Iodotyrosine (BioDeep_00000001503)

 

Secondary id: BioDeep_00000405186, BioDeep_00001868539

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 natural product


代谢物信息卡片


(2S)-2-Amino-3-(4-hydroxy-3-iodophenyl)propanoic acid

化学式: C9H10INO3 (306.9705)
中文名称: 3-碘-L-酪氨酸
谱图信息: 最多检出来源 Homo sapiens(blood) 43.25%

分子结构信息

SMILES: C1=CC(=C(C=C1CC(C(=O)O)N)I)O
InChI: InChI=1S/C9H10INO3/c10-6-3-5(1-2-8(6)12)4-7(11)9(13)14/h1-3,7,12H,4,11H2,(H,13,14)/t7-/m0/s1

描述信息

Iodotyrosine is an iodated derivative of L-tyrosine. This is an early precursor to L-thyroxine, one of the primary thyroid hormones. In the thyroid gland, iodide is trapped, transported, and concentrated in the follicular lumen for thyroid hormone synthesis. Before trapped iodide can react with tyrosine residues, it must be oxidized by thyroid peroxidase. Iodotyrosine is made from tyrosine via thyroid peroxidase and then further iodinated by this enzyme to make the di-iodo and tri-iodo variants. Two molecules of di-iodotyrosine combine to form T4, and one molecule of mono-iodotyrosine combines with one molecule of di-iodotyrosine to form T3.
An iodated derivative of L-tyrosine. This is an early precursor to L-thyroxine, one of the primary thyroid hormones. In the thyroid gland, iodide is trapped, transported, and concentrated in the follicular lumen for thyroid hormone synthesis. Before trapped iodide can react with tyrosine residues, it must be oxidized by thyroid peroxidase. Iodotyrosine is made from tyrosine via thyroid peroxidase and then further iodinated by this enzyme to make the di-iodo and tri-iodo variants. Two molecules of di-iodotyrosine combine to form T4, and one molecule of mono-iodotyrosine combines with one molecule of di-iodotyrosine to form T3. [HMDB]
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
KEIO_ID I050; [MS3] KO009007
KEIO_ID I050; [MS2] KO009006
KEIO_ID I050; [MS3] KO009008
KEIO_ID I050
H-Tyr(3-I)-OH is a potent and effective tyrosine hydroxylase inhibitor. H-Tyr(3-I)-OH is an intermediate in the production of thyroid hormones and has a role as a human or mouse metabolite[1][2].

同义名列表

17 个代谢物同义名

(2S)-2-Amino-3-(4-hydroxy-3-iodophenyl)propanoic acid; (2S)-2-Amino-3-(4-hydroxy-3-iodophenyl)propanoate; 2-amino-3-(4-hydroxy-3-iodophenyl)propanoic acid; 3-Iodo-4-hydroxyphenylalanine; 4-Hydroxy-3-iodophenylalanine; Monoiodotyrosine( MIT); 3-Monoiodo-L-tyrosine; 3-Iodo-L-tyrosine; L-Tyrosine-3-iodo; Monoiodotyrosine; 3-IODO-tyrosine; 3-Iodotyrosine; Iodotyrosine; IYR; MIT; H-Tyr(3-I)-OH; 3-Iodo-L-tyrosine



数据库引用编号

41 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(4)

BioCyc(0)

PlantCyc(0)

