) is an endogenous progesterone that serves as a chemical intermediate in the biosynthesis of other steroid hormones, including glucocorticoids, androgens, and estrogens.
Betamethasone
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01C - Antiinflammatory agents and antiinfectives in combination > S01CB - Corticosteroids/antiinfectives/mydriatics in combination D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XC - Corticosteroids, potent, other combinations R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids S - Sensory organs > S03 - Ophthalmological and otological preparations > S03B - Corticosteroids > S03BA - Corticosteroids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid S - Sensory organs > S02 - Otologicals > S02B - Corticosteroids > S02BA - Corticosteroids D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents
phenobarbital
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AA - Barbiturates and derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D065693 - Cytochrome P-450 Enzyme Inducers > D065695 - Cytochrome P-450 CYP2B6 Inducers D065693 - Cytochrome P-450 Enzyme Inducers > D065701 - Cytochrome P-450 CYP3A Inducers D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
biperiden
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].
Triamcinolone acetonide
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000893 - Anti-Inflammatory Agents
Beclometasone dipropionate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents
Ginkgolide C
Annotation level-1 Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease.
Desoxycortone
H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D008901 - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Origin: Animal, Pregnanes Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor. Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor.
Hydrocortisone acetate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Origin: Animal, Pregnanes Hydrocortisone acetate is a corticosteroid used to reduce swelling, itching and pain caused by minor skin irritations or hemorrhoids.
Alcapton
Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.
3,3,5-triiodothyronine
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
FA 13:3;O
D006133 - Growth Substances > D010937 - Plant Growth Regulators A jasmonate ester that is the methyl ester of jasmonic acid. Methyl 2-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)acetate is an endogenous metabolite. Methyl 2-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)acetate is an endogenous metabolite.
FA 4:2;O3
C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism C26170 - Protective Agent > C1509 - Neuroprotective Agent Oxaloacetic acid (2-Oxosuccinic acid) is a metabolic intermediate involved in several ways, such as citric acid cycle, gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, and fatty acid synthesis[1][2]. Oxaloacetic acid (2-Oxosuccinic acid) is a metabolic intermediate involved in several ways, such as citric acid cycle, gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, and fatty acid synthesis[1][2].
ST 21:3;O5
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
fludrocortisone
H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents
ST 23:5;O6
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Cortisone acetate (Cortisone 21-acetate), an oxidized metabolite of Cortisol (a Glucocorticoid). Cortisone acetate acts as an immunosuppressant and anti-inflammatory agent. Cortisone acetate can partially intervene in binding of Glucocorticoid to Glucocorticoid-receptor at high concentrations[1][3][4].
Urocortisol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].
ST 24:1;O5
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids β-Muricholic acid is a potent and orally active biliary cholesterol-desaturating agent. β-Muricholic acid prevents cholesterol gallstones. β-Muricholic acid inhibits lipid accumulation. β-Muricholic acid has the potential for the research of nonalcoholic fatty liver disease (NAFLD)[1][2].
ST 21:3;O5;S
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Cosmegen
D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents
Methyltrienolone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
dichlorvos
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Azacitidine
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2083 - DNA Methyltransferase Inhibitor C274 - Antineoplastic Agent > C132686 - Demethylating Agent D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 5-Azacytidine (Azacitidine; 5-AzaC; Ladakamycin) is a nucleoside analogue of cytidine that specifically inhibits DNA methylation. 5-Azacytidine is incorporated into DNA to covalently trap DNA methyltransferases and contributes to reverse epigenetic changes[1][2]. 5-Azacytidine induces cell autophagy[4].
Estradiol dipropionate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Racemetirosine
C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor
Esdragon
Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].
Tyrosol
Tyrosol, also known as 4-hydroxyphenylethanol or 4-(2-hydroxyethyl)phenol, is a member of the class of compounds known as tyrosols. Tyrosols are organic aromatic compounds containing a phenethyl alcohol moiety that carries a hydroxyl group at the 4-position of the benzene group. Tyrosol is soluble (in water) and a very weakly acidic compound (based on its pKa). Tyrosol can be synthesized from 2-phenylethanol. Tyrosol is also a parent compound for other transformation products, including but not limited to, hydroxytyrosol, crosatoside B, and oleocanthal. Tyrosol is a mild, sweet, and floral tasting compound and can be found in a number of food items such as breadnut tree seed, sparkleberry, loquat, and savoy cabbage, which makes tyrosol a potential biomarker for the consumption of these food products. Tyrosol can be found primarily in feces and urine, as well as in human prostate tissue. Tyrosol exists in all eukaryotes, ranging from yeast to humans. Tyrosol present in wine is also shown to be cardioprotective. Samson et al. has shown that tyrosol-treated animals showed significant increase in the phosphorylation of Akt, eNOS and FOXO3a. In addition, tyrosol also induced the expression of longevity protein SIRT1 in the heart after myocardial infarction in a rat MI model. Hence tyrosols SIRT1, Akt and eNOS activating power adds another dimension to the wine research, because it adds a great link to the French paradox. In conclusion these findings suggest that tyrosol induces myocardial protection against ischemia related stress by inducing survival and longevity proteins that may be considered as anti-aging therapy for the heart . D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].
