Classification Term: 167916

其他 (ontology term: 0d98c74797e49d00bcc4c17c9d557a2b)

其他

found 500 associated metabolites at class metabolite taxonomy ontology rank level.

Ancestor:

Child Taxonomies: 苯三唑, 无机酸, 无机碳化合物

Thymidine

1-(2-Deoxy-beta-D-ribofuranosyl)-5-methyluracil; 1-(2-Deoxy-beta-D-ribofuranosyl)thymine; Thymine deoxyriboside; 2-Deoxythymidine; 5-Methyldeoxyuridine

C10H14N2O5 (242.09026740000002)


Deoxythymidine, also known as 2-deoxy-5-methyluridine or 5-methyl-2-deoxyuridine, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine is soluble (in water) and a very weakly acidic compound (based on its pKa). Deoxythymidine can be synthesized from thymine. Deoxythymidine is also a parent compound for other transformation products, including but not limited to, tritiated thymidine, alpha-tritiated thymidine, and 5,6-dihydrothymidine. Deoxythymidine can be found in a number of food items such as butternut squash, mammee apple, catjang pea, and climbing bean, which makes deoxythymidine a potential biomarker for the consumption of these food products. Deoxythymidine can be found primarily in most biofluids, including blood, amniotic fluid, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Deoxythymidine exists in all living species, ranging from bacteria to humans. In humans, deoxythymidine is involved in the pyrimidine metabolism. Deoxythymidine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, deoxythymidine is found to be associated with canavan disease and degenerative disc disease. Thymidine (deoxythymidine; other names deoxyribosylthymine, thymine deoxyriboside) is a pyrimidine deoxynucleoside. Deoxythymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in G1/early S phase . Thymidine, also known as deoxythymidine or deoxyribosylthymine or thymine deoxyriboside, is a pyrimidine deoxynucleoside. It consists of the nucleobase thymine attached to deoxyribose through a beta N- glycosidic bond. Thymidine also belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine (or thymidine) is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. Therefore, thymidine is essential to all life. Indeed, thymidine exists in all living species, ranging from bacteria to plants to humans. Within humans, thymidine participates in a number of enzymatic reactions. In particular, thymidine can be biosynthesized from 5-thymidylic acid through its interaction with the enzyme cytosolic purine 5-nucleotidase. In addition, thymidine can be converted into 5-thymidylic acid; which is catalyzed by the enzyme thymidine kinase. Deoxythymidine can be phosphorylated with one, two or three phosphoric acid groups, creating dTMP (deoxythymidine monophosphate), dTDP, or dTTP (for the di- and tri- phosphates, respectively). dTMP can be incorporated into DNA via DNA polymerases. In cell biology, thymidine can be used to synchronize the cells in S phase. Derivatives of thymidine are used in a number of drugs, including Azidothymidine (AZT), which is used in the treatment of HIV infection. AZT inhibits the process of reverse transcription in the human immunodeficiency virus. Thymidine is a pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a thymine. It is an enantiomer of a telbivudine. Thymidine is a pyrimidine deoxynucleoside. Thymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in S phase. Thymidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Thymidine is a natural product found in Fritillaria thunbergii, Saussurea medusa, and other organisms with data available. Thymidine is a pyrimidine nucleoside that is composed of the pyrimidine base thymine attached to the sugar deoxyribose. As a constituent of DNA, thymidine pairs with adenine in the DNA double helix. (NCI04) Thymidine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside in which THYMINE is linked to DEOXYRIBOSE. A pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. KEIO_ID T014; [MS2] KO009272 KEIO_ID T014 Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3]. Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].

   

griffonin

(Z)-2-((4R,5S,6S)-4,5-Dihydroxy-6-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-2-en-1-ylidene)acetonitrile

C14H19NO8 (329.1110614)


Lithospermoside is a glycoside. Lithospermoside is a natural product found in Tylosema fassoglense, Semiaquilegia adoxoides, and other organisms with data available. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1]. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1].

   

(S)-3-Butyl-1(3H)-isobenzofuranone

3-Butylphthalide pound>>3-n-Butylphthalide

C12H14O2 (190.09937440000002)


Butylphthalide is a member of benzofurans. Butylphthalide has been used in trials studying the prevention of Restenosis. Butylphthalide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. See also: Celery Seed (part of); Angelica sinensis root oil (part of). Potential nutriceutical. 3-Butyl-1(3H)-isobenzofuranone is found in many foods, some of which are dill, parsley, lovage, and wild celery. C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents 3-Butyl-1(3H)-isobenzofuranone is found in dill. Potential nutriceutical. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D020011 - Protective Agents Butylphthalide (3-n-Butylphthalide) is an active molecule against cerebral ischemia. It was originally isolated from celery species and has been shown to be effective in stroke animal models. Butylphthalide (3-n-Butylphthalide) is an active molecule against cerebral ischemia. It was originally isolated from celery species and has been shown to be effective in stroke animal models.

   

Cordycepin

(2R,3R,5S)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3-ol

C10H13N5O3 (251.10183480000003)


Cordycepin is a 3-deoxyribonucleoside and a member of adenosines. It has a role as an antimetabolite and a nucleoside antibiotic. Cordycepin has been used in trials studying the treatment of Leukemia. Cordycepin is a natural product found in Aspergillus nidulans, Streptomyces sparsogenes, and other organisms with data available. Cordycepin is a purine nucleoside antimetabolite and antibiotic isolated from the fungus Cordyceps militaris with potential antineoplastic, antioxidant, and anti-inflammatory activities. Cordycepin is an inhibitor of polyadenylation, activates AMP-activated protein kinase (AMPK) and reduces mammalian target of rapamycin (mTOR) signaling, which may result in both the induction of tumor cell apoptosis and a decrease in tumor cell proliferation. mTOR, a serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family, plays an important role in the PI3K/AKT/mTOR signaling pathway that regulates cell growth and proliferation, and its expression or activity is frequently dysregulated in human cancers. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D009676 - Noxae > D009153 - Mutagens D000970 - Antineoplastic Agents Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2]. Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2]. Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2].

   

Colchicine

N-{3,4,5,14-tetramethoxy-13-oxotricyclo[9.5.0.0²,⁷]hexadeca-1(16),2(7),3,5,11,14-hexaen-10-yl}acetamide

C22H25NO6 (399.168179)


Colchicine appears as odorless or nearly odorless pale yellow needles or powder that darkens on exposure to light. Used to treat gouty arthritis, pseudogout, sarcoidal arthritis and calcific tendinitis. (EPA, 1998) (S)-colchicine is a colchicine that has (S)-configuration. It is a secondary metabolite, has anti-inflammatory properties and is used to treat gout, crystal-induced joint inflammation, familial Mediterranean fever, and many other conditions. It has a role as a mutagen, an anti-inflammatory agent and a gout suppressant. It is a colchicine and an alkaloid. It is an enantiomer of a (R)-colchicine. Colchicine is an Alkaloid. Colchicine is a plant alkaloid that is widely used for treatment of gout. Colchicine has not been associated with acute liver injury or liver test abnormalities except with serious overdoses. Colchicine is a natural product found in Colchicum arenarium, Colchicum bivonae, and other organisms with data available. Colchicine is an alkaloid isolated from Colchicum autumnale with anti-gout and anti-inflammatory activities. The exact mechanism of action by which colchicines exerts its effect has not been completely established. Colchicine binds to tubulin, thereby interfering with the polymerization of tubulin, interrupting microtubule dynamics, and disrupting mitosis. This leads to an inhibition of migration of leukocytes and other inflammatory cells, thereby reducing the inflammatory response to deposited urate crystals. Colchicine may also interrupt the cycle of monosodium urate crystal deposition in joint tissues, thereby also preventing the resultant inflammatory response. Overall, colchicine decreases leukocyte chemotaxis/migration and phagocytosis to inflamed areas, and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). See also: Colchicine; probenecid (component of). Colchicine is only found in individuals that have used or taken this drug. It is a major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (periodic disease). [PubChem]The precise mechanism of action has not been completely established. In patients with gout, colchicine apparently interrupts the cycle of monosodium urate crystal deposition in joint tissues and the resultant inflammatory response that initiates and sustains an acute attack. Colchicine decreases leukocyte chemotaxis and phagocytosis and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. Colchicine also inhibits urate crystal deposition, which is enhanced by a low pH in the tissues, probably by inhibiting oxidation of glucose and subsequent lactic acid production in leukocytes. Colchicine has no analgesic or antihyperuricemic activity. Colchicine inhibits microtubule assembly in various cells, including leukocytes, probably by binding to and interfering with polymerization of the microtubule subunit tubulin. Although some studies have found that this action probably does not contribute significantly to colchicines antigout action, a recent in vitro study has shown that it may be at least partially involved. CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7704; ORIGINAL_PRECURSOR_SCAN_NO 7702 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7690; ORIGINAL_PRECURSOR_SCAN_NO 7687 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7668; ORIGINAL_PRECURSOR_SCAN_NO 7666 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7693; ORIGINAL_PRECURSOR_SCAN_NO 7689 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7645; ORIGINAL_PRECURSOR_SCAN_NO 7643 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7687; ORIGINAL_PRECURSOR_SCAN_NO 7684 M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AC - Preparations with no effect on uric acid metabolism COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, Guide to PHARMACOLOGY C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D018501 - Antirheumatic Agents > D006074 - Gout Suppressants CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2258 INTERNAL_ID 2258; CONFIDENCE Reference Standard (Level 1) [Raw Data] CB194_Colchicine_pos_30eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_50eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_10eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_20eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_40eV_CB000068.txt CONFIDENCE standard compound; INTERNAL_ID 1171 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4]. Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4].

   

Senkyunolide

1(3H)-Isobenzofuranone, 3-butyl-4,5-dihydro-, (3S)-

C12H16O2 (192.1150236)


Senkyunolide is a member of 2-benzofurans. Senkyunolide A is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. See also: Celery (part of); Scutellaria baicalensis Root (part of); Angelica acutiloba Root (part of) ... View More ... Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].

   

3-Butylidene-1(3H)-isobenzofuranone

InChI=1/C12H12O2/c1-2-3-8-11-9-6-4-5-7-10(9)12(13)14-11/h4-8H,2-3H2,1H3/b11-8

C12H12O2 (188.0837252)


(Z)-3-butylidenephthalide is a gamma-lactone that is phthalide substituted by a butylidene group at position 3. Isolated from Ligusticum porteri, it exhibits hypoglycemic activity. It has a role as a metabolite, a hypoglycemic agent and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a member of 2-benzofurans and a gamma-lactone. It is functionally related to a 2-benzofuran-1(3H)-one. Butylidenephthalide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. (Z)-3-Butylidene-1(3H)-isobenzofuranone is found in herbs and spices. (Z)-3-Butylidene-1(3H)-isobenzofuranone is a constituent of Angelica glauca Flavouring ingredient. 3-Butylidene-1(3H)-isobenzofuranone is found in wild celery and lovage. 3-Butylidenephthalide (Butylidenephthalide) is a phthalic anhydride derivative identified in Ligusticum chuanxiong Hort, and has larvicidal activity (LC50 of 1.56 mg/g for Spodoptera litura larvae)[1]. 3-Butylidenephthalide (Butylidenephthalide) is a phthalic anhydride derivative identified in Ligusticum chuanxiong Hort, and has larvicidal activity (LC50 of 1.56 mg/g for Spodoptera litura larvae)[1].

   

Ligusticide

3-Butylidene-4,5-dihydro-1(3H)-isobenzofuranone;1(3H)-Isobenzofuranone,3-butylidene-4,5-dihydro-;(3Z)-3-Butylidene-4,5-dihydroisobenzofuran-1(3H)-one

C12H14O2 (190.09937440000002)


Ligusticide, also known as ligustilide, (E)-isomer or (Z)-ligustilide, is a member of the class of compounds known as isobenzofurans. Isobenzofurans are organic aromatic compounds containing an isobenzofuran moiety. Ligusticide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ligusticide can be found in lovage, which makes ligusticide a potential biomarker for the consumption of this food product. (Z)-ligustilide is a butenolide. It has a role as a metabolite. Ligustilide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available.

   

Atractydin

2-((1E,7E)-Nona-1,7-dien-3,5-diyn-1-yl)furan-1-yl)furan

C13H10O (182.073161)


Atractylodin is a member of furans. Atractylodin is a natural product found in Atractylodes japonica, Atractylodes macrocephala, and other organisms with data available. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Veratrole_alcohol

3,4-dimethoxy-benzenemethano;3,4-dimethoxy-Benzenemethanol;(3,4-Dimethoxyphenyl)methanol

C9H12O3 (168.0786402)


(3,4-dimethoxyphenyl)methanol is a member of the class of benzyl alcohols that is benzyl alcohol in which the hydrogens at positions 3 and 4 of the phenyl group are substituted by methoxy groups. It has a role as a fungal metabolite. It is a member of benzyl alcohols, a primary alcohol and a dimethoxybenzene. 3,4-Dimethoxybenzyl alcohol is a natural product found in Croton lechleri and Cucurbita pepo with data available. A member of the class of benzyl alcohols that is benzyl alcohol in which the hydrogens at positions 3 and 4 of the phenyl group are substituted by methoxy groups. Veratryl alcohol (3,4-Dimethoxybenzenemethanol), a secondary metabolite of some lignin degrading fungi, is commonly used nonphenolic substrate for assaying ligninolytic activity[1][2]. Veratryl alcohol (3,4-Dimethoxybenzenemethanol), a secondary metabolite of some lignin degrading fungi, is commonly used nonphenolic substrate for assaying ligninolytic activity[1][2].

   

1-Octacosanol

OCTACOSANOL (CONSTITUENT OF SAW PALMETTO) [DSC]

C28H58O (410.4487418)


1-octacosanol is a white crystalline powder. (NTP, 1992) Octacosan-1-ol is an ultra-long-chain primary fatty alcohol that is octacosane in which a hydrogen attached to one of the terminal carbons is replaced by a hydroxy group. It has a role as a plant metabolite. It is a fatty alcohol 28:0 and an ultra-long-chain primary fatty alcohol. It derives from a hydride of an octacosane. 1-octacosanol is a straight-chain aliphatic 28-carbon primary fatty alcohol that is used as a nutritional supplement. This high–molecular-weight organic compound is the main component of a natural product wax extracted from plants. 1-octacosanol is reported to possess cholesterol-lowering effects, antiaggregatory properties, cytoprotective use, and ergogenic properties. It has been studied as a potential therapeutic agent for the treatment of Parkinsons disease. 1-Octacosanol is a natural product found in Ophiopogon intermedius, Prosopis glandulosa, and other organisms with data available. See also: Saw Palmetto (part of). 1-Octacosanol (also known as n-octacosanol, octacosyl alcohol, cluytyl alcohol, montanyl alcohol) is a straight-chain aliphatic 28-carbon primary fatty alcohol that is common in the epicuticular waxes of plants, including the leaves of many species of Eucalyptus, of most forage and cereal grasses, of Acacia, Trifolium, Pisum and many other legume genera among many others, sometimes as the major wax constituent. Octacosanol also occurs in wheat germ. Octacosanol is insoluble in water but freely soluble in low molecular-weight alkanes and in chloroform (CHCl3). 1-Octacosanol is found in many foods, some of which are common beet, black elderberry, red beetroot, and opium poppy. 1-Octacosanol (also known as n-octacosanol, octacosyl alcohol, cluytyl alcohol, montanyl alcohol) is a straight-chain aliphatic 28-carbon primary fatty alcohol that is common in the epicuticular waxes of plants, including the leaves of many species of Eucalyptus, of most forage and cereal grasses, of Acacia, Trifolium, Pisum and many other legume genera among many others, sometimes as the major wax constituent. Octacosanol also occurs in wheat germ. Octacosanol is insoluble in water but freely soluble in low molecular-weight alkanes and in chloroform (CHCl3). 1-Octacosanol is found in apple. An ultra-long-chain primary fatty alcohol that is octacosane in which a hydrogen attached to one of the terminal carbons is replaced by a hydroxy group.

   

Pancratistatin

(1,3)Dioxolo(4,5-j)phenanthridin-6(2H)-one, 1,3,4,4a,5,11b-hexahydro-1,2,3,4,7-pentahydroxy-, (1R-(1alpha,2beta,3alpha,4alpha,4aalpha,11bbeta))-

C14H15NO8 (325.079763)


Pancratistatin is a citraconoyl group. Pancratistatin is a natural product found in Delphinium denudatum, Hymenocallis speciosa, and other organisms with data available. Pancratistatin is a isoquinoline alkaloid from amaryllis with antineoplastic activity.

   

Benzo[a]pyrene

pentacyclo[10.6.2.0^{2,7}.0^{9,19}.0^{16,20}]icosa-1(18),2,4,6,8,10,12,14,16,19-decaene

C20H12 (252.0938952)


Benzo[a]pyrene appears as a liquid. Presents a threat to the environment. Immediate steps should be taken to limits its spread to the environment. Easily penetrates the soil and contaminates groundwater or nearby waterways. Benzo[a]pyrene is an ortho- and peri-fused polycyclic arene consisting of five fused benzene rings. It has a role as a carcinogenic agent and a mouse metabolite. Benzo[a]pyrene is a natural product found in Angelica sinensis and Homo sapiens with data available. 3,4-Benzpyrene is a crystalline, aromatic hydrocarbon consisting of five fused benzene rings and formed during the incomplete combustion of organic matter. 3,4-Benzpyrene is primarily found in gasoline and diesel exhaust, cigarette smoke, coal tar and coal tar pitch, charcoal-broiled foods and certain other foods, amino acids, fatty acids and carbohydrate pyrolysis products, soot smoke, creosote oil, petroleum asphalt and shale oils. This substance is used only for research purposes. 3,4-Benzpyrene is reasonably anticipated to be a human carcinogen. (NCI05) Benzo[a]pyrene is one of over 100 different polycyclic aromatic hydrocarbons (PAHs). PAHs are chemicals that are formed during the incomplete burning organic substances, such as fossil fuels. They are usually found as a mixture containing two or more of these compounds. It is one ingredient of cigarette. (L10) A potent mutagen and carcinogen. It is a public health concern because of its possible effects on industrial workers, as an environmental pollutant, an as a component of tobacco smoke. See also: Tobacco Leaf (part of) ... View More ... Benzo[a]pyrene, also known as 3,4-Benzopyrene or 3,4-BP, is classified as a member of the Benzopyrenes. Benzopyrenes are organic compounds containing a benzene fused to a pyrene(benzo[def]phenanthrene) ring system. Benzo[a]pyrene is formally rated as a carcinogenic (IARC 1) potentially toxic compound. Benzo[a]pyrene is a crystalline, aromatic hydrocarbon consisting of five fused benzene rings and formed during the incomplete combustion of organic matter. Benzo[a]pyrene is primarily found in gasoline and diesel exhaust, cigarette smoke, coal tar and coal tar pitch, charcoal-broiled foods and certain other foods, amino acids, fatty acids and carbohydrate pyrolysis products, soot smoke, creosote oil, petroleum asphalt and shale oils. This substance is used only for research purposes. Benzo[a]pyrene is reasonably anticipated to be a human carcinogen (NCI05). Its diol epoxide metabolites (more commonly known as BPDE) react and bind to DNA, resulting in mutations and eventually cancer. It is listed as a Group 1 carcinogen by the IARC. In the 18th century a scrotal cancer of chimney sweepers, the chimney sweeps carcinoma, was already connected to soot. [Wikipedia] An ortho- and peri-fused polycyclic arene consisting of five fused benzene rings. Benzo[a]pyrene shows lung carcinogenicity in animal models, and it is frequently used in chemoprevention studies. Benzo[a]pyrene shows lung carcinogenicity in animal models, and it is frequently used in chemoprevention studies.

   

Mitragynine

(.ALPHA.E,2S,3S,12.BETA.S)-3-ETHYL-1,2,3,4,6,7,12,12B-OCTAHYDRO-8-METHOXY-.ALPHA.-(METHOXYMETHYLENE)-INDOLO(2,3-A)QUINOLIZINE-2-ACETIC ACID METHYL ESTER

C23H30N2O4 (398.220546)


Mitragynine itself acts primarily via -opioid receptors, although its oxidation product mitragynine-pseudoindoxyl, which is likely to be a major component of kratom that has been aged or stored for extended periods, acts as a fairly selective -opioid agonist with little affinity for receptors. Another alkaloid with a major contribution to the opioid activity of the kratom plant is the related compound 7-hydroxymitragynine, which while present in the plant in much smaller quantities than mitragynine, is a much more potent opioid agonist. Mitragynine is a monoterpenoid indole alkaloid. Mitragynine is a natural product found in Mitragyna speciosa with data available.

   

Jasmonic acid

Cyclopentaneacetic acid, 3-oxo-2-(2-pentenyl)-, [1R-[1alpha,2beta(Z)]]-

C12H18O3 (210.1255878)


Jasmonic acid is an oxo monocarboxylic acid that is (3-oxocyclopentyl)acetic acid substituted by a (2Z)-pent-2-en-1-yl group at position 2 of the cyclopentane ring. It has a role as a plant metabolite and a member of jasmonates. It is a conjugate acid of a jasmonate(1-). It is an enantiomer of a (+)-jasmonic acid. Jasmonic acid is a natural product found in Ficus superba, Cleyera japonica, and other organisms with data available. Jasmonic acid is found in apple. Esters are present in Jasminum grandiflorum (royal jasmine) and are responsible for its odour. Jasmonic acid is a member of the jasmonate class of plant hormones. It is biosynthesized from linolenic acid by the octadecanoid pathway An oxo monocarboxylic acid that is (3-oxocyclopentyl)acetic acid substituted by a (2Z)-pent-2-en-1-yl group at position 2 of the cyclopentane ring. Esters are present in Jasminum grandiflorum (royal jasmine) and are responsible for its odour [DFC] D006133 - Growth Substances > D010937 - Plant Growth Regulators

   

Mesembrenone

6H-Indol-6-one, 3a-(3,4-dimethoxyphenyl)-1,2,3,3a,7,7a-hexahydro-1-methyl-, (3aR-cis)-

C17H21NO3 (287.1521356)


Mesembrenone is a member of pyrrolidines. Mesembrenone is a natural product found in Bergeranthus scapiger, Oscularia deltoides, and other organisms with data available.

   

Sterculic acid

omega-(2-n-octylcycloprop-1-enyl)octanoic acid

C19H34O2 (294.2558664)


Sterculic acid, also known as 2-octyl-1-cyclopropene-1-octanoic acid or 8-(2-octyl-cycloprop-1-enyl)-octansaeure, is a member of the class of compounds known as medium-chain fatty acids. Medium-chain fatty acids are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Thus, sterculic acid is considered to be a fatty acid lipid molecule. Sterculic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Sterculic acid can be found in peanut and roselle, which makes sterculic acid a potential biomarker for the consumption of these food products. Sterculic acid is a long-chain, monounsaturated fatty acid composed of 9-octadecenoic acid having a 9,10-cyclopropenyl group. It is a cyclopropenyl fatty acid, a long-chain fatty acid and a monounsaturated fatty acid. It is functionally related to an octadec-9-enoic acid. Sterculic acid is a natural product found in Hibiscus syriacus, Amaranthus cruentus, and other organisms with data available.

   

Dimethyl trisulfide

FLAMMABLE LIQUID, N.O.S. (DIMETHYL TRISULPHIDE)

C2H6S3 (125.9631636)


Dimethyl trisulfide (DMTS) is an organic chemical compound and the simplest organic trisulfide. It is a flammable liquid with a foul odor, which is detectable at levels as low as 1 part per trillion. Dimethyl trisulfide has been found in volatiles emitted from cooked onion, leek and other Allium species, from broccoli and cabbage, as well as from Limburger cheese, and is involved in the unpalatable aroma of aged beer and stale Japanese sake. It is a decomposition product from bacterial decomposition, including from the early stages of human decomposition, and is a major attractant for blowflies looking for hosts. Dimethyl trisulfide along with dimethyl sulfide and dimethyl disulfide have been confirmed as volatile compounds given off by the fly-attracting plant known as dead-horse arum (Helicodiceros muscivorus). These flies are attracted to the odor of fetid meat and help pollinate this plant. DMTS contributes to the foul odor given off by the fungus Phallus impudicus, also known as the common stinkhorn. DMTS causes the characteristic malodorous smell of a fungating lesion, e.g., from cancer wounds, and contributes to the odor of human feces. Dimethyldisulfide is a volatile organic compound. Methyl disulfide is occasionally found as a volatile component of normal human breath and biofluids. Dimethyldisulfide is one of the representative volatile components found in oral malodor. Dimethyldisulfide concentrations in breath is a practical noninvasive way to assess recent exposure to sulfur compounds in sulfate pulp mills, and therefore it should be applicable to workplaces contaminated. (PMID: 5556886, 14691119, 11236158, 8481097) (Wikipedia). Found in essential oil of hop (Humulus lupulus), garlic (Allium sativum), shallot (Allium cepa) and ramsons (Allium ursinum)and is also found in pineapple, raw cabbage, kohrabi, roasted filberts, roasted peanuts, edible mushrooms, brussel sprouts, fermented radish, Chinese cabbage, parsnips, scallop and squid. The major off-flavour principle of overcooked brassicas. Flavouring ingredient. Dimethyl trisulfide is an organic trisulfide. Dimethyl trisulfide is a natural product found in Psidium guajava, Allium chinense, and other organisms with data available. dimethyltrisulfide is a metabolite found in or produced by Saccharomyces cerevisiae. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].

   

Ascorbic acid

L-Threoascorbic acid,Antiscorbutic factor,Vitamin C;(R)-5-((S)-1,2-Dihydroxyethyl)-3,4-dihydroxyfuran-2(5H)-one

C6H8O6 (176.0320868)


L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4].

   

Isovaleramide

TRIMETHYLENEDI(THIOTOSYLATE)

C5H11NO (101.0840596)


Isovaleramide is a natural product found in Rhizoclonium hieroglyphicum with data available. C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent Isovaleramide is an anticonvulsant that modulates central nervous system activity.

   

Forchlorfenuron

N-(2-chloropyridin-4-yl)-N-phenylcarbamimidic acid

C12H10ClN3O (247.051236)


CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8757; ORIGINAL_PRECURSOR_SCAN_NO 8756 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8835; ORIGINAL_PRECURSOR_SCAN_NO 8832 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4401; ORIGINAL_PRECURSOR_SCAN_NO 4396 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4419; ORIGINAL_PRECURSOR_SCAN_NO 4414 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4428; ORIGINAL_PRECURSOR_SCAN_NO 4427 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8765; ORIGINAL_PRECURSOR_SCAN_NO 8763 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4391; ORIGINAL_PRECURSOR_SCAN_NO 4390 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8800; ORIGINAL_PRECURSOR_SCAN_NO 8798 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4416; ORIGINAL_PRECURSOR_SCAN_NO 4415 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8810; ORIGINAL_PRECURSOR_SCAN_NO 8809 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8790; ORIGINAL_PRECURSOR_SCAN_NO 8788 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4435; ORIGINAL_PRECURSOR_SCAN_NO 4431 D006133 - Growth Substances > D010937 - Plant Growth Regulators CONFIDENCE standard compound; EAWAG_UCHEM_ID 3601 Forchlorfenuron is plant growth regulator and cytokinin; can be used to increase fruit size of fruits, such as kiwi fruit and grapes.

   

Kinetin

Kinetin, BioReagent, plant cell culture tested, amorphous powder

C10H9N5O (215.0807064)


Kinetin is a member of the class of 6-aminopurines that is adenine carrying a (furan-2-ylmethyl) substituent at the exocyclic amino group. It has a role as a geroprotector and a cytokinin. It is a member of furans and a member of 6-aminopurines. Kinetin is a cytokinin which are plant hormones promotes cell division and plant growth. It was shown to naturally exist in DNA of organisms including humans and various plants. While kinetin is used in tissue cultures to produce new plants, it is also found in cosmetic products as an anti-aging agents. Kinetin is a natural product found in Cocos nucifera, Beta vulgaris, and other organisms with data available. A furanyl adenine found in PLANTS and FUNGI. It has plant growth regulation effects. Kinetin can react with UDP-D-glucose to produce kinetin-7-N-glucoside or kinetin-9-N-glucoside, with UDP as a byproduct. The reaction is catalyzed by UDP glycosyltransferase. Kinetin is a hormone derived from plants. Kinetin can react with UDP-D-glucose to produce kinetin-7-N-glucoside or kinetin-9-N-glucoside, with UDP as a byproduct. The reaction is catalyzed by UDP glycosyltransferase. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2712; ORIGINAL_PRECURSOR_SCAN_NO 2710 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2714; ORIGINAL_PRECURSOR_SCAN_NO 2711 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5910; ORIGINAL_PRECURSOR_SCAN_NO 5905 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2699; ORIGINAL_PRECURSOR_SCAN_NO 2696 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5865; ORIGINAL_PRECURSOR_SCAN_NO 5864 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5900; ORIGINAL_PRECURSOR_SCAN_NO 5896 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2691; ORIGINAL_PRECURSOR_SCAN_NO 2689 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5890; ORIGINAL_PRECURSOR_SCAN_NO 5889 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2693; ORIGINAL_PRECURSOR_SCAN_NO 2691 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5911; ORIGINAL_PRECURSOR_SCAN_NO 5908 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5893; ORIGINAL_PRECURSOR_SCAN_NO 5891 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2689; ORIGINAL_PRECURSOR_SCAN_NO 2687 IPB_RECORD: 305; CONFIDENCE confident structure KEIO_ID F014; [MS2] KO008961 KEIO_ID F014 Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1]. Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1]. Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1].

   

Allicin

Diallyldisulfid-S-oxid, 3-prop-2-enylsulfinylsulfanylprop-1-ene

C6H10OS2 (162.01730500000002)


Allicin is found in garden onion. Allicin is isolated from garlic (Allium sativum). Nutriceutical Allicin is an organic compound obtained from garlic. It is also obtainable from onions, and other species in the family Alliaceae. It was first isolated and studied in the laboratory by Chester J. Cavallito in 1944. This colourless liquid has a distinctively pungent smell. This compound exhibits antibacterial and anti-fungal properties. Allicin is garlics defence mechanism against attacks by pests Allicin is a sulfoxide and a botanical anti-fungal agent. It has a role as an antibacterial agent. Allicin has been used in trials studying the treatment of Follicular Lymphoma. Allicin is a natural product found in Allium chinense, Allium nutans, and other organisms with data available. See also: Garlic (part of). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants Isolated from garlic (Allium sativum). Nutriceutical D009676 - Noxae > D000963 - Antimetabolites D000890 - Anti-Infective Agents D007004 - Hypoglycemic Agents Allicin (diallyl thiosulfinate) is isolated from garlic including Diallyl monosulfide, Diallyl disulfide, Diallyl trisulfide, Diallyl tetrasulfide, and Methyl allyl disulphide etc. They accounts for 98\\% of the extract. Allicin (diallyl thiosulfinate) has highly potent antimicrobial activity, and inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains[1][2]. Allicin (diallyl thiosulfinate) is isolated from garlic including Diallyl monosulfide, Diallyl disulfide, Diallyl trisulfide, Diallyl tetrasulfide, and Methyl allyl disulphide etc. They accounts for 98\% of the extract. Allicin (diallyl thiosulfinate) has highly potent antimicrobial activity, and inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains[1][2].

   

Mimosine

1(4H)-Pyridinepropanoic acid, .alpha.-amino-3-hydroxy-4-oxo-, (.alpha.S)-

C8H10N2O4 (198.064054)


Mimosine is only found in individuals that have used or taken this drug. It is an antineoplastic alanine-substituted pyridine derivative isolated from Leucena glauca. [PubChem]Mimosine causes inhibition of DNA replication, changes in the progression of the cells in the cell cycle, and apoptosis. Mimosine appears to introduce breaks into DNA. Mimosine is an iron/zinc chelator. Iron depletion induces DNA double-strand breaks in treated cells, and activates a DNA damage response that results in focal phosphorylation of histones. This leads to inhibition of DNA replication and/or DNA elongation. Some studies indicate that mimosine prevents the initiation of DNA replication, whereas other studies indicate that mimosine disrupts elongation of the replication fork by impairing deoxyribonucleotide synthesis by inhibiting the activity of the iron-dependent enzyme ribonucleotide reductase and the transcription of the cytoplasmic serine hydroxymethyltransferase gene (SHMT). Inhibition of serine hydroxymethyltransferase is moderated by a zinc responsive unit located in front of the SHMT gene. L-mimosine is an L-alpha-amino acid that is propionic acid substituted by an amino group at position 2 and a 3-hydroxy-4-oxopyridin-1(4H)-yl group at position 3 (the 2S-stereoisomer). It a non-protein plant amino acid isolated from Mimosa pudica. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a non-proteinogenic L-alpha-amino acid and a member of 4-pyridones. It is functionally related to a propionic acid. It is a conjugate acid of a L-mimosine(1-). It is a tautomer of a L-mimosine zwitterion. Mimosine is an antineoplastic alanine-substituted pyridine derivative isolated from Leucena glauca. 3-Hydroxy-4-oxo-1(4H)-pyridinealanine. An antineoplastic alanine-substituted pyridine derivative isolated from Leucena glauca. An L-alpha-amino acid that is propionic acid substituted by an amino group at position 2 and a 3-hydroxy-4-oxopyridin-1(4H)-yl group at position 3 (the 2S-stereoisomer). It a non-protein plant amino acid isolated from Mimosa pudica. Mimosine, a tyrosine analog , can act as an antioxidant by its potent iron-binding activity[1]. Mimosine is a known chelator of Fe(III)[2]. Mimosine induces apoptosis through metal ion chelation, mitochondrial activation and ROS production in human leukemic cells[3]. Anti-cancer, antiinflammation. Mimosine, a tyrosine analog , can act as an antioxidant by its potent iron-binding activity[1]. Mimosine is a known chelator of Fe(III)[2]. Mimosine induces apoptosis through metal ion chelation, mitochondrial activation and ROS production in human leukemic cells[3]. Anti-cancer, antiinflammation.

