Shikimic acid (BioDeep_00000000282)
Secondary id: BioDeep_00000398591, BioDeep_00000413238
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C7H10O5 (174.0528)
中文名称: 莽草酸, (-)-莽草酸
谱图信息:
最多检出来源 Homo sapiens(blood) 19.75%
分子结构信息
SMILES: C1=C(C[C@H]([C@@H]([C@@H]1O)O)O)C(=O)O
InChI: InChI=1S/C7H10O5/c8-4-1-3(7(11)12)2-5(9)6(4)10/h1,4-6,8-10H,2H2,(H,11,12)/t4-,5-,6-/m1/s1
描述信息
Shikimic acid is a cyclohexenecarboxylic acid that is cyclohex-1-ene-1-carboxylic acid substituted by hydroxy groups at positions 3, 4 and 5 (the 3R,4S,5R stereoisomer). It is an intermediate metabolite in plants and microorganisms. It has a role as an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite and a plant metabolite. It is a cyclohexenecarboxylic acid, a hydroxy monocarboxylic acid and an alpha,beta-unsaturated monocarboxylic acid. It is a conjugate acid of a shikimate.
Shikimic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Shikimic acid is a natural product found in Quercus mongolica, Populus tremula, and other organisms with data available.
Shikimic acid is a metabolite found in or produced by Saccharomyces cerevisiae.
A tri-hydroxy cyclohexene carboxylic acid important in biosynthesis of so many compounds that the shikimate pathway is named after it.
Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical intermediate in plants and microorganisms. Its name comes from the Japanese flower shikimi (the Japanese star anise, Illicium anisatum), from which it was first isolated. Shikimic acid is a precursor for: the aromatic amino acids phenylalanine and tyrosine; indole, indole derivatives and tryptophan; many alkaloids and other aromatic metabolites; tannins; and lignin. In pharmaceutical industry, shikimic acid from chinese star anise is used as a base material for production of Tamiflu (oseltamivir). Although shikimic acid is present in most autotrophic organisms, it is a biosynthetic intermediate and generally found in very low concentrations.
A cyclohexenecarboxylic acid that is cyclohex-1-ene-1-carboxylic acid substituted by hydroxy groups at positions 3, 4 and 5 (the 3R,4S,5R stereoisomer). It is an intermediate metabolite in plants and microorganisms.
Acquisition and generation of the data is financially supported in part by CREST/JST.
CONFIDENCE standard compound; INTERNAL_ID 175
KEIO_ID S012
Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants.
Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants.
同义名列表
81 个代谢物同义名
Shikimic acid [3R-(3alpha,4alpha,5beta)]-3,4,5-Trihydroxy-1-cyclohexene-1-carboxylic acid; InChI=1/C7H10O5/c8-4-1-3(7(11)12)2-5(9)6(4)10/h1,4-6,8-10H,2H2,(H,11,12)/t4-,5-,6-/m1/s; 1-Cyclohexene-1-carboxylic acid, 3,4,5-trihydroxy-, (3R-(3alpha,4alpha,5beta))- (9CI); 1-Cyclohexene-1-carboxylic acid, 3,4,5-trihydroxy-, (3R-(3alpha,4alpha,5beta))-; 1-Cyclohexene-1-carboxylic acid, 3,4,5-trihydroxy-, (3R-(3alpha,4alpha,5beta)); [3R-(3 alpha,4 alpha,5 beta)]-3,4,5-Trihydroxy-1-cyclohexene-1-carboxylic acid; [3R-(3alpha,4alpha,5beta)]-3,4,5-Trihydroxy-1-cyclohexene-1-carboxylic acid; [3R-(3alpha,4alpha,5beta)]-3,4,5-Trihydroxy-1-cyclohexene-1-carboxylate; 1-Cyclohexene-1-carboxylic acid, 3,4,5-trihydroxy-, (3R,4S,5R)- (9CI); SHIKIMIC ACID (CONSTITUENT OF CRANBERRY LIQUID PREPARATION) [DSC]; [3R-(3Α,4α,5β)]-3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid; [3R-(3a,4a,5b)]-3,4,5-Trihydroxy-1-cyclohexene-1-carboxylic acid; 1-cyclohexene-1-carboxylic acid, 3,4,5-trihydroxy-, (3R,4S,5R)-; (3R,4S,5R)-(-)-3,4,5-Trihydroxy-1-cyclohexene-1-carboxylic Acid; 3alpha,4alpha,5beta-Trihydroxy-1-cyclohexene-1-carboxylic acid; [3R-(3a,4a,5b)]-3,4,5-Trihydroxy-1-cyclohexene-1-carboxylate; [3R-(3Α,4α,5β)]-3,4,5-trihydroxy-1-cyclohexene-1-carboxylate; (3R,4S,5R)-(-)-3,4,5-Trihydroxy-1-cyclohexenecarboxylic acid; (3r,4s,5r)-3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid; (3R,4S,5R)-3,4,5-TRIHYDROXYCYCLOHEX-1-ENE-1-CARBOXYLIC ACID; 3alpha,4alpha,5beta-Trihydroxy-1-cyclohexene-1-carboxylate; (3R,4S,5R)-3,4,5-trihydroxycyclohexene-1-carboxylic acid; (4S,3R,5R)-3,4,5-trihydroxycyclohex-1-enecarboxylic acid; (3R,4S,5R)-3,4,5-Trihydroxycyclohex-1-enecarboxylic acid; (3R,4S,5R)-3,4,5-trihydroxycyclohexene-1-carboxylicacid; (-)-3,4,5-Trihydroxy-1-cyclohexene-1-carboxylic acid; HYDROTRIS(3-PHENYLPYRAZOL-1-YL)BORATE THALLIUM SALT; 3Α,4α,5β-trihydroxy-1-cyclohexene-1-carboxylic acid; 3a,4a,5b-Trihydroxy-1-cyclohexene-1-carboxylic acid; 1-cyclohexene-1-carboxylic acid, 3,4,5-trihydroxy-; 3Α,4α,5β-trihydroxy-1-cyclohexene-1-carboxylate; 3a,4a,5b-Trihydroxy-1-cyclohexene-1-carboxylate; 3,4,5-Trihydroxycyclohex-1-enecarboxylic acid; 3,4,5-Trihydroxy-1-cyclohexenecarboxylic acid; 3,4,5-Trihydroxy-1-cyclohexenecarboxylate; B1A53F8A-8664-405D-8370-A9785ADD2D0B; Shikimic acid, analytical standard; Bracken fern toxic component; Shikimic acid, >=99\\%; SHIKIMIC ACID [IARC]; SHIKIMIC ACID [HSDB]; SHIKIMIC ACID [INCI]; L-(-)-SHIKIMIC ACID; SHIKIMIC ACID [MI]; (-)-Shikimic acid; Spectrum3_001541; Spectrum5_000386; Spectrum4_001853; Spectrum2_001508; Shikimatic acid; L-Shikimic acid; UNII-29MS2WI2NU; Acid, Shikimic; (-)-Shikimate; DivK1c_006584; MEGxp0_001939; Shikimic acid; Skikimic acid; Shicimic Acid; KBio2_004280; KBio3_002482; KBio1_001528; ShikimicAcid; KBio2_006848; KBio2_001712; L-Shikimate; SMP1_000326; 29MS2WI2NU; Skikimate; shikimate; VEROCHIC; Shikimic; C7H10O5; 2aay; 1we2; 2aa9; 4guj; (-)Shikimic acid; Shikimic acid; Shikimic acid; Shikimate
数据库引用编号
42 个数据库交叉引用编号
- ChEBI: CHEBI:16119
- KEGG: C00493
- PubChem: 8742
- PubChem: 1094
- HMDB: HMDB0003070