代谢反应

52 个相关的代谢反应过程信息。

Reactome(52)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

13 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ALB, DDC, IDE, LPO, POMC, PRL, SNCA, TH, TYR, YARS1
Peripheral membrane protein 1 CTSB
Nucleus 6 ALB, IDE, PRL, SNCA, TH, YARS1
cytosol 7 ALB, DDC, IDE, SNCA, TAT, TH, YARS1
dendrite 1 TH
nuclear body 1 YARS1
centrosome 1 ALB
nucleoplasm 3 IYD, MNT, PRL
RNA polymerase II transcription regulator complex 1 PRL
Cell membrane 3 IDE, IYD, SLCO1C1
Cell projection, axon 2 SNCA, TH
Multi-pass membrane protein 1 SLCO1C1
Synapse 1 SNCA
cell cortex 1 SNCA
cell surface 2 IDE, TPO
Golgi apparatus 1 ALB
Golgi membrane 1 INS
growth cone 1 SNCA
neuronal cell body 1 SNCA
postsynapse 1 SNCA
smooth endoplasmic reticulum 1 TH
synaptic vesicle 1 TH
Cytoplasm, cytosol 1 IDE
Lysosome 3 CTSB, SNCA, TYR
plasma membrane 5 GCG, IYD, SLCO1C1, SNCA, TPO
synaptic vesicle membrane 1 SNCA
terminal bouton 1 TH
Membrane 2 SNCA, TPO
apical plasma membrane 1 CTSB
axon 2 SNCA, TH
basolateral plasma membrane 3 IDE, LPO, SLCO1C1
extracellular exosome 6 ALB, CTSB, DDC, IDE, LPO, SERPINA7
endoplasmic reticulum 1 ALB
extracellular space 13 ALB, CTSB, GCG, IDE, INS, LPO, POMC, PRL, SERPINA7, SNCA, TG, TPO, YARS1
perinuclear region of cytoplasm 4 CTSB, SNCA, TH, TYR
mitochondrion 3 IDE, SNCA, TH
protein-containing complex 2 ALB, SNCA
intracellular membrane-bounded organelle 1 TYR
Single-pass type I membrane protein 2 TPO, TYR
Secreted 9 ALB, GCG, IDE, INS, LPO, POMC, PRL, SNCA, TG
extracellular region 10 ALB, CTSB, GCG, INS, LPO, POMC, PRL, SERPINA7, SNCA, TG
cytoplasmic side of plasma membrane 1 TH
Single-pass membrane protein 1 IYD
Extracellular side 1 CTSB
anchoring junction 1 ALB
external side of plasma membrane 2 CTSB, IDE
actin cytoskeleton 1 SNCA
perikaryon 1 TH
cytoplasmic vesicle 1 TH
Melanosome membrane 2 TH, TYR
Golgi-associated vesicle 1 TYR
Apical cell membrane 1 CTSB
Cytoplasm, perinuclear region 1 TH
Peroxisome 1 IDE
peroxisomal matrix 1 IDE
collagen-containing extracellular matrix 1 CTSB
secretory granule 1 POMC
neuron projection 1 TH
ciliary basal body 1 ALB
chromatin 2 MNT, PRL
supramolecular fiber 1 SNCA
centriole 1 ALB
Secreted, extracellular space 1 CTSB
spindle pole 1 ALB
blood microparticle 1 ALB
endosome lumen 2 INS, PRL
Cytoplasmic vesicle membrane 1 IYD
Melanosome 2 CTSB, TYR
ficolin-1-rich granule lumen 1 CTSB
secretory granule lumen 3 GCG, INS, POMC
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 ALB, GCG, INS
platelet alpha granule lumen 1 ALB
axon terminus 1 SNCA
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
peptidase inhibitor complex 1 CTSB
[Glucagon-like peptide 1]: Secreted 1 GCG
inclusion body 1 SNCA
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 TH
endolysosome lumen 1 CTSB
ciliary transition fiber 1 ALB