   

Maltoheptaose

(2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O36 (1152.3803112)


Maltoheptaose is a polysaccharide with 7 units of glucose and can be classified as a maltodextrin. Maltodextrin is a polysaccharide that is used as a food additive. It is produced from starch by partial hydrolysis and is usually found as a creamy-white hygroscopic spray-dried powder. Maltodextrin is easily digestible, being absorbed as rapidly as glucose, and might be either moderately sweet or almost flavourless. It is commonly used for the production of natural sodas and candy such as SweeTarts. Maltodextrin consists of D-glucose units connected in chains of variable length. The glucose units are primarily linked with α(1→4) glycosidic bonds. Maltodextrin is typically composed of a mixture of chains that vary from three to nineteen glucose units long. Maltodextrins are classified by DE (dextrose equivalent) and have a DE between 3 to 20. The higher the DE value, the shorter the glucose chains, and the higher the sweetness and solubility. Above DE 20, the European Unions CN code calls it glucose syrup, at DE 10 or lower the customs CN code nomenclature classifies maltodextrins as dextrins (Wikipedia). Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers) Celloheptaose is an oligosaccharide.

   

Crocetindial

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedial

C20H24O2 (296.17762039999997)


Crocetin dialdehyde is an apo carotenoid diterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8- and 8-positions. It is an enal, a dialdehyde and an apo carotenoid diterpenoid. Crocetin dialdehyde is a natural product found in Plectranthus barbatus with data available.

   

Rengyol

Trans-1-(2-Hydroxyethyl)-1,4-cyclohexanediol

C8H16O3 (160.10993860000002)


Rengyol is a member of cyclohexanols. Rengyol is a natural product found in Forsythia suspensa, Digitalis chalcantha, and other organisms with data available.

   

evocarpine

(Z)-1-Methyl-2-(tridec-8-en-1-yl)quinolin-4(1H)-one

C23H33NO (339.25620080000004)


Evocarpine is a member of quinolines. Evocarpine is a natural product found in Tetradium ruticarpum with data available. 1-methyl-2-[(E)-tridec-8-enyl]quinolin-4-one is a natural product found in Tetradium ruticarpum with data available. Evocarpine, a quinolone alkaloid that could be isolated from Evodiae fructus, inhibitss Ca2+ influx through voltage-dependent calcium channels. Antimycobacterial activity[1][2]. Evocarpine, a quinolone alkaloid that could be isolated from Evodiae fructus, inhibitss Ca2+ influx through voltage-dependent calcium channels. Antimycobacterial activity[1][2].

   

beta-Amyrenonol

(4aR,6aR,6aS,6bR,8aR,10S,12aS,14bR)-10-hydroxy-2,2,4a,6a,6b,9,9,12a-octamethyl-3,4,5,6,6a,7,8,8a,10,11,12,14b-dodecahydro-1H-picen-13-one

C30H48O2 (440.36541079999995)


11-oxo-beta-amyrin is the pentacyclic triterpenoid that is the 11-oxo derivative of beta-amyrin. It is a pentacyclic triterpenoid and a cyclic terpene ketone. It is functionally related to a beta-amyrin. 11-Oxo-beta-amyrin is a natural product found in Canarium zeylanicum, Launaea arborescens, and other organisms with data available.

   

Nonacosane

Nonacosane; Celidoniol, deoxy- (7CI); n-Nonacosane

C29H60 (408.469476)


Nonacosane, also known as CH3-[CH2]27-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Nonacosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane is a straight-chain hydrocarbon with a molecular formula of C29H60. Nonacosane has been identified within several essential oils. Nonacosane has been detected, but not quantified, in several different foods, such as peachs, ginkgo nuts, cauliflowers, arabica coffee, and lambsquarters. This could make nonacosane a potential biomarker for the consumption of these foods. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito). It can also be prepared synthetically. It has 1,590,507,121 constitutional isomers. Nonacosane, also known as ch3-[ch2]27-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane can be found in a number of food items such as garden tomato (variety), papaya, brussel sprouts, and wild carrot, which makes nonacosane a potential biomarker for the consumption of these food products. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito) . Nonacosane is a straight-chain alkane comprising of 29 carbon atoms. It has a role as a plant metabolite and a volatile oil component. Nonacosane is a natural product found in Euphorbia larica, Quercus salicina, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane comprising of 29 carbon atoms. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].

   

Zerumbone

(2E,6E,10E)-2,6,9,9-tetramethylcycloundeca-2,6,10-trien-1-one

C15H22O (218.1670562)


Zerumbone is a sesquiterpenoid and cyclic ketone that is (1E,4E,8E)-alpha-humulene which is substituted by an oxo group at the carbon atom attached to two double bonds. It is obtained by steam distillation from a type of edible ginger, Zingiber zerumbet Smith, grown particularly in southeast Asia. It has a role as an anti-inflammatory agent, a plant metabolite and a glioma-associated oncogene inhibitor. It is a sesquiterpenoid and a cyclic ketone. It derives from a hydride of an alpha-humulene. Zerumbone is a natural product found in Curcuma amada, Curcuma longa, and other organisms with data available. Zerumbone is found in herbs and spices. Zerumbone is a constituent of the rhizomes of wild ginger (Zingiber zerumbet) Constituent of the rhizomes of wild ginger (Zingiber zerumbet). Zerumbone is found in herbs and spices. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2]. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2].

   

5-O-Methylvisamminol

5H-Furo[3,2-g][1]benzopyran-5-one, 2,3-dihydro-2-(1-hydroxy-1-methylethyl)-4-methoxy-7-methyl-, (2S)-

C16H18O5 (290.1154178)


5-O-Methylvisamminol is an oxacycle and an organic heterotricyclic compound. 5-O-Methylvisamminol is a natural product found in Saposhnikovia divaricata, Angelica japonica, and Prionosciadium thapsoides with data available. 5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1]. 5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1].

   

gamma-Asarone

InChI=1/C12H16O3/c1-5-6-9-7-11(14-3)12(15-4)8-10(9)13-2/h5,7-8H,1,6H2,2-4H

C12H16O3 (208.1099386)


2,4,5-Trimethoxy-1-allylbenzene is a benzenetriol. gamma-Asarone is a natural product found in Blumea mollis, Asarum yakusimense, and other organisms with data available. gamma-Asarone is found in herbs and spices. gamma-Asarone is a constituent of Acorus calamus (sweet flag) D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D009676 - Noxae > D002273 - Carcinogens D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents

   

Eucommiol

1-Cyclopentene-1,2-dimethanol, 4-hydroxy-3-(2-hydroxyethyl)-, (3R,4R)-

C9H16O4 (188.1048536)


Eucommiol is an alicyclic compound that is cyclopent-3-en-1-ol carrying additional hydroxymethyl substituents at positions 3 and 4 as well as a 2-hydroxyethyl substituent at position 2 (the 1R,2R-diastereomer). It has a role as a sedative and a plant metabolite. It is a tetrol, a primary allylic alcohol and an alicyclic compound. Eucommiol is a natural product found in Aucuba japonica, Vitex trifolia, and other organisms with data available. An alicyclic compound that is cyclopent-3-en-1-ol carrying additional hydroxymethyl substituents at positions 3 and 4 as well as a 2-hydroxyethyl substituent at position 2 (the 1R,2R-diastereomer).

   

Isoshinanolone

(3R,4R)-4,8-dihydroxy-3-methyl-1,2,3,4-tetrahydronaphthalen-1-one

C11H12O3 (192.0786402)


Isoshinanolone is a member of tetralins. Isoshinanolone is a natural product found in Ancistrocladus heyneanus, Dioncophyllum thollonii, and other organisms with data available.

   

gamma-Cadinene

Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-methylethyl)-, (1alpha,4abeta,8aalpha)-

C15H24 (204.18779039999998)


(-)-gamma-cadinene is a member of the cadinene family of sesquiterpenes in which the isopropyl group is cis to the hydrogen at the adjacent bridgehead carbon (the 1R,4aS,8aS enantiomer). It has a role as a metabolite. It is a cadinene, a member of octahydronaphthalenes and a gamma-cadinene. It is an enantiomer of a (+)-gamma-cadinene. (-)-gamma-Cadinene is a natural product found in Xylopia sericea, Chromolaena odorata, and other organisms with data available. A member of the cadinene family of sesquiterpenes in which the isopropyl group is cis to the hydrogen at the adjacent bridgehead carbon (the 1R,4aS,8aS enantiomer). gamma-Cadinene is found in allspice. gamma-Cadinene is a constituent of citronella oil.

   

2-Hydroxyacetophenone

2-Hydroxy-1-phenylethan-1-one

C8H8O2 (136.0524268)


2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2]. 2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2].

   

Acridone

9,10-Dihydro-9-oxoacridine

C13H9NO (195.06841039999998)


CONFIDENCE standard compound; INTERNAL_ID 2310 Acridone is an organic compound based on the acridine skeleton. Acridone has antibacterial, antimalarial, antiviral and anti neoplastic activities[1]. Acridone is an organic compound based on the acridine skeleton. Acridone has antibacterial, antimalarial, antiviral and anti neoplastic activities[1].

   

3-Hexen-1-ol

(3Z)-3-Hexen-1-ol ; (z)-3-hexen-1-o;3-Hexen-1-ol;Cis-3-Hexenol

C6H12O (100.0888102)


(Z)-hex-3-en-1-ol is a hex-3-en-1-ol in which the double bond adopts a Z-configuration. Also known as leaf alcohol, it is emitted by green plants upon mechanical damage. Used as a flavourant in tea. It has a role as an insect attractant, a plant metabolite and a fragrance. cis-3-Hexen-1-ol is a natural product found in Lonicera japonica, Santolina corsica, and other organisms with data available. cis-3-hexen-1-ol is a metabolite found in or produced by Saccharomyces cerevisiae. 3-Hexen-1-ol, also known as 1-hydroxy-3-hexene, is a colourless oily liquid with an intense grassy-green odour of freshly cut green grass and leaves. It is produced in small amounts by most plants and it acts as an attractant to many predatory insects. 3-Hexen-1-ol is a very important aroma compound that is used in fruit and vegetable flavours and in perfumes. The yearly production is about 30 tonnes. 3-Hexen-1-ol is found in black elderberry. It is used as tea flavourant. Preferred to (E)-isomer in perfumes and flavours to add natural `green notes. Occurs in geranium, tea, citrus and other oils, and many fruits, e.g. banana, concord grape, quince. (Z)-3-Hexen-1-ol is found in many foods, some of which are allspice, dill, citrus, and garden tomato (variety). A hex-3-en-1-ol in which the double bond adopts a Z-configuration. Also known as leaf alcohol, it is emitted by green plants upon mechanical damage. Used as a flavourant in tea. cis-3-Hexen-1-ol ((Z)-3-Hexen-1-ol) is a green grassy smelling compound found in many fresh fruits and vegetables. cis-3-Hexen-1-ol is widely used as an added flavor in processed food to provide a fresh green quality. cis-3-Hexen-1-ol is an attractant to various insects[1][2]. cis-3-Hexen-1-ol ((Z)-3-Hexen-1-ol) is a green grassy smelling compound found in many fresh fruits and vegetables. cis-3-Hexen-1-ol is widely used as an added flavor in processed food to provide a fresh green quality. cis-3-Hexen-1-ol is an attractant to various insects[1][2].

   

p-Menth-1-en-4-ol

Terpinen 4-ol, primary pharmaceutical reference standard

C10H18O (154.1357578)


p-Menth-1-en-4-ol, also known as terpinen-4-ol, 1-para-menthen-4-ol or p-Menth-1-en-4-ol or 4-carvomenthenol, is an isomer of terpineol. It belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. ±-Terpinene-4-ol is a hydrophobic, largely neutral molecule that is essentially insoluble in water. It has a peppery, spicy, musty, citrus odor and a cooling woody or spicy taste. ±-Terpinene-4-ol is widely used as a flavoring agent and as a masking agent in cosmetics. ±-Terpinene-4-ol is a natural product that can be found in a number of plants, such as allspice, anise, apple, basil, cardamom, cinnamon and Melaleuca alternifolia (also called tea tree) and is the main bioactive component of tea tree oil (PMID 22083482 ). ±-Terpinene-4-ol is also one of the monoterpenes found in cannabis plants (PMID:6991645 ). Terpinen-4-ol is a potent bactericidal agent that also possess antifungal properties. In particular, it has shown in vitro activity against Staphylococcus aureus and C. albicans (PMID:27275783 ). It has also been shown that combining this natural substance and conventional drugs may help treat resistant yeast and bacterial infections. Several studies have suggested that terpinen-4-ol induces antitumor effects by selectively causing necrotic cell death and cell-cycle arrest in melanoma cell lines, or by triggering caspase-dependent apoptosis in human melanoma cells (PMID:27275783 ). 4-terpineol is a terpineol that is 1-menthene carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, an antibacterial agent, an antioxidant, an anti-inflammatory agent, an antiparasitic agent, an antineoplastic agent, an apoptosis inducer and a volatile oil component. It is a terpineol and a tertiary alcohol. Terpinen-4-ol is under investigation in clinical trial NCT01647217 (Demodex Blepharitis Treatment Study). 4-Carvomenthenol is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. Terpinen-4-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Lavender Oil (part of); Juniper Berry Oil (part of); Peumus boldus leaf (part of). Flavouring ingredient. p-Menth-1-en-4-ol is found in many foods, some of which are star anise, spearmint, sweet basil, and black elderberry. A terpineol that is 1-menthene carrying a hydroxy substituent at position 4. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].

   

Dibutyl phthalate

Dibutyl Phthalate, Pharmaceutical Secondary Standard; Certified Reference Material

C16H22O4 (278.1518012)


Di-n-phtalate is a manufactured chemical that does not occur naturally. It is an odorless and oily liquid that is colorless to faint yellow in color. It is slightly soluble in water and does not evaporate easily. Di-n-phtalate is used to make plastics more flexible and is also in carpet backings, paints, glue, insect repellents, hair spray, nail polish, and rocket fuel. N-butyl phthalate is a colorless oily liquid. It is insoluble in water. The primary hazard is the threat to the environment. Immediate steps should be taken to limit its spread to the environment. Since it is a liquid it can easily penetrate the soil and contaminate groundwater and nearby streams. It is combustible though it may take some effort to ignite. It is used in paints and plastics and as a reaction media for chemical reactions. Dibutyl phthalate is a phthalate ester that is the diester obtained by the formal condensation of the carboxy groups of phthalic acid with two molecules of butan-1-ol. Although used extensively as a plasticiser, it is a ubiquitous environmental contaminant that poses a risk to humans. It has a role as an environmental contaminant, a teratogenic agent, a plasticiser, a metabolite and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a phthalate ester and a diester. It is functionally related to a butan-1-ol. Dibutyl phthalate is used in making flexible plastics that are found in a variety of consumer products. It appears to have relatively low acute (short-term) and chronic (long-term) toxicity. No information is available regarding the effects in humans from inhalation or oral exposure to dibutyl phthalate, and only minimal effects have been noted in animals exposed by inhalation. No studies are available on the reproductive, developmental, or carcinogenic effects of dibutyl phthalate in humans. Animal studies have reported developmental and reproductive effects from oral exposure. EPA has classified dibutyl phthalate as a Group D, not classifiable as to human carcinogenicity. Dibutyl phthalate is a natural product found in Scutellaria amoena, Eleutherococcus sessiliflorus, and other organisms with data available. Dibutyl phthalate is found in cloves. DBP was added to the California Proposition 65 (1986) list of suspected teratogens in November 2006. It is a suspected endocrine disruptor. It was used in some nail polishes; all major producers began eliminating this chemical from nail polishes in the Fall of 2006. Dibutyl phthalate (DBP) is a commonly used plasticizer. It is also used as an additive to adhesives or printing inks. It is soluble in various organic solvents, e.g. in alcohol, ether and benzene. DBP is also used as an ectoparasiticide. A plasticizer used in most plastics and found in water, air, soil, plants and animals. It may have some adverse effects with long-term exposure. DBP was added to the California Proposition 65 (1986) list of suspected teratogens in November 2006. It is a suspected endocrine disruptor. It was used in some nail polishes; all major producers began eliminating this chemical from nail polishes in the Fall of 2006.; Dibutyl phthalate (DBP) is a commonly used plasticizer. It is also used as an additive to adhesives or printing inks. It is soluble in various organic solvents, e.g. in alcohol, ether and benzene. DBP is also used as an ectoparasiticide. Dibutyl phthalate is found in kohlrabi and cloves. Dibutyl phthalate is found in cloves. DBP was added to the California Proposition 65 (1986) list of suspected teratogens in November 2006. It is a suspected endocrine disruptor. It was used in some nail polishes; all major producers began eliminating this chemical from nail polishes in the Fall of 2006. Dibutyl phthalate (DBP) is a commonly used plasticizer. It is also used as an additive to adhesives or printing inks. It is soluble in various organic solvents, e.g. in alcohol, ether and benzene. DBP is also used as an ectoparasiticide. A phthalate ester that is the diester obtained by the formal condensation of the carboxy groups of phthalic acid with two molecules of butan-1-ol. Although used extensively as a plasticiser, it is a ubiquitous environmental contaminant that poses a risk to humans. P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010968 - Plasticizers ATC code: P03BX03 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10079; ORIGINAL_PRECURSOR_SCAN_NO 10075 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10082; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10083; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10016; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10065; ORIGINAL_PRECURSOR_SCAN_NO 10063 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10036; ORIGINAL_PRECURSOR_SCAN_NO 10031 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3670 EAWAG_UCHEM_ID 3670; CONFIDENCE standard compound INTERNAL_ID 4180; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 4180 CONFIDENCE standard compound; INTERNAL_ID 8224 CONFIDENCE standard compound; INTERNAL_ID 199

   

Deoxyadenosine

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-(hydroxymethyl)tetrahydrofuran-3-ol

C10H13N5O3 (251.10183480000003)


Deoxyadenosine is a derivative of the nucleoside adenosine. It is composed of adenine attached to a deoxyribose moiety via a N9-glycosidic bond. Deoxyribose differs from ribose by the absence of oxygen in the 3 position of its ribose ring. Deoxyadenosine is a critical component of DNA. When present in sufficiently high levels, deoxyadensoine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxyadenosine are associated with adenosine deaminase (ADA) deficiency, an inborn error of metabolism. ADA deficiency damages the immune system and causes severe combined immunodeficiency (SCID). People with SCID lack virtually all immune protection from bacteria, viruses, and fungi. They are prone to repeated and persistent infections that can be very serious or life-threatening. These infections are often caused by "opportunistic" organisms that ordinarily do not cause illness in people with a normal immune system. The main symptoms of ADA deficiency are pneumonia, chronic diarrhea, and widespread skin rashes. The mechanism by which dATP functions as an immunotoxin is as follows: because deoxyadenosine is a precursor to dATP, a buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Deoxyadenosine is a derivative of nucleoside adenosine. It is comprised of adenine attached to a deoxyribose moiety via a N9-glycosidic bond. Deoxyribose differs from ribose by the absence of oxygen in the 3 position of its ribose ring. Deoxyadenosine is a critical component of DNA. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents COVID info from COVID-19 Disease Map D009676 - Noxae > D009153 - Mutagens KEIO_ID D069 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA. 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA. 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA.

   

Dehydroepiandrosterone

(1S,2R,5S,10R,11S,15S)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-14-one

C19H28O2 (288.2089188)


Dehydroepiandrosterone (DHEA) is a natural steroid hormone produced from cholesterol by the adrenal glands. DHEA is also produced in the gonads, adipose tissue and the brain. DHEA is structurally similar to, and is a precursor of, androstenedione, testosterone, estradiol, estrone and estrogen. It is the most abundant hormone in the human body. Most of DHEA is sulfated (dehydroepiandrosterone sulfate- DEHAS) before secretion. DHEAS is the sulfated version of DHEA; - this conversion is reversibly catalyzed by sulfotransferase (SULT2A1) primarily in the adrenals, the liver, and small intestines. In blood, most DHEA is found as DHEAS with levels that are about 300 times higher than free DHEA. Blood measurements of DHEAS/DHEA are useful to detect excess adrenal activity as seen in adrenal cancer or hyperplasia, including certain forms of congenital adrenal hyperplasia. Women with polycystic ovary syndrome tend to have normal or mildly elevated levels of DHEAS. [HMDB]. Dehydroepiandrosterone is found in many foods, some of which are summer grape, quinoa, calabash, and chinese chives. Dehydroepiandrosterone (DHEA) is a natural steroid hormone produced from cholesterol by the adrenal glands. DHEA is also produced in the gonads, adipose tissue, and the brain. DHEA is structurally similar to and is a precursor of, androstenedione, testosterone, estradiol, estrone, and estrogen. It is the most abundant hormone in the human body. Most of DHEA is sulfated (dehydroepiandrosterone sulfate or DHEA-S) before secretion. DHEA-S is the sulfated version of DHEA; this conversion is reversibly catalyzed by sulfotransferase (SULT2A1) primarily in the adrenals, the liver, and small intestines. In blood, most DHEA is found as DHEA-S with levels that are about 300 times higher than free DHEA. Blood measurements of DHEA-S/DHEA are useful to detect excess adrenal activity as seen in adrenal cancer or hyperplasia, including certain forms of congenital adrenal hyperplasia. Women with polycystic ovary syndrome tend to have normal or mildly elevated levels of DHEA-S. A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; EAWAG_UCHEM_ID 3085 D007155 - Immunologic Factors

   

5-Hydroxymethyluracil

5-(hydroxymethyl)-1,2,3,4-tetrahydropyrimidine-2,4-dione

C5H6N2O3 (142.03784059999998)


5-Hydroxymethyluracil (5hmU), also known as alpha-hydroxythymine, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5hmU has been identified as a thymine base modification found in the genomes of a diverse range of organisms (PMID: 28137275). 5-hydroxymethyluracil has been detected in bacteriophages, dinoflagellates, leishmania, and in eukaryotic genomes where its level appears to be cell type-specific. 5-Hydroxymethyluracil arises from the oxidation of thymine. 5-Hydroxymethyluracil is produced by the enzyme thymine dioxygenase (EC 1.14.11.6) which catalyzes the chemical reaction thymine + 2-oxoglutarate + O2 <-> 5-hydroxymethyluracil + succinate + CO2. The 3 substrates of this enzyme are thymine, 2-oxoglutarate, and O2, whereas its 3 products are 5-hydroxymethyluracil, succinate, and CO2. The 5hmU base can also be generated by oxidation/hydroxylation of thymine by the Ten-Eleven-Translocation (TET) proteins or result from deamination of 5hmC (PMID: 29184924). DNA containing 5hmU has been reported to be more flexible and hydrophilic (PMID: 29184924). 5-Hydroxymethyluracil is an oxidation damage product derived from thymine or 5-methylcytosine. It is a product of thymine dioxygenase [EC 1.14.11.6]. (KEGG) D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D007155 - Immunologic Factors 5-Hydroxymethyluracil is a product of oxidative DNA damage. 5-Hydroxymethyluracil can be used as a potential epigenetic mark enhancing or inhibiting transcription with bacterial RNA polymerase. 5-Hydroxymethyluracil is a product of oxidative DNA damage. 5-Hydroxymethyluracil can be used as a potential epigenetic mark enhancing or inhibiting transcription with bacterial RNA polymerase.

   

Coenzyme A

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C21H36N7O16P3S (767.1152046000001)


Coenzyme A (CoA, CoASH, or HSCoA) is a coenzyme notable for its role in the synthesis and oxidization of fatty acids and the oxidation of pyruvate in the citric acid cycle. It is adapted from beta-mercaptoethylamine, panthothenate, and adenosine triphosphate. It is also a parent compound for other transformation products, including but not limited to, phenylglyoxylyl-CoA, tetracosanoyl-CoA, and 6-hydroxyhex-3-enoyl-CoA. Coenzyme A is synthesized in a five-step process from pantothenate and cysteine. In the first step pantothenate (vitamin B5) is phosphorylated to 4-phosphopantothenate by the enzyme pantothenate kinase (PanK, CoaA, CoaX). In the second step, a cysteine is added to 4-phosphopantothenate by the enzyme phosphopantothenoylcysteine synthetase (PPC-DC, CoaB) to form 4-phospho-N-pantothenoylcysteine (PPC). In the third step, PPC is decarboxylated to 4-phosphopantetheine by phosphopantothenoylcysteine decarboxylase (CoaC). In the fourth step, 4-phosphopantetheine is adenylylated to form dephospho-CoA by the enzyme phosphopantetheine adenylyl transferase (CoaD). Finally, dephospho-CoA is phosphorylated using ATP to coenzyme A by the enzyme dephosphocoenzyme A kinase (CoaE). Since coenzyme A is, in chemical terms, a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. CoA assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group, it is usually referred to as CoASH or HSCoA. Coenzyme A is also the source of the phosphopantetheine group that is added as a prosthetic group to proteins such as acyl carrier proteins and formyltetrahydrofolate dehydrogenase. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA which is a vital component in cholesterol and ketone synthesis. Furthermore, it contributes an acetyl group to choline to produce acetylcholine in a reaction catalysed by choline acetyltransferase. Its main task is conveying the carbon atoms within the acetyl group to the citric acid cycle to be oxidized for energy production (Wikipedia). Coenzyme A (CoA, CoASH, or HSCoA) is a coenzyme, notable for its role in the synthesis and oxidization of fatty acids, and the oxidation of pyruvate in the citric acid cycle. It is adapted from beta-mercaptoethylamine, panthothenate and adenosine triphosphate. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. Furthermore, it contributes an acetyl group to choline to produce acetylcholine, in a reaction catalysed by choline acetyltransferase. Its main task is conveying the carbon atoms within the acetyl group to the citric acid cycle to be oxidized for energy production. -- Wikipedia [HMDB]. Coenzyme A is found in many foods, some of which are grape, cowpea, pili nut, and summer savory. COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Coenzyme A (CoASH) is a ubiquitous and essential cofactor, which is an acyl group carrier and carbonyl-activating group for the citric acid cycle and fatty acid metabolism. Coenzyme A plays a central role in the oxidation of pyruvate in the citric acid cycle and the metabolism of carboxylic acids, including short- and long-chain fatty acids[1]. Coenzyme A (CoASH) is a ubiquitous and essential cofactor, which is an acyl group carrier and carbonyl-activating group for the citric acid cycle and fatty acid metabolism. Coenzyme A plays a central role in the oxidation of pyruvate in the citric acid cycle and the metabolism of carboxylic acids, including short- and long-chain fatty acids[1]. Coenzyme A, a ubiquitous essential cofactor, is an acyl group carrier and carbonyl-activating group for the citric acid cycle and fatty acid metabolism. Coenzyme A plays a central role in the metabolism of carboxylic acids, including short- and long-chain fatty acids[1].

   

Thymine

5-Methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C5H6N2O2 (126.04292559999999)


Thymine, also known as 5-methyluracil, belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Thymine was first isolated in 1893 by Albrecht Kossel and Albert Neumann from calves thymus glands, hence its name. Thymine is one of the 4 nuelcoebases found in DNA and is essential to all life. Thymine exists in all living species, ranging from bacteria to plants to humans. Thymine combined with deoxyribose creates the nucleoside deoxythymidine (also called thymidine) which when phosphorylated to dTDP can be incorporated into DNA via DNA polymerases. Thymidine can be phosphorylated with up to three phosphoric acid groups, producing dTMP (deoxythymidine monophosphate) dTDP and/or dTTP. In RNA thymine is replaced with uracil in most cases. In DNA, thymine binds to adenine via two hydrogen bonds to assist in stabilizing the nucleic acid structures. Within humans, thymine participates in a number of enzymatic reactions. In particular, thymine and deoxyribose 1-phosphate can be biosynthesized from thymidine through its interaction with the enzyme thymidine phosphorylase. In addition, thymine can be converted into dihydrothymine; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. One of the pyrimidine bases of living matter. Derivation: Hydrolysis of deoxyribonucleic acid, from methylcyanoacetylurea by catalytic reduction. Use: Biochemical research. (Hawleys Condensed Chemical Dictionary) Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus KEIO_ID T015 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.

   

Methyl red

Methyl red(to be removed)

C15H15N3O2 (269.116421)


D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9367; ORIGINAL_PRECURSOR_SCAN_NO 9363 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9443; ORIGINAL_PRECURSOR_SCAN_NO 9441 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9445; ORIGINAL_PRECURSOR_SCAN_NO 9443 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9467; ORIGINAL_PRECURSOR_SCAN_NO 9462 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9471; ORIGINAL_PRECURSOR_SCAN_NO 9469 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9503; ORIGINAL_PRECURSOR_SCAN_NO 9501

   

Dihydrobiopterin

2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-1,4,7,8-tetrahydropteridin-4-one

C9H13N5O3 (239.1018348)


Dihydrobiopterin, also known as BH2, 7,8-dihydrobiopterin, L-erythro-7,8-dihydrobiopterin, quinonoid dihydrobiopterin or q-BH2, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. Dihydrobiopterin is also classified as a pteridine. Pteridines are aromatic compounds composed of fused pyrimidine and pyrazine rings. Dihydrobiopterin is produced during the synthesis of neurotransmitters L-DOPA, dopamine, norepinephrine and epinephrine. It is restored to the required cofactor tetrahydrobiopterin via the NADPH-dependant reduction of dihydrobiopterin reductase. Dihydrobiopterin can also be converted to tetrahydrobiopterin by nitric oxide synthase (NOS) which is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain of NOS, whereas the high affinity tetrahydrobiopterin site involved in NOS activation is located on the oxygenase (N-terminal) domain (PMID: 8626754). Sepiapterin reductase (SPR) is another enzyme that plays a role in the production of dihydrobiopterin. SPR catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4). BH4 is a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism (PMID: 25550200). Dihydrobiopterin is known to be synthesized in several parts of the body, including the pineal gland. Dihydrobiopterin exists in all eukaryotes, ranging from yeast to humans. In humans, dihydrobiopterin is involved in several metabolic disorders including dihydropteridine reductase (DHPR) deficiency. DHPR deficiency is a severe form of hyperphenylalaninemia (HPA) due to impaired regeneration of tetrahydrobiopterin (BH4) leading to decreased levels of neurotransmitters (dopamine, serotonin) and folate in cerebrospinal fluid, and causing neurological symptoms such as psychomotor delay, hypotonia, seizures, abnormal movements, hypersalivation, and swallowing difficulties. Dihydrobiopterin is also associated with another metabolic disorder known as sepiapterin reductase deficiency (SRD). Sepiapterin reductase catalyzes the (NADP-dependent) reduction of carbonyl derivatives, including pteridines, and plays an important role in tetrahydrobiopterin biosynthesis. Low dihydrofolate reductase activity in the brain leads to the accumulation of dihydrobiopterin, which in turn, inhibits tyrosine and tryptophan hydroxylases. This uncouples neuronal nitric oxide synthase, leading to neurotransmitter deficiencies and neuronal cell death. SRD is characterized by low cerebrospinal fluid neurotransmitter levels and the presence of elevated cerebrospinal fluid dihydrobiopterin. SRD is characterized by motor delay, axial hypotonia, language delay, diurnal fluctuation of symptoms, dystonia, weakness, oculogyric crises, dysarthria, parkinsonian signs and hyperreflexia. Dihydrobiopterin (BH2) is an oxidation product of tetrahydrobiopterin. Tetrahydrobiopterin is a natural occurring cofactor of the aromatic amino acid hydroxylase and is involved in the synthesis of tyrosine and the neurotransmitters dopamine and serotonin. Tetrahydrobiopterin is also essential for nitric oxide synthase catalyzed oxidation of L-arginine to L-citrulline and nitric oxide. [HMDB] 7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

Deoxyguanosine

2-amino-9-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-1H-purin-6-one

C10H13N5O4 (267.09674980000005)


Deoxyguanosine, also known as dG, belongs to the class of organic compounds known as purine 2-deoxyribonucleosides. Purine 2-deoxyribonucleosides are compounds consisting of a purine linked to a ribose which lacks a hydroxyl group at position 2‚Äô. Deoxyguanosine is a nucleoside consisting of the base guanine and the sugar deoxyribose. Deoxyguanosine is one of the four deoxyribonucleosides that make up DNA. Deoxyguanosine exists in all living species, ranging from bacteria to plants to humans. Deoxyguanosine participates in a number of enzymatic reactions. In particular, deoxyguanosine can be biosynthesized from 2-deoxyguanosine 5-monophosphate through the enzyme known as cytosolic purine 5-nucleotidase. In addition, deoxyguanosine can be converted into 2-deoxyguanosine 5-monophosphate (dGMP); which is mediated by the enzyme deoxyguanosine kinase. Deoxyguanosine is involved in the rare, inherited metabolic disorder called the purine nucleoside phosphorylase deficiency (PNP deficiency). In particular PNP deficiency is characterized by elevated levels of dGTP (deoxyguanosine triphosphate). PNP accounts for approximately 4\\\\% of patients with severe combined immunodeficiency (PMID: 1931007). PNP-deficient patients suffer from recurrent infections, usually beginning in the first year of life. Two thirds of patients have evidence of neurologic disorders with spasticity, developmental delay and mental retardation. Deoxyguanosine can be converted to 8-hydroxy-deoxyguanosine (8-OHdG) due to hydroxyl radical attack at the C8 of guanine. 8-hydroxy-deoxyguanosine is a sensitive marker of the DNA damage This damage, if left unrepaired, has been proposed to contribute to mutagenicity and cancer promotion. Isolated from plants, e.g. Phaseolus vulgaris (kidney bean) COVID info from COVID-19 Disease Map KEIO_ID D057; [MS2] KO008942 KEIO_ID D057 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-Deoxyguanosine (Deoxyguanosine) is a purine nucleoside with a variety of biological activities. 2’-Deoxyguanosine can induce DNA division in mouse thymus cells. 2’-Deoxyguanosine is a potent cell division inhibitor in plant cells[1][2][3]. 2'-Deoxyguanosine (Deoxyguanosine) is deoxyguanosine.

   

5-Methyldeoxycytidine

4-amino-1-[(2R,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2-dihydropyrimidin-2-one

C10H15N3O4 (241.106251)


5-Methyldeoxycytidine is a dinucleotide. Methylation of cytosine-guanine dinucleotide sequences (CpG dinucleotides) catalyzed by DNA methyltransferase, particularly in the 5′-promoter regions of mammalian genes, forms 5-methyldeoxycytidine (5-mdc) whose levels may regulate gene expression. Levels of 5-mdc and the expression of nm23-H1 (an anti-metastatic gene identified in and human cancer lines) are highly correlated with human hepatoma cells with different invasion activities. DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. The levels of 5-mdc in the urine of patients with breast cancer is not significantly different than controls. (PMID: 17044778, 17264127, 16799933) [HMDB] 5-Methyldeoxycytidine is a dinucleotide. Methylation of cytosine-guanine dinucleotide sequences (CpG dinucleotides) catalyzed by DNA methyltransferase, particularly in the 5′-promoter regions of mammalian genes, forms 5-methyldeoxycytidine (5-mdc) whose levels may regulate gene expression. Levels of 5-mdc and the expression of nm23-H1 (an anti-metastatic gene identified in and human cancer lines) are highly correlated with human hepatoma cells with different invasion activities. DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. The levels of 5-mdc in the urine of patients with breast cancer is not significantly different than controls. (PMID: 17044778, 17264127, 16799933). 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2]. 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2].

   

Dimethylbenzimidazole

5,6-Dimethylbenzimidazole hydrochloride

C9H10N2 (146.084394)


Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. Dimethylbenzimidazole is the second to last step for the synthesis of alpha-Ribazole. It is converted from Riboflavin then it is converted to N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via the enzyme nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase (EC 2.4.2.21). Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. KEIO_ID D087 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   

Carboxin

2-methyl-N-phenyl-5,6-dihydro-1,4-oxathiine-3-carboxamide

C12H13NO2S (235.06669580000002)


CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8170; ORIGINAL_PRECURSOR_SCAN_NO 8169 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8163; ORIGINAL_PRECURSOR_SCAN_NO 8162 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8129; ORIGINAL_PRECURSOR_SCAN_NO 8127 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8224; ORIGINAL_PRECURSOR_SCAN_NO 8222 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8211; ORIGINAL_PRECURSOR_SCAN_NO 8210 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8221; ORIGINAL_PRECURSOR_SCAN_NO 8218 D016573 - Agrochemicals D010575 - Pesticides Carboxin (Carboxine) is a systemic agricultural fungicide and seed protectant.

   

Anandamide

(5Z,8Z,11Z,14Z)-N-(2-Hydroxyethyl)-5,8,11,14-eicosatetraenamide

C22H37NO2 (347.2824142)


Anandamide, also known as arachidonoylethanolamide (AEA), is a highly potent endogenous agonist of the cannabinoid CB1 and CB2 receptors. CB1 receptors are predominantly found in the central nervous system (CNS) where they mainly mediate the psychotropic effects of tetrahydrocannabinol (THC) and endocannabinoids, whereas the expression of the CB2 receptor is thought to be restricted to cells of the immune system. It was suggested that AEA might inhibit tumour cell proliferation or induce apoptosis independently of CB1 and CB2 receptors, via interaction with the type 1 vanilloid receptor (VR1). VR1 is an ion channel expressed almost exclusively by sensory neurons, activated by pH, noxious heat (> 48-degree centigrade), and plant toxins and is thought to play an important role in nociception. Cervical cancer cells are sensitive to AEA-induced apoptosis via VR1 that is aberrantly expressed in vitro and in vivo while CB1 and CB2 receptors play a protective role. (PMID: 15047233). Novel prostaglandins (prostaglandin glycerol esters and prostaglandin ethanolamides) are COX-2 oxidative metabolites of endogenous cannabinoids (such as anandamide). Recent evidence suggests that these new types of prostaglandins are likely novel signalling mediators involved in synaptic transmission and plasticity (PMID: 16957004). Anandamide is a highly potent endogenous agonist of the cannabinoid CB1 and CB2 receptors. CB1 receptors are predominantly found in the central nervous system (CNS) where they mainly mediate the psychotropic effects of Tetrahydrocannabinol (THC) and endocannabinoids, whereas the expression of the CB2 receptor is thought to be restricted to cells of the immune system. It was suggested that AEA might inhibit tumor cell proliferation or induce apoptosis independently of CB1 and CB2 receptors, via interaction with the type 1 vanilloid receptor (VR1). VR1 is an ion channel expressed almost exclusively by sensory neurons, activated by pH, noxious heat (>48 degree centigrade) and plant toxins and is thought to play an important role in nociception. Cervical cancer cells are sensitive to AEA-induced apoptosis via VR1 that is aberrantly expressed in vitro and in vivo while CB1 and CB2 receptors play a protective role. (PMID 15047233) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; INTERNAL_ID 41 D049990 - Membrane Transport Modulators

   

Ethyl (±)-3-hydroxybutyrate

Ethyl (±)-3-hydroxybutyric acid

C6H12O3 (132.0786402)


Ethyl (±)-3-hydroxybutyrate is a flavouring ingredient. Flavouring ingredient Ethyl 3-hydroxybutyrate is a fragrance found in wine and Tribolium castaneum[1][2]. Ethyl 3-hydroxybutyrate is a fragrance found in wine and Tribolium castaneum[1][2].

   

Palmitoylethanolamide

Monoethanolamine palmitic acid amide

C18H37NO2 (299.2824142)


N-Palmitoylethanolamide (PEA) is present in the tissues of most mammals. It was initially described as an agonist of the type 2 cannabinoid receptor (CB2), although it is now universally recognized that PEA is in fact incapable of binding to cannabinoid receptors, or at least not to the known receptors. In addition to its anti-inflammatory activity, PEA also produces analgesia, neuroprotection, and possesses anti-epileptic properties. It also reduces gastrointestinal motility and cancer cell proliferation, as well as protecting the vascular endothelium in the ischemic heart. The physiological stimuli that regulate PEA levels in mammalian tissues are largely unknown, however, multiple studies indicate that this lipid accumulates during cellular stress, particularly following tissue injury. For example, PEA increases post-mortem in the pig brain. Similar elevations in PEA levels have been observed in the ischemic brain and PEA is also up-regulated in response to ultraviolet-B irradiation in mouse epidermal cells. Adipose tissue is highly implicated in the systemic secretion of IL-6 and leptin, and human mature adipocytes are able to secrete large quantity of PEA. Human adipose tissue can be subjected to modulation of its inflammatory state by lipopolysaccharide (LPS). LPS strongly inhibits adipose cell leptin release, with PEA acting as a potentiator of this inhibitory effect. These actions are not linked to a reduction in leptin gene transcription. Thus, PEA does not have an anti-inflammatory role in the secretion of IL-6 via NFkappaB at the adipocyte level, but instead seems to act at the heart of the LPS-stimulated pathway, which, independently of NFkappaB, inhibits the secretion of leptin. (PMID: 16884908). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists Isolated from soybean lecithin, egg yolk and peanut meal. Palmidrol is found in eggs, pulses, and nuts. C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Same as: D08328 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Palmitoylethanolamide (Palmidrol) is an active endogenous compound which can used for preventing virus infection of the respiratory tract.

   

Nitrobenzene

Hydroxy(phenyl)azane oxide (acd/name 4.0)

C6H5NO2 (123.032027)


Approximately 95\\% of nitrobenzene is consumed in the production of aniline, which is a precursor to rubber chemicals, pesticides, dyes, explosives, and pharmaceuticals. Nitrobenzene is an organic compound with the chemical formula C6H5NO2. It is a water-insoluble pale yellow oil with an almond-like odor. It freezes to give greenish-yellow crystals. It is produced on a large scale from benzene as a precursor to aniline. In the laboratory, it is occasionally used as a solvent, especially for electrophilic reagents. Nitrobenzene is prepared by nitration of benzene with a mixture of concentrated sulfuric acid, water, and nitric acid. This mixture is sometimes called mixed acid. The production of nitrobenzene is one of the most dangerous processes conducted in the chemical industry because of the exothermicity of the reaction ( delta H = 117 kJ/mol).

   

Cyclic AMP

(4aR,6R,7R,7aS)-6-(6-aminopurin-9-yl)-2,7-dihydroxy-tetrahydro-4H-2lambda5-furo[3,2-d][1,3,2]dioxaphosphinin-2-one

C10H12N5O6P (329.0525182)


Cyclic amp, also known as camp or adenosine 3,5-cyclic monophosphate, is a member of the class of compounds known as 3,5-cyclic purine nucleotides. 3,5-cyclic purine nucleotides are purine nucleotides in which the oxygen atoms linked to the C3 and C5 carbon atoms of the ribose moiety are both bonded the same phosphorus atom of the phosphate group. Cyclic amp is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Cyclic amp can be found in a number of food items such as green vegetables, java plum, borage, and wakame, which makes cyclic amp a potential biomarker for the consumption of these food products. Cyclic amp can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine, as well as throughout all human tissues. Cyclic amp exists in all living species, ranging from bacteria to humans. In humans, cyclic amp is involved in several metabolic pathways, some of which include dopamine activation of neurological reward system, excitatory neural signalling through 5-HTR 4 and serotonin, intracellular signalling through PGD2 receptor and prostaglandin D2, and thioguanine action pathway. Cyclic amp is also involved in several metabolic disorders, some of which include adenosine deaminase deficiency, gout or kelley-seegmiller syndrome, purine nucleoside phosphorylase deficiency, and adenine phosphoribosyltransferase deficiency (APRT). Moreover, cyclic amp is found to be associated with chronic renal failure, headache, meningitis, and hypoxic-ischemic encephalopathy. Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3,5-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms, conveying the cAMP-dependent pathway. It should not be confused with 5-AMP-activated protein kinase (AMP-activated protein kinase) . Cyclic AMP (cAMP) or cyclic adenosine monophosphate is an adenine nucleotide containing one phosphate group which is esterified to both the 3- and 5-positions of the sugar moiety. cAMP is found in all organisms ranging from bacteria to plants to animals. In humans and other mammals it is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon and ACTH. cAMP is synthesized from ATP by adenylate cyclase. Adenylate cyclase is located at the inner side of cell membranes. Adenylate cyclase is activated by the hormones glucagon and adrenaline and by G protein. Liver adenylate cyclase responds more strongly to glucagon, and muscle adenylate cyclase responds more strongly to adrenaline. cAMP decomposition into AMP is catalyzed by the enzyme phosphodiesterase. cAMP is primarily used for intracellular signal transduction, such as transferring into cells the effects of hormones like glucagon and adrenaline, which cannot pass through the plasma membrane. cAMP is also involved in the activation of protein kinases. In addition, cAMP binds to and regulates the function of ion channels such as the HCN channels. Hyperpolarization-activated cyclic nucleotide–gated (HCN) channels are integral membrane proteins that serve as nonselective voltage-gated cation channels in the plasma membranes of heart and brain cells. HCN channels are sometimes referred to as pacemaker channels because they help to generate rhythmic activity within groups of heart and brain cells. [Spectral] 3,5-Cyclic AMP (exact mass = 329.05252) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cyclic AMP (Cyclic adenosine monophosphate), adenosine triphosphate derivative, is an intracellular signaling molecule responsible for directing cellular responses to extracellular signals. Cyclic AMP is an important second messenger in many biological processes[1][2][3]. Cyclic AMP (Cyclic adenosine monophosphate), adenosine triphosphate derivative, is an intracellular signaling molecule responsible for directing cellular responses to extracellular signals. Cyclic AMP is an important second messenger in many biological processes[1][2][3]. Cyclic AMP (Cyclic adenosine monophosphate), adenosine triphosphate derivative, is an intracellular signaling molecule responsible for directing cellular responses to extracellular signals. Cyclic AMP is an important second messenger in many biological processes[1][2][3].

   

Diethylnitrosamine

N-Nitrosodiethylamine (NDEA)

C4H10N2O (102.07930900000001)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3452 D009676 - Noxae > D000477 - Alkylating Agents N-Nitrosodiethylamine (Diethylnitrosamine) is a potent hepatocarcinogenic dialkylnitrosoamine. N-Nitrosodiethylamine is mainly present in tobacco smoke, water, cheddar cheese, cured, fried meals and many alcoholic beverages. N-Nitrosodiethylamine is responsible for the changes in the nuclear enzymes associated with DNA repair/replication. N-Nitrosodiethylamine results in various tumors in all animal species. The main target organs are the nasal cavity, trachea, lung, esophagus and liver.

   

Lumazine

2,3,4,8-tetrahydropteridine-2,4-dione

C6H4N4O2 (164.0334244)


Lumazine, also known as pteridine-2,4-dione or 2,4(3h,8h)-pteridinedione, belongs to pteridines and derivatives class of compounds. Those are polycyclic aromatic compounds containing a pteridine moiety, which consists of a pyrimidine fused to a pyrazine ring to form pyrimido(4,5-b)pyrazine. Lumazine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Lumazine can be found in soy bean, which makes lumazine a potential biomarker for the consumption of this food product. KEIO_ID L024 Pteridine-2,4(1H,3H)-dione is an endogenous metabolite.

   

Glyceraldehyde

(2R)-2,3-dihydroxypropanal

C3H6O3 (90.0316926)


DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].

   

Methyl acetate

Ethyl ester OF monoacetic acid

C3H6O2 (74.0367776)


Methyl acetate belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Methyl acetate is present in apple, grape, banana and other fruits. Methyl acetate is a flavouring ingredient and it is an ester that, in the laboratory, is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature. Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants Methyl acetate is an ester that is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature.; Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. Methyl acetate is VOC exempt.; The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a flavouring agent and can be found in many foods, some of which are apple, grape, banana, orange mint, and ginger.

   

12,13-EpOME

(9Z)-(12S,13R)-12,13-Epoxyoctadecenoic acid

C18H32O3 (296.2351322)


D004791 - Enzyme Inhibitors

   

5'-Deoxyadenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-methyloxolane-3,4-diol

C10H13N5O3 (251.10183480000003)


5-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. Oxidized nucleosides represent excellent biomarkers for determining the extent of damage in genetic material, which has long been of interest in understanding the mechanism of aging, neurodegenerative diseases, and carcinogenesis. (PMID 15116424). The normal form of deoxyadenosine used in DNA synthesis and repair is 2-deoxyadenosine where the hydroxyl group (-OH) is at the 2 position of its ribose sugar moiety. 5-deoxyadenosine has its hydroxyl group at the 5 position of the ribose sugar. [HMDB] 5-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. Oxidized nucleosides represent excellent biomarkers for determining the extent of damage in genetic material, which has long been of interest in understanding the mechanism of aging, neurodegenerative diseases, and carcinogenesis. (PMID 15116424). The normal form of deoxyadenosine used in DNA synthesis and repair is 2-deoxyadenosine where the hydroxyl group (-OH) is at the 2 position of its ribose sugar moiety. 5-deoxyadenosine has its hydroxyl group at the 5 position of the ribose sugar. KEIO_ID D082; [MS2] KO008948 KEIO_ID D082 5'-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. 5'-Deoxyadenosine shows anti-orthopoxvirus activity[1]. 5'-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. 5'-Deoxyadenosine shows anti-orthopoxvirus activity[1].

   

Pralidoxime

2-[(1E)-(hydroxyimino)methyl]-1-methylpyridin-1-ium

[C7H9N2O]+ (137.0714844)


Pralidoxime is an antidote to organophosphate pesticides and chemicals. Organophosphates bind to the esteratic site of acetylcholinesterase, which results initially in reversible inactivation of the enzyme. If given within 24 hours,after organophosphate exposure, pralidoxime reactivates the enzyme cholinesterase by cleaving the phosphate-ester bond formed between the organophosphate and acetylcholinesterase. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators Acquisition and generation of the data is financially supported in part by CREST/JST. C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D020011 - Protective Agents > D000931 - Antidotes D004793 - Enzyme Reactivators

   

agrimoniin

(7,8,9,12,13,14,28,29,30,33,34,35-Dodecahydroxy-4,17,25,38-tetraoxo-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.02,19.05,10.011,16.026,31.032,37]nonatriaconta-5,7,9,11,13,15,26,28,30,32,34,36-dodecaen-20-yl) 2-[5-[(7,8,9,12,13,14,28,29,30,33,34,35-dodecahydroxy-4,17,25,38-tetraoxo-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.02,19.05,10.011,16.026,31.032,37]nonatriaconta-5,7,9,11,13,15,26,28,30,32,34,36-dodecaen-20-yl)oxycarbonyl]-2,3-dihydroxyphenoxy]-3,4,5-trihydroxybenzoate

C82H54O52 (1870.1581084)


   

Androstanedione

(5S,8R,9S,10S,13S,14S)-10,13-dimethyl-2,4,5,6,7,8,9,11,12,14,15,16-dodecahydro-1H-cyclopenta[a]phenanthrene-3,17-dione

C19H28O2 (288.2089188)


Androstanedione belongs to the class of organic compounds known as androgens and derivatives. These are 3-hydroxylated C19 steroid hormones. They are known to favor the development of masculine characteristics. They also show profound effects on scalp and body hair in humans. Thus, androstanedione is considered to be a steroid lipid molecule. Androstanedione is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Androstanedione is a steroid metabolite and a procursor of both testosterone and estrone. It is a product of enzyme 3alpha-hydroxysteroid dehydrogenase [EC 1.1.1.50] in pathway Androgen and estrogen metabolism (KEGG). [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Cholestan-3-one

5beta-cholestan-3-one

C27H46O (386.3548466)


   

Braxin C

(2R,3aR,7S)-7-hydroxy-2,5,7-trimethyl-3a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyspiro[3,7a-dihydro-2H-indene-6,1-cyclopropane]-1-one

C20H30O8 (398.194058)


   

Ajoene

3-{[(1Z)-3-(prop-2-ene-1-sulfinyl)prop-1-en-1-yl]disulfanyl}prop-1-ene

C9H14OS3 (234.02067540000002)


Ajoene is found in onion-family vegetables. Ajoene is isolated from garlic (Allium sativum) extracts. Nutriceutical with anti-cancer properties Ajoene is a chemical compound available from garlic (Allium sativum). The name (and pronunciation) is derived from "ajo", the Spanish word for garlic. It is found as a mixture of two isomers, E-, and Z- 4,5,9-trithiadodeca-1,6,11-triene 9-oxide. Ajoene, an unsaturated disulfide, is formed from the bonding of three allicin molecules. Allicin is a sulfinyl compound that gives garlic its strong odor and flavor. The release of allicin occurs after a garlic clove is crushed or finely chopped. Subsequent formation of ajoene occurs when allicin is dissolved in various solvents including edible oils. Ajoene is also found in garlic extract. Ajoene is most stable and most abundant in macerate of garlic (chopped garlic in edible oil) Ajoene is a member of the class of compounds known as sulfoxides. Sulfoxides are compounds containing a sulfoxide functional group, with the structure RS(=O)R (R,R not H). Ajoene is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Ajoene can be found in garlic, onion-family vegetables, and soft-necked garlic, which makes ajoene a potential biomarker for the consumption of these food products. The name (and pronunciation) is derived from "ajo", the Spanish word for garlic. It is found as a mixture of up to four isomers, which differ in terms of the stereochemistry of central alkene (E- vs Z-) and the chirality of the sulfoxide . D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

goitrin

goitrin

C5H7NOS (129.02483320000002)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D013956 - Antithyroid Agents D000890 - Anti-Infective Agents > D023303 - Oxazolidinones CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2335 INTERNAL_ID 2335; CONFIDENCE Reference Standard (Level 1)

   

Sulfite

Sulfuric(IV) acid (H2SO3)

H2O3S (81.9724662)


Endogenous sulfite is generated as a consequence of the bodys normal processing of sulfur-containing amino acids. Sulfites occur as a consequence of fermentation and also occur naturally in a number of foods and beverages. As food additives, sulfiting agents were first used in 1664 and have been approved in the United States since the 1800s. Sulfite is an allergen, a neurotoxin, and a metabotoxin. An allergen is a compound that causes allergic reactions such as wheezing, rash, or rhinitis. A neurotoxin is a substance that causes damage to nerves or brain tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. As an allergen, sulfite is known to induce asthmatic reactions. Sulfite sensitivity occurs most often in asthmatic adults (predominantly women), but it is also occasionally reported in preschool children. Adverse reactions to sulfites in nonasthmatics are extremely rare. Asthmatics who are steroid-dependent or who have a higher degree of airway hyperreactivity may be at greater risk of experiencing a reaction to sulfite-containing foods. Sulfite sensitivity reactions vary widely, ranging from no reaction to severe. The majority of reactions are mild. These manifestations may include dermatologic, respiratory, or gastrointestinal signs and symptoms. The precise mechanisms of the sensitivity responses have not been completely elucidated: inhalation of sulfur dioxide (SO2) generated in the stomach following ingestion of sulfite-containing foods or beverages, a deficiency in a mitochondrial enzyme, and an IgE-mediated immune response have all been implicated. Exogenously supplied sulfite is detoxified by the enzyme sulfite oxidase. Sulfite oxidase (EC 1.8.3.1) is 1 of 3 enzymes in humans that require molybdenum as a cofactor. Under certain circumstances, chronically high levels of sulfite can lead to serious neurotoxicity. Sulfite oxidase deficiency (also called molybdenum cofactor deficiency) is a rare autosomal inherited disease that is typified by high concentrations of sulfite in the blood and urine. It is characterized by severe neurological symptoms such as untreatable seizures, attenuated growth of the brain, and mental retardation. It results from defects in the enzyme sulfite oxidase, which is responsible for the oxidation of sulfite to sulfate. This sulfite to sulfate reaction is the final step in the degradation of sulfur-containing metabolites (including the amino acids cysteine and methionine). The term "isolated sulfite oxidase deficiency" is used to define the deficiency caused by mutations in the sulfite oxidase gene. This differentiates it from another version of sulfite oxidase deficiency that is due to defects in the molybdenum cofactor biosynthetic pathway (with mutations in the MOCS1 or MOCS2 genes). Isolated sulfite oxidase deficiency is a rare but devastating neurologic disease that usually presents in early infancy with seizures and alterations in muscle tone (PMID: 16234925, 16140720, 8586770). Sulfite oxidase deficiency (as caused by MOCS1 or MOCS2) may be treated with cPMP, a precursor of the molybdenum cofactor (PMID: 20385644). The mechanism behind sulfite neurotoxicity appears to be related to its ability to bind and inhibit glutamate dehydrogenase (GDH). Inhibition of GDH leads to a decrease in alpha-ketoglutarate and a diminished flux through the tricarboxylic acid cycle. This is accompanied by a decrease in NADH through the mitochondrial electron transport chain, which leads to a decrease in mitochondrial membrane potential and in ATP synthesis. Since glutamate is a major metabolite in the brain, inhibition of GDH by sulfite appears to contribute to neural damage characteristic of sulfite oxidase deficiency in human infants (PMID: 15273247). The hydrogen sulfite, or bisulfite, ion is the ion HSO3-. It is the conjugate base of sulfurous acid, H2SO3. Bisulfite has long been recognized as a reagent to react with organic compound... Food additive listed on the EAFUS Food Additive Database (Jan. 2001)

   

Butanone

Methyl(ethyl) ketone

C4H8O (72.0575118)


Butanone occurs as a natural product. It is made by some trees and found in some fruits and vegetables in small amounts. It is also released to the air from car and truck exhausts. The known health effects to people from exposure to butanone are irritation of the nose, throat, skin, and eyes. (wikipedia).

   

Heptadecane

CH3-[CH2]15-CH3

C17H36 (240.2816856)


Heptadecane, also known as CH3-[CH2]15-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Heptadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an organic compound, an alkane hydrocarbon with the chemical formula C17H36. The most compact and branched isomer would be tetra-tert-butylmethane, but its existence is believed to be impossible due to steric hindrance. The name may refer to any of 24894 theoretically possible structural isomers, or to a mixture thereof. Heptadecane is an alkane tasting compound. heptadecane has been detected, but not quantified, in several different foods, such as lemon balms, coconuts, orange bell peppers, allspices, and pepper (c. annuum). This could make heptadecane a potential biomarker for the consumption of these foods. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. Indeed, it is believed to be the smallest "impossible" alkane. Heptadecane, also known as ch3-[ch2]15-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an alkane tasting compound and can be found in a number of food items such as papaya, orange bell pepper, pepper (spice), and red bell pepper, which makes heptadecane a potential biomarker for the consumption of these food products. Heptadecane can be found primarily in saliva. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes .

   

(-)-trans-Carveol

(1S-trans)-2-Methyl-5-(1-methylvinyl)cyclohex-2-en-1-ol

C10H16O (152.12010859999998)


Carveol is a natural terpenoid alcohol that is a constituent of spearmint oil. It has an odor and flavor that resemble those of spearmint and caraway. Consequently, it is used as a fragrance in cosmetics and as a flavor additive in the food industry. Constituent of Valencia orange essence oil. Flavouring ingredient Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.

   

1-Butanol

Alcohol, N-butyl

C4H10O (74.073161)


1-butanol, also known as 1-butyl alcohol or 1-hydroxybutane, is a member of the class of compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, 1-butanol is considered to be a fatty alcohol lipid molecule. 1-butanol is soluble (in water) and an extremely weak acidic compound (based on its pKa). 1-butanol can be found in a number of food items such as sugar apple, kumquat, cherry tomato, and angelica, which makes 1-butanol a potential biomarker for the consumption of these food products. 1-butanol can be found primarily in blood, feces, and saliva, as well as throughout most human tissues. 1-butanol exists in all eukaryotes, ranging from yeast to humans. Moreover, 1-butanol is found to be associated with diabetes mellitus type 2. The largest use of n-butanol is as an industrial intermediate, particularly for the manufacture of butyl acetate (itself an artificial flavorant and industrial solvent). It is a petrochemical, manufactured from propylene and usually used close to the point of manufacture. Estimated production figures for 1997 are: United States 784,000 tonnes; Western Europe 575,000 tonnes; Japan 225,000 tonnes . 1-Butanol, which is also known as n-butanol or 1-butanol or butyl alcohol (sometimes also called biobutanol when produced biologically), is an alcohol with a 4 carbon structure and the molecular formula of C4H10O. It is primarily used as a solvent, as an intermediate in chemical synthesis, and as a fuel. There are four isomeric structures for butanol. The straight chain isomer with the alcohol at an internal carbon is sec-butanol or 2-butanol. The branched isomer with the alcohol at a terminal carbon is isobutanol, and the branched isomer with the alcohol at the internal carbon is tert-butanol. 1-Butanol is produced in small amounts by gut microbial fermenetation through the butanoate metabolic pathway. It has been found in Bacillus, Clostridium, Escherichia, Lactobacillus, Pseudomonas, Saccharomyces, Synechococcus and Thermoanaerobacterium.

   

Isopropyl alcohol

1-Methylethyl alcohol

C3H8O (60.0575118)


Isopropyl alcohol, also known as isopropanol or 1-methylethanol, belongs to the class of organic compounds known as secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl). It is used in the manufacture of acetone and its derivatives and as a solvent. Isopropyl alcohol exists in all living species, ranging from bacteria to humans. Isopropyl alcohol is an alcohol, bitter, and musty tasting compound. Isopropyl alcohol has also been detected, but not quantified in several different foods, such as papaya, roselles, apples, sweet cherries, and allium (onion). Isopropyl alcohol is an isomer of 1-propanol and is considered as a potentially toxic compound. Topically, it is used as an antiseptic. It is a colorless liquid having disinfectant properties. Present in fruit aromas, e.g. papaya (Carica papaya). It is used as an extraction solvent in food preparation D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D012997 - Solvents

   

Propyl alcohol

Propylan-propyl alcohol

C3H8O (60.0575118)


Propyl alcohol, also known as 1-propanol, n-propanol, or simply propanol, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds in which a hydroxy group is bonded to a primary carbon, with the general structure RCOH (R=alkyl, aryl). Propyl alcohol is a colourless, volatile liquid that is fully miscible with water. It has a sweet odour and an alcoholic, fermented, fusel taste. Propyl alcohol exists in all living species, ranging from bacteria to plants to humans. Propanol can be produced through fermentation of sugars by bacteria and yeast and small amounts are produced by gut microflora. Propanol has been identified as a fecal biomarker of Clostridium difficile infection (PMID: 30986230). When ingested, 1-propanol is metabolized by alcohol dehydrogenase to propionic acid leading to metabolic acidosis and an elevated anion gap (PMID: 18375643). It can be found in small amounts in alcoholic beverages such as wine. Industrially, the major use of 1-propanol is as a solvent as well as an intermediate in forming other industrially important compounds. It is used as a carrier and extraction solvent for natural products, such as flavourings, vegetable oils, resins, waxes, and gums, and as a solvent for synthetic polymers, such as polyvinyl butyral, cellulose esters, lacquers, and PVC adhesives. Other solvent applications include the use of 1-propanol in the polymerization and spinning of acrylonitrile, in flexographic printing inks, and in the dyeing of wool. 1-Propanol is used for both its solvent and antiseptic properties in drugs and cosmetics, such as lotions, soaps, and nail polishes (IPCS INCHEM, EHC 102). Both 1-propanol and 2-propanol are often used in hand disinfectants as they have excellent bactericidal activity. 1-Propanol is used less in industry than 2-propanol as it is more expensive and it is a toxicant that has a similar taste to ethanol, so 2-propanol is used as its unpleasant smell discourages abuse. Propyl alcohol, also known as propanol or ethylcarbinol, is a member of the class of compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, propyl alcohol is considered to be a fatty alcohol lipid molecule. Propyl alcohol is soluble (in water) and an extremely weak acidic compound (based on its pKa). Propyl alcohol can be found in a number of food items such as cashew nut, chinese mustard, greenthread tea, and chayote, which makes propyl alcohol a potential biomarker for the consumption of these food products. Propyl alcohol can be found primarily in blood, feces, and saliva, as well as in human fibroblasts tissue. Propyl alcohol exists in all eukaryotes, ranging from yeast to humans. In humans, propyl alcohol is involved in the sulfate/sulfite metabolism. Propyl alcohol is also involved in sulfite oxidase deficiency, which is a metabolic disorder. 1-Propanol, n-propanol, or propan-1-ol : CH3CH2CH2OH, the most common meaning 2-Propanol, Isopropyl alcohol, isopropanol, or propan-2-ol : (CH3)2CHOH . D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain

   

Acetone

Dimethylformaldehyde

C3H6O (58.041862599999995)


Acetone, or propanone, is an organic compound with the formula (CH3)2CO. It is the simplest and smallest ketone. It is a colourless, highly volatile and flammable liquid with a characteristic pungent odour. Acetone is miscible with water and serves as an important organic solvent in its own right, in industry, home, and laboratory. Acetone is produced and disposed of in the human body through normal metabolic processes. It is normally present in blood and urine. People with diabetic ketoacidosis produce it in larger amounts. Acetone is not regarded as a waste product of metabolism. However, its physiological role in biochemical machinery is not clear. A model for the role of acetone metabolism is presented that orders the events occurring in acetonemia in sequence: in diabetic ketosis or starvation, ketone body production (b-hydroxy-butyrate, acetoacetate) provides fuel for vital organs (heart, brain, among others) raising the chance of survival of the metabolic catastrophe. However, when ketone body production exceeds the degrading capacity, the accumulating acetoacetic acid presents a new challenge to the pH regulatory system. Acetone production and its further degradation to C3 fragments fulfill two purposes: the maintenance of pH buffering capacity and provision of fuel for peripheral tissues. Since ketosis develops under serious metabolic circumstances, all the mechanisms that balance or moderate the effects of ketosis enhance the chance for survival. From this point of view, the theory that transportable C3 fragments can serve as additional nutrients is a novel view of acetone metabolism which introduces a new approach to the study of acetone degradation, especially in understanding its physiological function and the interrelationship between liver and peripheral tissues. (PMID 10580530). Acetone is typically derived from acetoacetate through the action of microbial acetoacetate decarboxylases found in gut microflora. In chemistry, acetone is the simplest representative of the ketones. Acetone is a colorless, mobile, flammable liquid readily soluble in water, ethanol, ether, etc., and itself serves as an important solvent. It is an irritant and inhalation may lead to hepatotoxic effects (causing liver damage). Acetone can be found in Clostridium (PMID:685531). Solvent used in food processing as a colour diluent, flavour ingredient, etc. D012997 - Solvents

   

Tridecane

InChI=1/C13H28/c1-3-5-7-9-11-13-12-10-8-6-4-2/h3-13H2,1-2H

C13H28 (184.2190888)


Tridecane appears as an oily straw yellow clear liquid with a hydrocarbon odor. Flash point 190-196 °F. Specific gravity 0.76. Boiling point 456 °F. Repeated or prolonged skin contact may irritate or redden skin, progressing to dermatitis. Exposure to high concentrations of vapor may result in headache and stupor. Tridecane is a straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. It has a role as a plant metabolite and a volatile oil component. Tridecane is a natural product found in Dryopteris assimilis, Thyanta perditor, and other organisms with data available. Tridecane is an alkane hydrocarbon with the chemical formula CH3(CH2)11CH3. Tridecane is found in allspice and it is also isolated from lime oil. It is a light, combustible colourless liquid that is used in the manufacture of paraffin products, the paper processing industry, in jet fuel research and in the rubber industry; furthermore, tridecane is used as a solvent and distillation chaser. n-tridecane is also one of the major chemicals secreted by some insects as a defense against predators. Tridecane has 802 constitutional isomers A straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. Isolated from lime oil Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2]. Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2].