- Metlin: METLIN338
- ChEMBL: CHEMBL290345
- Wikipedia: Shikimic_acid
- MeSH: Shikimic Acid
- ChemIDplus: 0000138590
- MetaCyc: SHIKIMATE
- KNApSAcK: C00001203
- foodb: FDB003991
- chemspider: 8412
- CAS: 106210-02-0
- CAS: 138-59-0
- MoNA: KO001789
- MoNA: PS001507
- MoNA: KO001793
- MoNA: KO001790
- MoNA: RP017513
- MoNA: RP017503
- MoNA: PR100485
- MoNA: KO001792
- MoNA: RP017512
- MoNA: RP017511
- MoNA: RP017501
- MoNA: RP017502
- MoNA: KO001791
- PMhub: MS000008595
- MetaboLights: MTBLC16119
- PubChem: 3776
- PDB-CCD: SKM
- 3DMET: B01267
- NIKKAJI: J3.267K
- RefMet: Shikimic acid
- medchemexpress: HY-N0130
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-784
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-60
- KNApSAcK: 16119
- LOTUS: LTS0003899
- wikidata: Q410830
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
483 个相关的代谢反应过程信息。
Reactome(2)
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Chorismate via Shikimate Pathway:
ATP + SKM ⟶ ADP + SKMP
BioCyc(0)
WikiPathways(0)
Plant Reactome(474)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
ATP + SKM ⟶ ADP + SKMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
ATP + SKM ⟶ ADP + SKMP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroylshikimate + H+ + Oxygen + TPNH ⟶ H2O + TPN + caffeoylshikimate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Lignin biosynthesis:
4-coumarate + ATP + CoA-SH ⟶ 4-coumaroyl-CoA + AMP + PPi
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(7)
- Chorismate Biosynthesis:
3-dehydroshikimate + Hydrogen Ion + NADPH ⟶ NADP + Shikimic acid
- Secondary Metabolites: Shikimate Pathway:
3-dehydroshikimate + Hydrogen Ion + NADPH ⟶ NADP + Shikimic acid
- Shikimate Pathway (Chorismate Biosynthesis):
Adenosine triphosphate + Shikimic acid ⟶ Adenosine diphosphate + Hydrogen Ion + shikimate 3-phosphate
- Flavonoid Biosynthesis:
Hydrogen Ion + NADPH + Naringenin ⟶ Apiforol + NADP
- Stilbenoid, Diarylheptanoid, and Gingerol Biosynthesis:
Caffeoyl-CoA + Quinate ⟶ Chlorogenic acid + Coenzyme A
- Chorismate Biosynthesis:
Adenosine triphosphate + Shikimic acid ⟶ Adenosine diphosphate + Hydrogen Ion + shikimate 3-phosphate
- Secondary Metabolites: Shikimate Pathway:
D-Erythrose 4-phosphate + Phosphoenolpyruvic acid + Water ⟶ 3-deoxy-D-arabino-heptulosonate-7-phosphate + Phosphate
PharmGKB(0)
90 个相关的物种来源信息
- 405212 - Alicyclobacillus acidocaldarius: 10.1021/JA00065A043
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.4014/JMB.1312.12076
- 13345 - Ardisia crenata: 10.3389/FMOLB.2021.683671
- 122625 - Blasia pusilla: 10.1016/0040-4020(96)00889-7
- 120713 - Brainea insignis: 10.1248/CPB.58.868
- 214225 - Callitris columellaris: 10.1016/S0031-9422(00)82391-2
- 214223 - Callitris glaucophylla: 10.1016/S0031-9422(00)82391-2
- 280748 - Calophyllum brasiliense: 10.1016/J.LFS.2004.03.017
- 167387 - Castanopsis fissa: 10.1016/J.PHYTOCHEM.2011.07.007
- 36622 - Chaenomeles Sinensis (Thouin) Koehne: -
- 289701 - Choerospondias axillaris: 10.1248/CPB.14.877
- 191224 - Cistus creticus: 10.1016/S0031-9422(00)90729-5
- 2708762 - Cleistopholis patens: 10.1016/S0031-9422(99)00224-1
- 34329 - Corymbia citriodora: 10.1071/CH9570093
- 4039 - Daucus carota: 10.1104/PP.75.2.369
- 906689 - Dendrobium catenatum: 10.1021/NP900252F
- 154293 - Dendrobium huoshanense: 10.1021/NP900252F
- 257357 - Dendrobium longicornu: 10.1055/S-2008-1074492
- 142614 - Dendrobium moniliforme: 10.1021/NP900252F
- 142615 - Dendrobium officinale: 10.1021/NP900252F
- 37229 - Dicranopteris linearis: 10.1248/YAKUSHI1947.103.6_679
- 397678 - Dicranopteris pedata: 10.1248/YAKUSHI1947.103.6_679
- 35874 - Dioscorea bulbifera: 10.1016/S0041-0101(97)00032-9
- 2054263 - Excoecaria acerifolia: 10.3390/MOLECULES15042178
- 179682 - Excoecaria cochinchinensis: 10.1248/CPB.53.1600
- 58228 - Garcinia mangostana: 10.1007/S11306-019-1526-1
- 202327 - Geranium Wilfordii Maxim.: -
- 3311 - Ginkgo biloba:
- 3311 - Ginkgo biloba L.: -
- 88917 - Hedyosmum bonplandianum: 10.1055/S-2006-959597
- 9606 - Homo sapiens: -
- 498914 - Hydrangea chinensis: 10.1021/NP0302394
- 268979 - Hypericum beanii: 10.1016/J.PHYTOCHEM.2006.09.037
- 1136989 - Hypericum laricifolium: 10.1248/CPB.51.1439
- 684760 - Hypericum monogynum: 10.1201/9781420023305-8
- 124794 - Illicium anisatum: 10.1016/0040-4020(96)00398-5
- 124775 - Illicium majus: 10.1248/CPB.39.1773
- 1202800 - Illicium simonsii: 10.4268/CJCMM20111013
- 124778 - Illicium verum: 10.1002/RECL.18860050905
- 69008 - Juniperus oxycedrus: 10.1016/J.JEP.2011.10.027
- 2508380 - Kielmeyera pumila: 10.1016/0031-9422(88)80696-4
- 142229 - Leucopogon parviflorus: 10.1016/0031-9422(93)85522-S
- 4400 - Liquidambar styraciflua: 10.1016/J.TETLET.2008.02.140
- 34305 - Lotus japonicus:
- 85856 - Magnolia denudata: 10.1080/10286020108040371
- 316936 - Neoshirakia japonica: 10.1248/CPB.14.877
- 5141 - Neurospora crassa: 10.1139/M86-043
- 4054 - Panax ginseng: 10.3389/FPLS.2016.00994
- 59871 - Pelargonium reniforme: 10.1016/J.PHYMED.2006.11.021
- 1417791 - Pelargonium sidoides: 10.1016/J.PHYMED.2006.11.021
- 48386 - Perilla Frutescens: -
- 48386 - Perilla frutescens: 10.1016/0031-9422(86)80017-6
- 4837 - Phycomyces blakesleeanus: 10.1016/0031-9422(96)00146-X
- 71647 - Pinus pinaster: 10.1515/HF.1999.096
- 55062 - Pinus ponderosa: 10.1021/JF00110A049
- 3349 - Pinus sylvestris: 10.1007/S10600-006-0229-9
- 33090 - Plants: -
- 77070 - Populus lasiocarpa: 10.1016/0031-9422(88)80758-1
- 113636 - Populus tremula: 10.1111/NPH.16799
- 122119 - Prunus angustifolia: 10.1021/JF0201327
- 3758 - Prunus domestica: 10.1021/JF0201327
- 173896 - Pseudocyclosorus esquirolii: 10.1248/YAKUSHI1947.106.11_989
- 303 - Pseudomonas putida: 10.1371/JOURNAL.PONE.0156509
- 180039 - Psychotria punctata: 10.3389/FMOLB.2021.683671
- 32100 - Pteridium: 10.1007/S11418-008-0225-4
- 32101 - Pteridium aquilinum:
- 289753 - Rhus chinensis: 10.1248/CPB.14.877
- 186426 - Selaginella Doederleinii Hieron: -
- 99814 - Sequoiadendron giganteum: 10.1016/0031-9422(95)00450-L
- 4113 - Solanum tuberosum: 10.1016/J.PHYTOCHEM.2016.12.003
- 336032 - Stenostomum acreanum: 10.1055/S-2006-957449
- 29301 - Streptomyces arenae: 10.1021/BI00608A017
- 1915 - Streptomyces lincolnensis: 10.1002/MRC.2408
- 1827580 - Streptomyces nigra: 10.3389/FMICB.2018.01587
- 155022 - Terminalia chebula: 10.1055/S-2009-1216479
- 269718 - Toxicodendron orientale: 10.1248/CPB.14.877
- 269721 - Toxicodendron succedaneum: 10.1248/CPB.14.877
- 269722 - Toxicodendron sylvestre: 10.1248/CPB.14.877
- 269720 - Toxicodendron trichocarpum: 10.1248/CPB.14.877
- 139772 - Triadica sebifera: 10.1248/CPB.14.877
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 174251 - Vaccinium dunalianum: 10.1016/J.PHYTOCHEM.2008.06.001
- 13750 - Vaccinium macrocarpon: 10.1021/JF0205110
- 180763 - Vaccinium myrtillus: 10.1021/JF0205110
- 516948 - Vaccinium oxycoccos: 10.1021/JF0205110
- 180772 - Vaccinium vitis-idaea: 10.1021/JF0205110
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 33090 - 八角: -
- 33090 - 覆盆子: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jiahui Yu, Jingchen Xie, Miao Sun, Suhui Xiong, Chunfang Xu, Zhimin Zhang, Minjie Li, Chun Li, Limei Lin. Plant-Derived Caffeic Acid and Its Derivatives: An Overview of Their NMR Data and Biosynthetic Pathways.
Molecules (Basel, Switzerland).
2024 Apr; 29(7):. doi:
10.3390/molecules29071625
. [PMID: 38611904] - Yang Gu, Yaru Jiang, Changfan Li, Jiang Zhu, Xueyao Lu, Jianyue Ge, Mengchen Hu, Jieying Deng, Jingbo Ma, Zhiliang Yang, Xiaoman Sun, Feng Xue, Guocheng Du, Peng Xu, He Huang. High titer production of gastrodin enabled by systematic refactoring of yeast genome and an antisense-transcriptional regulation toolkit.
Metabolic engineering.
2024 Mar; 82(?):250-261. doi:
10.1016/j.ymben.2024.02.016
. [PMID: 38428728] - Zimin Xiao, Jian Cai, Ting Chen, Yilin Wang, Yixin Chen, Yongyan Zhu, Chunmei Chen, Bin Yang, Xuefeng Zhou, Huaming Tao. Two New Sesquiterpenoids and a New Shikimic Acid Metabolite from Mangrove Sediment-Derived Fungus Roussoella sp. SCSIO 41427.
Marine drugs.
2024 Feb; 22(3):. doi:
10.3390/md22030103
. [PMID: 38535444] - Kateryna Kukil, Pia Lindberg. Metabolic engineering of Synechocystis sp. PCC 6803 for the improved production of phenylpropanoids.
Microbial cell factories.
2024 Feb; 23(1):57. doi:
10.1186/s12934-024-02330-3
. [PMID: 38369470] - Noah P Winters, Eric K Wafula, Benjamin J Knollenberg, Tuomas Hämälä, Prakash R Timilsena, Melanie Perryman, Dapeng Zhang, Lena L Sheaffer, Craig A Praul, Paula E Ralph, Sarah Prewitt, Mariela E Leandro-Muñoz, Diego A Delgadillo-Duran, Naomi S Altman, Peter Tiffin, Siela N Maximova, Claude W dePamphilis, James H Marden, Mark J Guiltinan. A combination of conserved and diverged responses underlies Theobroma cacao's defense response to Phytophthora palmivora.
BMC biology.
2024 Feb; 22(1):38. doi:
10.1186/s12915-024-01831-2
. [PMID: 38360697] - Vlastimil Novak, Peter F Andeer, Benjamin P Bowen, Yezhang Ding, Kateryna Zhalnina, Kirsten S Hofmockel, Connor Tomaka, Thomas V Harwood, Michelle C M van Winden, Amber N Golini, Suzanne M Kosina, Trent R Northen. Reproducible growth of Brachypodium in EcoFAB 2.0 reveals that nitrogen form and starvation modulate root exudation.
Science advances.
2024 Jan; 10(1):eadg7888. doi:
10.1126/sciadv.adg7888
. [PMID: 38170767] - Lars H Kruse, Frederick G Sunstrum, Daniela Garcia, Guillermo López Pérez, Sharon Jancsik, Joerg Bohlmann, Sandra Irmisch. Improved production of the antidiabetic metabolite montbretin A in Nicotiana benthamiana: discovery, characterization, and use of Crocosmia shikimate shunt genes.
The Plant journal : for cell and molecular biology.
2023 Nov; ?(?):. doi:
10.1111/tpj.16528
. [PMID: 37960967] - Xiao-Xia Zhu, Wan-Qiu Liu, Zhao-Xia Shi, Huang-Yao Zhu, Si-Qi Fan, Jie Zhang, Wen-Yuan Liu, Li-Jun Xu, Qing-Jia Ren, Feng Feng, Jian Xu. Meroterpenoids with divers' rings systems from Phyllosticta capitalensis and their anti-inflammatory activity.
Phytochemistry.
2023 Nov; ?(?):113918. doi:
10.1016/j.phytochem.2023.113918
. [PMID: 37952710] - Qiyuan Zou, Yuanyuan Huang, Wenyan Zhang, Chen Lu, Jingquan Yuan. A Comprehensive Review of the Pharmacology, Chemistry, Traditional Uses and Quality Control of Star Anise (Illicium verum Hook. F.): An Aromatic Medicinal Plant.
Molecules (Basel, Switzerland).
2023 Nov; 28(21):. doi:
10.3390/molecules28217378
. [PMID: 37959797] - Abigail Loren Tung Uy, Atsushi Yamamoto, Mami Matsuda, Toshihiro Arae, Tomohisa Hasunuma, Taku Demura, Misato Ohtani. The Carbon Flow Shifts from Primary to Secondary Metabolism during Xylem Vessel Cell Differentiation in Arabidopsis thaliana.
Plant & cell physiology.
2023 Oct; ?(?):. doi:
10.1093/pcp/pcad130
. [PMID: 37875012] - Inge Schwedt, Kerstin Schöne, Maike Eckert, Manon Pizzinato, Laura Winkler, Barbora Knotkova, Björn Richts, Jann-Louis Hau, Julia Steuber, Raul Mireles, Lianet Noda-Garcia, Günter Fritz, Carolin Mittelstädt, Robert Hertel, Fabian M Commichau. The low mutational flexibility of the EPSP synthase in Bacillus subtilis is due to a higher demand for shikimate pathway intermediates.
Environmental microbiology.
2023 Oct; ?(?):. doi:
10.1111/1462-2920.16518
. [PMID: 37822042] - Christodoulos Anagnostou, Stavros Beteinakis, Anastasia Papachristodoulou, Vasiliki K Pachi, Mariangela Dionysopoulou, Sofia Dimou, George Diallinas, Leandros A Skaltsounis, Maria Halabalaki. Phytochemical investigation of Pistacia lentiscus L. var. Chia leaves: A byproduct with antimicrobial potential.
Fitoterapia.
2023 Aug; ?(?):105648. doi:
10.1016/j.fitote.2023.105648
. [PMID: 37562489] - Zimin Wei, Yue Zhao, Li Zhao, Liqin Wang, Junqiu Wu. The contribution of microbial shikimic acid to humus formation during organic wastes composting: a review.
World journal of microbiology & biotechnology.
2023 Jul; 39(9):240. doi:
10.1007/s11274-023-03674-5
. [PMID: 37392253] - Xin Li, Kaibin Mo, Ge Tian, Jiaxin Zhou, Jiongzhou Gong, Li Li, Xianhui Huang. Shikimic Acid Regulates the NF-κB/MAPK Signaling Pathway and Gut Microbiota to Ameliorate DSS-Induced Ulcerative Colitis.
Journal of agricultural and food chemistry.
2023 May; ?(?):. doi:
10.1021/acs.jafc.3c00283
. [PMID: 37257042] - Anam Amin Shami, Muhammad Tayyab Akhtar, Muhammad Waseem Mumtaz, Hamid Mukhtar, Amna Tahir, Syed Shahzad-Ul-Hussan, Safee Ullah Chaudhary, Bushra Muneer, Hafsa Iftikhar, Marios Neophytou. NMR-Based Metabolomics: A New Paradigm to Unravel Defense-Related Metabolites in Insect-Resistant Cotton Variety through Different Multivariate Data Analysis Approaches.
Molecules (Basel, Switzerland).
2023 Feb; 28(4):. doi:
10.3390/molecules28041763
. [PMID: 36838756] - ZhiHao Dong, XiaoDong Liu, Anoop Kumar Srivastava, QiLing Tan, Wei Low, Xiang Yan, SongWei Wu, XueCheng Sun, ChengXiao Hu. Boron deficiency mediates plant-insect (Diaphorima citri) interaction by disturbing leaf volatile organic compounds and cell wall functions.
Tree physiology.
2023 Jan; ?(?):. doi:
10.1093/treephys/tpac140
. [PMID: 36611002] - Md Rafi Uz Zama Khan, Emiko Yanase, Vishal Trivedi. Extraction, phytochemical characterization and anti-cancer mechanism of Haritaki churna: An ayurvedic formulation.
PloS one.
2023; 18(5):e0286274. doi:
10.1371/journal.pone.0286274
. [PMID: 37256897] - Rodrigo Martinelli, Luiz Renato Rufino, Ana Caroline de Melo, Ricardo Alcántara-de la Cruz, Maria Fátima das Graças Fernandes da Silva, Jefferson Rangel da Silva, Rodrigo Marcelli Boaretto, Patricia Andrea Monquero, Dirceu Mattos, Fernando Alves de Azevedo. Glyphosate excessive use chronically disrupts the shikimate pathway and can affect photosynthesis and yield in citrus trees.
Chemosphere.
2022 Dec; 308(Pt 3):136468. doi:
10.1016/j.chemosphere.2022.136468
. [PMID: 36116622] - Amaranatha Reddy Vennapusa, Subham Agarwal, Hanumanth Rao Hm, Thiagarayaselvam Aarthy, K C Babitha, Hirekodathakallu V Thulasiram, Mahesh J Kulkarni, Kalpalatha Melmaiee, Chinta Sudhakar, M Udayakumar, Ramu S Vemanna. Stacking herbicide detoxification and resistant genes improves glyphosate tolerance and reduces phytotoxicity in tobacco (Nicotiana tabacum L.) and rice (Oryza sativa L.).
Plant physiology and biochemistry : PPB.
2022 Oct; 189(?):126-138. doi:
10.1016/j.plaphy.2022.08.025
. [PMID: 36084528] - Xuerui Lu, Shixi Shi, Chong Wu, Xueao Zheng, Chenkun Yang, Jie Luo, Shunping Yan. The shikimate pathway regulates programmed cell death.
Journal of genetics and genomics = Yi chuan xue bao.
2022 10; 49(10):943-951. doi:
10.1016/j.jgg.2022.02.001
. [PMID: 35167982] - Kazuya Koyama, Atsushi Kono, Yusuke Ban, Sharon Marie Bahena-Garrido, Tomoko Ohama, Kazuhiro Iwashita, Hisashi Fukuda, Nami Goto-Yamamoto. Genetic architecture of berry aroma compounds in a QTL (quantitative trait loci) mapping population of interspecific hybrid grapes (Vitis labruscana × Vitis vinifera).
BMC plant biology.
2022 Sep; 22(1):458. doi:
10.1186/s12870-022-03842-z
. [PMID: 36151514] - Shudh Kirti Dolma, S G Eswara Reddy. Characterization of Triadica sebifera (L.) Small Extracts, Antifeedant Activities of Extracts, Fractions, Seed Oil and Isolated Compounds against Plutella xylostella (L.) and Their Effect on Detoxification Enzymes.
Molecules (Basel, Switzerland).
2022 Sep; 27(19):. doi:
10.3390/molecules27196239
. [PMID: 36234776] - Zhong Zhang, Yang Yang, Qun Sun, Weicai Zeng, Yuqing Li. Inhibition of Biofilm Formation and Virulence Factors of Cariogenic Oral Pathogen Streptococcus mutans by Shikimic Acid.
Microbiology spectrum.
2022 08; 10(4):e0119922. doi:
10.1128/spectrum.01199-22
. [PMID: 35880891] - Di Dong, Zhuoxiong Yang, Yuan Ma, Shuwen Li, Mengdi Wang, Yinruizhi Li, Zhuocheng Liu, Chenyan Jia, Liebao Han, Yuehui Chao. Expression of a Hydroxycinnamoyl-CoA Shikimate/Quinate Hydroxycinnamoyl Transferase 4 Gene from Zoysia japonica (ZjHCT4) Causes Excessive Elongation and Lignin Composition Changes in Agrostis stolonifera.
International journal of molecular sciences.
2022 Aug; 23(16):. doi:
10.3390/ijms23169500
. [PMID: 36012757] - Sijia Wu, Wenjuan Chen, Sujuan Lu, Hailing Zhang, Lianghong Yin. Metabolic Engineering of Shikimic Acid Biosynthesis Pathway for the Production of Shikimic Acid and Its Branched Products in Microorganisms: Advances and Prospects.
Molecules (Basel, Switzerland).
2022 Jul; 27(15):. doi:
10.3390/molecules27154779
. [PMID: 35897952] - Yongbo Yu, Yang Yu, Na Cui, Lifeng Ma, Ran Tao, Zhangtong Ma, Xiangnan Meng, Haiyan Fan. Lignin biosynthesis regulated by CsCSE1 is required for Cucumis sativus defence to Podosphaera xanthii.
Plant physiology and biochemistry : PPB.
2022 Jul; 186(?):88-98. doi:
10.1016/j.plaphy.2022.06.030
. [PMID: 35830761] - Luis Orduña, Miaomiao Li, David Navarro-Payá, Chen Zhang, Antonio Santiago, Pablo Romero, Živa Ramšak, Gabriele Magon, Janine Höll, Patrick Merz, Kristina Gruden, Alessandro Vannozzi, Dario Cantu, Jochen Bogs, Darren C J Wong, Shao-Shan Carol Huang, José Tomás Matus. Direct regulation of shikimate, early phenylpropanoid, and stilbenoid pathways by Subgroup 2 R2R3-MYBs in grapevine.
The Plant journal : for cell and molecular biology.
2022 04; 110(2):529-547. doi:
10.1111/tpj.15686
. [PMID: 35092714] - Kaoutar Benrahou, Hanae Naceiri Mrabti, Saad Fettach, Mohamed Reda Kachmar, Mostafa Kouach, Jean-François Goossens, Latifa Doudach, Shafi Mahmud, Mohammed Merae Alshahrani, Ahmed Abdullah Al Awadh, Abdelhakim Bouyahya, My El Abbes Faouzi. Mineral and Phenolic Composition of Erodium guttatum Extracts and Investigation of Their Antioxidant Properties in Diabetic Mice.
Oxidative medicine and cellular longevity.
2022; 2022(?):4229981. doi:
10.1155/2022/4229981
. [PMID: 36193070] - Han-Na Lee, Seung-Yeul Seo, Hey-Jin Kim, Ji-Hoon Park, Eunhwi Park, Si-Sun Choi, Sang Joung Lee, Eung-Soo Kim. Artificial cell factory design for shikimate production in Escherichia coli.
Journal of industrial microbiology & biotechnology.
2021 Dec; 48(9-10):. doi:
10.1093/jimb/kuab043
. [PMID: 34227672] - Dong Zhang, Mojiao Zhao, Yumei Li, Dafang Zhang, Yong Yang, Lijing Li. Natural Xanthine Oxidase Inhibitor 5-O-Caffeoylshikimic Acid Ameliorates Kidney Injury Caused by Hyperuricemia in Mice.
Molecules (Basel, Switzerland).
2021 Dec; 26(23):. doi:
10.3390/molecules26237307
. [PMID: 34885887] - Heejin Yoo, Stuti Shrivastava, Joseph H Lynch, Xing-Qi Huang, Joshua R Widhalm, Longyun Guo, Benjamin C Carter, Yichun Qian, Hiroshi A Maeda, Joseph P Ogas, John A Morgan, Amy Marshall-Colón, Natalia Dudareva. Overexpression of arogenate dehydratase reveals an upstream point of metabolic control in phenylalanine biosynthesis.
The Plant journal : for cell and molecular biology.
2021 11; 108(3):737-751. doi:
10.1111/tpj.15467
. [PMID: 34403557] - Eunhwi Park, Hye-Jin Kim, Seung-Yeul Seo, Han-Na Lee, Si-Sun Choi, Sang Joung Lee, Eung-Soo Kim. Shikimate Metabolic Pathway Engineering in Corynebacterium glutamicum.
Journal of microbiology and biotechnology.
2021 Sep; 31(9):1305-1310. doi:
10.4014/jmb.2106.06009
. [PMID: 34373439] - Charlemagne Ajoc Lim, Prashant Jha, Vipan Kumar, Alan T Dyer. Effect of EPSPS gene copy number and glyphosate selection on fitness of glyphosate-resistant Bassia scoparia in the field.
Scientific reports.
2021 08; 11(1):16083. doi:
10.1038/s41598-021-95517-2
. [PMID: 34373526] - Lucie Kriegshauser, Samuel Knosp, Etienne Grienenberger, Kanade Tatsumi, Desirée D Gütle, Iben Sørensen, Laurence Herrgott, Julie Zumsteg, Jocelyn K C Rose, Ralf Reski, Danièle Werck-Reichhart, Hugues Renault. Function of the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE is evolutionarily conserved in embryophytes.
The Plant cell.
2021 07; 33(5):1472-1491. doi:
10.1093/plcell/koab044
. [PMID: 33638637] - Yi Li, Boon Huat Cheah, Yu-Fu Fang, Yun-Hung Kuang, Shau-Ching Lin, Chung-Ta Liao, Shou-Horng Huang, Ya-Fen Lin, Wen-Po Chuang. Transcriptomics identifies key defense mechanisms in rice resistant to both leaf-feeding and phloem feeding herbivores.
BMC plant biology.
2021 Jun; 21(1):306. doi:
10.1186/s12870-021-03068-5
. [PMID: 34193042] - Yibin Zhuang, Fengli Wu, Hua Yin, Qinhong Wang, Tao Liu. [Advances in the microbial synthesis of aromatic fragrance molecules].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2021 Jun; 37(6):1998-2009. doi:
10.13345/j.cjb.200744
. [PMID: 34227290] - Yoo-Wook Kwon, Shin-Hyae Lee, Ah-Reum Kim, Beom Joon Kim, Won-Seok Park, Jin Hur, Hyunduk Jang, Han-Mo Yang, Hyun-Jai Cho, Hyo-Soo Kim. Plant callus-derived shikimic acid regenerates human skin through converting human dermal fibroblasts into multipotent skin-derived precursor cells.
Stem cell research & therapy.
2021 06; 12(1):346. doi:
10.1186/s13287-021-02409-3
. [PMID: 34116724] - Jonathan Negrel, Agnès Klinguer, Marielle Adrian. In vitro inhibition of shikimate hydroxycinnamoyltransferase by acibenzolar acid, the first metabolite of the plant defence inducer acibenzolar-S-methyl.
Plant physiology and biochemistry : PPB.
2021 Jun; 163(?):119-127. doi:
10.1016/j.plaphy.2021.03.050
. [PMID: 33836466] - Ryo Yokoyama, Marcos V V de Oliveira, Bailey Kleven, Hiroshi A Maeda. The entry reaction of the plant shikimate pathway is subjected to highly complex metabolite-mediated regulation.
The Plant cell.
2021 05; 33(3):671-696. doi:
10.1093/plcell/koaa042
. [PMID: 33955484] - Nikolaus Amrhein, Enrico Martinoia. An ABC transporter of the ABCC subfamily localized at the plasma membrane confers glyphosate resistance.
Proceedings of the National Academy of Sciences of the United States of America.
2021 05; 118(18):. doi:
10.1073/pnas.2104746118
. [PMID: 33853859] - Layanne Nascimento Fraga, Anne Karoline de Souza Oliveira, Bruna Pinheiro Aragão, Daniel Alves de Souza, Edmilson Willian Propheta Dos Santos, Josué Alves Melo, Ana Mara de Oliveira E Silva, Alberto Wisniewski Junior, Cristiane Bani Corrêa, Elma Regina Silva de Andrade Wartha, Leandro Bacci, Izabela Maria Montezano de Carvalho. Mass spectrometry characterization, antioxidant activity, and cytotoxicity of the peel and pulp extracts of Pitomba.
Food chemistry.
2021 Mar; 340(?):127929. doi:
10.1016/j.foodchem.2020.127929
. [PMID: 32920302] - Sijie Zhang, Xingchu Gong, Haibin Qu. A simple and effective method for the preparation of high-purity shikimic acid from chromatography wash effluent of Ginkgo biloba leaf extract by macroporous resin considering the effect of varying feed solution compositions.
The Journal of pharmacy and pharmacology.
2021 Mar; 73(4):447-459. doi:
10.1093/jpp/rgaa013
. [PMID: 33793829] - Maneka Malalgoda, Jae-Bom Ohm, Kirk A Howatt, Andrew Green, Senay Simsek. Effects of pre-harvest glyphosate use on protein composition and shikimic acid accumulation in spring wheat.
Food chemistry.
2020 Dec; 332(?):127422. doi:
10.1016/j.foodchem.2020.127422
. [PMID: 32623129] - Javier Sáez-Sáez, Guokun Wang, Eko Roy Marella, Suresh Sudarsan, Marc Cernuda Pastor, Irina Borodina. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production.
Metabolic engineering.
2020 11; 62(?):51-61. doi:
10.1016/j.ymben.2020.08.009
. [PMID: 32818629] - Fu-Xing Niu, Xin He, Yuan-Bin Huang, Jian-Zhong Liu. Biosensor-Guided Atmospheric and Room-Temperature Plasma Mutagenesis and Shuffling for High-Level Production of Shikimic Acid from Sucrose in Escherichia coli.
Journal of agricultural and food chemistry.
2020 Oct; 68(42):11765-11773. doi:
10.1021/acs.jafc.0c05253
. [PMID: 33030899] - Harshul Arora Verasztó, Maria Logotheti, Reinhard Albrecht, Alexander Leitner, Hongbo Zhu, Marcus D Hartmann. Architecture and functional dynamics of the pentafunctional AROM complex.
Nature chemical biology.
2020 09; 16(9):973-978. doi:
10.1038/s41589-020-0587-9
. [PMID: 32632294] - Zhu Li, Huiying Wang, Dongqin Ding, Yongfei Liu, Huan Fang, Zhishuai Chang, Tao Chen, Dawei Zhang. Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway.
Journal of industrial microbiology & biotechnology.
2020 Jul; 47(6-7):525-535. doi:
10.1007/s10295-020-02288-2
. [PMID: 32642925] - Anthony O Beas, Patricia B Gordon, Clara L Prentiss, Carissa Perez Olsen, Matthew A Kukurugya, Bryson D Bennett, Susan M Parkhurst, Daniel E Gottschling. Independent regulation of age associated fat accumulation and longevity.
Nature communications.
2020 06; 11(1):2790. doi:
10.1038/s41467-020-16358-7
. [PMID: 32493904] - Xiuwen Wu, Muhammad Riaz, Lei Yan, Zhenhua Zhang, Cuncang Jiang. How the cells were injured and the secondary metabolites in the shikimate pathway were changed by boron deficiency in trifoliate orange root.
Plant physiology and biochemistry : PPB.
2020 Jun; 151(?):630-639. doi:
10.1016/j.plaphy.2020.04.009
. [PMID: 32335386] - Jéssica C Amaral, Michelli M da Silva, M Fátima G F da Silva, Thayana C Alves, A Gilberto Ferreira, Moacir R Forim, João B Fernandes, Edieidia S Pina, Adriana A Lopes, Ana M S Pereira, Valdenice M Novelli. Advances in the Biosynthesis of Pyranocoumarins: Isolation and 13C-Incorporation Analysis by High-Performance Liquid Chromatography-Ultraviolet-Solid-Phase Extraction-Nuclear Magnetic Resonance Data.
Journal of natural products.
2020 05; 83(5):1409-1415. doi:
10.1021/acs.jnatprod.9b00607
. [PMID: 32372647] - Joanna Płonka, Aleksandra Górny, Klaudia Kokoszka, Hanna Barchanska. Metabolic profiles in the course of the shikimic acid pathway of Raphanus sativus var. longipinnatus exposed to mesotrione and its degradation products.
Chemosphere.
2020 Apr; 245(?):125616. doi:
10.1016/j.chemosphere.2019.125616
. [PMID: 31864055] - Shiyu Ying, Min Su, Yu Wu, Lu Zhou, Rao Fu, Yan Li, Hao Guo, Jie Luo, Shouchuang Wang, Yang Zhang. Trichome regulator SlMIXTA-like directly manipulates primary metabolism in tomato fruit.
Plant biotechnology journal.
2020 02; 18(2):354-363. doi:
10.1111/pbi.13202
. [PMID: 31254436] - Khaled AbouAitah, Anna Swiderska-Sroda, Ahmed Kandeil, Asmaa M M Salman, Jacek Wojnarowicz, Mohamed A Ali, Agnieszka Opalinska, Stanislaw Gierlotka, Tomasz Ciach, Witold Lojkowski. Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs.
International journal of nanomedicine.
2020; 15(?):5181-5202. doi:
10.2147/ijn.s247692
. [PMID: 32801685] - Rafael R Mendes, Hudson K Takano, Jéssica F Leal, Amanda S Souza, Sarah Morran, Rubem S Oliveira, Fernando S Adegas, Todd A Gaines, Franck E Dayan. Evolution of EPSPS double mutation imparting glyphosate resistance in wild poinsettia (Euphorbia heterophylla L.).
PloS one.
2020; 15(9):e0238818. doi:
10.1371/journal.pone.0238818
. [PMID: 32913366] - Manuel Fernández-Escalada, Ainhoa Zulet-González, Miriam Gil-Monreal, Mercedes Royuela, Ana Zabalza. Physiological performance of glyphosate and imazamox mixtures on Amaranthus palmeri sensitive and resistant to glyphosate.
Scientific reports.
2019 12; 9(1):18225. doi:
10.1038/s41598-019-54642-9
. [PMID: 31796801] - Xuechun Wang, Nan Chao, Meng Zhang, Xiangning Jiang, Ying Gai. Functional Characteristics of Caffeoyl Shikimate Esterase in Larix Kaempferi and Monolignol Biosynthesis in Gymnosperms.
International journal of molecular sciences.
2019 Dec; 20(23):. doi:
10.3390/ijms20236071
. [PMID: 31810184] - Mira Choi, Soon-Jin Choi, Sunhyae Jang, Hye-In Choi, Bo-Mi Kang, Sungjoo Tommy Hwang, Ohsang Kwon. Shikimic acid, a mannose bioisostere, promotes hair growth with the induction of anagen hair cycle.
Scientific reports.
2019 11; 9(1):17008. doi:
10.1038/s41598-019-53612-5
. [PMID: 31740717] - Annette V Alber, Hugues Renault, Alexandra Basilio-Lopes, Jean-Etienne Bassard, Zhenhua Liu, Pascaline Ullmann, Agnès Lesot, Frédéric Bihel, Martine Schmitt, Danièle Werck-Reichhart, Jürgen Ehlting. Evolution of coumaroyl conjugate 3-hydroxylases in land plants: lignin biosynthesis and defense.
The Plant journal : for cell and molecular biology.
2019 09; 99(5):924-936. doi:
10.1111/tpj.14373
. [PMID: 31038800] - Yonghong Ge, Yanru Chen, Canying Li, Jirong Zhao, Meilin Wei, Xihong Li, Shuqi Yang, Yitian Mi. Effect of sodium nitroprusside treatment on shikimate and phenylpropanoid pathways of apple fruit.
Food chemistry.
2019 Aug; 290(?):263-269. doi:
10.1016/j.foodchem.2019.04.010
. [PMID: 31000046] - Keliang Chen, Chunmei Chen, Jieru Guo, Weiguang Sun, Junjun Liu, Jing Yang, Xiulan Liu, Jianping Wang, Zengwei Luo, Hucheng Zhu, Yonghui Zhang. Mangiterpenes A-C and 2',3'-seco-manginoid C, four sesquiterpene/monoterpene-shikimate-conjugated spirocyclic meroterpenoids from Guignardia mangiferae.
Phytochemistry.
2019 Aug; 164(?):236-242. doi:
10.1016/j.phytochem.2019.05.018
. [PMID: 31185420] - Caio Augusto De Castro Grossi Brunharo, Sarah Morran, Katie Martin, Marcelo L Moretti, Bradley D Hanson. EPSPS duplication and mutation involved in glyphosate resistance in the allotetraploid weed species Poa annua L.
Pest management science.
2019 Jun; 75(6):1663-1670. doi:
10.1002/ps.5284
. [PMID: 30506940] - Zhaofeng Huang, Yan Liu, Chaoxian Zhang, Cuilan Jiang, Hongjuan Huang, Shouhui Wei. Molecular basis of natural tolerance to glyphosate in Convolvulus arvensis.
Scientific reports.
2019 05; 9(1):8133. doi:
10.1038/s41598-019-44583-8
. [PMID: 31148556] - Maria J García, Candelario Palma-Bautista, Antonia M Rojano-Delgado, Enzo Bracamonte, João Portugal, Ricardo Alcántara-de la Cruz, Rafael De Prado. The Triple Amino Acid Substitution TAP-IVS in the EPSPS Gene Confers High Glyphosate Resistance to the Superweed Amaranthus hybridus.
International journal of molecular sciences.
2019 May; 20(10):. doi:
10.3390/ijms20102396
. [PMID: 31096560] - Ruili Lv, Lei Han, Binbin Xiao, Chaoxia Xiao, Zongze Yang, Hao Wang, Huan Wang, Bao Liu, Chunwu Yang. An extracted tetraploid wheat harbouring the BBAA component of common wheat shows anomalous shikimate and sucrose metabolism.
BMC plant biology.
2019 May; 19(1):188. doi:
10.1186/s12870-019-1796-9
. [PMID: 31064324] - Spyridon A Petropoulos, Ângela Fernandes, Nikolaos Tzortzakis, Marina Sokovic, Ana Ciric, Lillian Barros, Isabel C F R Ferreira. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions.
Food research international (Ottawa, Ont.).
2019 05; 119(?):859-868. doi:
10.1016/j.foodres.2018.10.069
. [PMID: 30884726] - Eric E Hernández-Domínguez, Erandi Vargas-Ortiz, Esaú Bojórquez-Velázquez, Alberto Barrera-Pacheco, María S Santos-Díaz, Nancy G Camarena-Rangel, Ana P Barba de la Rosa. Molecular characterization and in vitro interaction analysis of Op14-3-3 μ protein from Opuntia ficus-indica: identification of a new client protein from shikimate pathway.
Journal of proteomics.
2019 04; 198(?):151-162. doi:
10.1016/j.jprot.2019.01.013
. [PMID: 30677553] - Łukasz Sikorski, Michał Baciak, Agnieszka Bęś, Barbara Adomas. The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species.
Aquatic toxicology (Amsterdam, Netherlands).
2019 Apr; 209(?):70-80. doi:
10.1016/j.aquatox.2019.01.021
. [PMID: 30739875] - Z P Adams, J Ehlting, R Edwards. The regulatory role of shikimate in plant phenylalanine metabolism.
Journal of theoretical biology.
2019 02; 462(?):158-170. doi:
10.1016/j.jtbi.2018.11.005
. [PMID: 30412698] - Abdulrahman L Al-Malki. Shikimic acid from Artemisia absinthium inhibits protein glycation in diabetic rats.
International journal of biological macromolecules.
2019 Feb; 122(?):1212-1216. doi:
10.1016/j.ijbiomac.2018.09.072
. [PMID: 30227208] - Klaus Brilisauer, Johanna Rapp, Pascal Rath, Anna Schöllhorn, Lisa Bleul, Elisabeth Weiß, Mark Stahl, Stephanie Grond, Karl Forchhammer. Cyanobacterial antimetabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms.
Nature communications.
2019 02; 10(1):545. doi:
10.1038/s41467-019-08476-8
. [PMID: 30710081] - Moon Joon Kim, Deok Yong Sim, Hye Min Lee, Hyo-Jung Lee, Sung-Hoon Kim. Hypolipogenic Effect of Shikimic Acid Via Inhibition of MID1IP1 and Phosphorylation of AMPK/ACC.
International journal of molecular sciences.
2019 Jan; 20(3):. doi:
10.3390/ijms20030582
. [PMID: 30700011] - Songwei Wang, Cong Fu, Muhammad Bilal, Hongbo Hu, Wei Wang, Xuehong Zhang. Enhanced biosynthesis of arbutin by engineering shikimate pathway in Pseudomonas chlororaphis P3.
Microbial cell factories.
2018 Nov; 17(1):174. doi:
10.1186/s12934-018-1022-8
. [PMID: 30414616] - Bin Liu, Eve Kaurilind, Yifan Jiang, Ülo Niinemets. Methyl salicylate differently affects benzenoid and terpenoid volatile emissions in Betula pendula.
Tree physiology.
2018 10; 38(10):1513-1525. doi:
10.1093/treephys/tpy050
. [PMID: 29931321] - Qi Wang, Shaohua Zeng, Xiangyu Wu, Hehua Lei, Ying Wang, Huiru Tang. Interspecies Developmental Differences in Metabonomic Phenotypes of Lycium ruthenicum and L. barbarum Fruits.
Journal of proteome research.
2018 09; 17(9):3223-3236. doi:
10.1021/acs.jproteome.8b00349
. [PMID: 30085679] - Muhammad Bilal, Songwei Wang, Hafiz M N Iqbal, Yuping Zhao, Hongbo Hu, Wei Wang, Xuehong Zhang. Metabolic engineering strategies for enhanced shikimate biosynthesis: current scenario and future developments.
Applied microbiology and biotechnology.
2018 Sep; 102(18):7759-7773. doi:
10.1007/s00253-018-9222-z
. [PMID: 30014168] - Guidi Zhong, Zhonghua Wu, Nian Liu, Jun Yin. Phosphate alleviation of glyphosate-induced toxicity in Hydrocharis dubia (Bl.) Backer.
Aquatic toxicology (Amsterdam, Netherlands).
2018 Aug; 201(?):91-98. doi:
10.1016/j.aquatox.2018.05.025
. [PMID: 29894895] - Mitsuko Kishi-Kaboshi, Shigemi Seo, Akira Takahashi, Hirohiko Hirochika. The MAMP-Responsive MYB Transcription Factors MYB30, MYB55 and MYB110 Activate the HCAA Synthesis Pathway and Enhance Immunity in Rice.
Plant & cell physiology.
2018 May; 59(5):903-915. doi:
10.1093/pcp/pcy062
. [PMID: 29562362] - Stephanie M Prezioso, Kevin Xue, Nelly Leung, Scott D Gray-Owen, Dinesh Christendat. Shikimate Induced Transcriptional Activation of Protocatechuate Biosynthesis Genes by QuiR, a LysR-Type Transcriptional Regulator, in Listeria monocytogenes.
Journal of molecular biology.
2018 04; 430(9):1265-1283. doi:
10.1016/j.jmb.2018.03.003
. [PMID: 29530613] - Kateryna Zhalnina, Katherine B Louie, Zhao Hao, Nasim Mansoori, Ulisses Nunes da Rocha, Shengjing Shi, Heejung Cho, Ulas Karaoz, Dominique Loqué, Benjamin P Bowen, Mary K Firestone, Trent R Northen, Eoin L Brodie. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly.
Nature microbiology.
2018 04; 3(4):470-480. doi:
10.1038/s41564-018-0129-3
. [PMID: 29556109] - Yu Mei, Yufang Xu, Shipeng Wang, Lihong Qiu, Mingqi Zheng. Investigation of glyphosate resistance levels and target-site based resistance (TSR) mechanisms in Conyza canadensis (L.) from apple orchards around areas of Bohai seas and Loess Plateau in China.
Pesticide biochemistry and physiology.
2018 Apr; 146(?):7-12. doi:
10.1016/j.pestbp.2017.12.008
. [PMID: 29626994] - Christine Brückner, Mislav Oreb, Gotthard Kunze, Eckhard Boles, Joanna Tripp. An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae.
FEMS yeast research.
2018 03; 18(2):. doi:
10.1093/femsyr/foy017
. [PMID: 29462295] - Shatrupa Ray, Sandhya Mishra, Kartikay Bisen, Surendra Singh, Birinchi Kumar Sarma, Harikesh Bahadur Singh. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway.
Microbiological research.
2018 Mar; 207(?):100-107. doi:
10.1016/j.micres.2017.11.011
. [PMID: 29458844] - Benjamin J Knollenberg, Jingjing Liu, Shu Yu, Hong Lin, Li Tian. Cloning and functional characterization of a p-coumaroyl quinate/shikimate 3'-hydroxylase from potato (Solanum tuberosum).
Biochemical and biophysical research communications.
2018 02; 496(2):462-467. doi:
10.1016/j.bbrc.2018.01.075
. [PMID: 29337064] - Heng Li, Chaoning Liang, Wei Chen, Jian-Ming Jin, Shuang-Yan Tang, Yong Tao. Monitoring in vivo metabolic flux with a designed whole-cell metabolite biosensor of shikimic acid.
Biosensors & bioelectronics.
2017 Dec; 98(?):457-465. doi:
10.1016/j.bios.2017.07.022
. [PMID: 28715793] - Joseph H Lynch, Irina Orlova, Chengsong Zhao, Longyun Guo, Rohit Jaini, Hiroshi Maeda, Tariq Akhtar, Junellie Cruz-Lebron, David Rhodes, John Morgan, Guillaume Pilot, Eran Pichersky, Natalia Dudareva. Multifaceted plant responses to circumvent Phe hyperaccumulation by downregulation of flux through the shikimate pathway and by vacuolar Phe sequestration.
The Plant journal : for cell and molecular biology.
2017 Dec; 92(5):939-950. doi:
10.1111/tpj.13730
. [PMID: 28977710] - Keliang Chen, Xuwen Zhang, Weiguang Sun, Junjun Liu, Jing Yang, Chunmei Chen, Xiulan Liu, Limin Gao, Jianping Wang, Hua Li, Zengwei Luo, Yongbo Xue, Hucheng Zhu, Yonghui Zhang. Manginoids A-G: Seven Monoterpene-Shikimate-Conjugated Meroterpenoids with a Spiro Ring System from Guignardia mangiferae.
Organic letters.
2017 11; 19(21):5956-5959. doi:
10.1021/acs.orglett.7b02955
. [PMID: 29039958] - Münevver Doğramaci, James V Anderson, Wun S Chao, David P Horvath, Alvaro G Hernandez, Mark A Mikel, Michael E Foley. Foliar Glyphosate Treatment Alters Transcript and Hormone Profiles in Crown Buds of Leafy Spurge and Induces Dwarfed and Bushy Phenotypes throughout its Perennial Lifecycle.
The plant genome.
2017 11; 10(3):. doi:
10.3835/plantgenome2016.09.0098
. [PMID: 29293817] - Marina de Lyra Soriano Saleme, Igor Cesarino, Lívia Vargas, Hoon Kim, Ruben Vanholme, Geert Goeminne, Rebecca Van Acker, Fernando Campos de Assis Fonseca, Andreas Pallidis, Wannes Voorend, José Nicomedes Junior, Dharshana Padmakshan, Jan Van Doorsselaere, John Ralph, Wout Boerjan. Silencing CAFFEOYL SHIKIMATE ESTERASE Affects Lignification and Improves Saccharification in Poplar.
Plant physiology.
2017 Nov; 175(3):1040-1057. doi:
10.1104/pp.17.00920
. [PMID: 28878037] - Ana Zabalza, Luis Orcaray, Manuel Fernández-Escalada, Ainhoa Zulet-González, Mercedes Royuela. The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots.
Pesticide biochemistry and physiology.
2017 Sep; 141(?):96-102. doi:
10.1016/j.pestbp.2016.12.005
. [PMID: 28911748] - Javid Gherekhloo, Pablo T Fernández-Moreno, Ricardo Alcántara-de la Cruz, Eduardo Sánchez-González, Hugo E Cruz-Hipolito, José A Domínguez-Valenzuela, Rafael De Prado. Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica).
Scientific reports.
2017 07; 7(1):6702. doi:
10.1038/s41598-017-06772-1
. [PMID: 28751654] - Ramu S Vemanna, Amaranatha Reddy Vennapusa, Murugesh Easwaran, Babitha K Chandrashekar, Hanumantha Rao, Kirankumar Ghanti, Chinta Sudhakar, Kirankumar S Mysore, Udayakumar Makarla. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.
Plant biotechnology journal.
2017 Jul; 15(7):794-804. doi:
10.1111/pbi.12632
. [PMID: 27611904] - Jose Alfredo Dominguez-Valenzuela, Javid Gherekhloo, Pablo Tomás Fernández-Moreno, Hugo Enrique Cruz-Hipolito, Ricardo Alcántara-de la Cruz, Eduardo Sánchez-González, Rafael De Prado. First confirmation and characterization of target and non-target site resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) from Mexico.
Plant physiology and biochemistry : PPB.
2017 Jun; 115(?):212-218. doi:
10.1016/j.plaphy.2017.03.022
. [PMID: 28384561] - Zhenhe Su, Hongfu Chen, Ping Wang, Simon Tombosa, Liangcheng Du, Yong Han, Yuemao Shen, Guoliang Qian, Fengquan Liu. 4-Hydroxybenzoic acid is a diffusible factor that connects metabolic shikimate pathway to the biosynthesis of a unique antifungal metabolite in Lysobacter enzymogenes.
Molecular microbiology.
2017 04; 104(1):163-178. doi:
10.1111/mmi.13619
. [PMID: 28105648] - Ridha Ben Said, Arafa I Hamed, Usam A Mahalel, Abdullah Sulaiman Al-Ayed, Mariusz Kowalczyk, Jaroslaw Moldoch, Wieslaw Oleszek, Anna Stochmal. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT.
International journal of molecular sciences.
2017 Mar; 18(3):. doi:
10.3390/ijms18030512
. [PMID: 28257091] - Kan Chen, Chang-Qian Wang, Yu-Qi Fan, Zhi-Hua Han, Yue Wang, Lin Gao, Hua-Su Zeng. [Lipid-lowering effect of seven traditional Chinese medicine monomers in zebrafish system].
Sheng li xue bao : [Acta physiologica Sinica].
2017 Feb; 69(1):55-60. doi:
. [PMID: 28217808]
- Ming-Yi Lee, Wen-Pin Hung, Shu-Hsien Tsai. Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol.
World journal of microbiology & biotechnology.
2017 Feb; 33(2):25. doi:
10.1007/s11274-016-2192-3
. [PMID: 28044275] - Fabiana Antognoni, Mariacaterina Lianza, Ferruccio Poli, Michela Buccioni, Claudia Santinelli, Giovanni Caprioli, Romilde Iannarelli, Giulio Lupidi, Elisabetta Damiani, Daniela Beghelli, Alessia Alunno, Filippo Maggi. Polar extracts from the berry-like fruits of Hypericum androsaemum L. as a promising ingredient in skin care formulations.
Journal of ethnopharmacology.
2017 Jan; 195(?):255-265. doi:
10.1016/j.jep.2016.11.029
. [PMID: 27864112] - Xiaoqing Rong-Mullins, Apoorva Ravishankar, Kirsten A McNeal, Zachery R Lonergan, Audrey C Biega, J Philip Creamer, Jennifer E G Gallagher. Genetic variation in Dip5, an amino acid permease, and Pdr5, a multiple drug transporter, regulates glyphosate resistance in S. cerevisiae.
PloS one.
2017; 12(11):e0187522. doi:
10.1371/journal.pone.0187522
. [PMID: 29155836] - Takayuki Tohge, Alisdair R Fernie. An Overview of Compounds Derived from the Shikimate and Phenylpropanoid Pathways and Their Medicinal Importance.
Mini reviews in medicinal chemistry.
2017; 17(12):1013-1027. doi:
10.2174/1389557516666160624123425
. [PMID: 27342231]