文献列表

  • Hansol Doh, Min Hyeock Lee, Hyun Jin Park. Effect of different cooking methods on the content and bioaccessibility of iodine components in abalone (Haliotis discus hannai). Food chemistry. 2019 Dec; 301(?):125197. doi: 10.1016/j.foodchem.2019.125197. [PMID: 31357004]
  • Emilio Fernández-Espejo, Cristian Bis-Humbert. Excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in experimental approaches of Parkinsonism. Neurotoxicology. 2018 07; 67(?):178-189. doi: 10.1016/j.neuro.2018.06.002. [PMID: 29885340]
  • Qing Chang, Yue'e Peng, Lifen Yun, Qingxin Zhu, Shenghong Hu, Qin Shuai. Rapid Identification of Unknown Organic Iodine in Small-Volume Complex Biological Samples Based on Nanospray Mass Spectrometry Coupled with in-Tube Solid Phase Microextraction. Analytical chemistry. 2017 04; 89(7):4147-4152. doi: 10.1021/acs.analchem.7b00037. [PMID: 28287711]
  • Vanessa Romarís-Hortas, Pilar Bermejo-Barrera, Jorge Moreda-Piñeiro, Antonio Moreda-Piñeiro. Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry. Analytica chimica acta. 2012 Oct; 745(?):24-32. doi: 10.1016/j.aca.2012.07.035. [PMID: 22938602]
  • Dubravka Švob Štrac, Dorotea Muck-Šeler, Nela Pivac. The involvement of noradrenergic mechanisms in the suppressive effects of diazepam on the hypothalamic-pituitary-adrenal axis activity in female rats. Croatian medical journal. 2012 Jun; 53(3):214-23. doi: 10.3325/cmj.2012.53.214. [PMID: 22661134]
  • Taro Ueno, Jun Tomita, Shoen Kume, Kazuhiko Kume. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster. PloS one. 2012; 7(2):e31513. doi: 10.1371/journal.pone.0031513. [PMID: 22347491]
  • Stefan Schildknecht, Dominik Pöltl, Daniel M Nagel, Florian Matt, Diana Scholz, Julie Lotharius, Nathalie Schmieg, Alberto Salvo-Vargas, Marcel Leist. Requirement of a dopaminergic neuronal phenotype for toxicity of low concentrations of 1-methyl-4-phenylpyridinium to human cells. Toxicology and applied pharmacology. 2009 Nov; 241(1):23-35. doi: 10.1016/j.taap.2009.07.027. [PMID: 19647008]
  • Gijs Afink, Willem Kulik, Henk Overmars, Janine de Randamie, Truus Veenboer, Arno van Cruchten, Margarita Craen, Carrie Ris-Stalpers. Molecular characterization of iodotyrosine dehalogenase deficiency in patients with hypothyroidism. The Journal of clinical endocrinology and metabolism. 2008 Dec; 93(12):4894-901. doi: 10.1210/jc.2008-0865. [PMID: 18765512]
  • Helen G Gika, Victoria F Samanidou, Ioannis N Papadoyannis. Development of a validated HPLC method for the determination of iodotyrosines and iodothyronines in pharmaceuticals and biological samples using solid phase extraction. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2005 Jan; 814(1):163-72. doi: 10.1016/j.jchromb.2004.10.025. [PMID: 15607721]
  • J T Dunn, A D Dunn. Update on intrathyroidal iodine metabolism. Thyroid : official journal of the American Thyroid Association. 2001 May; 11(5):407-14. doi: 10.1089/105072501300176363. [PMID: 11396699]
  • W H Roark, F J Tinney, D Cohen, A D Essenburg, H R Kaplan. Synthesis and biological activity of modified peptide inhibitors of angiotensin-converting enzyme. Journal of medicinal chemistry. 1985 Sep; 28(9):1291-5. doi: 10.1021/jm00147a030. [PMID: 2993618]
  • H R Kaplan, D M Cohen, A D Essenburg, T C Major, T E Mertz, M J Ryan. CI-906 and CI-907: new orally active nonsulfhydryl angiotensin-converting enzyme inhibitors. Federation proceedings. 1984 Apr; 43(5):1326-9. doi: . [PMID: 6323223]
  • M J Ryan, D M Boucher, D M Cohen, B J Olszewski, R M Singer, R D Smith, H R Kaplan. Antihypertensive profile of the angiotensin-converting enzyme inhibitors CI-906 and CI-907. Federation proceedings. 1984 Apr; 43(5):1330-2. doi: NULL. [PMID: 6323224]
  • M J Ryan, D M Boucher, D M Cohen, A D Essenburg, T C Major, T E Mertz, B J Olszewski, A E Randolph, R M Singer, H R Kaplan. Antihypertensive effects of CI-907 (indolapril): a novel nonsulfhydryl angiotensin converting enzyme inhibitor. The Journal of pharmacology and experimental therapeutics. 1984 Feb; 228(2):312-8. doi: NULL. [PMID: 6319675]
  • E J Sybertz, T Baum, H S Ahn, S Nelson, E Eynon, D M Desiderio, K Pula, F Becker, C Sabin, R Moran, G Vander Vliet, B Kastner, E Smith. Angiotensin-converting enzyme inhibitory activity of SCH 31846, a new non-sulfhydryl inhibitor. Journal of cardiovascular pharmacology. 1983 Jul; 5(4):643-54. doi: 10.1097/00005344-198307000-00021. [PMID: 6193364]
  • D W CLARK, J MILNE, R J VANDERLINDE. Congenital goiter with monoiodotyrosine in the serum. Archives of internal medicine. 1960 Aug; 106(?):275-9. doi: 10.1001/archinte.1960.03820020115017. [PMID: 13810442]
  • R J BLOCK, S C WERNER, R H MANDL, V V ROW, I RADICHEVICH. The probable presence of diiodotyrosine and of monoiodotyrosine in human serum. A discrepancy between the distribution of iodo compounds when estimated by I 131 and by I 127. Archives of biochemistry and biophysics. 1960 May; 88(?):98-104. doi: 10.1016/0003-9861(60)90202-2. [PMID: 13801542]
  • W E CLEMENT, J H HUTCHISON, E M MCGIRR. Sporadic non-endemic goitrous cretinism; identification and significance of monoiodotyrosine and diiodotyrosine in serum and urine. Lancet (London, England). 1956 Nov; 271(6949):906-8. doi: . [PMID: 13368550]