4-HPA
D009676 - Noxae > D002273 - Carcinogens 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].
AI3-23868
1-Phenylpropane-1,2-dione, isolated from young Ephedra sinica Stapf (Ephedraceae), is biosynthetic precursors of the ephedrine alkaloids[1][2]. 1-Phenylpropane-1,2-dione, isolated from young Ephedra sinica Stapf (Ephedraceae), is biosynthetic precursors of the ephedrine alkaloids[1][2].
Nuvan
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Pyridoxin
A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.
AIDS-026336
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.
Tetrahydrocortisol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is the most powerful natural angiostatic steroid. It is involved in C21-Steroid hormone metabolism pathway (KEGG). [HMDB] Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].
Ginkgolid A
Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.
Trimethylenediamine
An alkane-alpha,omega-diamine comprising a propane skeleton with amino substituents at positions 1 and 3.
Caprolactam
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
2-Oxoglutaric acid
An oxo dicarboxylic acid that consists of glutaric acid bearing an oxo substituent at position 2. It is an intermediate metabolite in Krebs cycle.
trihexyphenidyl
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent
SOMAN
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents D004791 - Enzyme Inhibitors
FLUNISOLIDE
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents
1-Phenylpropane-1,2-dione
An alpha-diketone that consists of 1-phenylpropane bearing keto substituents at positions 1 and 2. It is found in coffee. 1-Phenylpropane-1,2-dione, isolated from young Ephedra sinica Stapf (Ephedraceae), is biosynthetic precursors of the ephedrine alkaloids[1][2]. 1-Phenylpropane-1,2-dione, isolated from young Ephedra sinica Stapf (Ephedraceae), is biosynthetic precursors of the ephedrine alkaloids[1][2].
Metyrosine
An L-tyrosine derivative that consists of L-tyrosine bearing an additional methyl substituent at position 2. An inhibitor of the enzyme tyrosine 3-monooxygenase, and consequently of the synthesis of catecholamines. It is used to control the symptoms of excessive sympathetic stimulation in patients with pheochromocytoma. C - Cardiovascular system > C02 - Antihypertensives > C02K - Other antihypertensives > C02KB - Tyrosine hydroxylase inhibitors C471 - Enzyme Inhibitor > C2155 - Tyrosine Hydroxylase Inhibitor D004791 - Enzyme Inhibitors
Nandrolone phenpropionate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
18-Hydroxycorticosterone
A 18-hydroxy steroid that is corticosterone substituted by a hydroxy group at position 18. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
alpha-Amatoxin
D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000546 - Amanitins
Indole-3-lactic Acid
Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
pyridoxamine phosphate
A vitamin B6 phosphate that is the phosphoric ester derivative of pyridoxamine.
3-Iodo-L-tyrosine
The monoiodotyrosine that is L-tyrosine carrying an iodo-substituent at position C-3 of the benzyl group. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones H-Tyr(3-I)-OH is a potent and effective tyrosine hydroxylase inhibitor. H-Tyr(3-I)-OH is an intermediate in the production of thyroid hormones and has a role as a human or mouse metabolite[1][2].
L-m-Tyrosine
A hydroxyphenylalanine that is L-phenylalanine with a substituent hydroxy group at position 3.
11beta-Hydroxyprogesterone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins A 11beta-hydroxy steroid that is progesterone substituted by a beta-hydroxy group at position 11. 11beta-Hydroxyprogesterone is a potent inhibitors of 11β-Hydroxysteroid dehydrogenase; also activates human mineralocorticoid receptor in COS-7 cells with an ED50 of 10 nM.
12-oxo-phytodienoic acid
D006133 - Growth Substances > D010937 - Plant Growth Regulators
3-deoxy-D-arabino-heptulosonate-7-phosphate
A ketoaldonic acid phosphate consisting of 2-dehydro-3-deoxy-D-arabino-heptonic acid having a phospho group at the 7-position.
Uridine-5-diphosphate-N-acetylmuramoyl-L-alanine-D-glutamate
cortisol 21-sulfate
A steroid sulfate obtained by the formal condensation of hydroxy group at position 21 of cortisol with sulfuric acid. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Nafoxidine
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent