Pyridoxine (BioDeep_00000001420)
Secondary id: BioDeep_00000399887, BioDeep_00000869388
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C8H11NO3 (169.0739)
中文名称: 维生素B6盐酸盐, 吡哆醇, 吡哆素, 维生素B6, 吡多素
谱图信息:
最多检出来源 Homo sapiens(plant) 14.08%
Last reviewed on 2024-09-13.
Cite this Page
Pyridoxine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/pyridoxine (retrieved
2024-12-26) (BioDeep RN: BioDeep_00000001420). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC1=C(O)C(CO)=C(CO)C=N1
InChI: InChI=1/C8H11NO3/c1-5-8(12)7(4-11)6(3-10)2-9-5/h2,10-12H,3-4H2,1H3
描述信息
Pyridoxine, also known vitamin B6, is commonly found in food and is used as a dietary supplement. Pyridoxine is an essential nutrient, meaning the body cannot synthesize it, and it must be obtained from the diet. Sources in the diet include fruit, vegetables, and grain. Although pyridoxine and vitamin B6 are still frequently used as synonyms, especially by medical researchers, this practice is sometimes misleading (PMID: 2192605). Technically, pyridoxine is one of the compounds that can be called vitamin B6 or it is a member of the family of B6 vitamins. Healthy human blood levels of pyridoxine are 2.1 - 21.7 ng/mL. Pyridoxine is readily converted to pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids and aminolevulinic acid. Pyridoxine assists in the balancing of sodium and potassium as well as promoting red blood cell production. Therefore pyridoxine is required by the body to make amino acids, carbohydrates, and lipids. It is linked to cancer immunity and helps fight the formation of homocysteine. It has been suggested that pyridoxine might help children with learning difficulties, and may also prevent dandruff, eczema, and psoriasis. In addition, pyridoxine can help balance hormonal changes in women and aid in immune system. Lack of pyridoxine may cause anemia, nerve damage, seizures, skin problems, and sores in the mouth (Wikipedia). Deficiency of pyridoxine, though rare because of widespread distribution in foods, leads to the development of peripheral neuritis in adults and affects the central nervous system in children (DOSE - 3rd edition). As a supplement pyridoxine is used to treat and prevent pyridoxine deficiency, sideroblastic anaemia, pyridoxine-dependent epilepsy, certain metabolic disorders, problems from isoniazid, and certain types of mushroom poisoning. Pyridoxine in combination with doxylamine is used as a treatment for morning sickness in pregnant women.
Found in rice husks, cane molasses, yeast, wheat germ and cod liver oils. Vitamin, dietary supplement, nutrient. Pyridoxine is one of the compounds that can be called vitamin B6, along with pyridoxal and pyridoxamine. It differs from pyridoxamine by the substituent at the 4 position. It is often used as pyridoxine hydrochloride. Pyridoxine in the urine is a biomarker for the consumption of soy products.
Acquisition and generation of the data is financially supported in part by CREST/JST.
A - Alimentary tract and metabolism > A11 - Vitamins
D018977 - Micronutrients > D014815 - Vitamins
COVID info from COVID-19 Disease Map
KEIO_ID P053
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.
Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.
同义名列表
29 个代谢物同义名
3-Hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridine; 2-Methyl-3-hydroxy-4,5-bis(hydroxymethyl)pyridine; 2-Methyl-4,5-bis(hydroxymethyl)-3-hydroxypyridine; 2-Methyl-3-hydroxy-4,5-di(hydroxymethyl)pyridine; 2-Methyl-3-hydroxy-4,5-dihydroxymethylpyridine; 4,5-bis(hydroxymethyl)-2-methylpyridin-3-ol; 5-Hydroxy-6-methyl-3,4-pyridinedimethanol; 3-Hydroxy-4,5-dimethylol-alpha-picoline; 3-Hydroxy-2-picoline-4,5-dimethanol; 3-Hydroxy-4,5-dimethylol-α-picoline; 3-Hydroxy-4,5-dimethylol-a-picoline; Pyridoxine hydrochloride; Pyridoxol hydrochloride; Pyridoxine (Vitamin B6); Pyridoxolum; Pyridoxinum; Piridossina; Piridoxina; Pyridoxine; Vitamin B6; Pyridoxin; Pyridoxol; Gravidox; Adermine; Hydoxin; Rodex; Pyridoxine; Pyridoxine; Pyridoxine
数据库引用编号
42 个数据库交叉引用编号
- ChEBI: CHEBI:16709
- KEGG: C00314
- KEGGdrug: D08454
- PubChem: 1054
- HMDB: HMDB0000239
- Metlin: METLIN2202
- DrugBank: DB00165
- ChEMBL: CHEMBL1364
- Wikipedia: Pyridoxine
- MeSH: Pyridoxine
- MetaCyc: PYRIDOXINE
- KNApSAcK: C00001551
- foodb: FDB000574
- chemspider: 1025
- CAS: 65-23-6
- MoNA: KO001637
- MoNA: KO003756
- MoNA: PS033202
- MoNA: KO003753
- MoNA: KO003755
- MoNA: KO001636
- MoNA: PS033207
- MoNA: PS033203
- MoNA: PR100602
- MoNA: KO001638
- MoNA: PR100196
- MoNA: PS033201
- MoNA: KO001639
- MoNA: KO003757
- MoNA: KO003754
- MoNA: KO001640
- PMhub: MS000000478
- PubChem: 3608
- PDB-CCD: UEG
- 3DMET: B00087
- NIKKAJI: J2.356F
- RefMet: Pyridoxine
- medchemexpress: HY-B1328
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-80
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-829
- KNApSAcK: 16709
- LOTUS: LTS0130302
分类词条
相关代谢途径
Reactome(4)
PlantCyc(0)
代谢反应
348 个相关的代谢反应过程信息。
Reactome(72)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXAP ⟶ H2O2 + NH4+ + PXLP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of water-soluble vitamins and cofactors:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXAP ⟶ H2O2 + NH4+ + PXLP
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXAP ⟶ H2O2 + NH4+ + PXLP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamins B6 activation to pyridoxal phosphate:
ATP + PXL ⟶ ADP + PXLP
BioCyc(56)
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis (yeast):
2'-hydroxypyridoxol + A(H2) ⟶ A + H2O + pyridoxine
- superpathway of thiamin diphosphate biosynthesis III (eukaryotes):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- 4-amino-2-methyl-5-phosphomethylpyrimidine biosynthesis:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- vitamin B6 degradation:
4-pyridoxolactone + H2O ⟶ 4-pyridoxate + H+
- pyridoxal 5'-phosphate salvage II (plants):
H2O + pyridoxine 5'-phosphate ⟶ phosphate + pyridoxine
- pyridoxal 5'-phosphate salvage I:
ATP + pyridoxal ⟶ ADP + H+ + PLP
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
ATP + pyridoxal ⟶ ADP + H+ + PLP
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage pathway:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
ATP + pyridoxal ⟶ ADP + H+ + PLP
- pyridoxal 5'-phosphate salvage II (plants):
ATP + pyridoxal ⟶ ADP + H+ + PLP
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- vitamin B6 degradation:
pyridoxamine + pyruvate ⟶ ala + pyridoxal
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
ATP + pyridoxine ⟶ ADP + H+ + pyridoxine 5'-phosphate
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
ATP + pyridoxine ⟶ ADP + H+ + pyridoxine 5'-phosphate
- pyridoxal 5'-phosphate salvage I:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- vitamin B6 degradation:
2-(acetamidomethylene)succinate + H2O ⟶ CO2 + acetate + ammonia + succinate semialdehyde
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- vitamin B6 degradation:
2-(acetamidomethylene)succinate + H2O ⟶ CO2 + acetate + ammonia + succinate semialdehyde
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pyridoxal 5'-phosphate salvage pathway:
H2O + Oxygen + PXAP ⟶ H2O2 + PXLP + ammonia
INOH(1)
- Vitamin B6 metabolism ( Vitamin B6 metabolism ):
H2O + O2 + Pyridoxal ⟶ 4-Pyridoxic acid + H2O2
PlantCyc(203)
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
ATP + pyridoxal ⟶ ADP + H+ + PLP
- pyridoxal 5'-phosphate salvage II (plants):
ATP + pyridoxal ⟶ ADP + H+ + PLP
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
ATP + pyridoxal ⟶ ADP + H+ + PLP
- pyridoxal 5'-phosphate salvage I:
ATP + pyridoxal ⟶ ADP + H+ + PLP
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ PLP + ammonium + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
ATP + pyridoxine ⟶ ADP + H+ + pyridoxine 5'-phosphate
- pyridoxal 5'-phosphate salvage I:
ATP + pyridoxine ⟶ ADP + H+ + pyridoxine 5'-phosphate
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- pyridoxal 5'-phosphate salvage II (plants):
NADP+ + pyridoxine ⟶ H+ + NADPH + pyridoxal
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(11)
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Hypophosphatasia:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6:
2-Oxo-3-hydroxy-4-phosphobutanoic acid + L-Glutamic acid ⟶ O-Phospho-4-hydroxy-L-threonine + Oxoglutaric acid
- Vitamin B6 Metabolism:
Oxygen + Pyridoxamine 5'-phosphate + Water ⟶ Ammonia + Hydrogen peroxide + Pyridoxal 5'-phosphate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Hypophosphatasia:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Hypophosphatasia:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
PharmGKB(0)
67 个相关的物种来源信息
- 28211 - Alphaproteobacteria: LTS0130302
- 3701 - Arabidopsis: LTS0130302
- 3702 - Arabidopsis thaliana: 10.1038/SREP35778
- 3702 - Arabidopsis thaliana: LTS0130302
- 6660 - Artemia: LTS0130302
- 85549 - Artemia salina: 10.1021/JF60200A008
- 85549 - Artemia salina: LTS0130302
- 38009 - Artemiidae: LTS0130302
- 6656 - Arthropoda: LTS0130302
- 4890 - Ascomycota: LTS0130302
- 3078 - Auxenochlorella pyrenoidosa: 10.1016/J.LFS.2004.10.055
- 2 - Bacteria: LTS0130302
- 6658 - Branchiopoda: LTS0130302
- 3700 - Brassicaceae: LTS0130302
- 5475 - Candida: LTS0130302
- 3071 - Chlorella: LTS0130302
- 3077 - Chlorella vulgaris: 10.1016/J.LFS.2004.10.055
- 35461 - Chlorellaceae: LTS0130302
- 3041 - Chlorophyta: LTS0130302
- 7711 - Chordata: LTS0130302
- 1890464 - Chroococcaceae: LTS0130302
- 3028117 - Cyanophyceae: LTS0130302
- 604195 - Cyberlindnera: LTS0130302
- 4903 - Cyberlindnera jadinii: 10.1021/JA0113201
- 4903 - Cyberlindnera jadinii: LTS0130302
- 106591 - Ensifer: LTS0130302
- 543 - Enterobacteriaceae: LTS0130302
- 561 - Escherichia: LTS0130302
- 562 - Escherichia coli: LTS0130302
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 2759 - Eukaryota: LTS0130302
- 4751 - Fungi: LTS0130302
- 1236 - Gammaproteobacteria: LTS0130302
- 9604 - Hominidae: LTS0130302
- 9605 - Homo: LTS0130302
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0130302
- 124778 - Illicium verum Hook.f.: -
- 3398 - Magnoliopsida: LTS0130302
- 3629 - Malvaceae: LTS0130302
- 40674 - Mammalia: LTS0130302
- 33208 - Metazoa: LTS0130302
- 10066 - Muridae: LTS0130302
- 10088 - Mus: LTS0130302
- 10090 - Mus musculus: LTS0130302
- 10090 - Mus musculus: NA
- 3070 - Oocystaceae: LTS0130302
- 115784 - Phaffomycetaceae: LTS0130302
- 82115 - Rhizobiaceae: LTS0130302
- 4930 - Saccharomyces: LTS0130302
- 4932 - Saccharomyces cerevisiae: LTS0130302
- 4893 - Saccharomycetaceae: LTS0130302
- 4891 - Saccharomycetes: LTS0130302
- 35493 - Streptophyta: LTS0130302
- 1890426 - Synechococcaceae: LTS0130302
- 1129 - Synechococcus: LTS0130302
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 32046 - Synechococcus elongatus: LTS0130302
- 3640 - Theobroma: LTS0130302
- 3641 - Theobroma cacao: 10.1515/ZNC-1998-9-1002
- 3641 - Theobroma cacao: LTS0130302
- 58023 - Tracheophyta: LTS0130302
- 75966 - Trebouxiophyceae: LTS0130302
- 33090 - Viridiplantae: LTS0130302
- 4577 - Zea mays: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Anna S Frolova, Anna D Fokina, Irina S Milentyeva, Lyudmila K Asyakina, Larisa A Proskuryakova, Alexander Y Prosekov. The Biological Active Substances of Taraxacum officinale and Arctium lappa from the Siberian Federal District.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063263
. [PMID: 38542237] - Samah Ali, Marwa Dayo, Sana Alahmadi, Amr Mohamed. Chitosan-Supported ZnO Nanoparticles: Their Green Synthesis, Characterization, and Application for the Removal of Pyridoxine HCl (Vitamin B6) from Aqueous Media.
Molecules (Basel, Switzerland).
2024 Feb; 29(4):. doi:
10.3390/molecules29040828
. [PMID: 38398580] - Priscille Steensma, Marion Eisenhut, Maite Colinas, Laise Rosado-Souza, Alisdair R Fernie, Andreas P M Weber, Teresa B Fitzpatrick. PYRIDOX(AM)INE 5'-PHOSPHATE OXIDASE3 of Arabidopsis thaliana maintains carbon/nitrogen balance in distinct environmental conditions.
Plant physiology.
2023 09; 193(2):1433-1455. doi:
10.1093/plphys/kiad411
. [PMID: 37453131] - Rui-Peng Xie, Xu-Fang Liang, Di Peng, Qi-Wei Zhang, Dong-Liang Wu, Jun-Liang Chen, Ming Zeng. Dietary supplementation of pyridoxine can enhance the growth performance and improve the protein, lipid utilization efficiency of mandarin fish (Siniperca chuatsi).
Fish physiology and biochemistry.
2023 Aug; ?(?):. doi:
10.1007/s10695-023-01223-3
. [PMID: 37542702] - Lina Yang, Xiaohong Liu, Jie Wang, Lianwei Li, Wanzhen Feng, Zhaolin Ji. Pyridoxine biosynthesis protein MoPdx1 affects the development and pathogenicity of Magnaporthe oryzae.
Frontiers in cellular and infection microbiology.
2023; 13(?):1099967. doi:
10.3389/fcimb.2023.1099967
. [PMID: 36824685] - Je Won Ko, Sookyoung Jeon, Young Hye Kwon. Dietary vitamin B6 restriction aggravates neurodegeneration in mice fed a high-fat diet.
Life sciences.
2022 Nov; 309(?):121041. doi:
10.1016/j.lfs.2022.121041
. [PMID: 36208656] - Serap Andac-Ozturk, Gökçen Garipoğlu, Jale Çatak, Mustafa Yaman. Investigation of the vitamins B1, B2, and B6 vitamers bioaccessibilities of canned, dried legumes after in vitro gastrointestinal digestion system.
Food research international (Ottawa, Ont.).
2022 10; 160(?):111671. doi:
10.1016/j.foodres.2022.111671
. [PMID: 36076445] - Thayse Evellyn Silva do Nascimento, Jorge A López, Eder Alves Barbosa, Marcela Abbott Galvão Ururahy, Adriana da Silva Brito, Gabriel Araujo-Silva, Jefferson Romáryo Duarte da Luz, Maria das Graças Almeida. Mass Spectrometric Identification of Licania rigida Benth Leaf Extracts and Evaluation of Their Therapeutic Effects on Lipopolysaccharide-Induced Inflammatory Response.
Molecules (Basel, Switzerland).
2022 Sep; 27(19):. doi:
10.3390/molecules27196291
. [PMID: 36234829] - Isaac Duah Boateng. A critical review of current technologies used to reduce ginkgotoxin, ginkgotoxin-5'-glucoside, ginkgolic acid, allergic glycoprotein, and cyanide in Ginkgo biloba L. seed.
Food chemistry.
2022 Jul; 382(?):132408. doi:
10.1016/j.foodchem.2022.132408
. [PMID: 35176549] - Christopher J Cifelli, Sanjiv Agarwal, Victor L Fulgoni Iii. Association between Intake of Total Dairy and Individual Dairy Foods and Markers of Folate, Vitamin B6 and Vitamin B12 Status in the U.S. Population.
Nutrients.
2022 Jun; 14(12):. doi:
10.3390/nu14122441
. [PMID: 35745171] - D X Li, Z H Chen, Y Jin, J Q Song, M Q Li, Y P Liu, X Y Li, Y X Chen, Y N Zhang, G Y Lyu, L Y Sun, Z J Zhu, Y Zhang, Y L Yang. [Clinical characteristics and CBS gene analysis of 13 cases with classic homocystinuria].
Zhonghua er ke za zhi = Chinese journal of pediatrics.
2022 Jun; 60(6):533-538. doi:
10.3760/cma.j.cn112140-20220305-00180
. [PMID: 35658358] - Takahiro Yamashiro, Tomoya Yasujima, Hiroaki Yuasa. Animal species differences in the pyridoxine transport function of SLC19A3: Absence of Slc19a3-mediated pyridoxine uptake in the rat small intestine.
Drug metabolism and pharmacokinetics.
2022 Jun; 44(?):100456. doi:
10.1016/j.dmpk.2022.100456
. [PMID: 35512554] - Tetiana Kovalchuk, Oksana Boyarchuk. Serum pyridoxine, folate, cobalamin, and homocysteine levels in children presenting with vasovagal syncope.
Cardiology in the young.
2022 May; 32(5):762-768. doi:
10.1017/s1047951121003036
. [PMID: 34321136] - Eri Ogawa, Kazuhiro Shimura, Hiroshi Yoshihashi, Sahoko Miyama. Status Epilepticus due to Asfotase Alfa Interruption in Perinatal Severe Hypophosphatasia.
Pediatric neurology.
2022 05; 130(?):4-6. doi:
10.1016/j.pediatrneurol.2021.12.009
. [PMID: 35303588] - Laura A Tseng, Jose E Abdenur, Ashley Andrews, Verena G Aziz, Levinus A Bok, Monica Boyer, Daniela Buhas, Hans Hartmann, Emma J Footitt, Sabine Grønborg, Mirian C H Janssen, Nicola Longo, Roelineke J Lunsing, Alex E MacKenzie, Frits A Wijburg, Sidney M Gospe, Curtis R Coughlin, Clara D M van Karnebeek. Timing of therapy and neurodevelopmental outcomes in 18 families with pyridoxine-dependent epilepsy.
Molecular genetics and metabolism.
2022 04; 135(4):350-356. doi:
10.1016/j.ymgme.2022.02.005
. [PMID: 35279367] - Sarah L Stewart, Simone Thomas, Erol Höke, David Simpson, J Robinson Singleton, Ahmet Höke. Vitamin B6 levels do not correlate with severity of neuropathy in chronic idiopathic axonal polyneuropathy.
Journal of the peripheral nervous system : JPNS.
2022 03; 27(1):31-37. doi:
10.1111/jns.12480
. [PMID: 34931740] - Prakriti Kashyap, Sanjay Kumar. Ice structuring protein extract of Hordeum vulgare var. dolma grain reduces drip loss and loss of soluble vitamin content in peas during frozen storage.
Cryobiology.
2022 Feb; 104(?):1-7. doi:
10.1016/j.cryobiol.2021.11.178
. [PMID: 34826400] - Jin-Peng Zhu, Hao Gong, Faiza Labreche, Xiao-Hong Kou, Cai-E Wu, Gong-Jian Fan, Ting-Ting Li, Jia-Hong Wang, Dong-Bei Shen. Age-dependent alteration in metabolism of vitamin B6 , neurotransmitters, and amino acids after 4'-O-methylpyridoxine administration in rats.
Journal of food science.
2022 Jan; 87(1):466-480. doi:
10.1111/1750-3841.15997
. [PMID: 34914095] - Tomoya Sano, Yasushi Masuda, Hironobu Yasuno, Tadahiro Shinozawa, Takeshi Watanabe, Masaaki Kakehi. Blood Neurofilament Light Chain as a Potential Biomarker for Central and Peripheral Nervous Toxicity in Rats.
Toxicological sciences : an official journal of the Society of Toxicology.
2021 12; 185(1):10-18. doi:
10.1093/toxsci/kfab122
. [PMID: 34677616] - Xian Wu, Per M Ueland, Jatin Roper, Gar Yee Koh, Xu Liang, Jimmy W Crott, Ömer H Yilmaz, Roderick T Bronson, Joel B Mason. Combined Supplementation with Vitamin B-6 and Curcumin is Superior to Either Agent Alone in Suppressing Obesity-Promoted Colorectal Tumorigenesis in Mice.
The Journal of nutrition.
2021 12; 151(12):3678-3688. doi:
10.1093/jn/nxab320
. [PMID: 34590119] - Elisabeth Synnøve Nilsen Husebye, Bettina Riedel, Anne-Lise Bjørke-Monsen, Olav Spigset, Anne Kjersti Daltveit, Nils Erik Gilhus, Marte Helene Bjørk. Vitamin B status and association with antiseizure medication in pregnant women with epilepsy.
Epilepsia.
2021 12; 62(12):2968-2980. doi:
10.1111/epi.17076
. [PMID: 34590314] - Wen Zhang, Manman Shi, Fang Zhang, Fuliang Cao, Erzheng Su. A Facile Method to Determine the Native Contents of 4'-O-Methylpyridoxine and 4'-O-Methylpyridoxine-5'-glucoside in Ginkgo biloba Seeds.
Journal of agricultural and food chemistry.
2021 Dec; 69(47):14270-14277. doi:
10.1021/acs.jafc.1c04937
. [PMID: 34797654] - Paula A Guerrero, Yoshiko Murakami, Ankita Malik, Peter H Seeberger, Taroh Kinoshita, Daniel Varón Silva. Rescue of Glycosylphosphatidylinositol-Anchored Protein Biosynthesis Using Synthetic Glycosylphosphatidylinositol Oligosaccharides.
ACS chemical biology.
2021 11; 16(11):2297-2306. doi:
10.1021/acschembio.1c00465
. [PMID: 34618440] - Jin-Peng Zhu, Hao Gong, Faiza Labreche, Xiao-Hong Kou, Cai-E Wu, Gong-Jian Fan, Ting-Ting Li, Jia-Hong Wang. In vivo toxicity assessment of 4'-O-methylpyridoxine from Ginkgo biloba seeds: Growth, hematology, metabolism, and oxidative parameters.
Toxicon : official journal of the International Society on Toxinology.
2021 Oct; 201(?):66-73. doi:
10.1016/j.toxicon.2021.08.015
. [PMID: 34425140] - Abdou Madjid Olatounde Amoussa, Lixia Zhang, Camel Lagnika, Asad Riaz, Liuquan Zhang, Xianjin Liu, Trust Beta. Effects of preheating and drying methods on pyridoxine, phenolic compounds, ginkgolic acids, and antioxidant capacity of Ginkgo biloba nuts.
Journal of food science.
2021 Sep; 86(9):4197-4208. doi:
10.1111/1750-3841.15864
. [PMID: 34370293] - Alexandre R Lima, Florinda Gama, Viana Castañeda-Loaiza, Camila Costa, Lisa M Schüler, Tamára Santos, Miguel Salazar, Carla Nunes, Rui M S Cruz, João Varela, Luísa Barreira. Nutritional and Functional Evaluation of Inula crithmoides and Mesembryanthemum nodiflorum Grown in Different Salinities for Human Consumption.
Molecules (Basel, Switzerland).
2021 Jul; 26(15):. doi:
10.3390/molecules26154543
. [PMID: 34361696] - Mathias D G Van den Eynde, Jean L J M Scheijen, Coen D A Stehouwer, Toshio Miyata, Casper G Schalkwijk. Quantification of the B6 vitamers in human plasma and urine in a study with pyridoxamine as an oral supplement; pyridoxamine as an alternative for pyridoxine.
Clinical nutrition (Edinburgh, Scotland).
2021 07; 40(7):4624-4632. doi:
10.1016/j.clnu.2021.05.028
. [PMID: 34229268] - Joseph Zhou, Utibe Effiong. Isolated Pyridoxine Deficiency Presenting as Muscle Spasms in a Patient With Type 2 Diabetes: A Case Report and Literature Review.
The American journal of the medical sciences.
2021 06; 361(6):791-794. doi:
10.1016/j.amjms.2020.10.027
. [PMID: 33958192] - Ning Hua, Yuxian Ning, Hui Zheng, Ledong Zhao, Xuehan Qian, Charles Wormington, Jingyun Wang. Recurrent dislocation of binocular crystal lenses in a patient with cystathionine beta-synthase deficiency.
BMC ophthalmology.
2021 May; 21(1):212. doi:
10.1186/s12886-021-01974-8
. [PMID: 33985475] - Viktor Kožich, Jitka Sokolová, Andrew A M Morris, Markéta Pavlíková, Florian Gleich, Stefan Kölker, Jakub Krijt, Carlo Dionisi-Vici, Matthias R Baumgartner, Henk J Blom, Martina Huemer. Cystathionine β-synthase deficiency in the E-HOD registry-part I: pyridoxine responsiveness as a determinant of biochemical and clinical phenotype at diagnosis.
Journal of inherited metabolic disease.
2021 05; 44(3):677-692. doi:
10.1002/jimd.12338
. [PMID: 33295057] - Sami Akbulut, Parviz Abbasov, Serdar Karakas, Aysun Bay Karabulut, Sezai Yilmaz. Evaluation of Serum Thiamine and Pyridoxine Levels in Patients Undergoing Liver Transplant: A Prospective Study.
Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation.
2021 05; 19(5):457-461. doi:
10.6002/ect.2017.0102
. [PMID: 29292683] - James B Mowry, Greene Shepherd, Robert S Hoffman, Valery Lavergne, Sophie Gosselin, Thomas D Nolin, Anitha Vijayan, Jan T Kielstein, Darren M Roberts, Marc Ghannoum. Extracorporeal treatments for isoniazid poisoning: Systematic review and recommendations from the EXTRIP workgroup.
Pharmacotherapy.
2021 05; 41(5):463-478. doi:
10.1002/phar.2519
. [PMID: 33660266] - Elizabeth C Lorenz, John C Lieske, Barbara M Seide, Julie B Olson, Ramila Mehta, Dawn S Milliner. Recovery From Dialysis in Patients With Primary Hyperoxaluria Type 1 Treated With Pyridoxine: A Report of 3 Cases.
American journal of kidney diseases : the official journal of the National Kidney Foundation.
2021 05; 77(5):816-819. doi:
10.1053/j.ajkd.2020.07.017
. [PMID: 32891627] - Kate Porter, John K Lodge. Determination of selected water-soluble vitamins (thiamine, riboflavin, nicotinamide and pyridoxine) from a food matrix using hydrophilic interaction liquid chromatography coupled with mass spectroscopy.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2021 May; 1171(?):122541. doi:
10.1016/j.jchromb.2021.122541
. [PMID: 33773258] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Wen Zhang, Minmin Zou, Rong Wu, Huijuan Jiang, Fuliang Cao, Erzheng Su. Efficient removal of ginkgotoxin from Ginkgo biloba seed powder by combining endogenous enzymatic hydrolysis with resin adsorption.
Journal of the science of food and agriculture.
2021 Mar; 101(4):1589-1597. doi:
10.1002/jsfa.10778
. [PMID: 32869870] - Jin-Peng Zhu, Hao Gong, Cai-E Wu, Gong-Jian Fan, Ting-Ting Li, Jia-Hong Wang. 4'-O-methylpyridoxine: Preparation from Ginkgo biloba Seeds and Cytotoxicity in GES-1 Cells.
Toxins.
2021 01; 13(2):. doi:
10.3390/toxins13020095
. [PMID: 33530619] - Seyed Mohammad Ghani, Behzad Rezaei, Hamid Reza Jamei, Ali Asghar Ensafi. Novel synthesis of a dual fluorimetric sensor for the simultaneous analysis of levodopa and pyridoxine.
Analytical and bioanalytical chemistry.
2021 Jan; 413(2):377-387. doi:
10.1007/s00216-020-03005-9
. [PMID: 33106947] - Curtis R Coughlin, Laura A Tseng, Jose E Abdenur, Catherine Ashmore, François Boemer, Levinus A Bok, Monica Boyer, Daniela Buhas, Peter T Clayton, Anibh Das, Hanka Dekker, Athanasios Evangeliou, François Feillet, Emma J Footitt, Sidney M Gospe, Hans Hartmann, Majdi Kara, Erle Kristensen, Joy Lee, Rina Lilje, Nicola Longo, Roelineke J Lunsing, Philippa Mills, Maria T Papadopoulou, Phillip L Pearl, Flavia Piazzon, Barbara Plecko, Arushi G Saini, Saikat Santra, Damayanti R Sjarif, Sylvia Stockler-Ipsiroglu, Pasquale Striano, Johan L K Van Hove, Nanda M Verhoeven-Duif, Frits A Wijburg, Sameer M Zuberi, Clara D M van Karnebeek. Consensus guidelines for the diagnosis and management of pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency.
Journal of inherited metabolic disease.
2021 01; 44(1):178-192. doi:
10.1002/jimd.12332
. [PMID: 33200442] - I S Lugovaya. The Use of a Biostimulant Composition to Increase Turkey Viability during the Key Critical Periods of Development.
Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections.
2020 Nov; 495(1):288-290. doi:
10.1134/s0012496620060071
. [PMID: 33486666] - Juliette Bouchereau, Manuel Schiff. Inherited Disorders of Lysine Metabolism: A Review.
The Journal of nutrition.
2020 10; 150(Suppl 1):2556S-2560S. doi:
10.1093/jn/nxaa112
. [PMID: 33000154] - Ioannis Liampas, Vasileios Siokas, Alexios-Fotios A Mentis, Athina-Maria Aloizou, Metaxia Dastamani, Zisis Tsouris, Paraskevi Aslanidou, Alexandros Brotis, Efthimios Dardiotis. Serum Homocysteine, Pyridoxine, Folate, and Vitamin B12 Levels in Migraine: Systematic Review and Meta-Analysis.
Headache.
2020 Sep; 60(8):1508-1534. doi:
10.1111/head.13892
. [PMID: 32615014] - I I Kochish, I S Lugovaya, T O Azarnova, M S Naydensky, A A Antipov, Yu V Petrova, D V Anshakov, E A Zolotukhina. Increased Stress Resistance of the Offspring Egg Cross Chickens when Using Biologically Active Substances before Hatching.
Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections.
2020 Sep; 494(1):236-239. doi:
10.1134/s0012496620050051
. [PMID: 33083880] - Hyo Young Jung, Woosuk Kim, Kyu Ri Hahn, Min Soo Kang, Tae Hyeong Kim, Hyun Jung Kwon, Sung Min Nam, Jin Young Chung, Jung Hoon Choi, Yeo Sung Yoon, Dae Won Kim, Dae Young Yoo, In Koo Hwang. Pyridoxine Deficiency Exacerbates Neuronal Damage after Ischemia by Increasing Oxidative Stress and Reduces Proliferating Cells and Neuroblasts in the Gerbil Hippocampus.
International journal of molecular sciences.
2020 Aug; 21(15):. doi:
10.3390/ijms21155551
. [PMID: 32759679] - Eveline Lefever, Peter Witters, Evelien Gielen, Annick Vanclooster, Wouter Meersseman, Eva Morava, David Cassiman, Michaël R Laurent. Hypophosphatasia in Adults: Clinical Spectrum and Its Association With Genetics and Metabolic Substrates.
Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry.
2020 Jul; 23(3):340-348. doi:
10.1016/j.jocd.2018.12.006
. [PMID: 30655187] - Hyo Young Jung, Woosuk Kim, Kyu Ri Hahn, Hyun Jung Kwon, Sung Min Nam, Jin Young Chung, Yeo Sung Yoon, Dae Won Kim, Dae Young Yoo, In Koo Hwang. Effects of Pyridoxine Deficiency on Hippocampal Function and Its Possible Association with V-Type Proton ATPase Subunit B2 and Heat Shock Cognate Protein 70.
Cells.
2020 04; 9(5):. doi:
10.3390/cells9051067
. [PMID: 32344819] - Kazuteru Watanabe, Atsushi Ishibe, Jun Watanabe, Mitsuyoshi Ota, Shoichi Fujii, Yasushi Ichikawa, Mari S Oba, Itaru Endo. The effect of TJ-28 (Eppikajutsuto) on the prevention of hand-foot syndrome using Capecitabine for colorectal cancer: The Yokohama Clinical Oncology Group Study (YCOG1102).
Indian journal of gastroenterology : official journal of the Indian Society of Gastroenterology.
2020 04; 39(2):204-210. doi:
10.1007/s12664-020-01039-6
. [PMID: 32406009] - Małgorzata Szczuko, Viktoria Hawryłkowicz, Justyna Kikut, Arleta Drozd. The implications of vitamin content in the plasma in reference to the parameters of carbohydrate metabolism and hormone and lipid profiles in PCOS.
The Journal of steroid biochemistry and molecular biology.
2020 04; 198(?):105570. doi:
10.1016/j.jsbmb.2019.105570
. [PMID: 31883924] - Wei Li, Xia Yang, Qing Song, Zhongcheng Cao, Yichun Shi, Yong Deng, Li Zhang. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinson's disease.
Bioorganic chemistry.
2020 04; 97(?):103707. doi:
10.1016/j.bioorg.2020.103707
. [PMID: 32146176] - Paloma Gutiérrez Medina, Laura Espinosa Román. Importance of Assessing Compliance with Conservative Treatment of Primary Hyperoxaluria Type 1: A Case Report of a Patient with I244T/c.969-3C>G Mutation.
The Permanente journal.
2020; 24(?):. doi:
10.7812/tpp/19.136
. [PMID: 31905342] - Masaharu Suzuki, Shan Wu, Manaki Mimura, Saleh Alseekh, Alisdair R Fernie, Andrew D Hanson, Donald R McCarty. Construction and applications of a B vitamin genetic resource for investigation of vitamin-dependent metabolism in maize.
The Plant journal : for cell and molecular biology.
2020 01; 101(2):442-454. doi:
10.1111/tpj.14535
. [PMID: 31520508] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Sapna Gupta, Lorena Gallego-Villar, Liqun Wang, Hyung-Ok Lee, Gheyath Nasrallah, Nader Al-Dewik, Johannes Häberle, Beat Thöny, Henk J Blom, Tawfeg Ben-Omran, Warren D Kruger. Analysis of the Qatari R336C cystathionine β-synthase protein in mice.
Journal of inherited metabolic disease.
2019 09; 42(5):831-838. doi:
10.1002/jimd.12140
. [PMID: 31240737] - Tomonori Ishiguro, Yuichiro Sugiyama, Kazuto Ueda, Yukako Muramatsu, Hiroyuki Tsuda, Tomomi Kotani, Toshimi Michigami, Kanako Tachikawa, Tomoyuki Akiyama, Masahiro Hayakawa. Findings of amplitude-integrated electroencephalogram recordings and serum vitamin B6 metabolites in perinatal lethal hypophosphatasia during enzyme replacement therapy.
Brain & development.
2019 Sep; 41(8):721-725. doi:
10.1016/j.braindev.2019.03.015
. [PMID: 31000369] - Matthew P Wilson, Barbara Plecko, Philippa B Mills, Peter T Clayton. Disorders affecting vitamin B6 metabolism.
Journal of inherited metabolic disease.
2019 07; 42(4):629-646. doi:
10.1002/jimd.12060
. [PMID: 30671974] - Channy Park, Hyewon Lim, Sung K Moon, Raekil Park. Pyridoxine Preferentially Induces Auditory Neuropathy Through Mitochondrial Dysfunction and Endoplasmic Reticulum Stress-Mediated Apoptosis.
The Annals of otology, rhinology, and laryngology.
2019 Jun; 128(6_suppl):117S-124S. doi:
10.1177/0003489419836116
. [PMID: 31092035] - Dorota Watrobska-Swietlikowska, Ronan MacLoughlin. The effect of UV-protected ethylene vinyl acetate (EVA) bags on the physicochemical stability of pediatric parenteral nutrition admixtures.
Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences.
2019 Jun; 27(1):255-264. doi:
10.1007/s40199-019-00270-7
. [PMID: 31102140] - Katie Moore, Catherine F Hughes, Leane Hoey, Mary Ward, Conal Cunningham, Anne M Molloy, J J Strain, Kevin McCarroll, Miriam C Casey, Fergal Tracey, Eamon Laird, Maurice O'Kane, Helene McNulty. B-vitamins in Relation to Depression in Older Adults Over 60 Years of Age: The Trinity Ulster Department of Agriculture (TUDA) Cohort Study.
Journal of the American Medical Directors Association.
2019 05; 20(5):551-557.e1. doi:
10.1016/j.jamda.2018.11.031
. [PMID: 30692033] - Farkhonde Hasannejad, Malek Moein Ansar, Mohammad Rostampour, Edris Mahdavi Fikijivar, Behrooz Khakpour Taleghani. Improvement of pyridoxine-induced peripheral neuropathy by Cichorium intybus hydroalcoholic extract through GABAergic system.
The journal of physiological sciences : JPS.
2019 May; 69(3):465-476. doi:
10.1007/s12576-019-00659-8
. [PMID: 30712095] - Tomomitsu Sado, Setsuko Nakata, Takahisa Tsuno, Masanori Sato, Yuka Misawa, Shoko Yamauchi, Yuji Inaba, Daisuke Kobayashi, Keiji Wada. Concentrations of various forms of vitamin B6 in ginkgo seed poisoning.
Brain & development.
2019 Mar; 41(3):292-295. doi:
10.1016/j.braindev.2018.10.007
. [PMID: 30366747] - Mirco Dindo, Carolina Conter, Elisa Oppici, Veronica Ceccarelli, Lorella Marinucci, Barbara Cellini. Molecular basis of primary hyperoxaluria: clues to innovative treatments.
Urolithiasis.
2019 Feb; 47(1):67-78. doi:
10.1007/s00240-018-1089-z
. [PMID: 30430197] - David J Sas, Peter C Harris, Dawn S Milliner. Recent advances in the identification and management of inherited hyperoxalurias.
Urolithiasis.
2019 Feb; 47(1):79-89. doi:
10.1007/s00240-018-1093-3
. [PMID: 30535828] - Yiyun Qian, Shulan Su, Min Wei, Zhenhua Zhu, Sheng Guo, Hui Yan, Jinhua Tao, Dawei Qian, Jin-Ao Duan. Interactions of pharmacokinetic profiles of Ginkgotoxin and Ginkgolic acids in rat plasma after oral administration.
Journal of pharmaceutical and biomedical analysis.
2019 Jan; 163(?):88-94. doi:
10.1016/j.jpba.2018.09.053
. [PMID: 30286439] - Daisuke Kobayashi. [Food Poisoning by Ginkgo Seeds through Vitamin B6 Depletion].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2019; 139(1):1-6. doi:
10.1248/yakushi.18-00136
. [PMID: 30606915] - Su Young Kim, Eun Chan Mun, Jun-Won Chung, Minsu Ha, Sung-Min Ahn, Mun-Deok Han, Sang-Hun Han, Sung-Cheol Yun, Jung Ho Kim, Kyoung Oh Kim, Yoon Jae Kim, Kwang An Kwon, Dong Kyun Park. Increased genomic damage and vitamin B status in inflammatory bowel disease patients: A case-control, prospective, pilot study.
Mutation research. Genetic toxicology and environmental mutagenesis.
2019 Jan; 837(?):42-47. doi:
10.1016/j.mrgentox.2018.10.002
. [PMID: 30595208] - Gyuree Kim, Sejeong Jang, Eun Kyung Yoon, Shin Ae Lee, Souvik Dhar, Jinkwon Kim, Myeong Min Lee, Jun Lim. Involvement of Pyridoxine/Pyridoxamine 5'-Phosphate Oxidase (PDX3) in Ethylene-Induced Auxin Biosynthesis in the Arabidopsis Root.
Molecules and cells.
2018 Dec; 41(12):1033-1044. doi:
10.14348/molcells.2018.0363
. [PMID: 30453730] - Armando Valenzuela Peraza, David Calderón Guzmán, Norma Osnaya Brizuela, Maribel Ortiz Herrera, Hugo Juárez Olguín, Miroslava Lindoro Silva, Belén Juárez Tapia, Gerardo Barragán Mejía. Riboflavin and pyridoxine restore dopamine levels and reduce oxidative stress in brain of rats.
BMC neuroscience.
2018 Nov; 19(1):71. doi:
10.1186/s12868-018-0474-4
. [PMID: 30413185] - Heung-Bin Lim, Dong-Ho Kim. Effect of heat treatment on 4'-O-methylpyridoxine (MPN) content in Ginkgo biloba seed extract solution.
Journal of the science of food and agriculture.
2018 Oct; 98(13):5153-5156. doi:
10.1002/jsfa.9017
. [PMID: 29572951] - Fatemeh Sharifzadeh, Maryam Kashanian, Jalil Koohpayehzadeh, Fatemeh Rezaian, Narges Sheikhansari, Nooshin Eshraghi. A comparison between the effects of ginger, pyridoxine (vitamin B6) and placebo for the treatment of the first trimester nausea and vomiting of pregnancy (NVP).
The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians.
2018 Oct; 31(19):2509-2514. doi:
10.1080/14767058.2017.1344965
. [PMID: 28629250] - Hatice Altun, Nilfer Şahin, Ergül Belge Kurutaş, Olcay Güngör. Homocysteine, Pyridoxine, Folate and Vitamin B12 Levels in Children with Attention Deficit Hyperactivity Disorder.
Psychiatria Danubina.
2018 Sep; 30(3):310-316. doi:
10.24869/psyd.2018.310
. [PMID: 30267523] - Hao Gong, Cai-E Wu, Gong-Jian Fan, Ting-Ting Li, Jia-Hong Wang, Tao Wang. Determination and Comparison of 4'- O-Methylpyridoxine Analogues in Ginkgo biloba Seeds at Different Growth Stages.
Journal of agricultural and food chemistry.
2018 Aug; 66(30):7916-7922. doi:
10.1021/acs.jafc.8b02522
. [PMID: 29975518] - Emily Evans, Laura Piccio, Anne H Cross. Use of Vitamins and Dietary Supplements by Patients With Multiple Sclerosis: A Review.
JAMA neurology.
2018 08; 75(8):1013-1021. doi:
10.1001/jamaneurol.2018.0611
. [PMID: 29710293] - Deepak Singh Bagri, Devanshi Chandel Upadhyaya, Ashwani Kumar, Chandrama Prakash Upadhyaya. Overexpression of PDX-II gene in potato (Solanum tuberosum L.) leads to the enhanced accumulation of vitamin B6 in tuber tissues and tolerance to abiotic stresses.
Plant science : an international journal of experimental plant biology.
2018 Jul; 272(?):267-275. doi:
10.1016/j.plantsci.2018.04.024
. [PMID: 29807600] - Amir Y Kamel, Nisha J Dave, Vivian M Zhao, Daniel P Griffith, Michael J Connor, Thomas R Ziegler. Micronutrient Alterations During Continuous Renal Replacement Therapy in Critically Ill Adults: A Retrospective Study.
Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition.
2018 Jun; 33(3):439-446. doi:
10.1177/0884533617716618
. [PMID: 28727945] - Safia Fatima, Ayesha Hafeez, Aamir Ijaz, Naveed Asif, Afshan Awan, Ambreen Sajid. Classical Homocystinuria in a Juvenile Patient.
Journal of the College of Physicians and Surgeons--Pakistan : JCPSP.
2018 Jun; 28(6):488-489. doi:
10.29271/jcpsp.2018.06.488
. [PMID: 29848432] - Taehyun Roh, Umasankar De, Seong Kwang Lim, Min Kook Kim, Seul Min Choi, Duck Soo Lim, Sungpil Yoon, Sam Kacew, Hyung Sik Kim, Byung-Mu Lee. Detoxifying effect of pyridoxine on acetaminophen-induced hepatotoxicity via suppressing oxidative stress injury.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2018 Apr; 114(?):11-22. doi:
10.1016/j.fct.2018.02.017
. [PMID: 29438775] - L Pijnenburg, S Caillard, G Boivin, S Rizzo, R M Javier. Type 1 primary hyperoxaluria: A case report and focus on bone impairment of systemic oxalosis.
Morphologie : bulletin de l'Association des anatomistes.
2018 Mar; 102(336):48-53. doi:
10.1016/j.morpho.2017.09.004
. [PMID: 29102553] - Kirti M Jasani, Neil R A Parry, Graeme Black, Simon P Kelly. Unique case of gyrate atrophy with a well-preserved electroretinogram (ERG).
BMJ case reports.
2018 Feb; 2018(?):. doi:
10.1136/bcr-2016-217556
. [PMID: 29437727] - Raffaele Falsaperla, Maria Stella Vari, Irene Toldo, Alessandra Murgia, Stefano Sartori, Marilena Vecchi, Agnese Suppiej, Alberto Burlina, Mario Mastrangelo, Vincenzo Leuzzi, Valentina Marchiani, Paola De Liso, Giuseppe Capovilla, Pasquale Striano, Giovanna Vitaliti. Pyridoxine-dependent epilepsies: an observational study on clinical, diagnostic, therapeutic and prognostic features in a pediatric cohort.
Metabolic brain disease.
2018 02; 33(1):261-269. doi:
10.1007/s11011-017-0150-x
. [PMID: 29178011] - Dwi Eva Nirmagustina, Yongshou Yang, Thanutchaporn Kumrungsee, Noriyuki Yanaka, Norihisa Kato. Gender Difference and Dietary Supplemental Vitamin B6: Impact on Colon Luminal Environment.
Journal of nutritional science and vitaminology.
2018; 64(2):116-128. doi:
10.3177/jnsv.64.116
. [PMID: 29710029] - Dan Heller, Chen Weiner, Iris Nasie, Yair Anikster, Yuval Landau, Tal Koren, Russell Pokroy, Adi Abulafia, Eran Pras. Reversal of cystoid macular edema in gyrate atrophy patients.
Ophthalmic genetics.
2017 12; 38(6):549-554. doi:
10.1080/13816810.2017.1301966
. [PMID: 28388263] - Barbara Plecko, Markus Zweier, Anaïs Begemann, Deborah Mathis, Bernhard Schmitt, Pasquale Striano, Martina Baethmann, Maria Stella Vari, Francesca Beccaria, Federico Zara, Lisa M Crowther, Pascal Joset, Heinrich Sticht, Sorina Mihaela Papuc, Anita Rauch. Confirmation of mutations in PROSC as a novel cause of vitamin B 6 -dependent epilepsy.
Journal of medical genetics.
2017 12; 54(12):809-814. doi:
10.1136/jmedgenet-2017-104521
. [PMID: 28391250] - Yoon-Sim Yap, Li-Lian Kwok, Nicholas Syn, Wen Yee Chay, John Whay Kuang Chia, Chee Kian Tham, Nan Soon Wong, Soo Kien Lo, Rebecca Alexandra Dent, Sili Tan, Zuan Yu Mok, King Xin Koh, Han Chong Toh, Wen Hsin Koo, Marie Loh, Raymond Chee Hui Ng, Su Pin Choo, Richie Chuan Teck Soong. Predictors of Hand-Foot Syndrome and Pyridoxine for Prevention of Capecitabine-Induced Hand-Foot Syndrome: A Randomized Clinical Trial.
JAMA oncology.
2017 Nov; 3(11):1538-1545. doi:
10.1001/jamaoncol.2017.1269
. [PMID: 28715540] - Rúben J Ramos, Mia L Pras-Raves, Johan Gerrits, Maria van der Ham, Marcel Willemsen, Hubertus Prinsen, Boudewijn Burgering, Judith J Jans, Nanda M Verhoeven-Duif. Vitamin B6 is essential for serine de novo biosynthesis.
Journal of inherited metabolic disease.
2017 11; 40(6):883-891. doi:
10.1007/s10545-017-0061-3
. [PMID: 28801717] - Misha F Vrolijk, Antoon Opperhuizen, Eugène H J M Jansen, Geja J Hageman, Aalt Bast, Guido R M M Haenen. The vitamin B6 paradox: Supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function.
Toxicology in vitro : an international journal published in association with BIBRA.
2017 Oct; 44(?):206-212. doi:
10.1016/j.tiv.2017.07.009
. [PMID: 28716455] - Justice Norvienyeku, Zhenhui Zhong, Lili Lin, Xie Dang, Meilian Chen, Xiaolian Lin, Honghong Zhang, Wilfred M Anjago, Lianyu Lin, Waheed Abdul, Zonghua Wang. Methylmalonate-semialdehyde dehydrogenase mediated metabolite homeostasis essentially regulate conidiation, polarized germination and pathogenesis in Magnaporthe oryzae.
Environmental microbiology.
2017 10; 19(10):4256-4277. doi:
10.1111/1462-2920.13888
. [PMID: 28799697] - M D S A Dilrukshi, C A P Ratnayake, C A Gnanathasan. Oral pyridoxine can substitute for intravenous pyridoxine in managing patients with severe poisoning with isoniazid and rifampicin fixed dose combination tablets: a case report.
BMC research notes.
2017 Aug; 10(1):370. doi:
10.1186/s13104-017-2678-6
. [PMID: 28789699] - Sapna Gupta, Liqun Wang, Warren D Kruger. The c.797 G>A (p.R266K) cystathionine β-synthase mutation causes homocystinuria by affecting protein stability.
Human mutation.
2017 07; 38(7):863-869. doi:
10.1002/humu.23240
. [PMID: 28488385] - D W Sullivan, R C Peterson, C V Mujer, S C Gad. A 7-day intravenous toxicity study and neurotoxicity assessment of pyridorin in Sprague-Dawley rats.
Human & experimental toxicology.
2017 Jul; 36(7):718-726. doi:
10.1177/0960327116661023
. [PMID: 27507076] - Warren D Kruger. Cystathionine β-synthase deficiency: Of mice and men.
Molecular genetics and metabolism.
2017 07; 121(3):199-205. doi:
10.1016/j.ymgme.2017.05.011
. [PMID: 28583326] - Fabien Gay, Karine Aguera, Karine Sénéchal, Angie Tainturier, Willy Berlier, Delphine Maucort-Boulch, Jérôme Honnorat, Françoise Horand, Yann Godfrin, Vanessa Bourgeaux. Methionine tumor starvation by erythrocyte-encapsulated methionine gamma-lyase activity controlled with per os vitamin B6.
Cancer medicine.
2017 Jun; 6(6):1437-1452. doi:
10.1002/cam4.1086
. [PMID: 28544589] - Yan-Zhuo Yang, Shuo Ding, Yong Wang, Cui-Ling Li, Yun Shen, Robert Meeley, Donald R McCarty, Bao-Cai Tan. Small kernel2 Encodes a Glutaminase in Vitamin B6 Biosynthesis Essential for Maize Seed Development.
Plant physiology.
2017 Jun; 174(2):1127-1138. doi:
10.1104/pp.16.01295
. [PMID: 28408540] - Neveen A Soliman, Marwa M Nabhan, Safaa M Abdelrahman, Hanan Abdelaziz, Rasha Helmy, Khaled Ghanim, Hafez M Bazaraa, Ahmed M Badr, Omar A Tolba, Magd A Kotb, Khaled M Eweeda, Alaa Fayez. Clinical spectrum of primary hyperoxaluria type 1: Experience of a tertiary center.
Nephrologie & therapeutique.
2017 May; 13(3):176-182. doi:
10.1016/j.nephro.2016.08.002
. [PMID: 28161266] - Xia Yang, Xiaoming Qiang, Yan Li, Li Luo, Rui Xu, Yunxiaozhu Zheng, Zhongcheng Cao, Zhenghuai Tan, Yong Deng. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer's disease.
Bioorganic chemistry.
2017 04; 71(?):305-314. doi:
10.1016/j.bioorg.2017.02.016
. [PMID: 28267984] - Amal Al Teneiji, Theodora U J Bruun, Dawn Cordeiro, Jaina Patel, Michal Inbar-Feigenberg, Shelly Weiss, Eduard Struys, Saadet Mercimek-Mahmutoglu. Phenotype, biochemical features, genotype and treatment outcome of pyridoxine-dependent epilepsy.
Metabolic brain disease.
2017 04; 32(2):443-451. doi:
10.1007/s11011-016-9933-8
. [PMID: 27882480] - K E Danielyan, A A Simonyan. Protective abilities of pyridoxine in experimental oxidative stress settings in vivo and in vitro.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2017 Feb; 86(?):537-540. doi:
10.1016/j.biopha.2016.12.053
. [PMID: 28024289] - Andrew A M Morris, Viktor Kožich, Saikat Santra, Generoso Andria, Tawfeg I M Ben-Omran, Anupam B Chakrapani, Ellen Crushell, Mick J Henderson, Michel Hochuli, Martina Huemer, Miriam C H Janssen, Francois Maillot, Philip D Mayne, Jenny McNulty, Tara M Morrison, Helene Ogier, Siobhan O'Sullivan, Markéta Pavlíková, Isabel Tavares de Almeida, Allyson Terry, Sufin Yap, Henk J Blom, Kimberly A Chapman. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency.
Journal of inherited metabolic disease.
2017 01; 40(1):49-74. doi:
10.1007/s10545-016-9979-0
. [PMID: 27778219] - L S Babinets, K Yu Kytsai, Yu Ya Kotsaba, I M Halabitska, N A Melnyk, I V Semenova, O S Zemlyak. Improvement of the complex medical treatment for the patients wіth chronic biliary pancreatitis.
Wiadomosci lekarskie (Warsaw, Poland : 1960).
2017 ; 70(2):213-216. doi:
"
. [PMID: 28511162] - Himadri Saha, Asim Kumar Pal, Narottam Prasad Sahu, Ratan Kumar Saha. Feeding pyridoxine prevents Saprolegnia parasitica infection in fish Labeo rohita.
Fish & shellfish immunology.
2016 Dec; 59(?):382-388. doi:
10.1016/j.fsi.2016.09.045
. [PMID: 27670085]