   

Water

Sterile purified water in containers

H2O (18.0105642)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Oxygen

Molecular oxygen

O2 (31.98983)


Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131) [HMDB]. Oxygen is found in many foods, some of which are soy bean, watermelon, sweet basil, and spinach. Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131). V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Hydrogen peroxide

Hydrogen peroxide (H2O2)

H2O2 (34.0054792)


Hydrogen peroxide (H2O2) is a very pale blue liquid that appears colourless in a dilute solution. H2O2 is slightly more viscous than water and is a weak acid. H2O2 is unstable and slowly decomposes in the presence of light. It has strong oxidizing properties and is, therefore, a powerful bleaching agent that is mostly used for bleaching paper. H2O2 has also found use as a disinfectant and as an oxidizer. H2O2 in the form of carbamide peroxide is widely used for tooth whitening (bleaching), both in professionally- and in self-administered products. H2O2 is a well-documented component of living cells and is a normal metabolite of oxygen in the aerobic metabolism of cells and tissues. A total of 31 human cellular H2O2 generating enzymes has been identified so far (PMID: 25843657). H2O2 plays important roles in host defence and oxidative biosynthetic reactions. At high levels (>100 nM) H2O2 is toxic to most cells due to its ability to non-specifically oxidize proteins, membranes and DNA, leading to general cellular damage and dysfunction. However, at low levels (<10 nM), H2O2 functions as a signalling agent, particularly in higher organisms. In plants, H2O2 plays a role in signalling to cause cell shape changes such as stomatal closure and root growth. As a messenger molecule in vertebrates, H2O2 diffuses through cells and tissues to initiate cell shape changes, to drive vascular remodelling, and to activate cell proliferation and recruitment of immune cells. H2O2 also plays a role in redox sensing, signalling, and redox regulation (PMID: 28110218). This is normally done through molecular redox “switches” such as thiol-containing proteins. The production and decomposition of H2O2 are tightly regulated (PMID: 17434122). In humans, H2O2 can be generated in response to various stimuli, including cytokines and growth factors. H2O2 is degraded by several enzymes including catalase and superoxide dismutase (SOD), both of which play important roles in keeping the amount of H2O2 in the body below toxic levels. H2O2 also appears to play a role in vitiligo. Vitiligo is a skin pigment disorder leading to patchy skin colour, especially among dark-skinned individuals. Patients with vitiligo have low catalase levels in their skin, leading to higher levels of H2O2. High levels of H2O2 damage the epidermal melanocytes, leading to a loss of pigment (PMID: 10393521). Accumulating evidence suggests that hydrogen peroxide H2O2 plays an important role in cancer development. Experimental data have shown that cancer cells produce high amounts of H2O2. An increase in the cellular levels of H2O2 has been linked to several key alterations in cancer, including DNA changes, cell proliferation, apoptosis resistance, metastasis, angiogenesis and hypoxia-inducible factor 1 (HIF-1) activation (PMID: 17150302, 17335854, 16677071, 16607324, 16514169). H2O2 is found in most cells, tissues, and biofluids. H2O2 levels in the urine can be significantly increased with the consumption of coffee and other polyphenolic-containing beverages (wine, tea) (PMID: 12419961). In particular, roasted coffee has high levels of 1,2,4-benzenetriol which can, on its own, lead to the production of H2O2. Normal levels of urinary H2O2 in non-coffee drinkers or fasted subjects are between 0.5-3 uM/mM creatinine whereas, for those who drink coffee, the levels are between 3-10 uM/mM creatinine (PMID: 12419961). It is thought that H2O2 in urine could act as an antibacterial agent and that H2O2 is involved in the regulation of glomerular function (PMID: 10766414). A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives It is used in foods as a bleaching agent, antimicrobial agent and oxidising agent C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides D000890 - Anti-Infective Agents

   

Acetaldehyde

Acetic aldehyde

C2H4O (44.0262134)


Acetaldehyde, also known as ethanal, belongs to the class of organic compounds known as short-chain aldehydes. These are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Acetaldehyde exists in all living species, ranging from bacteria to humans. Within humans, acetaldehyde participates in a number of enzymatic reactions. In particular, acetaldehyde can be biosynthesized from ethanol which is mediated by the enzyme alcohol dehydrogenase 1B. Acetaldehyde can also be converted to acetic acid by the enzyme aldehyde dehydrogenase (mitochondrial) and aldehyde dehydrogenase X (mitochondrial). The main method of production is the oxidation of ethylene by the Wacker process, which involves oxidation of ethylene using a homogeneous palladium/copper system: 2 CH2CH2 + O2 → 2 CH3CHO. In the 1970s, the world capacity of the Wacker-Hoechst direct oxidation process exceeded 2 million tonnes annually. In humans, acetaldehyde is involved in disulfiram action pathway. Acetaldehyde is an aldehydic, ethereal, and fruity tasting compound. Outside of the human body, acetaldehyde is found, on average, in the highest concentration in a few different foods, such as sweet oranges, pineapples, and mandarin orange (clementine, tangerine) and in a lower concentration in . acetaldehyde has also been detected, but not quantified in several different foods, such as malabar plums, malus (crab apple), rose hips, natal plums, and medlars. This could make acetaldehyde a potential biomarker for the consumption of these foods. In condensation reactions, acetaldehyde is prochiral. Acetaldehyde is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Acetaldehyde has been found to be associated with several diseases such as alcoholism, ulcerative colitis, nonalcoholic fatty liver disease, and crohns disease; also acetaldehyde has been linked to the inborn metabolic disorders including aldehyde dehydrogenase deficiency (III) sulfate is used to reoxidize the mercury back to the mercury. Acetaldehyde was first observed by the Swedish pharmacist/chemist Carl Wilhelm Scheele (1774); it was then investigated by the French chemists Antoine François, comte de Fourcroy and Louis Nicolas Vauquelin (1800), and the German chemists Johann Wolfgang Döbereiner (1821, 1822, 1832) and Justus von Liebig (1835). At room temperature, acetaldehyde (CH3CHO) is more stable than vinyl alcohol (CH2CHOH) by 42.7 kJ/mol: Overall the keto-enol tautomerization occurs slowly but is catalyzed by acids. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Acetaldehyde is also created by thermal degradation or ultraviolet photo-degradation of some thermoplastic polymers during or after manufacture. The water industry generally recognizes 20–40 ppb as the taste/odor threshold for acetaldehyde. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity. Flavouring agent and adjuvant used to impart orange, apple and butter flavours; component of food flavourings added to milk products, baked goods, fruit juices, candy, desserts and soft drinks [DFC]

   

Hydrogen sulfide

Hydrogen sulfide (H2(SX))

H2S (33.9877212)


Hydrogen sulfide, also known as h2s or acide sulfhydrique, is a member of the class of compounds known as other non-metal sulfides. Other non-metal sulfides are inorganic compounds containing a sulfur atom of an oxidation state of -2, in which the heaviest atom bonded to the oxygen belongs to the class of other non-metals. Hydrogen sulfide can be found in a number of food items such as small-leaf linden, agar, devilfish, and nutmeg, which makes hydrogen sulfide a potential biomarker for the consumption of these food products. Hydrogen sulfide can be found primarily in blood and feces, as well as throughout most human tissues. Hydrogen sulfide exists in all living species, ranging from bacteria to humans. In humans, hydrogen sulfide is involved in a couple of metabolic pathways, which include cysteine metabolism and cystinosis, ocular nonnephropathic. Hydrogen sulfide is also involved in beta-mercaptolactate-cysteine disulfiduria, which is a metabolic disorder. Moreover, hydrogen sulfide is found to be associated with hydrogen sulfide poisoning. Hydrogen sulfide is a non-carcinogenic (not listed by IARC) potentially toxic compound. Hydrogen sulfide often results from the microbial breakdown of organic matter in the absence of oxygen gas, such as in swamps and sewers; this process is commonly known as anaerobic digestion. H 2S also occurs in volcanic gases, natural gas, and in some sources of well water. The human body produces small amounts of H 2S and uses it as a signaling molecule . Treatment involves immediate inhalation of amyl nitrite, injections of sodium nitrite, inhalation of pure oxygen, administration of bronchodilators to overcome eventual bronchospasm, and in some cases hyperbaric oxygen therapy (HBO). HBO therapy has anecdotal support and remains controversial (L1139) (T3DB). Hydrogen sulfide is a highly toxic and flammable gas. Because it is heavier than air it tends to accumulate at the bottom of poorly ventilated spaces. Although very pungent at first, it quickly deadens the sense of smell, so potential victims may be unaware of its presence until it is too late. H2S arises from virtually anywhere where elemental sulfur comes into contact with organic material, especially at high temperatures. Hydrogen sulfide is a covalent hydride chemically related to water (H2O) since oxygen and sulfur occur in the same periodic table group. It often results when bacteria break down organic matter in the absence of oxygen, such as in swamps, and sewers (alongside the process of anaerobic digestion). It also occurs in volcanic gases, natural gas and some well waters. It is also important to note that Hydrogen sulfide is a central participant in the sulfur cycle, the biogeochemical cycle of sulfur on Earth. As mentioned above, sulfur-reducing and sulfate-reducing bacteria derive energy from oxidizing hydrogen or organic molecules in the absence of oxygen by reducing sulfur or sulfate to hydrogen sulfide. Other bacteria liberate hydrogen sulfide from sulfur-containing amino acids. Several groups of bacteria can use hydrogen sulfide as fuel, oxidizing it to elemental sulfur or to sulfate by using oxygen or nitrate as oxidant. The purple sulfur bacteria and the green sulfur bacteria use hydrogen sulfide as electron donor in photosynthesis, thereby producing elemental sulfur. (In fact, this mode of photosynthesis is older than the mode of cyanobacteria, algae and plants which uses water as electron donor and liberates oxygen). Hydrogen sulfide can be found in Alcaligenes, Chromobacteriumn, Klebsiella, Proteus and Pseudomonas (PMID: 13061742). D018377 - Neurotransmitter Agents > D064426 - Gasotransmitters D004785 - Environmental Pollutants > D000393 - Air Pollutants

   

2,6-DICHLOROINDOPHENOL

2,6-DICHLOROPHENOLINDOPHENOL

C12H7Cl2NO2 (266.9853822)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

Methanol

Methanol-water mixture

CH4O (32.0262134)


Methanol, also known as columbian spirit or CH3OH, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). The target of methanol in the eye is the retina, specifically the optic disk and optic nerve. Toxicity is due to the metabolic products of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase. Methanol exists in all living organisms, ranging from bacteria to humans. Methanol is an alcoholic tasting compound. Outside of the human body, Methanol is found, on average, in the highest concentration within cow milk and sweet oranges. Methanol has also been detected, but not quantified in several different foods, such as prairie turnips, mountain yams, mentha (mint), watermelons, and pasta. Methanol is responsible for accidental, suicidal, and epidemic poisonings, resulting in death or permanent sequelae. Methanol is a potentially toxic compound. Visual disturbances develop between 18h to 48h after ingestion and range from mild photophobia and blurred vision to markedly reduced visual acuity and complete blindness. Methanol is metabolized to formaldehyde by alcohol dehydrogenase, then from that to formate by formaldehyde dehydrogenase, and then to carbon dioxide by limited H4 folate. It is the simplest alcohol, and is a light, volatile, colourless, flammable, poisonous liquid with a distinctive odor that is somewhat milder and sweeter than ethanol. Present in various wines and spirits. It is used as a solvent for the preparation of modified hop extracts and spice oleoresins D012997 - Solvents

   

Hydroxylamine

Hydroxylamine-1-hydrochloride

H3NO (33.0214628)


Hydroxylamine is a reactive chemical with formula NH2OH. It can be considered a hybrid of ammonia and water due to parallels it shares with each. At room temperature pure NH2OH is ordinarily a white, unstable crystalline, hygroscopic compound; Hydroxylamine is a reactive chemical with formula NH2OH. It can be considered a hybrid of ammonia and water due to parallels it shares with each. At room temperature pure NH2OH is ordinarily a white, unstable crystalline, hygroscopic compound; however it is almost always encountered as an aqueous solution.; NH2OH is an intermediate in biological nitrification. The oxidation of NH3 is mediated by hydroxylamine oxidoreductase (HAO).; however it is almost always encountered as an aqueous solution.; A colorless inorganic compound (HONH2) used in organic synthesis and as a reducing agent, due to its ability to donate nitric oxide.; Hydroxylamine may explode on heating. It is an irritant to the respiratory tract, skin, eyes, and other mucous membranes. It may be absorbed through the skin, is harmful if swallowed, and is a possible mutagen.; NH2OH is an intermediate in the biological nitrification. The oxidation of NH3 is mediated by HAO (hydroxylamine oxidoreductase). Hydroxylamine is found in gram bean and mung bean. Hydroxylamine is a reactive chemical with formula NH2OH. It can be considered a hybrid of ammonia and water due to parallels it shares with each. At room temperature pure NH2OH is ordinarily a white, unstable crystalline, hygroscopic compound; however it is almost always encountered as an aqueous solution. A colorless inorganic compound (HONH2) used in organic synthesis and as a reducing agent, due to its ability to donate nitric oxide. Hydroxylamine may explode on heating. It is an irritant to the respiratory tract, skin, eyes, and other mucous membranes. It may be absorbed through the skin, is harmful if swallowed, and is a possible mutagen. NH2OH is an intermediate in the biological nitrification. The oxidation of NH3 is mediated by HAO (hydroxylamine oxidoreductase).

   

Carbon monoxide

Monoxide, carbon

CO (27.994915)


Carbon monoxide, with the chemical formula CO, is a colorless, odorless, and tasteless gas. It is the product of the incomplete combustion of carbon-containing compounds, notably in internal-combustion engines. It consists of one carbon atom covalently bonded to one oxygen atom. It is a gas at room temperature. Carbon monoxide is a significantly toxic gas and is the most common type of fatal poisoning in many countries. Exposures can lead to significant toxicity of the central nervous system and heart. Carbon monoxide has a higher diffusion coefficient compared to oxygen and the only enzyme in the human body that produces carbon monoxide is heme oxygenase which is located in all cells and breaks down heme. Because it has a higher diffusion coefficient than oxygen the body easily gets rid of any CO made. When CO is not ventilated it binds to hemoglobin, which is the principal oxygen-carrying compound in blood; this produces a compound known as carboxyhemoglobin. The traditional belief is that carbon monoxide toxicity arises from the formation of carboxyhemoglobin, which decreases the oxygen-carrying capacity of the blood and inhibits the transport, delivery, and utilization of oxygen by the body. The affinity between hemoglobin and carbon monoxide is approximately 230 times stronger than the affinity between hemoglobin and oxygen so hemoglobin binds to carbon monoxide in preference to oxygen. Following poisoning, long-term sequelae often occur. Carbon monoxide can also have severe effects on the fetus of a pregnant woman. Despite its serious toxicity, CO is extremely useful and underpins much modern technology, being a precursor to a myriad of useful - even life-saving - products. Carbon monoxide, though thought of as a pollutant today, has always been present in the atmosphere, chiefly as a product of volcanic activity. It occurs dissolved in molten volcanic rock at high pressures in the earths mantle. Carbon monoxide contents of volcanic gases vary from less than 0.01\\% to as much as 2\\% depending on the volcano. It also occurs naturally in bushfires. Because natural sources of carbon monoxide are so variable from year to year, it is extremely difficult to accurately measure natural emissions of the gas. (wikipedia). Carbon monoxide, with the chemical formula CO, is a colorless, odorless, and tasteless gas. It is the product of the incomplete combustion of carbon-containing compounds, notably in internal-combustion engines. It consists of one carbon atom covalently bonded to one oxygen atom. It is a gas at room temperature. D018377 - Neurotransmitter Agents > D064426 - Gasotransmitters D009676 - Noxae > D000963 - Antimetabolites V - Various > V04 - Diagnostic agents

   

Lactaldehyde

alpha-Hydroxypropionaldehyde

C3H6O2 (74.0367776)


L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21). [HMDB] L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21).

   

Ethanol

Ethyl alcohol in alcoholic beverages

C2H6O (46.0418626)


Ethanol is a clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in alcoholic beverages. Indeed, ethanol has widespread use as a solvent of substances intended for human contact or consumption, including scents, flavorings, colorings, and medicines. Ethanol has a depressive effect on the central nervous system and because of its psychoactive effects, it is considered a drug. Ethanol has a complex mode of action and affects multiple systems in the brain, most notably it acts as an agonist to the GABA receptors. Death from ethanol consumption is possible when blood alcohol level reaches 0.4\\%. A blood level of 0.5\\% or more is commonly fatal. Levels of even less than 0.1\\% can cause intoxication, with unconsciousness often occurring at 0.3-0.4 \\%. Ethanol is metabolized by the body as an energy-providing carbohydrate nutrient, as it metabolizes into acetyl CoA, an intermediate common with glucose metabolism, that can be used for energy in the citric acid cycle or for biosynthesis. Ethanol within the human body is converted into acetaldehyde by alcohol dehydrogenase and then into acetic acid by acetaldehyde dehydrogenase. The product of the first step of this breakdown, acetaldehyde, is more toxic than ethanol. Acetaldehyde is linked to most of the clinical effects of alcohol. It has been shown to increase the risk of developing cirrhosis of the liver,[77] multiple forms of cancer, and alcoholism. Industrially, ethanol is produced both as a petrochemical, through the hydration of ethylene, and biologically, by fermenting sugars with yeast. Small amounts of ethanol are endogenously produced by gut microflora through anaerobic fermentation. However most ethanol detected in biofluids and tissues likely comes from consumption of alcoholic beverages. Absolute ethanol or anhydrous alcohol generally refers to purified ethanol, containing no more than one percent water. Absolute alcohol is not intended for human consumption. It often contains trace amounts of toxic benzene (used to remove water by azeotropic distillation). Consumption of this form of ethanol can be fatal over a short time period. Generally absolute or pure ethanol is used as a solvent for lab and industrial settings where water will disrupt a desired reaction. Pure ethanol is classed as 200 proof in the USA and Canada, equivalent to 175 degrees proof in the UK system. Ethanol is a general biomarker for the consumption of alcohol. Ethanol is also a metabolite of Hansenula and Saccharomyces (PMID: 14613880) (https://ac.els-cdn.com/S0079635206800470/1-s2.0-S0079635206800470-main.pdf?_tid=4d340044-3230-4141-88dd-deec4d2e35bd&acdnat=1550288012_0c4a20fe963843426147979d376cf624). Intoxicating constituent of all alcoholic beverages. It is used as a solvent and vehicle for food dressings and flavourings. Antimicrobial agent, e.g for pizza crusts prior to baking. extraction solvent for foodstuffs. Widely distributed in fruits and other foods V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AZ - Nerve depressants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D000890 - Anti-Infective Agents D012997 - Solvents

   

Nitrogen

Molecular nitrogen

N2 (28.006148)


Elemental nitrogen is a colorless, odorless, tasteless and mostly inert diatomic gas at standard conditions, constituting 78\\% by volume of Earths atmosphere. Nitrogen occurs in all living organisms. It is a constituent element of amino acids and therefore of proteins and nucleic acids (DNA and RNA). Nitrogen is found in the chemical structure of almost all neurotransmitters and is a key component of alkaloids. Specific bacteria (e.g. Rhizobium trifolium) possess nitrogenase enzymes which can fix atmospheric nitrogen into a form (ammonium ion) which is chemically useful to higher organisms. Animals use nitrogen-containing amino acids from plant sources, as starting materials for all nitrogen-compound animal biochemistry, including the manufacture of proteins and nucleic acids. Animal metabolism of NO (nitric oxide) results in production of nitrite. Animal metabolism of nitrogen in proteins generally results in excretion of urea, while animal metabolism of nucleic acids results in excretion of urea and uric acid. The characteristic odor of animal flesh decay is caused by nitrogen-containing long-chain amines, such as putrescine and cadaverine. Decay of organisms and their waste products may produce small amounts of nitrate, but most decay eventually returns nitrogen content to the atmosphere, as molecular nitrogen. The circulation of nitrogen from the atmosphere through organics and then back to the atmosphere is commonly referred to as the nitrogen cycle. Nitrogen can be measured in urine with the Kjeldahl method or by spectrophotometric methods (enzymic tests). Total urinary nitrogen is calculated based on urea urinary nitrogen quantified with these methods. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

dihydro-3-hydroxy-4,4-dimethyl- 2(3H)-Furanone

2,4-Dihydroxy-3,3-dimethylbutyric acid gamma-lactone

C6H10O3 (130.062991)


Flavouring compound [Flavornet] DL-Pantolactone can be hydrolyzed to Pantoic acid by the lactonohydrolase of Fusarium oxysporum. DL-Pantolactone also can be used in the preparation of 3,5-dinitrobenzoyl-DL-pantolactone[1][2]. DL-Pantolactone can be hydrolyzed to Pantoic acid by the lactonohydrolase of Fusarium oxysporum. DL-Pantolactone also can be used in the preparation of 3,5-dinitrobenzoyl-DL-pantolactone[1][2]. Pantolactone is an endogenous metabolite.

   

4-Amino-5-hydroxymethyl-2-methylpyrimidine

4-Amino-2-methyl-5-hydroxymethylpyrimidine

C6H9N3O (139.0745584)


Hydroxymethylpyrimidine, also known as pyramine or toxopyrimidine, is a member of the class of compounds known as hydropyrimidines. Hydropyrimidines are compounds containing a hydrogenated pyrimidine ring (i.e. containing less than the maximum number of double bonds.). Hydroxymethylpyrimidine is soluble (in water) and a very weakly acidic compound (based on its pKa). Hydroxymethylpyrimidine can be found in a number of food items such as mexican oregano, sugar apple, tronchuda cabbage, and cinnamon, which makes hydroxymethylpyrimidine a potential biomarker for the consumption of these food products. Hydroxymethylpyrimidine exists in E.coli (prokaryote) and yeast (eukaryote).

   

Hydrogen cyanide

Acid, hydrocyanic

CHN (27.010898599999997)


Hydrogen cyanide (with the historical common name of Prussic acid) is a chemical compound with chemical formula HCN. It is a colorless, extremely poisonous liquid that boils slightly above room temperature at 26 °C (79 °F). Hydrogen cyanide is a linear molecule, with a triple bond between carbon and nitrogen. A minor tautomer of HCN is HNC, hydrogen isocyanide. Hydrogen cyanide is weakly acidic with a pKa of 9.2. It partly ionizes in water solution to give the cyanide anion, CN. (Wikipedia) D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents

   

Sodium

SODIUM ION CHROMATOGRAPHY STANDARD

Na+ (22.98977)


Na+, also known as sodium ion or na(+), is a member of the class of compounds known as homogeneous alkali metal compounds. Homogeneous alkali metal compounds are inorganic compounds containing only metal atoms,with the largest atom being a alkali metal atom. Na+ can be found in a number of food items such as nanking cherry, opium poppy, alpine sweetvetch, and salmonberry, which makes na+ a potential biomarker for the consumption of these food products. Na+ can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human kidney tissue. Na+ exists in all eukaryotes, ranging from yeast to humans. In humans, na+ is involved in several metabolic pathways, some of which include eplerenone action pathway, betaxolol action pathway, furosemide action pathway, and morphine action pathway. Na+ is also involved in several metabolic disorders, some of which include diltiazem action pathway, bendroflumethiazide action pathway, dimethylthiambutene action pathway, and lidocaine (antiarrhythmic) action pathway. NA, N.A., Na, or n/a may refer to: . Sodium ions are necessary for regulation of blood and body fluids, transmission of nerve impulses, heart activity, and certain metabolic functions. Physiologically, it exists as an ion in the body. Sodium is needed by animals, which maintain high concentrations in their blood and extracellular fluids, but the ion is not needed by plants. The human requirement for sodium in the diet is less than 500 mg per day, which is typically less than a tenth as much as many diets "seasoned to taste." Most people consume far more sodium than is physiologically needed. For certain people with salt-sensitive blood pressure, this extra intake may cause a negative effect on health.

   

Benzene

1,2,3,5-tetradeuteriobenzene

C6H6 (78.0469476)


Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms, benzene is classed as a hydrocarbon. Benzene, also known as benzol or [6]annulene, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. Benzene is a natural constituent of crude oil and is one of the elementary petrochemicals. Due to the cyclic continuous pi bonds between the carbon atoms, benzene is classed as an aromatic hydrocarbon. It is sometimes abbreviated PhH. Benzene is a colorless and highly flammable liquid with a sweet smell, and is partially responsible for the aroma around petrol (gasoline) stations. It is used primarily as a precursor to the manufacture of chemicals with more complex structure, such as ethylbenzene and cumene, of which billions of kilograms are produced annually. Although a major industrial chemical, benzene finds limited use in consumer items because of its toxicity. Benzene is formally rated as a carcinogen (by IARC 1) and is also a potentially toxic compound. Benzene has been found to be associated with several diseases such as autism and pervasive developmental disorder not otherwise specified. It is used in processing of modified hop extract

   

lupinate

(S)-2-Amino-3-{[(E)-4-hydroxy-3-methylbut-2-enylamino]purin-9- yl}propanoic acid

C13H18N6O3 (306.1440318)


   

Hydrogen selenide

Hydrogen selenide, 75Se-labeled

H2Se (81.9321702)


Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926) [HMDB] Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926).

   

Ethyl carbamate

Urethane + ethanol (combination)

C3H7NO2 (89.0476762)


Ethyl carbamate, also known as aethylurethan or uretan, belongs to the class of organic compounds known as carboximidic acids and derivatives. Carboximidic acids and derivatives are compounds containing a carboximidic group, with the general formula R-C(=NR1)OR2. Ethyl carbamate has been detected, but not quantified, in alcoholic beverages. This could make ethyl carbamate a potential biomarker for the consumption of these foods. Ethyl carbamate is formally rated as a probable carcinogen (by IARC 2A) and is also a potentially toxic compound. It is readily absorbed from the gastrointestinal tract and the skin. It also tends to induce specific mutations in the Kras oncogene in codon 61 of exon 2 including A:T transversions and A-->G transitions in the second base and A-->T transversions in the third base. Urethane, formerly marketed as an inactive ingredient in Profenil injection, was determined to be carcinogenic and was removed from the Canadian, US, and UK markets in 1963. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. In case of contact with eyes, irrigate opened eyes for several minutes under running water. Metabolism is mediated by cytochrome P450 2E1. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D000970 - Antineoplastic Agents Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1]. Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1].

   

Stearaldehyde

Octadecyl aldehyde

C18H36O (268.2766006)


Stearaldehyde or octadecanal is a normal long chain fatty aldehyde that can be found in total lipid extracts of muscle tissue. Stearaldehyde can also be found in the plasma of patients with Sjogren-Larsson syndrome. Sjogren-Larsson syndrome (SLS) is an autosomal recessively inherited neurocutaneous disorder caused by a deficiency of the microsomal enzyme fatty aldehyde dehydrogenase (FALDH). (PMID 14564703, 11408337). Octadecanal is often used as the substrate of choice to test FALDH activity in patients suspected of having Sjogren-Larsson syndrome. [HMDB] Stearaldehyde or octadecanal is a normal long chain fatty aldehyde that can be found in total lipid extracts of muscle tissue. Stearaldehyde can also be found in the plasma of patients with Sjogren-Larsson syndrome. Sjogren-Larsson syndrome (SLS) is an autosomal recessively inherited neurocutaneous disorder caused by a deficiency of the microsomal enzyme fatty aldehyde dehydrogenase (FALDH). (PMID 14564703, 11408337). Octadecanal is often used as the substrate of choice to test FALDH activity in patients suspected of having Sjogren-Larsson syndrome.

   

epsilon-Caprolactone

epsilon-Captolactamium hydrogen sulfate

C6H10O2 (114.068076)


ε-Caprolactone, also known simply as caprolactone, is a compound belonging to the family of compounds known as lactones. Lactones are cyclic esters of hydroxyl carboxylic acids, wherein the functional group has become part of a ring structure with carbon atoms. Caprolactone consists of a seven membered ring derived from the cyclization of caproic acid. As a monomer it used in the production of highly specialized plastics and polymers. Caprolactone is produced by the Baeyer-Villiger oxidation of cyclohexanone with peracetic acid, and was used previously (until economically inviable) as a precursor in the production of caprolactam. Several other caprolactone isomers are known. These isomers include α-, β-, γ-, and δ-caprolactones. All are chiral. (R)-γ-caprolactone is a component of floral scents and of the aromas of some fruits and vegetables (Journal of Agricultural and Food Chemistry. 37: 413–418), while δ-caprolactone is found in heated milk fat (Journal of Dairy Science. 48 (5): 615–616).

   

Cyclopentanol

Cyclopentyl alcohol

C5H10O (86.07316100000001)


Cyclopentanol, also known as cyclopentyl alcohol or hydroxycyclopentane, is a member of the class of compounds known as cyclopentanols. Cyclopentanols are compounds containing a cyclopentane ring that carries an alcohol group. Cyclopentanol is soluble (in water) and an extremely weak acidic compound (based on its pKa). Cyclopentanol can be found in a number of food items such as walnut, cashew nut, cauliflower, and linden, which makes cyclopentanol a potential biomarker for the consumption of these food products.

   

Angiotensin II

(3S)-3-amino-3-{[(1S)-1-{[(1S)-1-{[(1S)-1-{[(1S,2S)-1-{[(2S)-1-[(2S)-2-{[(1S)-1-carboxy-2-phenylethyl]carbamoyl}pyrrolidin-1-yl]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]carbamoyl}-2-methylbutyl]carbamoyl}-2-(4-hydroxyphenyl)ethyl]carbamoyl}-2-methylpropyl]carbamoyl}-4-[(diaminomethylidene)amino]butyl]carbamoyl}propanoic acid

C50H71N13O12 (1045.5344885999998)


Angiotensin II is a hormone that may act on the central nervous system to regulate renal sympathetic nerve activity, renal function, and, therefore, blood pressure. Angiotensin II is produced locally within the kidney and mediates tissue injury through a series of nonhemodynamic effects. angiotensin II is not only involved in the regulation of blood pressure, water and sodium homeostasis, and control of other neurohumoral systems, but also leads to excessive production of reactive oxygen species and to hypertrophy, proliferation, migration, and apoptosis of vascular cells. Angiotensin II is one of the main factors involved in hypertension-induced tissue damage. This peptide regulates the inflammatory process. Angiotensin II activates circulating cells, and participates in their adhesion to the activated endothelium and subsequent transmigration through the synthesis of adhesion molecules, chemokines and cytokines. Among the intracellular signals involved in angiotensin II-induced inflammation, the production of reactive oxygen species and the activation of nuclear factor-kappaB are the best known. Classical, well-defined actions of Angiotensin II in the brain include the regulation of hormone formation and release, the control of the central and peripheral sympathoadrenal systems, and the regulation of water and sodium intake. As a consequence of changes in the hormone, sympathetic and electrolyte systems, feedback mechanisms in turn modulate the activity of the brain Angiotensin II systems. There are two Angiotensin II systems in the brain. The discovery of brain Angiotensin II receptors located in neurons inside the blood brain barrier confirmed the existence of an endogenous brain Angiotensin II system, responding to Angiotensin II generated in and/or transported into the brain. In addition, Angiotensin II receptors in circumventricular organs and in cerebrovascular endothelial cells respond to circulating Angiotensin II of peripheral origin. Thus, the brain responds to both circulating and tissue Angiotensin II, and the two systems are integrated. (PMID: 17147923, 16672146, 16601568, 16481883, 16075377). Angiotensin II is a hormone that may act on the central nervous system to regulate renal sympathetic nerve activity, renal function, and, therefore, blood pressure. Angiotensin II is produced locally within the kidney and mediates tissue injury through a series of nonhemodynamic effects. angiotensin II is not only involved in the regulation of blood pressure, water and sodium homeostasis, and control of other neurohumoral systems, but also leads to excessive production of reactive oxygen species and to hypertrophy, proliferation, migration, and apoptosis of vascular cells. Angiotensin II is one of the main factors involved in hypertension-induced tissue damage. This peptide regulates the inflammatory process. Angiotensin II activates circulating cells, and participates in their adhesion to the activated endothelium and subsequent transmigration through the synthesis of adhesion molecules, chemokines and cytokines. Among the intracellular signals involved in angiotensin II-induced inflammation, the production of reactive oxygen species and the activation of nuclear factor-kappaB are the best known. C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides COVID info from WikiPathways, clinicaltrial, clinicaltrials, clinical trial, clinical trials D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C307 - Biological Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4]. Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4]. Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4]. Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4].

   

3-Epicycloeucalenol

7,12,16-trimethyl-15-(6-methyl-5-methylideneheptan-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

C30H50O (426.386145)


3-Epicycloeucalenol is found in fruits. 3-Epicycloeucalenol is a constituent of Musa sapientum (banana) fruit peel Constituent of Musa sapientum (banana) fruit peel. 3-Epicycloeucalenol is found in fruits.

   

delta-Valerolactone

delta-Valerothiolactone

C5H8O2 (100.05242679999999)


Tetrahydro-2H-pyran-2-one is an endogenous metabolite.

   

Hexanal

N-Caproic aldehyde

C6H12O (100.0888102)


Hexanal is an alkyl aldehyde found in human biofluids. Human milk samples collected from women contains hexanal. Among mediators of oxidative stress, highly reactive secondary aldehydic lipid peroxidation products can initiate the processes of spontaneous mutagenesis and carcinogenesis and can also act as a growth-regulating factors and signaling molecules. In specimens obtained from adult patients with brain astrocytomas, lower levels of n-hexanal are associated with poorer patient prognosis. Hexanal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Hexanal is a volatile compound that has been associated with the development of undesirable flavours. The content of hexanal, which is a major breakdown product of linoleic acid (LA, n - 6 PUFA) oxidation, has been used to follow the course of lipid oxidation and off-flavour development in foods, and have been proposed as one potential marker of milk quality. A "cardboard-like" off-flavour is frequently associated with dehydrated milk products. This effect is highly correlated with the headspace concentration of hexanal. (Food Chemistry. Volume 107, Issue 1, 1 March 2008, Pages 558-569, PMID:17934948, 17487452). Constituent of many foodstuffs. A production of aerobic enzymatic transformations of plant constits. It is used in fruit flavours and in perfumery D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

1,3-PROPANEDIOL

1,3-PROPANEDIOL

C3H8O2 (76.0524268)


1,3-Propanediol is produced in nature by the fermentation of glycerol in microorganism[1]. 1,3-Propanediol is produced in nature by the fermentation of glycerol in microorganism[1].

   

Retinyl palmitate

(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8,tetraenyl hexadecanoic acid ester

C36H60O2 (524.459306)


Retinyl palmitate, also known as vitamin a palmitate or aquasol a, is a member of the class of compounds known as wax monoesters. Wax monoesters are waxes bearing an ester group at exactly one position. Thus, retinyl palmitate is considered to be an isoprenoid lipid molecule. Retinyl palmitate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Retinyl palmitate can be found in a number of food items such as rocket salad (sspecies), black elderberry, common grape, and vaccinium (blueberry, cranberry, huckleberry), which makes retinyl palmitate a potential biomarker for the consumption of these food products. Retinyl palmitate can be found primarily in blood, as well as throughout most human tissues. In humans, retinyl palmitate is involved in the retinol metabolism. Retinyl palmitate is also involved in vitamin A deficiency, which is a metabolic disorder. An alternate spelling, retinol palmitate, which violates the -yl organic chemical naming convention for esters, is also frequently seen . Retinyl palmitate, or vitamin A palmitate, is a common vitamin supplement, with formula C36H60O2. It is available in both oral and injectable forms for treatment of vitamin A deficiency, under the brand names Aquasol and Palmitate. Retinyl palmitate is an alternate for retinyl acetate in vitamin A supplements, and is available in oily or dry forms. It is a pre-formed version of vitamin A, and can thus be realistically over-dosed, unlike beta-carotene. C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Retinyl palmitate is an ester of Retinol and is the major form of vitamin A found in the epidermis. Retinyl palmitate has been widely used in pharmaceutical and cosmetic formulations.

   

Acetone cyanohydrin

2-Hydroxy-2-methylpropanenitrile

C4H7NO (85.0527612)


Acetone cyanohydrin, also known as 2-hydroxyisobutyronitrile or 2-methyllactonitrile, is a member of the class of compounds known as tertiary alcohols. Tertiary alcohols are compounds in which a hydroxy group, -OH, is attached to a saturated carbon atom R3COH (R not H ). Acetone cyanohydrin is soluble (in water) and a very weakly acidic compound (based on its pKa). Acetone cyanohydrin can be found in a number of food items such as burdock, sweet marjoram, rice, and garland chrysanthemum, which makes acetone cyanohydrin a potential biomarker for the consumption of these food products. Acetone cyanohydrin is a non-carcinogenic (not listed by IARC) potentially toxic compound. Acetone cyanohydrin (ACH) is an organic compound used in the production of methyl methacrylate, the monomer of the transparent plastic polymethyl methacrylate (PMMA), also known as acrylic. (Wikipedia)

   

Propylene glycol

(R)-2-Hydroxy-1-propanol

C3H8O2 (76.0524268)


Propylene glycol (CAS: 57-55-6), also known as 1,2-propanediol, is an organic compound (a diol alcohol), usually a tasteless, odourless, and colourless clear oily liquid that is hygroscopic and miscible with water, acetone, and chloroform. It is manufactured by the hydration of propylene oxide. Propylene glycol is used as a solvent for intravenous, oral, and topical pharmaceutical preparations It is generally considered safe. However, in large doses, it can be toxic, especially if given over a short period of time. Intravenous lorazepam contains the largest amount of propylene glycol of commonly used drugs. In adults with normal liver and kidney function, the terminal half-life of propylene glycol ranges from 1.4 to 3.3 hours. Propylene glycol is metabolized by the liver to form lactate, acetate, and pyruvate. The nonmetabolized drug is excreted in the urine mainly as the glucuronide conjugate, approximately 12 to 45 percent is excreted unchanged in urine. Renal clearance decreases as the dose administered increases (390 ml/minute/173 m2 at a dose of 5 g/day but only 144 ml/minute/173 m2 at a dose of 21 g/day). These data suggest that renal clearance declines at higher propylene glycol doses because of the saturation of proximal tubular secretion of the drug. As an acceptable level of propylene glycol has not been defined, the clinical implication of a propylene glycol level is unclear. The World Health Organization (WHO) recommends a maximum consumption of 25 mg/kg/day (1.8 g/day for a 75 kg male) of propylene glycol when used as a food additive, but this limit does not address its use as a drug solvent. No maximum dose is recommended in the literature for intravenous therapy with propylene glycol. Intoxication occurs at much higher doses than the WHO dose limit and is exclusive to pharmacologic exposure. Propylene glycol toxicity includes the development of serum hyperosmolality, lactic acidosis, and kidney failure. It has been suggested that proximal tubular necrosis is the cause of acute kidney injury from propylene glycol. Along these lines, proximal tubular cell injury occurs in cultured human cells exposed to propylene glycol. Acute tubular necrosis was described with propylene glycol toxicity in a case of concomitant administration of intravenous lorazepam and trimethoprim sulfamethoxazole. Propylene glycol induced intoxication can also mimic sepsis or systemic inflammatory response syndrome (SIRS). Patients suspected of having sepsis with negative cultures should be evaluated for propylene glycol toxicity if they have been exposed to high dose lorazepam or other medications containing this solvent (PMID:17555487). Propylene glycol is an anticaking agent, antioxidant, dough strengthener, emulsifier, flavouring agent, formulation aid, humectant, solvent, preservative, stabiliser, hog/poultry scald agent, and surface active agent. It is found in foods such as roasted sesame seeds, oats, truffle and other mushrooms. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

1,2,3,5-Benzenetetrol

1,2,3,5-Tetrahydroxybenzene

C6H6O4 (142.0266076)


   

4-Hydroxyphenylacetaldehyde

2-(4-Hydroxyphenyl)acetaldehyde

C8H8O2 (136.0524268)


4-Hydroxyphenylacetaldehyde is a byproduct of tyrosine metabolism. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Diethyl oxalpropionate

Butanedioic acid, 2-methyl-3-oxo-, 1,4-diethyl ester

C9H14O5 (202.08411940000002)


Diethyl oxalpropionate, also known as methyloxalacetic acid diethyl ester or diethyl methyloxalacetate, is a member of the class of compounds known as beta-keto acids and derivatives. These compounds are organic compounds containing an aldehyde substituted with a keto group on the C3 carbon atom. Diethyl oxalpropionate is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Within the cell, diethyl oxalpropionate is primarily located in the cytoplasm. Diethyl oxalpropionate is an intermediate for poly((R,S)-3,3-dimethylmalic acid) (PDMMLA) derivative synthesis. PDMMLA derivative can be used in synthesis of nanoparticles and study of warfarin encapsulation and controlled release[1].

   

Clofenotane

alpha,alpha-Bis(p-chlorophenyl)-beta,beta,beta-trichlorethane

C14H9Cl5 (351.9146864)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AB - Chlorine containing products Insecticide. Clofenotane is a major component of commercial DDT (other names *Gespan*, *Gesarol*, *Geverol*, *Chlorophenotane*). Use banned or discouraged in many countrie Insecticide. Major component of commercial DDT (other names *Gespan*, *Gesarol*, *Geverol*, *Chlorophenotane*). Use banned or discouraged in many countries

   

stylopine

6,7,12b,13e-Tetrahydro-4H-bis[1,3]benzodioxolo[5,6-a:4,5- g]quinolizine

C19H17NO4 (323.11575220000003)


   

Dihydromacarpine

13,14-Dihydro-5,7-dimethoxy-13-methyl-[1,3]benzodioxolo[5,6-c]-1,3- dioxolo[4,5-i]phenanthridine

C22H19NO6 (393.12123140000006)


A benzophenanthridine alkaloid that is dihydrosanguinarine bearing two methoxy substituents.

   

Acetamide

Acetamide, monosodium salt

C2H5NO (59.037112)


Acetamide (or acetic acid amide or ethanamide), CH3CONH2, the amide of acetic acid, is a white crystalline solid in pure form. It is produced by dehydrating ammonium acetate:. Acetamide is found in red beetroot. Acetamide is found in red beetroot. Acetamide (or acetic acid amide or ethanamide), CH3CONH2, the amide of acetic acid, is a white crystalline solid in pure form. It is produced by dehydrating ammonium acetate

   

Carbon tetrachloride

Kohlenstofftetrachlorid

CCl4 (151.875412)


Grain fumigan

   
   

Precocene II

6,7-Dimethoxy-2,2-dimethyl-2H-benzo(b)pyran

C13H16O3 (220.1099386)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Precocene II is the insect antijuvenile hormone[1].

   

Methylisoeugenol

1,2-dimethoxy-4-prop-1-enylbenzene

C11H14O2 (178.09937440000002)


Cis-isomethyleugenol is an isomethyleugenol. Isoeugenyl methyl ether is a natural product found in Platostoma africanum, Asarum rigescens, and other organisms with data available. Constituent of essential oils. Flavouring ingredient. Methylisoeugenol is found in many foods, some of which are star anise, sweet basil, wild carrot, and tarragon. Methylisoeugenol is found in carrot. Methylisoeugenol is a constituent of essential oils. Methylisoeugenol is a flavouring ingredient. Methyl isoeugenol (MIE) is a natural food flavour that can be isolated from Pimenta pseudocaryophyllus leaf. Methyl isoeugenol shows anxiolytic and antidepressant like effects. Methyl isoeugenol is orally active[1]. Methyl isoeugenol (MIE) is a natural food flavour that can be isolated from Pimenta pseudocaryophyllus leaf. Methyl isoeugenol shows anxiolytic and antidepressant like effects. Methyl isoeugenol is orally active[1].

   

Urushiol III

3-[(8E,11E)-pentadeca-8,11-dienyl]benzene-1,2-diol

C21H32O2 (316.24021719999996)


   

Scopoline

(4S)-6-Methyl-2-oxa-6-azatricyclo[3.3.1.03,7]nonan-4-ol

C8H13NO2 (155.0946238)


Scopoline (compound 3a) is a compound easily formed from scopine[1]. Scopoline (compound 3a) is a compound easily formed from scopine[1].

   

Dimethyl sulphone

Methane, 1,1′-sulfonylbis-

C2H6O2S (94.0088496)


Dimethyl sulfone, also known as sulfonylbismethane or lignisul MSM, belongs to the class of organic compounds known as sulfones. Sulfones are compounds containing a sulfonyl group, which has the general structure RS(=O)2R (R,R =alkyl, aryl), attached to two carbon atoms. Dimethyl sulfone (DMSO2) is an organic sulfur compound belonging to a class of chemicals known as sulfones. It derives from dietary sources, from intestinal bacterial metabolism and from human endogenous methanethiol metabolism. DMSO2 reflects its close chemical relationship to dimethyl sulfoxide (DMSO), which differs only in the oxidation state of the sulfur atom. Dimethyl sulfone is possibly neutral. Dimethyl sulfone exists in all living organisms, ranging from bacteria to humans. DMSO2 is the primary metabolite of DMSO in humans, and it shares some of the properties of DMSO. Dimethyl sulfone is sulfurous tasting compound. dimethyl sulfone is found on average in the highest concentration in milk (cow). Dimethyl sulfone has also been detected, but not quantified in asparagus and guava. This could make dimethyl sulfone a potential biomarker for the consumption of these foods. Dimethyl sulfone can be found in Afipia. It occurs naturally in some primitive plants and is present in small amounts in many foods and beverages. Dimethyl sulfone can be found in plasma and CSF of normal humans. Methylsulfonylmethane (MSM) is an organosulfur compound with the formula (CH3)2SO2. It is also known by several other names including DMSO2, methyl sulfone, and dimethyl sulfone. This colorless solid features the sulfonyl functional group and is considered relatively inert chemically. It occurs naturally in some primitive plants and is present in small amounts in many foods and beverages and it is marketed as a dietary supplement. Dimethyl sulfone is found in guava. C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D000893 - Anti-Inflammatory Agents Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3]. Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3].

   

Rifamycin

Rifamycin SV

C37H47NO12 (697.3098102)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use A member of the class of rifamycins that exhibits antibiotic and antitubercular properties. S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives Same as: D02549

   

(+)-(1R,2R)-1,2-Diphenylethane-1,2-diol

(+)-(1R,2R)-1,2-Diphenylethane-1,2-diol

C14H14O2 (214.09937440000002)


(+)-(1R,2R)-1,2-Diphenylethane-1,2-diol is converted from cis-stilbene oxide via the enzyme microsomal epoxide hydrolase (EC 3.3.2.9). This is a key hepatic enzyme that is involved in the metabolism of numerous xenobiotics, such as 1,3-butadiene oxide, styrene oxide and the polycyclic aromatic hydrocarbon benzo[a]pyrene 4,5-oxide. [HMDB] (+)-(1R,2R)-1,2-Diphenylethane-1,2-diol is converted from cis-stilbene oxide via the enzyme microsomal epoxide hydrolase (EC 3.3.2.9). This is a key hepatic enzyme that is involved in the metabolism of numerous xenobiotics, such as 1,3-butadiene oxide, styrene oxide and the polycyclic aromatic hydrocarbon benzo[a]pyrene 4,5-oxide. (R,R)-(+)-Hydrobenzoin is a organocatalysts[1].

   

Hydnocarpic acid

11-[(1R)-cyclopent-2-en-1-yl]undecanoic acid

C16H28O2 (252.20891880000002)


An optically active form of hydnocarpic acid having (R)-configuration. A cyclopentenyl fatty acid consisting of undecanoic acid having a cyclopent-2-enyl group at the 11-position.

   

Bombykol

hexadeca-10E,12Z-dien-1-ol

C16H30O (238.22965299999998)


Bombykol, the first insect sex pheromone, is identified as the female-produced sex attractant of the silkworm moth Bombyx mori[1][2][3].

   

4-Hydroxy-2-butenoic acid gamma-lactone

2-Butenoic acid, 4-hydroxy-, laquo gammaraquo -lactone

C4H4O2 (84.0211284)


4-Hydroxy-2-butenoic acid gamma-lactone is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants 2(5H)-Furanone is an endogenous metabolite.

   

3-Methoxytyramine BX

3-Methoxytyramine-βxanthin

C18H20N2O6 (360.13213)


   

Acetylatractylodinol

Acetylatractylodinol

C15H12O3 (240.0786402)


Acetylatractylodinol, isolated from Atractylodes lancea, possesses antioxidant activity[1]. Acetylatractylodinol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Acetylatractylodinol, isolated from Atractylodes lancea, possesses antioxidant activity[1]. Acetylatractylodinol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Chloromethane

Monochloromethane

CH3Cl (49.9923268)


   

(3E,7E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene

(3E,7E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene

C16H26 (218.2034396)


(3E,7E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene is found in cardamom. (3E,7E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene is a constituent of essential oil of Elettaria cardamomum (cardamom) Constituent of essential oil of Elettaria cardamomum (cardamom). (3E,7E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene is found in cardamom, herbs and spices, and garden tomato (variety).

   

Xanthoxylol

4-[3-(1,3-benzodioxol-5-yl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-6-yl]-2-methoxyphenol

C20H20O6 (356.125982)


Xanthoxylol is a lignan. Xanthoxylol is a natural product found in Zanthoxylum bungeanum, Zanthoxylum piperitum, and other organisms with data available. (-)-Piperitol is found in herbs and spices. (-)-Piperitol is obtained from Zanthoxylum piperitum (Japanese pepper tree

   

Hydrogen carbonate

Sodium carbonate peroxyhydrate

CH2O3 (62.0003942)


Bicarbonate, or hydrogen carbonate, is a simple single carbon molecule that plays surprisingly important roles in diverse biological processes. Among these are photosynthesis, the Krebs cycle, whole-body and cellular pH regulation, and volume regulation. Since bicarbonate is charged it is not permeable to lipid bilayers. Mammalian membranes thus contain bicarbonate transport proteins to facilitate the specific transmembrane movement of HCO3(-). Bicarbonate ion is an anion that consists of one central carbon atom surrounded by three oxygen atoms in a trigonal planar arrangement, with a hydrogen atom attached to one of the oxygens. The bicarbonate ion carries a negative one formal charge and is the conjugate base of carbonic acid, H2CO3. The carbonate radical is an elusive and strong one-electron oxidant. Bicarbonate in equilibrium with carbon dioxide constitutes the main physiological buffer. The bicarbonate-carbon dioxide pair stimulates the oxidation, peroxidation and nitration of several biological targets. The demonstration that the carbonate radical existed as an independent species in aqueous solutions at physiological pH and temperature renewed the interest in the pathophysiological roles of this radical and related species. The carbonate radical has been proposed to be a key mediator of the oxidative damage resulting from peroxynitrite production, xanthine oxidase turnover and superoxide dismutase1 peroxidase activity. The carbonate radical has also been proposed to be responsible for the stimulatory effects of the bicarbonate-carbon dioxide pair on oxidations mediated by hydrogen peroxide/transition metal ions. The ultimate precursor of the carbonate radical anion being bicarbonate, carbon dioxide, peroxymonocarbonate or complexes of transition metal ions with bicarbonate-derived species remains a matter of debate. The carbonate radical mediates some of the pathogenic effects of peroxynitrite. The carbonate radical as the oxidant produced from superoxide dismutase (EC 1.15.1.1, SOD1) peroxidase activity. Peroxymonocarbonate is a biological oxidant, whose existence is in equilibrium with hydrogen peroxide and bicarbonate (PMID: 17505962, 17215880). Hydrogen carbonate is found to be associated with hawkinsinuria, which is an inborn error of metabolism. Carbonic acid (ancient name acid of air or aerial acid) is the only inorganic carbon acid, and has the formula H2CO3. It is also a name sometimes given to solutions of carbon dioxide in water, which contain small amounts of H2CO3. The salts of carbonic acids are called bicarbonates (or hydrogencarbonates) and carbonates. (wikipedia) [HMDB]. Carbonic acid is found in many foods, some of which are sapodilla, anise, common beet, and abiyuch.

   

beta-D-Galactose

(2R,3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


Galactose is an optical isomer of glucose. An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (Galactose-1-phosphate uridyl-transferase deficiency disease) causes an error in galactose metabolism called galactosemia, resulting in elevations of galactose in the blood. Galactose (Gal) (also called brain sugar) is a type of sugar found in dairy products, in sugar beets and other gums and mucilages. It is also synthesized by the body, where it forms part of glycolipids and glycoproteins in several tissues. It is considered a nutritive sweetener because it has food energy. Galactose is less sweet than glucose and not very water-soluble. Galactose is a monosaccharide constituent, together with glucose, of the disaccharide lactose. The hydrolysis of lactose to glucose and galactose is catalyzed by the enzyme beta-galactosidase, a lactase. In the human body, glucose is changed into galactose in order to enable the mammary glands to secrete lactose. Galactan is a polymer of the sugar galactose. It is found in hemicellulose and can be converted to galactose by hydrolysis. Galactose is an aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (Galactose-1-phosphate uridyl-transferase deficiency disease) causes an error in galactose metabolism called galactosemia, resulting in elevations of galactose in the blood. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(S)-Propane-1,2-diol

(S)-(+)-Propane-1,2-diol

C3H8O2 (76.0524268)


(S)-Propane-1,2-diol, also known as (S)-1,2-propanediol or (S)-propylene glycol, belongs to the class of organic compounds known as 1,2-diols. These are polyols containing an alcohol group at two adjacent positions. (S)-Propane-1,2-diol is an extremely weak basic (essentially neutral) compound (based on its pKa). (S)-Propane-1,2-diol has been detected, but not quantified in, several different foods, such as common buckwheats, mustard spinach, sugar apples, black crowberries, and bayberries. This could make (S)-propane-1,2-diol a potential biomarker for the consumption of these foods. (S)-Propane-1,2-diol is a clear, colourless, viscous organic solvent and diluent used in pharmaceutical preparations. (S)-(+)-1,2-Propanediol is an endogenous metabolite.

   

Brassinolide

6H-BENZ(C)INDENO(5,4-E)OXEPIN-6-ONE, 1-(2,3-DIHYDROXY-1,4,5-TRIMETHYLHEXYL)HEXADECAHYDRO-8,9-DIHYDROXY-10A,12A-DIMETHYL-, (1R-(1.ALPHA.(1S*,2R*,3R*,4R*),3A.BETA.,3B.ALPHA.,6A.BETA.,8.BETA.,9.BETA.,10A.ALPHA.,10B.BETA.,12A.ALPHA.))-

C28H48O6 (480.3450708)


24-epi-brassinolide is a 2alpha-hydroxy steroid, a 3alpha-hydroxy steroid, a 22-hydroxy steroid, a 23-hydroxy steroid and a brassinosteroid. 24-epi-Brassinolide is a natural product found in Arabidopsis thaliana, Vicia faba, and other organisms with data available. Constituent of bee collected rape pollen (Brassica napus). Brassinolide is found in many foods, some of which are coconut, grass pea, red huckleberry, and strawberry guava. Brassinolide is found in brassicas. Brassinolide is a constituent of bee collected rape pollen (Brassica napus). D006133 - Growth Substances > D010937 - Plant Growth Regulators > D060406 - Brassinosteroids Brassinolide is a predominant plant growth modulator that regulate plant cell elongation. Brassinolide is a predominant plant growth modulator that regulate plant cell elongation. Epibrassinolide (24-Epibrassinolide) is a ubiquitously occurring plant growth hormone which shows great potential to alleviate heavy metals and pesticide stress in plants[1]. Epibrassinolide is a potential apoptotic inducer in various cancer cells without affecting the non-tumor cell growth[2]. Epibrassinolide (24-Epibrassinolide) is a ubiquitously occurring plant growth hormone which shows great potential to alleviate heavy metals and pesticide stress in plants[1]. Epibrassinolide is a potential apoptotic inducer in various cancer cells without affecting the non-tumor cell growth[2].

   

L-Threonine

D-(+)-Threonine

C4H9NO3 (119.0582404)


An optically active form of threonine having L-configuration. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; AYFVYJQAPQTCCC_STSL_0105_Threonine_8000fmol_180506_S2_LC02_MS02_275; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 10 DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].

   

Acetylcholine chloride

Acetylcholine chloride

C7H16ClNO2 (181.08695060000002)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Acetylcholine chloride (ACh chloride), a neurotransmitter, is a potent cholinergic agonist. Acetylcholine chloride is a modulator of the activity of dopaminergic (DAergic) neurons through the stimulation of nicotinic acetylcholine receptors (nAChRs)[1][2]. Acetylcholine chloride inhibits p53 mutant peptide aggregation in vitro[5]. Acetylcholine chloride (ACh chloride), a neurotransmitter, is a potent cholinergic agonist. Acetylcholine chloride is a modulator of the activity of dopaminergic (DAergic) neurons through the stimulation of nicotinic acetylcholine receptors (nAChRs)[1][2]. Acetylcholine chloride inhibits p53 mutant peptide aggregation in vitro[5].

   

meso-Diaminoheptanedioate

(2R,6S)-2,6-Diaminoheptanedioic acid

C7H14N2O4 (190.0953524)


   

Permethrin

(-)-trans-Permethrin

C21H20Cl2O3 (390.078943)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AC - Pyrethrines, incl. synthetic compounds D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3074

   
   

Anemonin

Pulsatilla camphor

C10H8O4 (192.0422568)


   

Stirrup

InChI=1\C15H26O\c1-13(2)7-5-8-14(3)9-6-10-15(4)11-12-16\h7,9,11,16H,5-6,8,10,12H2,1-4H3\b14-9+,15-11

C15H26O (222.1983546)


C26170 - Protective Agent > C275 - Antioxidant Acquisition and generation of the data is financially supported in part by CREST/JST. Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria. Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].

   

Citropten

InChI=1/C11H10O4/c1-13-7-5-9(14-2)8-3-4-11(12)15-10(8)6-7/h3-6H,1-2H3

C11H10O4 (206.057906)


5,7-dimethoxy-1-benzopyran-2-one is a member of coumarins. 5,7-Dimethoxycoumarin is a natural product found in Edgeworthia chrysantha, Melicope borbonica, and other organisms with data available. Citropten is found in citrus. Citropten is found in lime and bergamot oils. Found in lime and bergamot oils Citropten (5,7-Dimethoxycoumarin) is a coumarin isolated from bergamot oil. Citropten (5,7-Dimethoxycoumarin) has an antiproliferative activity against A2058 human melanoma cell line[1][2]. Citropten (5,7-Dimethoxycoumarin) is a coumarin isolated from bergamot oil. Citropten (5,7-Dimethoxycoumarin) has an antiproliferative activity against A2058 human melanoma cell line[1][2].

   

Caffeic acid ethyl ester

2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-, ethyl ester

C11H12O4 (208.0735552)


Caffeic acid ethyl ester, also known as (E)-ethyl 3,4-dihydroxycinnamate or (E)-ethyl caffeate, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Caffeic acid ethyl ester is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Caffeic acid ethyl ester can be found in eggplant and vinegar, which makes caffeic acid ethyl ester a potential biomarker for the consumption of these food products. Ethyl caffeate is an ester of an hydroxycinnamic acid, a naturally occurring organic compound . Ethyl trans-caffeate is an ethyl ester resulting from the formal condensation of the carboxy group of trans-caffeic acid with ethanol. It has a role as an anti-inflammatory agent and an antineoplastic agent. It is an alkyl caffeate ester and an ethyl ester. It is functionally related to a trans-caffeic acid. Ethyl caffeate is a natural product found in Cichorium endivia, Cichorium pumilum, and other organisms with data available. Ethyl Caffeate is a natural phenolic compound isolated from Bidens pilosa. Ethyl caffeate suppresses NF-κB activation and its downstream inflammatory mediators, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) in vitro or in mouse skin[1]. Ethyl Caffeate is a natural phenolic compound isolated from Bidens pilosa. Ethyl caffeate suppresses NF-κB activation and its downstream inflammatory mediators, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) in vitro or in mouse skin[1].

   

(R)-(E)-Sulforaphene

ISOTHIOCYANIC ACID, 4-(METHYLSULFINYL)-3-BUTENYL ESTER

C6H9NOS2 (175.0125544)


Mustard oil from Glucoraphenin (see 4-(Methylthio)-3-butenyl glucosinolate KZZ70-M) in radish seeds (Raphanus sativus variety alba). (R)-(E)-Sulforaphene is found in root vegetables. (R)-(E)-Sulforaphene is found in root vegetables. Mustard oil from Glucoraphenin (see 4-(Methylthio)-3-butenyl glucosinolate KZZ70-M) in radish seeds (Raphanus sativus var. alba Sulforaphene is a natural product found in Thulinella chrysantha, Matthiola incana, and Raphanus sativus with data available. Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4]. Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4]. Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4].

   

Guaifenesin

Guaifenesin for peak identification, European Pharmacopoeia (EP) Reference Standard

C10H14O4 (198.0892044)


Guaifenesin is a member of methoxybenzenes. Guaifenesin possesses a storied history, having been originally formally approved by the US FDA in 1952 and continues to be one of very few - if not perhaps the only drug that is readily available and used as an expectorant. Since that time the agent has been a combination component of various prescription and non-prescription over-the-counter cough and cold products and is currently a widely available over-the-counter generic medication. Although it is principally believed that guaifenesin elicits an action to facilitate productive cough to manage chest congestion, it is not known whether the agent can reliably mitigate coughing. Regardless, on March 1, 2007, the FDA received a petition asking the FDA to notify the public that some antitussives, expectorants, decongestants, antihistamines, and cough/cold combinations are not known to be safe and effective in children under the age of 6 years. After the negotiation between FDA and major manufacturers, a voluntary transition of labels for not using guaifenesin in children under the age of 4 years was endorsed by FDA in 2008. Furthermore, there has also been contemporary research to suggest that guaifenesin possesses and is capable of demonstrating anticonvulsant and muscle relaxant effects to some degree possibly by acting as an NMDA receptor antagonist. Guaifenesin is an Expectorant. The physiologic effect of guaifenesin is by means of Decreased Respiratory Secretion Viscosity, and Increased Respiratory Secretions. Guaifenesin is a natural product found in Plectranthus with data available. Guaifenesin is a glyceryl guaiacolate with expectorant effects. Guaifenesin increases respiratory tract mucus secretions, acts as an irritant to gastric vagal receptors and recruits efferent parasympathetic reflexes that cause glandular exocytosis. This agent reduces the viscosity of mucus secretion by reducing adhesiveness and surface tension as well as increasing hydration of mucus. Guaifenesin promotes the efficiency of the mucociliary mechanism important in removing accumulated secretions from the upper and lower airway. An expectorant that also has some muscle relaxing action. It is used in many cough preparations. [PubChem] An expectorant that also has some muscle relaxing action. It is used in many cough preparations. See also: Dextromethorphan Hydrobromide; Guaifenesin (component of); Guaifenesin; Phenylephrine Hydrochloride (component of); Guaifenesin; Pseudoephedrine Hydrochloride (component of) ... View More ... Guaifenesin (International Noproprietary Name) or guaiphenesin (former British Approved Name) is an expectorant drug usually taken orally to assist the expectoration (bringing up) of phlegm from the airways in acute respiratory tract infections. It is a common ingredient in many over-the-counter cough/cold medications. Guaifenesin is also used in the experimental guaifenesin protocol in the treatment of fibromyalgia. It was first approved by the Food and Drug Administration (FDA) in 1952. Guaifenesin works by drawing water into the bronchi. The water both thins mucus and lubricates the airway, facilitating the removal of mucus by coughing. Guaifenesin (INN) or guaiphenesin (former BAN) is an expectorant drug usually taken orally to assist the expectoration (bringing up) of phlegm from the airways in acute respiratory tract infections. It is a common ingredient in many over-the-counter cough/cold medications. Guaifenesin is also used in the experimental guaifenesin protocol in the treatment of fibromyalgia. It was first approved by the Food and Drug Administration (FDA) in 1952. Guaifenesin works by drawing water into the bronchi. The water both thins mucus and lubricates the airway, facilitating the removal of mucus by coughing. [HMDB] R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants C78273 - Agent Affecting Respiratory System > C29767 - Expectorant D019141 - Respiratory System Agents > D005100 - Expectorants Guaifenesin (Guaiacol glyceryl ether), a constituent of guaiac resin from the wood of Guajacum officinale Linné, is an expectorant. Guaifenesin can alleviate cough discomfortby increasing sputum volume and decreasing its viscosity, thereby promoting effective cough[1][2]. Guaifenesin (Guaiacol glyceryl ether), a constituent of guaiac resin from the wood of Guajacum officinale Linné, is an expectorant. Guaifenesin can alleviate cough discomfortby increasing sputum volume and decreasing its viscosity, thereby promoting effective cough[1][2].

   

1-Triacontanol

1-Triacontanol 100 microg/mL in Methyl-tert-butyl ether

C30H62O (438.48004019999996)


Triacontan-1-ol is an ultra-long-chain primary fatty alcohol that is triacontane in which one of the terminal methyl hydrogens is replaced by a hydroxy group. It is a fatty alcohol 30:0 and an ultra-long-chain primary fatty alcohol. 1-Triacontanol is a natural product found in Haplophyllum bucharicum, Euphorbia dracunculoides, and other organisms with data available. See also: Saw Palmetto (part of); Iris versicolor root (part of).

   

3-Methylsulfinylpropyl isothiocyanate

ISOTHIOCYANIC ACID, 3-(METHYLSULFINYL)PROPYL ESTER

C5H9NOS2 (163.0125544)


Consumption of broccoli sprouts has shown to be effective at inhibiting Helicobacter pylori growth with sulforaphane being at least one of the active agents. Sulforaphane is an anticancer and antimicrobial compound which can be obtained by eating cruciferous vegetables such as brussel sprouts, broccoli, cauliflower, bok choy, kale, collards, arugula, broccoli sprouts, chinese broccoli, broccoli raab, kohlrabi, mustard, turnip, radish, watercress and cabbage. The enzyme myrosinase transforms glucoraphanin (a glucosinolate) into sulforaphane upon damage to the plant (such as from chewing). The young sprouts of broccoli and cauliflower are particularly rich in glucoraphanin. Iberin is an isothiocyanate that is 1-isothiocyanatopropane in which a hydrogen at position 3 has been replaced by a methylsulfinyl group. A glucosinolate hydrolysis product found in many members of the Brassicaceae family, it is a quorum-sensing inhibitor (QSI) of the bacterial pathogen Pseudomonas aeruginosa. It has a role as a quorum sensing inhibitor, a plant metabolite and an apoptosis inducer. It is a sulfoxide and an isothiocyanate. Iberin is a natural product found in Arabidopsis thaliana, Brassica, and Brassica oleracea with data available. An isothiocyanate that is 1-isothiocyanatopropane in which a hydrogen at position 3 has been replaced by a methylsulfinyl group. A glucosinolate hydrolysis product found in many members of the Brassicaceae family, it is a quorum-sensing inhibitor (QSI) of the bacterial pathogen Pseudomonas aeruginosa.

   

Hirsutin

Octane, 1-isothiocyanato-8-(methylsulfinyl)-

C10H19NOS2 (233.09080039999998)


8-(methylsulfinyl)octyl isothiocyanate is a member of the class of isothiocyanates that is octyl isothiocyanate in which one of the methyl hydrogens at position 8 has been replaced by a methylsulfinyl group. It has a role as a plant metabolite and an allelochemical. It is an isothiocyanate and a sulfoxide. It derives from a hydride of an octane. 8-Methylsulfinyloctyl isothiocyanate is a natural product found in Arabidopsis thaliana, Rorippa indica, and Rorippa sylvestris with data available. Hirsutin inhibits germination of lettuce seeds and affects the growth of the roots of lettuce seedling Inhibits germination of lettuce seeds and affects the growth of the roots of lettuce seedlings

   

Moracin D

InChI=1/C19H16O4/c1-19(2)6-5-14-15(21)7-12(9-18(14)23-19)16-8-11-3-4-13(20)10-17(11)22-16/h3-10,20-21H,1-2H

C19H16O4 (308.1048536)


Moracin D is a member of benzofurans. Moracin D is a natural product found in Morus alba var. multicaulis, Broussonetia papyrifera, and other organisms with data available. Moracin D is found in fruits. Moracin D is isolated from Morus alba (white mulberry) infected with Fusarium solani. Isolated from Morus alba (white mulberry) infected with Fusarium solani. Moracin D is found in mulberry and fruits.

   

Folinic acid

(2S)-2-{[4-({[(6S)-2-amino-5-formyl-4-oxo-1,4,5,6,7,8-hexahydropteridin-6-yl]methyl}amino)phenyl]formamido}pentanedioic acid

C20H23N7O7 (473.1658888)


(6S)-5-formyltetrahydrofolic acid is the pharmacologically active (6S)-stereoisomer of 5-formyltetrahydrofolic acid. It has a role as an antineoplastic agent and a metabolite. It is a conjugate acid of a (6S)-5-formyltetrahydrofolate(2-). Levoleucovorin is the enantiomerically active form of Folinic Acid (also known as 5-formyl tetrahydrofolic acid or leucovorin). Commercially available leucovorin is composed of a 1:1 racemic mixture of the dextrorotary and levorotary isomers, while levoleucovorin contains only the pharmacologically active levo-isomer. In vitro, the levo-isomer has been shown to be rapidly converted to the biologically available methyl-tetrahydrofolate form while the dextro form is slowly excreted by the kidneys. Despite this difference in activity, the two commercially available forms have been shown to be pharmacokinetically identical and may be used interchangeably with limited differences in efficacy or side effects (Kovoor et al, 2009). As folate analogs, levoleucovorin and leucovorin are both used to counteract the toxic effects of folic acid antagonists, such as methotrexate, which act by inhibiting the enzyme dihydrofolate reductase (DHFR). They are indicated for use as rescue therapy following use of high-dose methotrexate in the treatment of osteosarcoma or for diminishing the toxicity associated with inadvertent overdosage of folic acid antagonists. Levoleucovorin, as the product Fusilev (FDA), has an additional indication for use in combination chemotherapy with 5-fluorouracil in the palliative treatment of patients with advanced metastatic colorectal cancer. Folic acid is an essential B vitamin required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. However, in order to function in this role, it must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted when high-dose methotrexate is used for cancer therapy. As methotrexate functions as a DHFR inhibitor to prevent DNA synthesis in rapidly dividing cells, it also prevents the formation of DHF and THF. This results in a deficiency of coenzymes and a resultant buildup of toxic substances that are responsible for numerous adverse side effects of methotrexate therapy. As levoleucovorin and leucovorin are analogs of tetrahydrofolate (THF), they are able to bypass DHFR reduction and act as a cellular replacement for the co-factor THF, thereby preventing these toxic side effects. Levoleucovorin is a Folate Analog. Levoleucovorin is a natural product found in Homo sapiens with data available. Levoleucovorin is the active l-isomer of the racemic mixture of the 5-formyl derivative of tetrahydrofolic acid. Metabolically active, l-leucovorin, also known levoleucovorin, does not require bioactivation by dihydrofolate reductase, an enzyme inhibited by folic acid antagonists. This agent may enhance the effects of fluoropyrimidines by stabilizing their binding to the enzyme thymidylate synthase. (NCI04) 5-Formyltetrahydrofolic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A folate analog consisting of the pharmacologically active isomer of LEUCOVORIN. See also: Levoleucovorin Calcium (active moiety of); Levoleucovorin disodium (active moiety of). Folinic acid (CAS: 58-05-9), also known as leucovorin, is a medication used to decrease the toxic effects of methotrexate (a chemotherapy agent and immune system suppressant) and pyrimethamine (Wikipedia). Folinic acid is the active metabolite of folic acid. Leucovorin is used principally as its calcium salt as an antidote to folic acid antagonists which block the conversion of folic acid to folinic acid. D020011 - Protective Agents > D000931 - Antidotes C2140 - Adjuvant > C2078 - Folic Acid Derivative Folinic acid (Leucovorin) is a biological folic acid and is generally administered along with Methotrexate (MTX) (HY-14519) as a rescue agent to decrease MTX-induced toxicity[1]. Folinic acid (Leucovorin) is a biological folic acid and is generally administered along with Methotrexate (MTX) (HY-14519) as a rescue agent to decrease MTX-induced toxicity[1].

   

2,3-Dihydrobenzofuran

InChI=1/C8H8O/c1-2-4-8-7(3-1)5-6-9-8/h1-4H,5-6H

C8H8O (120.0575118)


2,3-dihydrobenzofuran is a member of the class of 1-benzofurans that is the 2,3-dihydroderivative of benzofuran. It has a role as a metabolite. 2,3-Dihydrobenzofuran is a natural product found in Phyla nodiflora, Vitis vinifera, and other organisms with data available. 2,3-dihydrobenzofuran, also known as coumaran, is a clear very slight yellow oily liquid. It is slightly soluble in water, and is formed by reducing coumarone of which it is the dihydride. A member of the class of 1-benzofurans that is the 2,3-dihydroderivative of benzofuran. Coumaran (2,3-Dihydrobenzofuran) is an acetylcholinesterase (AChE) inhibitor isolated from leaves of L. camara. Coumaran can be used as a biopesticide[1]. Coumaran (2,3-Dihydrobenzofuran) is an acetylcholinesterase (AChE) inhibitor isolated from leaves of L. camara. Coumaran can be used as a biopesticide[1].

   

1,2-Dimethoxybenzene

Guaiacol Imp. C (EP); 1,2-Dimethoxybenzene; Veratrole; Guaiacol Impurity C

C8H10O2 (138.06807600000002)


1,2-Dimethoxybenzene, commonly known as veratrole, is a chemical compound with the formula C6H4(OCH3)2. It is the dimethyl ether derived from pyrocatechol. Veratrole is slightly soluble in water, but miscible in all organic solvents. It is a building block for the organic synthesis of other aromatic compounds. Veratrole is relatively electron-rich and thus readily undergoes electrophilic substitution. 1,2-Dimethoxybenzene is found in corn. 1,2-Dimethoxybenzene is a food additive listed in the EAFUS food Additive Database (Jan 2001). 1,2-Dimethoxybenzene is found in raw and cooked foods, e.g. cheeses, grapes and asparagus. Veratrole is a dimethoxybenzene with the methoxy groups at ortho-positions. It has a role as a plant metabolite. 1,2-Dimethoxybenzene is a natural product found in Ophrys sphegodes, Phallus impudicus, and other organisms with data available. Food additive listed in the EAFUS Food Additive Database (Jan 2001). Found in raw and cooked foods, e.g. cheeses, grapes and asparagus A dimethoxybenzene with the methoxy groups at ortho-positions. 1,2-Dimethoxybenzene is an naturally occurring insect attractant[1]. 1,2-Dimethoxybenzene is an naturally occurring insect attractant[1].

   

Pipercide

(2E,4E,10E)-11-(2H-1,3-Benzodioxol-5-yl)-N-(2-methylpropyl)undeca-2,4,10-trienimidate

C22H29NO3 (355.2147324)


Alkaloid from the aerial parts of Piper retrofractum (Javanese long pepper) and the fruits of Piper nigrum (pepper). Pipercide is found in herbs and spices and pepper (spice). Pipercide is found in herbs and spices. Pipercide is an alkaloid from the aerial parts of Piper retrofractum (Javanese long pepper) and the fruits of Piper nigrum (pepper). Pipercide is a member of benzodioxoles. Pipercide is a natural product found in Piper mullesua, Piper retrofractum, and other organisms with data available.

   

Ethyl hexadecanoate

InChI=1/C18H36O2/c1-3-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20-4-2/h3-17H2,1-2H

C18H36O2 (284.2715156)


Ehtyl hexadecanoate is the ester formed by the condensation of hexadecanoic acid and ethanol. Ethyl hexadecanoate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Ethyl hexadecanoate can be found in alcoholic beverages. It is also present in various fruits, e.g. apricot, sour cherry, grapefruit, bilberry, guava fruit, melon, pineapple, Chinese quince, ceriman (Monstera deliciosa) etc. As well as in crispbread, clary sage, blackcurrant buds, wines, rice bran, plum brandy, fruit brandy, Bourbon vanilla, beans and salted/pickled plum. Ethyl hexadecanoate is a long-chain fatty acid ethyl ester resulting from the formal condensation of the carboxy group of palmitic acid with the hydroxy group of ethanol. It has a role as a plant metabolite. It is a hexadecanoate ester and a long-chain fatty acid ethyl ester. Ethyl palmitate is a natural product found in Cyperus esculentus, Psidium guajava, and other organisms with data available. Ethyl hexadecanoate is a metabolite found in or produced by Saccharomyces cerevisiae. Present in various fruits, e.g. apricot, sour cherry, grapefruit, bilberry, guava fruit, melon, pineapple, Chinese quince, ceriman (Monstera deliciosa) etcand is also present in crispbread, clary sage, blackcurrant buds, wines, rice bran, plum brandy, fruit brandy, Bourbon vanilla, beans and salted/pickled plums. Ethyl hexadecanoate is found in many foods, some of which are citrus, guava, cereals and cereal products, and alcoholic beverages. A long-chain fatty acid ethyl ester resulting from the formal condensation of the carboxy group of palmitic acid with the hydroxy group of ethanol. Ethyl palmitate, a fatty acid ethyl ester (FAEE), shows a marked preference for the synthesis of ethyl palmitate and ethyl oleate over other FAEEs in human subjects after ethanol consumption. Ethyl palmitate is used as a hair- and skin-conditioning agent[1]. Ethyl palmitate, a fatty acid ethyl ester (FAEE), shows a marked preference for the synthesis of ethyl palmitate and ethyl oleate over other FAEEs in human subjects after ethanol consumption. Ethyl palmitate is used as a hair- and skin-conditioning agent[1].

   

Neocnidilide

1(3H)-Isobenzofuranone, 3-butyl-3a,4,5,6-tetrahydro-, (3S,3aR)-

C12H18O2 (194.1306728)


Sedanolide is a member of 2-benzofurans. Sedanolide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. Constituent of celery oil. Neocnidilide is found in many foods, some of which are dill, coriander, wild celery, and green vegetables. Neocnidilide is found in coriander. Neocnidilide is a constituent of celery oil Sedanolide, a natural compound occurring in edible umbelliferous plants, possesses anti-inflammatory and antioxidant activities[1][2]. Sedanolide, a natural compound occurring in edible umbelliferous plants, possesses anti-inflammatory and antioxidant activities[1][2].

   

PS(18:0/18:0)

(2S,8R)-2-Amino-5-hydroxy-11-oxo-8-[(1-oxooctadecyl)oxy]-4,6,10-trioxa-5-phosphaoctacosanoic acid 5-oxide sodium salt

C42H82NO10P (791.5676042)


PS(18:0/18:0) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(18:0/18:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of stearic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(18:0/18:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:0/18:0), in particular, consists of two octadecanoyl chains at positions C-1 and C-2. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. 1,2-distearoyl-sn-glycero-3-phosphoserine is a 3-sn-phosphatidyl L-serine in which the phosphatidyl acyl group at both positions 1 and 2 is stearoyl. It has a role as a mouse metabolite. It is functionally related to an octadecanoic acid. PS(18:0/18:0) is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phosphatidylserine is a phospholipid with a polar serine found in phosphoester linkage to diacylglycerol. Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. A 3-sn-phosphatidyl L-serine in which the phosphatidyl acyl group at both positions 1 and 2 is stearoyl. Distearoylphosphatidylserine (DSPS) acts as a monolayer. Phosphatidylserine is a phospholipid with a polar serine found in phosphoester linkage to diacylglycerol[1]. Distearoylphosphatidylserine (DSPS) acts as a monolayer. Phosphatidylserine is a phospholipid with a polar serine found in phosphoester linkage to diacylglycerol[1].

   

2-Pentylfuran

2-Pentylfuran; 2-Amylfuran; 2-n-Pentylfuran; Dihydro-5-pentyl-2(hydro)-furan

C9H14O (138.1044594)


2-pentylfuran is a member of the class of compounds known as heteroaromatic compounds. Heteroaromatic compounds are compounds containing an aromatic ring where a carbon atom is linked to an hetero atom. 2-pentylfuran is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 2-pentylfuran is a beany, butter, and earthy tasting compound and can be found in a number of food items such as yellow bell pepper, pepper (c. annuum), nuts, and watermelon, which makes 2-pentylfuran a potential biomarker for the consumption of these food products. 2-pentylfuran can be found primarily in feces, saliva, and urine. 2-pentylfuran exists in all eukaryotes, ranging from yeast to humans. 2-pentylfuran is a colourless to light yellow liquid that is not known to be produced by mammalian metabolism. It is present in many foods including alcoholic beverages, coffee, potatoes, tomatoes, roasted filberts, and soybean oil, and it is also a component of the aroma of these foods. 2-pentylfuran is a flavouring ingredient. 2-pentylfuran belongs to the furan family which is characterized by a furan ring (a five-member aromatic ring with one oxygen atom and four carbon atoms). A study showed that 2-pentylfuran is found in the breath of patients with Aspergillus fumigatus infections (PMID:19301177). 2-pentylfuran is a member of the class of furans that is furan in which the hydrogen at position 2 is replaced by a pentyl group. It is found in many heat-processed foods and drinks. It has a role as an Aspergillus metabolite, a human urinary metabolite, a volatile oil component, an insect repellent, a flavouring agent, a plant growth stimulator and a bacterial metabolite. 2-Pentylfuran is a natural product found in Vitis rotundifolia, Astragalus mongholicus, and other organisms with data available. 2-pentylfuran is a metabolite found in or produced by Saccharomyces cerevisiae. A member of the class of furans that is furan in which the hydrogen at position 2 is replaced by a pentyl group. It is found in many heat-processed foods and drinks. 2-Pentylfuran is the compound isolated from steam volatile oils obtained from potatoes at atmospheric pressure[1]. 2-Pentylfuran is the compound isolated from steam volatile oils obtained from potatoes at atmospheric pressure[1].

   

5,6-Dihydro-6-pentyl-2H-pyran-2-one

5-Hydroxy-2-decenoic acid laquo deltaRaquo -lactone

C10H16O2 (168.1150236)


(R)-5,6-Dihydro-6-pentyl-2H-pyran-2-one is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") Present in blackberries and cane molasses. Flavouring ingredient. 5,6-Dihydro-6-pentyl-2H-pyran-2-one is found in fruits. Massoia lactone is a natural product found in Allium cepa and Perilla frutescens with data available.

   

Pentacosane

2A4605C9-A088-458C-AD58-AA987FF6C408

C25H52 (352.4068792)


Constituent of many naturally occurring waxes. A colorless solid at ambient conditions. Pentacosane is an alkane consisting of an unbranched chain of 25 carbon atoms. It has a role as a semiochemical and a plant metabolite. Pentacosane is a natural product found in Cryptotermes brevis, Erucaria microcarpa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). An alkane consisting of an unbranched chain of 25 carbon atoms. Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1]. Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1].

   

Linalyl oxide

2-Furanmethanol, 5-ethenyltetrahydro-.alpha.,.alpha.,5-trimethyl-, (2R,5S)-rel-

C10H18O2 (170.1306728)


Linalyl oxide is found in citrus. Linalyl oxide is isolated from Citrus paradisi (grapefruit), Thea sinensis (tea) and many other sources. Linalyl oxide is a flavouring ingredient.This is the furanoid form of linalool oxide; there are 4 possible stereo-isomers Linalyl oxide is a member of oxolanes. Linalyl oxide is a natural product found in Pulicaria arabica, Carica papaya, and Camellia sinensis with data available. Isolated from Citrus paradisi (grapefruit), Thea sinensis (tea) and many other sources. Flavouring ingredient Linalool oxide is a secondary metabolite in elongating wheat plants with antinociceptive and anticonvulsant effects. Linalool oxide shows anxiolytic activity[1][2][3]. Linalool oxide is a secondary metabolite in elongating wheat plants with antinociceptive and anticonvulsant effects. Linalool oxide shows anxiolytic activity[1][2][3].

   

Docosane

InChI=1/C22H46/c1-3-5-7-9-11-13-15-17-19-21-22-20-18-16-14-12-10-8-6-4-2/h3-22H2,1-2H

C22H46 (310.3599316)


N-docosane, also known as ch3-[ch2]20-ch3 or dokosan, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-docosane is considered to be a hydrocarbon lipid molecule. N-docosane is an alkane and waxy tasting compound and can be found in a number of food items such as lemon balm, linden, allspice, and sunflower, which makes N-docosane a potential biomarker for the consumption of these food products. N-docosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Docosane, also known as CH3-[CH2]20-CH3 or dokosan, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Docosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, docosane is considered to be a hydrocarbon lipid molecule. Docosane is an alkane and waxy tasting compound. Docosane is found, on average, in the highest concentration within lemon balms. Docosane has also been detected, but not quantified, in several different foods, such as allspices, lindens, papaya, and sunflowers. This could make docosane a potential biomarker for the consumption of these foods. A straight-chain alkane with 22 carbon atoms. N-docosane is a solid. Insoluble in water. Used in organic synthesis, calibration, and temperature sensing equipment. Docosane is a straight-chain alkane with 22 carbon atoms. It has a role as a plant metabolite. Docosane is a natural product found in Lonicera japonica, Erucaria microcarpa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane with 22 carbon atoms. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2]. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2].

   

Arachidyl alcohol

InChI=1/C20H42O/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21/h21H,2-20H2,1H

C20H42O (298.3235482)


Arachidyl alcohol, also known as 1-eicosanol or eicosyl alcohol, belongs to the class of organic compounds known as long-chain fatty alcohols. These are fatty alcohols that have an aliphatic tail of 13 to 21 carbon atoms. Thus, arachidyl alcohol is considered to be a fatty alcohol lipid molecule. Arachidyl alcohol is a very hydrophobic molecule, practically insoluble in water and relatively neutral. Arachidyl alcohol, also 1-icosanol, is a waxy substance used as an emollient in cosmetics. It is a straight-chain fatty alcohol.; Arachidyl alcohol, also 1-icosanol, is a waxy substance used as an emollient in cosmetics. It is a straight-chain fatty alcohol.; ; from wikipedia. Eicosan-1-ol is found in flaxseed, black elderberry, and potato. Icosan-1-ol is a fatty alcohol consisting of a hydroxy function at C-1 of an unbranched saturated chain of 20 carbon atoms. It is a long-chain primary fatty alcohol and a fatty alcohol 20:0. 1-Eicosanol is a natural product found in Lonicera japonica, Artemisia baldshuanica, and other organisms with data available. A long-chain primary fatty alcohol that is icosane in which one of the terminal methyl hydrogens is replaced by a hydroxy group.

   

Methyl pentadecanoate

Methyl pentadecanoate, analytical standard

C16H32O2 (256.2402172)


Methyl pentadecanoate is a fatty acid ester obtained by condensation of the carboxy group of pentadecanoic acid with the hydroxy group of methanol. It has a role as a plant metabolite and a bacterial metabolite. It is functionally related to a pentadecanoic acid. Methyl pentadecanoate is a natural product found in Astragalus mongholicus, Aristolochia grandiflora, and Astragalus membranaceus with data available. A fatty acid ester obtained by condensation of the carboxy group of pentadecanoic acid with the hydroxy group of methanol. Methyl pentadecanoate is a fatty acid ester, can be isolated from L. wallichi extracts. Methyl pentadecanoate is obtained by condensation of the carboxy group of pentadecanoic acid with the hydroxy group of methanol[1]. Methyl pentadecanoate is a fatty acid ester, can be isolated from L. wallichi extracts. Methyl pentadecanoate is obtained by condensation of the carboxy group of pentadecanoic acid with the hydroxy group of methanol[1].

   

Pentadecanol

InChI=1/C15H32O/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16/h16H,2-15H2,1H

C15H32O (228.2453022)


Pentadecanol is a C-15 fatty alcohol. Very long chain fatty alcohols (VLCFA), obtained from plant waxes and beeswax have been reported to lower plasma cholesterol in humans. They can be found in unrefined cereal grains, beeswax, and many plant-derived foods. Reports suggest that 5–20 mg per day of mixed C24–C34 alcohols, including octacosanol and triacontanol, lower low-density lipoprotein (LDL) cholesterol by 21\\\\%–29\\\\% and raise high-density lipoprotein cholesterol by 8\\\\%–15\\\\%. Wax esters are hydrolyzed by a bile salt-dependent pancreatic carboxyl esterase, releasing long chain alcohols and fatty acids that are absorbed in the gastrointestinal tract. Studies of fatty alcohol metabolism in fibroblasts suggest that very long chain fatty alcohols, fatty aldehydes, and fatty acids are reversibly inter-converted in a fatty alcohol cycle. The metabolism of these compounds is impaired in several inherited human peroxisomal disorders, including adrenoleukodystrophy and Sjögren-Larsson syndrome. Pentadecanol is a colorless liquid with a faint odor of alcohol. Floats on water. (USCG, 1999) Pentadecan-1-ol is a long-chain fatty alcohol that is pentadecane in which one of the terminal methyl hydrogens is replaced by a hydroxy group It is a long-chain primary fatty alcohol and a pentadecanol. 1-Pentadecanol is a natural product found in Curcuma amada, Cichorium endivia, and other organisms with data available. A long-chain fatty alcohol that is pentadecane in which one of the terminal methyl hydrogens is replaced by a hydroxy group Pentadecanol is a C-15 fatty alcohol 1-Pentadecanol is a naturally occurring antiacne agent[1]. 1-Pentadecanol is a naturally occurring antiacne agent[1].

   

Isohexanol

InChI=1/C6H14O/c1-6(2)4-3-5-7/h6-7H,3-5H2,1-2H

C6H14O (102.10445940000001)


4-methylpentan-1-ol is a primary alcohol that is pentan-1-ol bearing an additional methyl substituent at position 4. It has a role as a metabolite. It is a primary alcohol and an alkyl alcohol. 4-Methyl-1-pentanol is a natural product found in Vitis vinifera, Zanthoxylum schinifolium, and other organisms with data available. 4-Methyl-1-pentanol is a metabolite found in or produced by Saccharomyces cerevisiae. A primary alcohol that is pentan-1-ol bearing an additional methyl substituent at position 4. 4-Methyl-1-pentanol (Isohexanol) is a volatile aroma compound of red wine from cv. Kalecik Karasι[1]. 4-Methyl-1-pentanol (Isohexanol) is a volatile aroma compound of red wine from cv. Kalecik Karasι[1].

   

2-Methylthiophene

2-Methylthiophene, certified reference material, TraceCERT(R)

C5H6S (98.0190196)


2-methylthiophene is a member of the class of thiophenes that is thiophene in which the hydrogen atom at position 2 is substituted by a methyl group. It has a role as a flavouring agent and a Maillard reaction product. It is a member of thiophenes and a volatile organic compound. It is functionally related to a thiophene. 2-Methylthiophene is a natural product found in Psidium guajava, Xanthopappus subacaulis, and Solanum lycopersicum with data available. 2-methylthiophene is a metabolite found in or produced by Saccharomyces cerevisiae. 2-Methylthiophene, also known as 2-thiotolene, belongs to the class of organic compounds known as heteroaromatic compounds. Heteroaromatic compounds are compounds containing an aromatic ring where a carbon atom is linked to an hetero atom. 2-Methylthiophene is possibly neutral. 2-Methylthiophene is an alliaceous, green, and onion tasting compound. 2-Methylthiophene has been detected, but not quantified, in several different foods, such as blackberries, coffee and coffee products, evergreen blackberries, and guava. Maillard product; present in roast beef and coffee aromas. 2-Methylthiophene is found in coffee and coffee products, animal foods, and guava. 4-Methylthiophene is?an intermediate?used?in?the?synthesis?of?the?aromatic sulfur compounds[1]. 4-Methylthiophene is?an intermediate?used?in?the?synthesis?of?the?aromatic sulfur compounds[1].

   

Ethyl 3,4,5-trimethoxybenzoate

3,4,5-Trimethoxybenzoic Acid Ethyl Ester

C12H16O5 (240.0997686)


Ethyl 3,4,5-trimethoxybenzoate is isolated from cashew gum. Ethyl 3,4,5-trimethoxybenzoate is a trihydroxybenzoic acid. Isolated from cashew gum Ethyl 3,4,5-trimethoxybenzoate is a natural compound isolated from the roots of Rauvolfia yunnanensis Tsiang[1].

   

2-Decenal

trans-2-Decen-1-al (contaisn trans-2-decen-1-al diethyl acetal) (10\\% in ethanol); trans-2-Decenal

C10H18O (154.1357578)


Constituent of essential oil of corianderand is also present in French fries, tomato, wheat bread, cooked meats, roasted pecans, roasted filbert and rice. Flavouring agent. 2-Decenal is found in many foods, some of which are herbs and spices, potato, animal foods, and garden tomato. (2E)-dec-2-enal is a dec-2-enal in which the olefinic double bond has E configuration. It has a role as an alarm pheromone, a nematicide and a mutagen. 2-Decenal is a natural product found in Vaccinium macrocarpon, Akebia trifoliata, and other organisms with data available. 2-Decenal is found in animal foods. 2-Decenal is a constituent of essential oil of coriander. Also present in French fries, tomato, wheat bread, cooked meats, roasted pecans, roasted filbert and rice. 2-Decenal is a flavouring agent

   

Phthalide

1,3-Dihydrobenzo[C]furan-2-one;2-Benzofuran-1(3H)-one;2-Hydroxymethylbenzoic acid, gamma-lactone;Phthalolactone

C8H6O2 (134.0367776)


2-benzofuran-1(3H)-one is a gamma-lactone that is 1,3-dihydro-2-benzofuran in which the hydrogens at position 1 are replaced by an oxo group. It is a gamma-lactone and a member of 2-benzofurans. Phthalide is a natural product found in Ligusticum striatum, Angelica sinensis, and Ligusticum chuanxiong with data available. Phthalide is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive . Phthalide is a promising chemical scaffold with a potent anti-inflammatory efficacy. Phthalide can be used to synthesize a variety of phthalide derivatives including anti-inflammatory agent, antimicrobial, antioxidant[1][2][3]. Phthalide is a promising chemical scaffold with a potent anti-inflammatory efficacy. Phthalide can be used to synthesize a variety of phthalide derivatives including anti-inflammatory agent, antimicrobial, antioxidant[1][2][3].

   

(±)-2-Heptanol

InChI=1/C7H16O/c1-3-4-5-6-7(2)8/h7-8H,3-6H2,1-2H

C7H16O (116.12010860000001)


2-heptanol appears as a clear colorless alcohol with a mild alcohol odor. Insoluble in water. Floats on water. Soluble in most organic liquids. Moderately toxic. Used as a solvent for various resins and as a flotation agent for ore processing. Heptan-2-ol is a secondary alcohol that is heptane substituted by a hydroxy group at position 2. It has a role as a bacterial metabolite and a plant metabolite. It is a heptanol and a secondary alcohol. 2-Heptanol is a natural product found in Vitis rotundifolia, Coffea arabica, and other organisms with data available. 2-Heptanol is a metabolite found in or produced by Saccharomyces cerevisiae. (±)-2-Heptanol belongs to the class of organic compounds known as fatty alcohols. These are aliphatic alcohols consisting of a chain of a least six carbon atoms. (±)-2-Heptanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, (±)-2-heptanol is considered to be a fatty alcohol lipid molecule A secondary alcohol that is heptane substituted by a hydroxy group at position 2. Flavouring ingredient 2-Heptanol is one of chemical constituents identified in the essential oil of rhizome of Curcuma angustifolia and Curcuma zedoaria. Rhizome essential oil exhibited good antimicrobial and antioxidant activity[1]. 2-Heptanol is one of chemical constituents identified in the essential oil of rhizome of Curcuma angustifolia and Curcuma zedoaria. Rhizome essential oil exhibited good antimicrobial and antioxidant activity[1].

   

Gamma-Caprolactone

gamma-Ethyl-gamma-butyrolactone, gamma-Caprolactone

C6H10O2 (114.068076)


Gamma-Caprolactone, also known as 4-ethyl-4-butanolide or 4-hexanolide, belongs to the class of organic compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Thus, Gamma-caprolactone is considered to be a fatty ester lipid molecule. Gamma-Caprolactone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Gamma-Caprolactone exists in all eukaryotes, ranging from yeast to humans. Outside of the human body, Gamma-caprolactone has been detected, but not quantified in several different foods, such as potato, cereals and cereal products, pomes, alcoholic beverages, and fruits. It is occasionally found as a volatile component of human urine. In some cases differences up to an order of magnitude are observed. It has been also found in the polar fraction of human blood. Gamma-caprolactone is a gamma-lactone that is oxolan-2-one substituted by an ethyl group at position 5. It has a role as a human blood serum metabolite. gamma-Caprolactone is a natural product found in Psidium guajava, Polygala senega, and other organisms with data available. 4-Hexanolide is a metabolite found in or produced by Saccharomyces cerevisiae. A gamma-lactone that is oxolan-2-one substituted by an ethyl group at position 5. γ-Hexalactone is a gamma-lactone found in ripe fruits. γ-Hexalactone induces DNA damage and acts a substrate of paraoxonase 1 (PON1)[1][2][3]. γ-Hexalactone is a gamma-lactone found in ripe fruits. γ-Hexalactone induces DNA damage and acts a substrate of paraoxonase 1 (PON1)[1][2][3].

   

delta-Decalactone

delta-Decanolactone, (+/-)-delta-Pentyl-delta-valerolactone

C10H18O2 (170.1306728)


delta-Decalactone, also known as 5-decanolide or δ-amylvalerolactone, belongs to the class of organic compounds known as delta valerolactones. These are cyclic organic compounds containing an oxan-2- one moiety. Thus, delta-decalactone is considered to be a fatty ester lipid molecule. delta-Decalactone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. delta-Decalactone is a sweet, apricot, and butter tasting compound. delta-Decalactone has been detected, but not quantified, in several different foods, such as coconuts, evergreen blackberries, bilberries, milk and milk products, and fats and oils. This could make delta-decalactone a potential biomarker for the consumption of these foods. A delta-lactone that is 5-valerolactone substituted by a pentyl group at position 6. 6-pentyloxan-2-one is a delta-lactone that is 5-valerolactone substituted by a pentyl group at position 6. It has a role as a metabolite. It is functionally related to a 5-valerolactone. delta-Decalactone is a natural product found in Curio articulatus, Mangifera indica, and Fusarium poae with data available. 1,5-Decanolide is a metabolite found in or produced by Saccharomyces cerevisiae. Present in coconut oil, butter oil, apricots, peaches, cheese, cane sugar, pork fat, margarine, lavender oil, and other substances. Fragrance raw material and flavouring agent. 5-Pentyl-delta-valerolactone is found in many foods, some of which are bilberry, fruits, animal foods, and milk and milk products. A delta-lactone that is 5-valerolactone substituted by a pentyl group at position 6. δ-Decalactone is a lactone compound found in nonfat dry milks and fruit. δ-Decalactone has a sweet taste[1][2]. δ-Decalactone is a lactone compound found in nonfat dry milks and fruit. δ-Decalactone has a sweet taste[1][2].

   

Heneicosane

(S)-(-)-2,2-Bis(diphenylphosphino)-5,5,6,6,7,7,8,8-octahydro-1,1-binaphthyl (R)-H8-BINAP

C21H44 (296.3442824)


Heneicosane, also known as CH3-[CH2]19-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heneicosane is considered to be a hydrocarbon lipid molecule. Heneicosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heneicosane is an alkane and waxy tasting compound. Heneicosane is found, on average, in the highest concentration within a few different foods, such as black elderberries, common oregano, and lemon balms. Heneicosane has also been detected, but not quantified, in several different foods, such as sunflowers, kohlrabis, orange bell peppers, lindens, and pepper (c. annuum). This could make heneicosane a potential biomarker for the consumption of these foods. An alkane that has 21 carbons and a straight-chain structure. Heneicosane, also known as ch3-[ch2]19-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heneicosane is considered to be a hydrocarbon lipid molecule. Heneicosane is an alkane and waxy tasting compound and can be found in a number of food items such as orange bell pepper, yellow bell pepper, lemon balm, and pepper (c. annuum), which makes heneicosane a potential biomarker for the consumption of these food products. Heneicosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Crystals. (NTP, 1992) Henicosane is an alkane that has 21 carbons and a straight-chain structure. It has been isolated from plants like Periploca laevigata and Carthamus tinctorius. It has a role as a pheromone, a plant metabolite and a volatile oil component. Heneicosane is a natural product found in Erucaria microcarpa, Microcystis aeruginosa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). An alkane that has 21 carbons and a straight-chain structure. It has been isolated from plants like Periploca laevigata and Carthamus tinctorius. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3]. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3].

   

2,6-Dimethoxy-4-methylphenol

InChI=1/C9H12O3/c1-6-4-7(11-2)9(10)8(5-6)12-3/h4-5,10H,1-3H

C9H12O3 (168.0786402)


2,6-Dimethoxy-4-methylphenol is found in animal foods. 2,6-Dimethoxy-4-methylphenol is present in smoked fish and pork. 2,6-Dimethoxy-4-methylphenol is a flavouring ingredien Present in smoked fish and pork. Flavouring ingredient. 2,6-Dimethoxy-4-methylphenol is found in fishes and animal foods. 2,6-Dimethoxy-4-methylphenol is a member of methoxybenzenes and a member of phenols. 4-Methylsyringol is a natural product that can be isolated from hardwood[1]. 4-Methylsyringol is a natural product that can be isolated from hardwood[1].

   

1,3,5-Trimethoxybenzene

1,3,5-Trimethoxybenzene, Standard for quantitative NMR, TraceCERT(R)

C9H12O3 (168.0786402)


1,3,5-Trimethoxybenzene has been found to be a potential biomarker of flavonoid intake in human. Flavonoids are phytochemicals that are widespread in the human diet. Despite limitations in their bioavailability, experimental and epidemiological data suggest health benefits of flavonoid consumption. Valid biomarkers of flavonoid intake may be useful for estimating exposure in a range of settings. However, to date, few useful flavonoid biomarkers have been identified. A recent urine analysis suggested that urinary 4-ethylphenol, benzoic acid, and 4-ethylbenzoic acid may be potential biomarkers of quercetin intake and 1,3,5-trimethoxybenzene, 4-O-methylgallic acid, 3-O-methylgallic acid, and gallic acid may be potential markers of epigallocatechin gallate intake. Potential biomarkers of (-)-epicatechin were not identified. These urinary biomarkers may provide an accurate indication of flavonoid exposure (PMID: 19812218). 1,3,5-trimethoxybenzene is a methoxybenzene carrying methoxy groups at positions 1, 3 and 5. It has been found to be a biomarker of flavonoid consumption in humans. It has a role as a biomarker and a human xenobiotic metabolite. 1,3,5-Trimethoxybenzene is a natural product found in Zieria chevalieri, Virola surinamensis, and other organisms with data available. A polyphenol metabolite detected in biological fluids [PhenolExplorer]. 1,3,5-Trimethoxybenzene is found in many foods, some of which are carob, coriander, plains prickly pear, and italian sweet red pepper. A methoxybenzene carrying methoxy groups at positions 1, 3 and 5. It has been found to be a biomarker of flavonoid consumption in humans. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics 1,3,5-Trimethoxybenzene is a key component of the Chinese rose odor. 1,3,5-Trimethoxybenzene is synthesized in three successive methylation steps from phloroglucinol, the initial precursor[1].

   

N4-Acetylcytidine

N-{1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-2-oxo-1,2-dihydropyrimidin-4-yl}acetamide

C11H15N3O6 (285.096081)


N4-Acetylcytidine is a modified nucleoside. N4-acetylcytidine is an endogenous urinary nucleoside product of the degradation of transfer ribonucleic acid (tRNA); urinary nucleosides are biological markers for patients with colorectal cancer. tRNA has been shown to be excreted in abnormal amounts in the urine of cancer patients. tRNA from neoplastic tissue had a much more rapid turnover rate than the tRNA from the corresponding normal tissue. Evidence indicates that methylation of tRNA occurs only after synthesis of the intact macromolecule. Because there are no specific enzyme systems to incorporate the modified nucleosides into the macromolecular nucleic acid, these nucleosides once released in the process of tRNA turnover cannot be reutilized, nor are they further degraded, but are excreted in urine. (PMID: 15991285, 3506820) [HMDB] N4-Acetylcytidine is a modified nucleoside. N4-acetylcytidine is an endogenous urinary nucleoside product of the degradation of transfer ribonucleic acid (tRNA); urinary nucleosides are biological markers for patients with colorectal cancer. tRNA has been shown to be excreted in abnormal amounts in the urine of cancer patients. tRNA from neoplastic tissue had a much more rapid turnover rate than the tRNA from the corresponding normal tissue. Evidence indicates that methylation of tRNA occurs only after synthesis of the intact macromolecule. Because there are no specific enzyme systems to incorporate the modified nucleosides into the macromolecular nucleic acid, these nucleosides once released in the process of tRNA turnover cannot be reutilized, nor are they further degraded, but are excreted in urine. (PMID: 15991285, 3506820). N4-Acetylcytidine is an endogenous metabolite. N4-Acetylcytidine is an endogenous metabolite.

   

Diethyl fumarate

2-Butenedioic acid (e)-, diethyl ester (9ci)

C8H12O4 (172.0735552)


Diethyl fumarate is a fungal growth inhibitor for tomato juice. Flavouring compound [Superscent] Diethyl fumarate is a decomposition product of Malathion (an insecticide). Diethyl fumarate is a reputed skin irritant. Diethyl fumarate can causes non-immunologic contact urticaria on skin[1][2].

   

Meconine

6,7-dimethoxy-1,3-dihydro-2-benzofuran-1-one

C10H10O4 (194.057906)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids Meconine is isolated from poppy straw (Papaver somniferum Meconine is an endogenous metabolite. Meconine is an endogenous metabolite.

   

Marindinin

4-Methoxy-6-(2-phenylethyl)-5,6-dihydro-2H-pyran-2-one

C14H16O3 (232.1099386)


Marindinin is found in beverages. Marindinin is found in the roots of kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002 Dihydrokavain is one of the six major kavalactones found in the kava plant; appears to contribute significantly to the anxiolytic effects of kava, based on a study in chicks. Dihydrokavain is one of the six major kavalactones found in the kava plant; appears to contribute significantly to the anxiolytic effects of kava, based on a study in chicks.

   
   

(R)-ar-Turmerone

2-Methyl-6-(4-methylphenyl)-(S)-2-hepten-4-one

C15H20O (216.151407)


(R)-ar-Turmerone is found in herbs and spices. (R)-ar-Turmerone is a constituent of essential oil from Curcuma longa (turmeric), Curcuma amada (mango-ginger) Constituent of essential oil from Curcuma longa (turmeric), Curcuma amada (mango-ginger). (R)-ar-Turmerone is found in turmeric and herbs and spices. ar-Turmerone ((+)-ar-Turmerone) is a major bioactive compound of the herb Curcuma longa with anti-tumorigenesis and anti-inflammatory activities[1][2][3]. ar-Turmerone activates apoptotic protein in human lymphoma U937 cells[3]. ar-Turmerone exerts positive modulation on murine DCs. ar-Turmerone induces NSC proliferation and constitutes a promising therapeutic agent for various neurologic disorders[4][5]. ar-Turmerone ((+)-ar-Turmerone) is a major bioactive compound of the herb Curcuma longa with anti-tumorigenesis and anti-inflammatory activities[1][2][3]. ar-Turmerone activates apoptotic protein in human lymphoma U937 cells[3]. ar-Turmerone exerts positive modulation on murine DCs. ar-Turmerone induces NSC proliferation and constitutes a promising therapeutic agent for various neurologic disorders[4][5].

   

Methyl 2-furoate

Furan-alpha-carboxylic acid methyl ester

C6H6O3 (126.0316926)


Methyl 2-furoate, also known as fema 2703 or methyl pyromucate, belongs to the class of organic compounds known as furoic acid esters. These are ester derivatives of furoic acid. Methyl 2-furoate is a sweet, fruity, and fungal tasting compound. Methyl 2-furoate has been detected, but not quantified, in several different foods, such as fruits, coffee and coffee products, nuts, green vegetables, and cocoa and cocoa products. This could make methyl 2-furoate a potential biomarker for the consumption of these foods. It is used in food flavouring. Found in cranberries, guava fruits, raisins and other fruitsand is also present in baked potato, roasted filberts, roasted peanut, tomatoes, coffee, cocoa, okra (Hibiscus esculentus) and other foodstuffs. Methyl 2-furoate (Methyl furan-2-carboxylate) is a building block in chemical synthesis. A flavoring agent in food. Found in cranberries, guava fruits, raisins and other fruits. Also present in baked potato, roasted filberts, roasted peanut, tomatoes, coffee, cocoa, okra, etc. Methyl 2-furoate (Methyl furan-2-carboxylate) is a building block in chemical synthesis. A flavoring agent in food. Found in cranberries, guava fruits, raisins and other fruits. Also present in baked potato, roasted filberts, roasted peanut, tomatoes, coffee, cocoa, okra, etc.

   

Methyl nicotinate

Methyl ester OF pyridine-3-carboxylic acid

C7H7NO2 (137.0476762)


Methyl nicotinate is found in alcoholic beverages. Methyl nicotinate is a flavouring ingredient. Methyl nicotinate is present in guava fruit, papaya, strawberry, soursop (Annona muricata), beer, grape brandy, coffee, roasted filbert, roasted peanut and Bourbon vanill Methyl nicotinate is a flavouring ingredient. It is found in guava, papaya, strawberry, soursop (Annona muricata), beer, grape brandy, coffee, roasted filbert, roasted peanut and Bourbon vanilla. Methyl nicotinate, the methyl ester of Niacin found in alcoholic beverages, that is used as an active ingredient as a rubefacient in over-the-counter topical preparations indicated for muscle and joint pain[1]. Methyl nicotinate, the methyl ester of Niacin found in alcoholic beverages, that is used as an active ingredient as a rubefacient in over-the-counter topical preparations indicated for muscle and joint pain[1].

   

2,3-Butanediol

2,3-Butylene glycol, (r*,r*,)-(+-)-isomer

C4H10O2 (90.068076)


2,3-Butanediol is an isomer of butanediol. The 2R,3R stereoisomer of 2,3-butanediol is produced by a variety of microorganisms, in a process known as butanediol fermentation. 2,3-Butanediol fermentation is the anaerobic fermentation of glucose with 2,3-butanediol as one of the end products. The overall stoichiometry of the reaction is 2 pyruvate + NADH --> 2CO2 + 2,3-butanediol. Butanediol fermentation is typical for Enterobacter species or microbes found in the gut. 2,3-butanediol has been identified in the sera of alcoholics and it may be a specific marker of alcohol abuse (PMID:6139706). In humans, 2,3-butanediol is oxidized to acetyl-CoA via acetoin. 2,3-Butanediol is also found in cocoa butter. 2,3-Butanediol can also be found in Bacillus, Klebsiella and Serratia (PMID:21272631). 2,3-Butanediol is one of the constitutional isomers of butanediol. The 2R,3R stereoisomer of 2,3-butanediol is produced by a variety of microorganisms, in a process known as butanediol fermentation. It is found in cocoa butter and in the roots of Ruta graveolens. (2R,3R)-Butane-2,3-diol is an endogenous metabolite. (2R,3R)-Butane-2,3-diol is an endogenous metabolite. 2,3-Butanediol is a butanediol derived from the bioconversion of natural resources[1]. 2,3-Butanediol is a butanediol derived from the bioconversion of natural resources[1].

   

Levoglucosan

6,8-Dioxabicyclo[3.2.1]octane b-delta-glucopyranose deriv.

C6H10O5 (162.052821)


Levoglucosan is an anhydrohexose that is the 1,6-anhydro-derivative of beta-D-glucopyranose. It is formed from the pyrolysis of carbohydrates, such as starch and cellulose. As a result, levoglucosan is often used as a chemical tracer for biomass burning in atmospheric chemistry studies, particularly with respect to airborne particulate matter. Levoglucosan in urine has been shown to be highly correlated with regional fires and as a biomarker for wood smoke exposure (PMID: 19165390). This is because the gas emitted by the pyrolysis of wood (biomass) contains significant amounts of levoglucosan. The hydrolysis of levoglucosan generates the fermentable sugar glucose, and therefore lignocellulosic material exhibits great potential as a renewable feedstock for the production of bioethanol. Levoglucosan can also be utilized in the synthesis of chiral polymers such as unhydrolysable glucose polymers. Levoglucosan is also produced via caramelization of sugar. Consumption of caramel or caramel-containing sweets can lead to a short-term 5X increase in urinary levels of levoglucosan (from 20 uM/mM creatinine to 100 uM/mM creatinine) (PMID: 19707249). Urinary levoglucosan levels increase within 2 h of caramel consumption and return to pre-exposure levels within 24 h. These data suggest that diet is a major factor in determining urinary levoglucosan levels and that recent dietary history needs to be taken into account to use levoglucosan as a marker for wood smoke exposure. Excretory levels of levoglucosan vary widely from zero up to 5.3 mmol/L (PMID: 3757263, 16448658, 16317539). Levoglucosan (1,6-Anhydro-β-D-glucopyranose) is an anhydrosugar produced through glucan pyrolysis and is widely found in nature[1].

   

Dihydroxyacetone (dimer)

2,5-Bis(hydroxymethyl)-1,4-dioxane-2,5-diol

C6H12O6 (180.0633852)


Dihydroxyacetone (dimer) is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

beta-Glucogallin

3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl 3,4,5-trihydroxybenzoic acid

C13H16O10 (332.0743436)


beta-Glucogallin is found in green vegetables. beta-Glucogallin is isolated from various plants, e.g. Rheum officinale (Chinese rhubarb), Eucalyptus species. Isolated from various plants, e.g. Rheum officinale (Chinese rhubarb), Eucalyptus subspecies 1-Glucosyl gallate is found in tea and green vegetables.

   

Ammonia

Ammonia (CONC 20\\% or greater)

H3N (17.0265478)


Ammonia is a colourless alkaline gas and is one of the most abundant nitrogen-containing compounds in the atmosphere. It is an irritant with a characteristic pungent odor that is widely used in industry. Inasmuch as ammonia is highly soluble in water and, upon inhalation, is deposited in the upper airways, occupational exposures to ammonia have commonly been associated with sinusitis, upper airway irritation, and eye irritation. Acute exposures to high levels of ammonia have also been associated with diseases of the lower airways and interstitial lung. Small amounts of ammonia are naturally formed in nearly all tissues and organs of the vertebrate organism. Ammonia is both a neurotoxin and a metabotoxin. In fact, it is the most common endogenous neurotoxin. A neurotoxin is a compound that causes damage to neural tissue and neural cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Ammonia is recognized to be central in the pathogenesis of a brain condition known as hepatic encephalopathy, which arises from various liver diseases and leads to a build up ammonia in the blood (hyperammonemia). More than 40\\% of people with cirrhosis develop hepatic encephalopathy. Part of the neurotoxicity of ammonia arises from the fact that it easily crosses the blood-brain barrier and is absorbed and metabolized by the astrocytes, a population of cells in the brain that constitutes 30\\% of the cerebral cortex. Astrocytes use ammonia when synthesizing glutamine from glutamate. The increased levels of glutamine lead to an increase in osmotic pressure in the astrocytes, which become swollen. There is increased activity of the inhibitory gamma-aminobutyric acid (GABA) system, and the energy supply to other brain cells is decreased. This can be thought of as an example of brain edema. The source of the ammonia leading to hepatic encaphlopahy is not entirely clear. The gut produces ammonia, which is metabolized in the liver, and almost all organ systems are involved in ammonia metabolism. Colonic bacteria produce ammonia by splitting urea and other amino acids, however this does not fully explain hyperammonemia and hepatic encephalopathy. The alternative explanation is that hyperammonemia is the result of intestinal breakdown of amino acids, especially glutamine. The intestines have significant glutaminase activity, predominantly located in the enterocytes. On the other hand, intestinal tissues only have a little glutamine synthetase activity, making it a major glutamine-consuming organ. In addition to the intestine, the kidney is an important source of blood ammonia in patients with liver disease. Ammonia is also taken up by the muscle and brain in hepatic coma, and there is confirmation that ammonia is metabolized in muscle. Excessive formation of ammonia in the brains of Alzheimers disease patients has also been demonstrated, and it has been shown that some Alzheimers disease patients exhibit elevated blood ammonia concentrations. Ammonia is the most important natural modulator of lysosomal protein processing. Indeed, there is strong evidence for the involvement of aberrant lysosomal processing of beta-amyloid precursor protein (beta-APP) in the formation of amyloid deposits. Inflammatory processes and activation of microglia are widely believed to be implicated in the pathology of Alzheimers disease. Ammonia is able to affect the characteristic functions of microglia, such as endocytosis, and cytokine production. Based on these facts, an ammonia-based hypothesis for Alzheimers disease has been suggested (PMID: 17006913, 16167195, 15377862, 15369278). Chronically high levels of ammonia in the blood are associated with nearly twenty different inborn errors of metabolism including: 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, 3-methyl-crotonylglycinuria, argininemia, argininosuccinic aciduria, beta-ketothiolase deficiency, biotinidase deficiency, carbamoyl phosphate synthetase... Ammonia is a colourless gas with a characteristic pungent odour. Ammonia contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizers. Ammonia, either directly or indirectly, is also a building block for the synthesis of many pharmaceuticals. Although in wide use, ammonia is both caustic and hazardous. Ammonia is found in many foods, some of which are spinach, common beet, ucuhuba, and oriental wheat.

   

(E)-1-Cinnamoylpyrrolidine

(2Z)-3-phenyl-1-(pyrrolidin-1-yl)prop-2-en-1-one

C13H15NO (201.115358)


(E)-1-Cinnamoylpyrrolidine is found in beverages. (E)-1-Cinnamoylpyrrolidine is an alkaloid from the roots of kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Alkaloid from the roots of kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). (E)-1-Cinnamoylpyrrolidine is found in beverages.

   

1,3-Dithiane

1,3 Dithiocyclohexane

C4H8S2 (120.0067408)


Constituent of garlic and other Allium subspecies 1,3-Dithiane is found in soft-necked garlic and onion-family vegetables. 1,3-Dithiane is found in onion-family vegetables. 1,3-Dithiane is a constituent of garlic and other Allium species 1,3-Dithiane is a protected formaldehyde anion equivalent that could serve as a useful labeled synthon[1]. 1,3-Dithiane is also a sulfur-containing Maillard reaction products (MRPs) found in boiled beef extracts. 1,3-Dithiane shows a potent direct-acting mutagenicity toward S. typhimurium TA98 and TA100[2]. 1,3-Dithiane is a protected formaldehyde anion equivalent that could serve as a useful labeled synthon[1]. 1,3-Dithiane is also a sulfur-containing Maillard reaction products (MRPs) found in boiled beef extracts. 1,3-Dithiane shows a potent direct-acting mutagenicity toward S. typhimurium TA98 and TA100[2].

   

L-Cyclo(alanylglycyl)

3-Methyl-(S)-2,5-piperazinedione

C5H8N2O2 (128.0585748)


L-Cyclo(alanylglycyl) is found in cocoa and cocoa products. L-Cyclo(alanylglycyl) is present in roasted cocoa bean Cyclo(Ala-Gly), a metabolite of a mangrove endophytic fungus, Penicillium thomi, exhibits cytotoxicity against A549, HepG2 and HT29 cells. The IC50 values range from 9.5 to 18.1 μM[1].

   

1,8-Heptadecadiene-4,6-diyne-3,10-diol

(8Z)-heptadeca-1,8-dien-4,6-diyne-3,10-diol

C17H24O2 (260.17762039999997)


1,8-Heptadecadiene-4,6-diyne-3,10-diol is found in tea. 1,8-Heptadecadiene-4,6-diyne-3,10-diol is isolated from Panax quinquefolium (American ginseng). Isolated from Panax quinquefolium (American ginseng). 1,8-Heptadecadiene-4,6-diyne-3,10-diol is found in tea.

   

4-Methylbiphenyl

1-Methyl-4-phenylbenzene

C13H12 (168.0938952)


4-Methylbiphenyl is found in cocoa and cocoa products. 4-Methylbiphenyl is present in cocoa. 4-Methylbiphenyl is a flavouring ingredien Present in cocoa. Flavouring ingredient. 4-Methylbiphenyl is found in cocoa and cocoa products. 4-Methylbiphenyl is an endogenous metabolite.

   

4-Hydroxybenzyl isothiocyanate rhamnoside

2-[4-(isothiocyanatomethyl)phenoxy]-6-methyloxane-3,4,5-triol

C14H17NO5S (311.08273920000005)


4-Hydroxybenzyl isothiocyanate rhamnoside is found in herbs and spices. 4-Hydroxybenzyl isothiocyanate rhamnoside is a constituent of seeds and other parts of Moringa oleifera (horseradish tree), Moringa peregrina and Moringa stenopetala. Constituent of seeds and other parts of Moringa oleifera (horseradish tree), Moringa peregrina and Moringa stenopetala. 4-Hydroxybenzyl isothiocyanate rhamnoside is found in herbs and spices. Moringin is a potent and selective TRPA1 ion channel natural agonist with an EC50 of 3.14 μM. Moringin does not activate or activates very weakly the vanilloids somatosensory channels TRPV1, TRPV2, TRPV3 and TRPV4, and the melastatin cooling receptor TRPM8. Moringin has hypoglycemic, antimicrobial, anti-inflammatory, anticancer and neuroprotection activities[1][2].

   

1beta-Hydroxyalantolactone

[3aR-(3aalpha,5beta,8beta,8abeta,9aalpha)]-3a,5,6,7,8,8a,9,9a-Octahydro-8-hydroxy-5,8a-dimethyl-3-methylenenaphtho[2,3-b]furan-2(3H)-one

C15H20O3 (248.14123700000002)


1beta-Hydroxyalantolactone is found in herbs and spices. 1beta-Hydroxyalantolactone is a constituent of Inula helenium (elecampane) Constituent of Inula helenium (elecampane). 1beta-Hydroxyalantolactone is found in herbs and spices. 1beta-Hydroxyalantolactone modulate many processes that influence inflammatory reactions[1]. 1beta-Hydroxyalantolactone modulate many processes that influence inflammatory reactions[1].

   

3-Hexanone

Ethyl N-propyl ketone

C6H12O (100.0888102)


3-Hexanone, also known as 3-oxohexane or hexan-3-one, belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. 3-Hexanone is a very hydrophobic molecule, practically insoluble in water and relatively neutral. 3-Hexanone is an ether and grape tasting compound. Outside of the human body, 3-Hexanone has been detected, but not quantified in, several different foods, such as pepper (capsicum), oregon yampahs, cinnamons, cloudberries, and cardamoms. 3-Hexanone, with regard to humans, has been found to be associated with several diseases such as nonalcoholic fatty liver disease, pervasive developmental disorder not otherwise specified, autism, and perillyl alcohol administration for cancer treatment. 3-hexanone has also been linked to the inborn metabolic disorder celiac disease.

   

4-Hexen-3-one

4-Hexen-3-one, predominantly trans

C6H10O (98.07316100000001)


4-Hexen-3-one (CAS: 2497-21-4), also known as 2-hexen-4-one or ethyl 1-propenyl ketone, belongs to the class of organic compounds known as enones. Enones are compounds containing the enone functional group, with the structure RC(=O)CR. 4-Hexen-3-one is an extremely weak basic (essentially neutral) compound (based on its pKa). 4-Hexen-3-one is an ethereal, green, and metallic tasting compound. Outside of the human body, 4-hexen-3-one has been detected, but not quantified in, several different foods, such as pepper (C. baccatum), tea leaf willows, turmerics, sweet oranges, and other soy products. This could make 4-hexen-3-one a potential biomarker for the consumption of these foods. 4-Hexen-3-one is a flavouring ingredient. Flavouring ingredient. 4-Hexen-3-one is found in many foods, some of which are prickly pear, canola, irish moss, and annual wild rice.

   

Methyl cyclohexanecarboxylate

Methyl ester OF cyclohexanecarboxylic acid

C8H14O2 (142.09937440000002)


Methyl cyclohexanecarboxylate is a flavouring ingredien Flavouring ingredient Methyl cyclohexanecarboxylate is an endogenous metabolite.

   

8-Epidiosbulbin E acetate

8-(Furan-3-yl)-10-methyl-6,15-dioxo-7,14-dioxatetracyclo[11.2.1.0²,¹¹.0⁵,¹⁰]hexadecan-3-yl acetic acid

C21H24O7 (388.1521954)


8-Epidiosbulbin E acetate is found in root vegetables. 8-Epidiosbulbin E acetate is isolated from Dioscorea bulbifera (air potato Isolated from Dioscorea bulbifera (air potato). 8-Epidiosbulbin E acetate is found in root vegetables. 8-Epidiosbulbin E acetate, a furanoid, is abundant in Dioscorea bulbifera L.. 8-Epidiosbulbin E acetate exhibits broad-spectrum plasmid-curing activity against multidrug-resistant (MDR) bacteria. 8-Epidiosbulbin E acetate induces liver injury in mice[1][2]. 8-Epidiosbulbin E acetate, a furanoid, is abundant in Dioscorea bulbifera L.. 8-Epidiosbulbin E acetate exhibits broad-spectrum plasmid-curing activity against multidrug-resistant (MDR) bacteria. 8-Epidiosbulbin E acetate induces liver injury in mice[1][2].

   

Dimethyl fumarate

trans-1,2-Ethylenedicarboxylic acid dimethyl ester

C6H8O4 (144.0422568)


Dimethyl fumarate is a fungal growth inhibitor for tomato juice Dimethyl fumarate is an ester and an , -unsaturated electrophilic compound, undergoing reactions typical to them. It is also a diene acceptor in the ordinary Diels-Alder reaction, where the reactivity of its vinylidenic bond is enchanced by the two electron-withdrawing ester groups. Due to the geometry of the starting ester, the Diels-Alder product will have a trans configuration. Dimethyl fumarate is used to treat psoriasis. It is a lipophilic, highly mobile molecule in human tissue. However, as an , -unsaturated ester, dimethyl fumarate reacts rapidly with the detoxifying agent glutathione by Michael addition. When administered orally, it does not survive long enough to be absorbed into blood L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials C78284 - Agent Affecting Integumentary System > C29708 - Anti-psoriatic Agent D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent Fungal growth inhibitor for tomato juice D011838 - Radiation-Sensitizing Agents D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dimethyl fumarate (DMF) is an orally active and brain-penetrant Nrf2 activator and induces upregulation of antioxidant gene expression. Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway, and also induces cell autophagy. Dimethyl fumarate can be used for multiple sclerosis research[1][2].

   

Cedryl acetate

2,6,6,8-Tetramethyltricyclo[5.3.1.0¹,⁵]undecan-8-yl acetic acid

C17H28O2 (264.2089188)


Cedryl acetate is a flavouring ingredien Flavouring ingredient Cedryl acetate is a tricyclic sesquiterpene isolated from the plant Cunninghamia lanceolata. Cedryl acetate shows α-glucosidase inhibitory activity[1]. Cedryl acetate is a tricyclic sesquiterpene isolated from the plant Cunninghamia lanceolata. Cedryl acetate shows α-glucosidase inhibitory activity[1].

   

8-Hydroxy-deoxyguanosine

2-amino-8-hydroxy-9-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-1H-purin-6-one

C10H13N5O5 (283.09166480000005)


8-hydroxy-deoxyguanosine (8-OHdG) is a sensitive marker of the DNA damage due to hydroxyl radical attack at the C8 of guanine. This damage, if left unrepaired, has been proposed to contribute to mutagenicity and cancer promotion. 8-OHdG has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). 8-hydroxy-deoxyguanosine (8-OHdG) is a sensitive marker of the DNA damage due to hydroxyl radical attack at the C8 of guanine. This damage, if left unrepaired, has been proposed to contribute to mutagenicity and cancer promotion. [HMDB] 8-Hydroxy-2'-deoxyguanosine is a critical biomarker of oxidative stress and carcinogenesis. 8-Hydroxy-2'-deoxyguanosine is a critical biomarker of oxidative stress and carcinogenesis.

   

CE(22:0)

(2R,5S,15R)-2,15-Dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-yl docosanoic acid

C49H88O2 (708.6783948)


CE(22:0) is a cholesterol fatty acid ester or simply a cholesterol ester (CE). Cholesterol esters are cholesterol molecules with long-chain fatty acids linked to the hydroxyl group. They are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesterol esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of C18 fatty acids. Cholesterol esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesterol esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesterol esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesterol esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesterol esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesterol esters from CoA esters of fatty acids and cholesterol. Cholesterol ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells. Cholesteryl behenate is a cholesterol ester associated with the neutral core of low density lipoprotein Receptor-LDL complexes are taken up by lysosomes and hydrolyzed to release cholesterol from the esters.

   

PE(14:0/14:0)

Tetradecanoic acid, (1R)-1-((((2-aminoethoxy)hydroxyphosphinyl)oxy)methyl)-1,2-ethanediyl ester

C33H66NO8P (635.4525806)


PE(14:0/14:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:0/14:0), in particular, consists of two chains of myristic acid at the C-1 and C-2 positions. The myristic acid moieties are derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(14:0/14:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PE(14:0/14:0), in particular, consists of two tetradecanoyl chains at positions C-1 and C-2. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl ditetradecanoate is an endogenous metabolite.

   

Lornoxicam

(3E)-6-chloro-3-{hydroxy[(pyridin-2-yl)amino]methylidene}-2-methyl-2H,3H,4H-1λ⁶-thieno[2,3-e][1,2]thiazine-1,1,4-trione

C13H10ClN3O4S2 (370.980125)


Lornoxicam (chlortenoxicam) is a new nonsteroidal anti-inflammatory drug (NSAID) of the oxicam class with analgesic, anti-inflammatory and antipyretic properties. Lornoxicam differs from other oxicam compounds in its potent inhibition of prostaglandin biosynthesis, a property that explains the particularly pronounced efficacy of the drug. Lornoxicam is approved for use in Japan. Lornoxicam (Chlortenoxicam) is a highly active COX-1 and COX-2 inhibitor with IC50 of 5 nM and 8 nM respectively. It is a new non-steroidal anti-inflammatory compound.

   

5-Methyl-2(3H)-furanone

3-PENTENOIC ACID,4-HYDROXY,LACTONE ALPHA-ANGELICA-LACTONE

C5H6O2 (98.0367776)


5-Methyl-2(3H)-furanone is a flavouring for baked goods, milk and meat produt Flavouring for baked goods, milk and meat produts α-Angelica lactone is a naturally occurring anticarcinogen and an vinylogous nucleophile. α-Angelica lactone can give the chiral δ-amino γ,γ-disubstituted butenolide carbonyl derivatives and exhibitselectrophilic trapping at the γ-carbon. α-Angelica lactone exerts strong chemoprotective effects by selective enhancement of glutathione-S-thansferase (GST) and UDP-glucononosyltransferase (UGT) detoxification enzymes[1][2][3][4]. α-Angelica lactone is a naturally occurring anticarcinogen and an vinylogous nucleophile. α-Angelica lactone can give the chiral δ-amino γ,γ-disubstituted butenolide carbonyl derivatives and exhibitselectrophilic trapping at the γ-carbon. α-Angelica lactone exerts strong chemoprotective effects by selective enhancement of glutathione-S-thansferase (GST) and UDP-glucononosyltransferase (UGT) detoxification enzymes[1][2][3][4].

   

Benzyl ethyl ether

(Ethoxymethyl)benzene, 9ci

C9H12O (136.08881019999998)


Benzyl ethyl ether is found in cocoa and cocoa products. Benzyl ethyl ether is present in cocoa. Benzyl ethyl ether is a flavouring agent Present in cocoa. Flavouring agent. Benzyl ethyl ether is found in cocoa and cocoa products. (Ethoxymethyl)benzene is an endogenous metabolite.

   

2-Methyl-4,5-benzoxazole

2-Methyl-4,5-benzoxazole

C8H7NO (133.0527612)


2-Methyl-4,5-benzoxazole is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") 2-Methylbenzoxazole is an endogenous metabolite. 2-Methylbenzoxazole is an endogenous metabolite.

   

3-Hydroxy-4-aminopyridine

4-imino-1,4-dihydropyridin-3-ol

C5H6N2O (110.0480106)


3-Hydroxy-4-aminopyridine is a metabolite of dalfampridine. 4-Aminopyridine (fampridine, USAN dalfampridine) is an organic compound with the chemical formula C5H4N–NH2. The molecule is one of the three isomeric amines of pyridine. It is used primarily as a research tool, in characterizing subtypes of potassium channel, and has also been used to manage some of the symptoms of multiple sclerosis, and is indicated for symptomatic improvement of walking in adults with several variations of the disease. (Wikipedia) 3-Hydroxy-4-aminopyridine is an endogenous metabolite.

   

D-Xylonate

(2R,3S,4R)-2,3,4,5-tetrahydroxypentanoate

C5H9O6- (165.0399114)


   

1,2-Dinitroglycerin

1,2,3-Propanetriol, 1,2-dinitric acid

C3H6N2O7 (182.0175006)


D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

1H-Imidazol-2-amine

2,3-dihydro-1H-imidazol-2-imine

C3H5N3 (83.04834500000001)


2-Aminoimidazole is a potent antibiofilm agent that can be used as an adjuvant to antimicrobial. 2-aminoimidazoles disrupts the ability of bacteria to protect themselves by inhibiting biofilm formation and genetically-encoded antibiotic resistance traits. 2-Aminoimidazole is also a weak noncompetitive inhibitor of human arginase I with a Ki of 3.6 mM[1][2][3]. 2-Aminoimidazole is a potent antibiofilm agent that can be used as an adjuvant to antimicrobial. 2-aminoimidazoles disrupts the ability of bacteria to protect themselves by inhibiting biofilm formation and genetically-encoded antibiotic resistance traits. 2-Aminoimidazole is also a weak noncompetitive inhibitor of human arginase I with a Ki of 3.6 mM[1][2][3].

   

Ileu-anp

Bovine kunitz pancreatic trypsin inhibitor

C284H432N84O79S7 (6507.041232199999)


B - Blood and blood forming organs > B02 - Antihemorrhagics > B02A - Antifibrinolytics > B02AB - Proteinase inhibitors D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics Aprotinin is a bovine pancreatic trypsin inhibitor (BPTI) inhibitor which inhibits trypsin and chymotrypsin with Kis of 0.06 pM and 9 nM, respectively. Aprotinin is a bovine pancreatic trypsin inhibitor (BPTI) inhibitor which inhibits trypsin and chymotrypsin with Kis of 0.06 pM and 9 nM, respectively.

   

Proxyphylline

7-(2-hydroxypropyl)-1,3-dimethyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione

C10H14N4O3 (238.1065854)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor Proxyphylline is a methylxanthine derivative used as a cardiac stimulant, vasodilator and bronchodilator[1]. Proxyphylline is a methylxanthine derivative used as a cardiac stimulant, vasodilator and bronchodilator[1].

   

Loliolide

(6S,7aR)-6-hydroxy-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-2-one

C11H16O3 (196.1099386)


Loliolide, also known as (3s5r)-loliolide, is a member of the class of compounds known as benzofurans. Benzofurans are organic compounds containing a benzene ring fused to a furan. Furan is a five-membered aromatic ring with four carbon atoms and one oxygen atom. Loliolide is soluble (in water) and an extremely weak acidic compound (based on its pKa). Loliolide can be found in sunflower, tea, and wakame, which makes loliolide a potential biomarker for the consumption of these food products.

   

Thiamine hydrochloride

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium hydrochloride chloride

C12H18Cl2N4OS (336.05783180000003)


Nutrient supplement; flavouring ingredient with a bitter taste. Thiamine hydrochloride is found in many foods, some of which are sesame, cinnamon, garden rhubarb, and nougat. Thiamine hydrochloride (Thiamine chloride hydrochloride) is an essential micronutrient needed as a cofactor for many central metabolic enzymes. Thiamine hydrochloride (Thiamine chloride hydrochloride) is an essential micronutrient needed as a cofactor for many central metabolic enzymes.

   

4-Isopropyl-2-methoxy-1-methylbenzene

2-methoxy-1-methyl-4-(propan-2-yl)benzene

C11H16O (164.12010859999998)


4-isopropyl-2-methoxy-1-methylbenzene, also known as O-methylcarvacrol, is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. 4-isopropyl-2-methoxy-1-methylbenzene is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 4-isopropyl-2-methoxy-1-methylbenzene is a herbal, leafy, and spicy tasting compound and can be found in a number of food items such as common oregano, pepper (spice), winter savory, and summer savory, which makes 4-isopropyl-2-methoxy-1-methylbenzene a potential biomarker for the consumption of these food products. Carvacrol methyl ether, a Carvacrol analog, can be isolated from plant volatile oil. Carvacrol methyl ether exhibits antibacterial activity[1][2]. Carvacrol methyl ether, a Carvacrol analog, can be isolated from plant volatile oil. Carvacrol methyl ether exhibits antibacterial activity[1][2].

   

3-pentanol

1-Ethyl-1-propanol

C5H12O (88.0888102)


3-Pentanol, also known as (C2H5)2choh or 3-pentyl alcohol, belongs to the class of organic compounds known as secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R, R=alkyl, aryl). 3-Pentanol is an extremely weak basic (essentially neutral) compound (based on its pKa). 3-Pentanol is a sweet, fruit, and herbal tasting compound. 3-Pentanol has been detected, but not quantified in, prickly pears. This could make 3-pentanol a potential biomarker for the consumption of these foods. 3-Pentanol is one of eight isomers of amyl alcohol. An amyl alcohol is any of 8 alcohols with the formula C5H12O. A mixture of amyl alcohols (also called amyl alcohol) can be obtained from fusel alcohol. Amyl alcohol is used as a solvent and in esterfication, by which is produced amyl acetate and other important products. The name amyl alcohol without further specification applies to the normal (straight-chain) form, 1-pentanol. Flavouring compound [Flavornet] 3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. 3-pentanol elicits plant immunity against microbial pathogens and an insect pest in crop plants[1]. 3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. 3-pentanol elicits plant immunity against microbial pathogens and an insect pest in crop plants[1].

   

formate

Formic acid, cromium (+3), sodium (4:1:1) salt

CHO2- (44.997654600000004)


Formate, also known as formic acid or methanoic acid, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Formate is soluble (in water) and a weakly acidic compound (based on its pKa). Formate can be found in a number of food items such as mammee apple, chicory roots, malabar spinach, and grapefruit, which makes formate a potential biomarker for the consumption of these food products. Formate (IUPAC name: methanoate) is the anion derived from formic acid. Its formula is represented in various equivalent ways: CHOO‚àí or HCOO‚àí or HCO2‚àí. It is the product of deprotonation of formic acid. It is the simplest carboxylate anion. A formate (compound) is a salt or ester of formic acid . Formate, also known as formic acid or methanoic acid, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Formate is soluble (in water) and a weakly acidic compound (based on its pKa). Formate can be found in a number of food items such as mammee apple, chicory roots, malabar spinach, and grapefruit, which makes formate a potential biomarker for the consumption of these food products. Formate (IUPAC name: methanoate) is the anion derived from formic acid. Its formula is represented in various equivalent ways: CHOO− or HCOO− or HCO2−. It is the product of deprotonation of formic acid. It is the simplest carboxylate anion. A formate (compound) is a salt or ester of formic acid .

   

Perillene

FURAN, 3-(4-METHYL-3-PENTEN-1-YL)-

C10H14O (150.1044594)


Perillene is a monoterpenoid that is furan in which the hydrogen at position 3 is replaced by a 4-methylpent-3-en-1-yl group. A defensive allomone of thrips that has a flowery, citrus-like flavour. It has a role as a semiochemical, a metabolite and a fragrance. It is a member of furans and a monoterpenoid. Perillene is a natural product found in Curcuma amada, Origanum sipyleum, and other organisms with data available. A monoterpenoid that is furan in which the hydrogen at position 3 is replaced by a 4-methylpent-3-en-1-yl group. A defensive allomone of thrips that has a flowery, citrus-like flavour. Perillene, also known as 3-(4-methyl-3-pentenyl)furan, is a member of the class of compounds known as heteroaromatic compounds. Heteroaromatic compounds are compounds containing an aromatic ring where a carbon atom is linked to an hetero atom. Perillene is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Perillene is a woody tasting compound found in common oregano and ginger, which makes perillene a potential biomarker for the consumption of these food products. Perillene is a natural monoterpene that consists of a furan ring with a six-carbon homoprenyl side chain. Perillene is a component of the essential oil obtained by extraction of the leaves of Perilla frutescens. Perillene has also been obtained by steam distillation of the leaves of Perilla frutescens. Perillene has been found to elicit distinct electrophysiological responses in the antennae of the apple blossom weevil. It has been suggested that perillene is one several terpene hydrocarbons in the emanation bouquet of apple tree buds which may be used by adult weevils as chemical cues to discrimination during host-searching behavior .

   

56W6M8HQ2G

1(3H)-Isobenzofuranone, 3-butylidene-4,5,6,7-tetrahydro-6,7-dihydroxy-, (3Z,6R,7S)-rel-

C12H16O4 (224.10485359999998)


Senkyunolide h is a member of 2-benzofurans. (3Z,6R,7S)-3-Butylidene-6,7-dihydroxy-4,5,6,7-tetrahydro-2-benzofuran-1-one is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. Senkyunolide H is a natural compound isolated from Ligusticum chuanxiong Hort[1]. Senkyunolide H is a natural compound isolated from Ligusticum chuanxiong Hort[1].

   

12PJ07292V

1(3H)-ISOBENZOFURANONE, 3-BUTYLIDENE-4,5,6,7-TETRAHYDRO-6,7-DIHYDROXY-, (3Z,6.ALPHA.,7.BETA.)-

C12H16O4 (224.10485359999998)


1(3H)-Isobenzofuranone, 3-butylidene-4,5,6,7-tetrahydro-6,7-dihydroxy-, (3Z,6R,7R)-rel- is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. See also: Angelica sinensis root oil (part of). Senkyunolide I, isolated from Ligusticum chuanxiong Hort, is an anti-migraine compound. Senkyunolide I protects rat brain against focal cerebral ischemia-reperfusion injury by up-regulating p-Erk1/2, Nrf2/HO-1 and inhibiting caspase 3[1][2]. Senkyunolide I, isolated from Ligusticum chuanxiong Hort, is an anti-migraine compound. Senkyunolide I protects rat brain against focal cerebral ischemia-reperfusion injury by up-regulating p-Erk1/2, Nrf2/HO-1 and inhibiting caspase 3[1][2].

   

ObtucarbamateA

(3-methoxycarbonylamino-4-methyl-phenyl)-carbamic acid methyl ester

C11H14N2O4 (238.0953524)


Obtucarbamate A isolated from Disporum cantoniense has antitussive activity[1].

   

1,7-diphenyl-5-hydroxy-6-hepten-3-one

(5R)-trans-1,7-diphenyl-5-hydroxy-6-hepten-3-one

C19H20O2 (280.146322)


(5R,6E)-5-Hydroxy-1,7-diphenyl-6-hepten-3-one is the methylene chloride extract of Alpinia nutans, has antioxidant activity[1]. (5R,6E)-5-Hydroxy-1,7-diphenyl-6-hepten-3-one is the methylene chloride extract of Alpinia nutans, has antioxidant activity[1].

   

Agarotetrol

(5S)-5,6,7,8-Tetrahydro-5alpha,6beta,7beta,8alpha-tetrahydroxy-2-(2-phenylethyl)-4H-1-benzopyran-4-one

C17H18O6 (318.11033280000004)


Agarotetrol is a pyranone. Agarotetrol is a natural product found in Aquilaria malaccensis with data available. Agarotetrol is a chromone derivative isolated from Agarwood. Agarotetrol is a chromone derivative isolated from Agarwood.

   

29MRT0H4CE

1H-5,10c-Ethanonaphtho(1,2-c:7,8-c)difuran-3,10-dione, 1,8-dibutylidene-5,5a,6,7,8,10b-hexahydro-, (1Z,5S,5aS,8Z,10bS,10cs)-

C24H28O4 (380.19874880000003)


(Z)-6,6,7,3a-Diligustilide is a butenolide. It has a role as a metabolite. Levistilide A is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. See also: Angelica sinensis root oil (part of). A natural product found in Ligusticum porteri. Levistolide A (LA), a natural compound isolated from the traditional Chinese herb Ligusticum chuanxiong Hort, is used for treating cancer. Levistolide A can induce apoptosis via ROS-mediated ER stress pathway[1]. Levistolide A (LA), a natural compound isolated from the traditional Chinese herb Ligusticum chuanxiong Hort, is used for treating cancer. Levistolide A can induce apoptosis via ROS-mediated ER stress pathway[1].

   

Ankaflavin

(3S,3aR,9aR)-9a-Methyl-3-octanoyl-6-((E)-prop-1-en-1-yl)-3a,4,8,9a-tetrahydro-2H-furo[3,2-g]isochromene-2,9(3H)-dione

C23H30O5 (386.209313)


Ankaflavin is a natural product found in Monascus purpureus and Monascus pilosus with data available.

   

Cimifugin 7-glucoside

(S)-2-(2-hydroxypropan-2-yl)-4-methoxy-7-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)-2H-furo[3,2-g]chromen-5(3H)-one

C22H28O11 (468.16315380000003)


PRIM-O-GLUCOSYLCIMIFUGIN is an organic heterotricyclic compound and an oxacycle. Prim-O-glucosylcimifugin is a natural product found in Ostericum grosseserratum, Saposhnikovia divaricata, and other organisms with data available. Prim-O-glucosylcimifugin exerts anti-inflammatory effects through the inhibition of iNOS and COX-2 expression by through regulating JAK2/STAT3 signaling. Prim-O-glucosylcimifugin exerts anti-inflammatory effects through the inhibition of iNOS and COX-2 expression by through regulating JAK2/STAT3 signaling.

   

Indigo_dye

InChI=1/C16H10N2O2/c19-15-9-5-1-3-7-11(9)17-13(15)14-16(20)10-6-2-4-8-12(10)18-14/h1-8,17-18H/b14-13+

C16H10N2O2 (262.074224)


C.i. vat blue 1 is a dark blue powder with coppery luster. Occurs in isomeric forms (cis and trans). In solid state it is in the trans form. (NTP, 1992) Indigo dye is a member of hydroxyindoles. Indigo is a natural product found in Isatis tinctoria and Couroupita guianensis with data available. Indolesulfonic acid used as a dye in renal function testing for the detection of nitrates and chlorates, and in the testing of milk. D004396 - Coloring Agents

   

Batyl

InChI=1/C21H44O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-24-20-21(23)19-22/h21-23H,2-20H2,1H3

C21H44O3 (344.3290274)


Batilol is an alkylglycerol that is glycerol in which one of the primary hydroxy groups has been converted into the corresponding octadecyl ether. It is used in cosmetics as a stabilising ingredient and skin-conditioning agent. Batyl alcohol is a natural product found in Lobophytum, Sarcophyton crassocaule, and other organisms with data available. C26170 - Protective Agent > C797 - Radioprotective Agent 3-(Octadecyloxy)propane-1,2-diol is an endogenous metabolite.

   

Quinidine

(S)-[(2R,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol;hydrate;hydrochloride

C20H24N2O2.HCl.H2O (378.1710102)


Quinidine hydrochloride monohydrate is an anti-arrythmic agent which is also a potent blocker of K+ channel with an IC50 of 19.9 μM. Quinidine hydrochloride monohydrate is an anti-arrythmic agent which is also a potent blocker of K+ channel with an IC50 of 19.9 μM.

   

Vitamin B12

Cobinamide,dihydrogenphosphate(ester),inner salt,3-ester with(5,6-Dimethyl-1-a-d-ribofuranosyl-1H-benzimidazole-kn3),ion(1+)(9ci)

C63H88CoN14O14P (1354.5673717999998)


Cyanocobalamin (commonly known as Vitamin B12) is a highly complex, essential vitamin, owing its name to the fact that it contains the mineral, cobalt. This vitamin is produced naturally by bacteria, and is necessary for DNA synthesis and cellular energy production. Vitamin B12 has many forms, including the cyano-, methyl-, deoxyadenosyl- and hydroxy-cobalamin forms. The cyano form, is the most widely used form in supplements and prescription drugs,. Several pharmaceutical forms of cyanocobalamin have been developed, including the tablet, injection, and nasal spray forms,,. This drug was initially approved by the FDA in 1942. Cyanocobalamin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). vitamin B12 is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cyanocobalamin is a cobalt-containing coordination compound generated by intestinal microbes, and a natural water-soluble vitamin of the B-complex family that must combine with Intrinsic Factor for absorption by the intestine. Cyanocobalamin is necessary for hematopoiesis, neural metabolism, DNA and RNA production, and carbohydrate, fat, and protein metabolism. B12 improves iron functions in the metabolic cycle and assists folic acid in choline synthesis. B12 metabolism is interconnected with that of folic acid. Vitamin B12 deficiency causes pernicious anemia, megaloblastic anemia, and neurologic lesions. Cyanocobalamin is a metabolite found in or produced by Saccharomyces cerevisiae. A cobalt-containing coordination compound produced by intestinal micro-organisms and found also in soil and water. Higher plants do not concentrate vitamin B 12 from the soil and so are a poor source of the substance as compared with animal tissues. INTRINSIC FACTOR is important for the assimilation of vitamin B 12. B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BA - Vitamin b12 (cyanocobalamin and analogues) D018977 - Micronutrients > D014815 - Vitamins Vitamin B12 is a vitamin. Vitamin B12 plays a key role in the normal functioning of the brain and nervous system, and for the formation of blood[1][2]. Vitamin B12 is a vitamin. Vitamin B12 plays a key role in the normal functioning of the brain and nervous system, and for the formation of blood[1][2].

   

Anethole_trithione

ANETHOLTRITHION, Anethole-trithione (Anetholtrithion)

C10H8OS3 (239.9737278)


Anetholtrithion is a member of methoxybenzenes. Anethole trithione (ATT) appears to have a broad range of unique functions, from increasing salivary secretion to help treat xerostomia, to demonstrating an ability to inhibit carcinogenesis by increasing the activity of electrophile detoxification enzymes, and even being used as an adjunctive therapy for cholecystitis, gallstone, indigestion, and acute/chronic hepatitis and is marketed in certain countries like France, Germany, and China. Unfortunately, many of the specific mechanisms of action to these activities have yet to be formally elucidated, which means that while studies are ongoing, ATT itself is not necessarily formally indicated for many of these aforementioned functions at this time and is only used in limited regions around the world. Anetholtrithion is a substituted dithiolthione and analog of chemopreventive agent oltipraz. Anethole trithione is a bile secretion-stimulating drug that restores salivation and relieves the discomfort of dry mouth in chemotherapy-induced xerostomia. In addition, this agent has exhibited chemopreventive properties. The mechanism of action for the chemopreventive and xerostomia properties have not been fully elucidated. Choleretic used to allay dry mouth and constipation due to tranquilizers. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer Anethole trithione, a sulfur heterocyclic choleretic, is a bile secretion-stimulating agent. Anethole trithione enhances salivary secretion and increases mAChRs, and can be used for dry mouth research[1][2]. Anethole trithione, a sulfur heterocyclic choleretic, is a bile secretion-stimulating agent. Anethole trithione enhances salivary secretion and increases mAChRs, and can be used for dry mouth research[1][2].

   

Dimethyl lithospermate

Dimethyl lithospermate

C29H26O12 (566.1424196)


   

vulpinic acid

vulpinic acid

C19H14O5 (322.0841194)


Vulpinic acid, a lichen metabolite, decreases H2O2-induced ROS production, oxidative stress and oxidative stress-related damages in human umbilical vein endothelial cells (HUVEC). Vulpinic acid is active against staphylococci, enterococci, and anaerobic bacteria.Vulpinic acid has?the?potential?for?atherosclerosis?research[1][2].

   

Sequoyitol

(1R,2S,3r,4R,5S,6r)-6-methoxycyclohexane-1,2,3,4,5-pentaol

C7H14O6 (194.0790344)


1D-5-O-methyl-myo-inositol is a member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3r,4R,5S,6r-stereoisomer). It has a role as a plant metabolite. Sequoyitol is a natural product found in Podocarpus sellowii, Aristolochia gigantea, and other organisms with data available. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1]. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1].

   

Isomartynoside

[(2R,3R,4S,5R,6R)-3,5-dihydroxy-6-[2-(3-hydroxy-4-methoxyphenyl)ethoxy]-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]methyl (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C31H40O15 (652.236709)


Isomartynoside is a natural product found in Prostanthera melissifolia, Plantago asiatica, and other organisms with data available.

   

Henryoside

[2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]methyl 2-hydroxy-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybenzoate

C26H32O15 (584.1741122)


Henryoside is a natural product found in Prunus grayana, Alangium chinense, and other organisms with data available.

   

Kaerophyllin

Chaerophyllin (6CI); (3E,4R)-4-(1,3-Benzodioxol-5-ylmethyl)-3-[(3,4-dimethoxyphenyl)methylene]dihydro-2(3H)-furanone

C21H20O6 (368.125982)


Kaerophyllin is a natural product found in Montrouziera sphaeroidea, Bupleurum salicifolium, and other organisms with data available.

   

Laurycolactone A

2,5-Methano-2H-indeno(4,5-d)oxepin-4,6,10(1H)-trione, 5,5a,7,7a,10a,10b-hexahydro-1-hydroxy-5a,8,10a,11-tetramethyl-, (1R- (1alpha,2alpha,5alpha,5aalpha,7abeta,10aalpha,10bbeta,11R*))-

C18H22O5 (318.1467162)


Laurycolactone A is a natural product found in Eurycoma longifolia with data available.

   

25R-Spirost-4-ene-3,12-dione

(-)-25R-Spirost-4-ene-3,12-dione

C27H38O4 (426.2769948)


   

Furomollugin

methyl 5-hydroxybenzo[g][1]benzofuran-4-carboxylate

C14H10O4 (242.057906)


Furomollugin is a natural product found in Galium mollugo, Rubia cordifolia, and Rubia oncotricha with data available.

   

5,3-Dihydroxy-6,7,4-trimethoxyflavanone

5,3-Dihydroxy-6,7,4-trimethoxyflavanone

C18H18O7 (346.10524780000003)


   

Rabdosin B

((1R,2S,4aS,5S,6R,7S,9aS)-2-acetoxy-5-hydroxy-5,5-dimethyl-8-methylene-1,9-dioxohexahydro-1H,3H-spiro[cyclohexane-1,4-[7,9a]methanocyclohepta[c]pyran]-6-yl)methyl acetate

C24H32O8 (448.20970719999997)


Rabdosin B is a natural product found in Isodon japonicus, Isodon longitubus, and other organisms with data available.

   

Andrographiside

(3E,4S)-3-[2-[(4aS,5R,6R,8aS)-6-hydroxy-5,8a-dimethyl-2-methylidene-5-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl]ethylidene]-4-hydroxyoxolan-2-one

C26H40O10 (512.2621340000001)


Andrographoside is a natural product found in Andrographis with data available.

   

Hirsutal

3-Heptanone, 1,7-bis(3,4-dihydroxyphenyl)-5-hydroxy-, (S)-; (5S)-1,7-Bis(3,4-dihydroxyphenyl)-5-hydroxy-3-heptanone; (5S)-Hirsutanonol

C19H22O6 (346.1416312)


Hirsutanonol is a natural product found in Alnus formosana, Alnus hirsuta, and other organisms with data available.

   

Asatone

1,5,5,7,9,9-Hexamethoxy-3,8a-di(prop-2-en-1-yl)-1,4a,5,8a-tetrahydro-1,4-ethanonaphthalene-6,10(4H)-dione

C24H32O8 (448.20970719999997)


Asatone is an active component isolated from Radix et Rhizoma Asari, with anti-inflammatory effect via activation of NF-κB and donwn regulation of p-MAPK (ERK, JNK and p38) pathways[1]. Asatone is an active component isolated from Radix et Rhizoma Asari, with anti-inflammatory effect via activation of NF-κB and donwn regulation of p-MAPK (ERK, JNK and p38) pathways[1].

   
   

Lupulone C

6-Hydroxy-2-(2-hydroxypropan-2-yl)-5,5-bis(3-methylbut-2-en-1-yl)-7-(3-methylbutanoyl)-2,3-dihydrobenzofuran-4(5H)-one

C26H38O5 (430.2719098)


Lupulone C is a natural product found in Humulus lupulus with data available.

   

Lushanrubescensin H

[(1R,1R,3S,5R,6R,9S)-3-(hydroxymethyl)-4,4-dimethyl-10-methylidene-2,11-dioxospiro[3-oxatricyclo[7.2.1.01,6]dodecane-5,2-cyclohexane]-1-yl] acetate

C22H30O6 (390.204228)


   

Albicanol

[(1S,4aS,8aS)-5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl]methanol

C15H26O (222.1983546)


(+)-albicanol is a drimane-type sesquiterpenoid orginally isolated from the liverwort Diplophyllum albicans. It exhibits fish antifeedant, antifungal and antineoplastic activities. It has a role as an antifungal agent, a plant metabolite, an antineoplastic agent, a fungal metabolite, a mammalian metabolite, an antifeedant and a marine metabolite. It is a sesquiterpenoid, a primary alcohol, a homoallylic alcohol and a carbobicyclic compound. It derives from a hydride of a drimane. Albicanol is a natural product found in Hedychium spicatum, Frullania monocera, and other organisms with data available. A drimane-type sesquiterpenoid orginally isolated from the liverwort Diplophyllum albicans. It exhibits fish antifeedant, antifungal and antineoplastic activities.

   

Onitisin

1H-Inden-1-one, 2,3-dihydro-4-hydroxy-6-(2-hydroxyethyl)-2-(hydroxymethyl)-2,5,7-trimethyl-, (-)-

C15H20O4 (264.13615200000004)


   

1-Dehydroxybaccatin IV

[(1R,2R,3R,4S,7R,9S,10S,11R,12R,15S)-2,4,9,11,12-Pentaacetyloxy-10,14,17,17-tetramethyl-6-oxatetracyclo[11.3.1.03,10.04,7]heptadec-13-en-15-yl] acetate

C32H44O13 (636.2781774)


1-Dehydroxybaccatin IV is a natural product found in Taxus wallichiana and Taxus baccata with data available.

   

Methyl behenate

Docosanoic acid methyl ester

C23H46O2 (354.34976159999997)


Methyl behenate (Methyl docosanoate) is a naturally fatty acid methyl ester isolated from the plant of Aspidopterys obcordata Lemsl[1]. Methyl behenate (Methyl docosanoate) is a naturally fatty acid methyl ester isolated from the plant of Aspidopterys obcordata Lemsl[1].

   

Benzyl isothiocyanate

phenylmethyl isothiocyanate

C8H7NS (149.0299182)


Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2]. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2].

   

7,3-Dihydroxy-5-methoxyisoflavone

7,3-dihydroxyl-5-methoxyisoflavone

C16H12O5 (284.0684702)


7,3-Dihydroxy-5-methoxyisoflavone is a natural product found in Dalbergia odorifera with data available.

   

N-Methylcorydaldine

2-Methyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-1-one

C12H15NO3 (221.105188)


N-methylcorydaldine is a quinolone. It has a role as a metabolite. N-Methylcorydaldine is a natural product found in Thalictrum fendleri, Hernandia nymphaeifolia, and other organisms with data available. A natural product found in Arcangelisia gusanlung. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.800 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.796

   

Methyl indole-3-carboxylate

Methyl indole-3-carboxylate

C10H9NO2 (175.0633254)


The methyl ester of indole-3-carboxylic acid. Methyl indole-3-carboxylate is a natural product isolated from Sorangium cellulosum strain Soce895. Methyl indole-3-carboxylate shows a weak activity against the Gram-positive Nocardia sp with a MIC value of 33.33 μg/mL[1]. Methyl indole-3-carboxylate is a natural product isolated from Sorangium cellulosum strain Soce895. Methyl indole-3-carboxylate shows a weak activity against the Gram-positive Nocardia sp with a MIC value of 33.33 μg/mL[1].

   

Melatonin

N-[2-(5-Methoxy-1H-indol-3-yl)ethyl]acetamide

C13H16N2O2 (232.1211716)


N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CH - Melatonin receptor agonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS ORIGINAL_PRECURSOR_SCAN_NO 3385; CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3387 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3387; ORIGINAL_PRECURSOR_SCAN_NO 3385 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3400; ORIGINAL_PRECURSOR_SCAN_NO 3398 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3376; ORIGINAL_PRECURSOR_SCAN_NO 3375 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3184; ORIGINAL_PRECURSOR_SCAN_NO 3183 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3391; ORIGINAL_PRECURSOR_SCAN_NO 3387 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3198; ORIGINAL_PRECURSOR_SCAN_NO 3196 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7086; ORIGINAL_PRECURSOR_SCAN_NO 7084 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7064; ORIGINAL_PRECURSOR_SCAN_NO 7062 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7062; ORIGINAL_PRECURSOR_SCAN_NO 7059 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7093; ORIGINAL_PRECURSOR_SCAN_NO 7090 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7098; ORIGINAL_PRECURSOR_SCAN_NO 7096 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7084; ORIGINAL_PRECURSOR_SCAN_NO 7082 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.685 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.686 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.679 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.682 Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5]. Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].

   

12-O-Tiglylphorbol-13-isobutyrate

[1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-13-(2-methylpropanoyloxy)-5-oxo-14-tetracyclo[8.5.0.02,6.011,13]pentadeca-3,8-dienyl] (E)-2-methylbut-2-enoate

C29H40O8 (516.2723040000001)


[1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-13-(2-methylpropanoyloxy)-5-oxo-14-tetracyclo[8.5.0.02,6.011,13]pentadeca-3,8-dienyl] (E)-2-methylbut-2-enoate is a phorbol ester.

   
   
   

Dihydromyristicin

1-methoxy-5-propyl-2,3-(methylenedioxy)benzene

C11H14O3 (194.0942894)


   

Histamine dihydrochloride

Histamine dihydrochloride

C5H11Cl2N3 (183.0329986)


L - Antineoplastic and immunomodulating agents > L03 - Immunostimulants > L03A - Immunostimulants D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Histamine dihydrochloride is an endogenous metabolite. Histamine dihydrochloride is an endogenous metabolite.

   

aristolochic acid B

Aristolochic acid II

C16H9NO6 (311.0429854)


Annotation level-1 Aristolochic acid B is one of the major components of Aristolochic acids (AA) which are natural products derived from taxa in the Aristolochiaceae. Aristolochic acid is known to be a potent mutagen and carcinogen. Aristolochic acid B showes more carcinogenic risk than Aristolochic acid A in vivo[1]. Aristolochic acid B is one of the major components of Aristolochic acids (AA) which are natural products derived from taxa in the Aristolochiaceae. Aristolochic acid is known to be a potent mutagen and carcinogen. Aristolochic acid B showes more carcinogenic risk than Aristolochic acid A in vivo[1].

   

Pyridoxamine dihydrochloride

Pyridoxamine dihydrochloride

C8H14Cl2N2O2 (240.0432284)


A hydrochloride obtained by combining pyridoxamine with two molar equivalents of hydrochloric acid. Used for treatment of diabetic nephropathy. Pyridoxylamine dihydrochloride is an advanced glycation end production (AGEs) and lipoxidation end products (ALEs) inhibitor, to protect against diabetes-induced retinal vascular lesions[1].

   

Menthone

Cyclohexanone, 5-methyl-2-(1-methylethyl)-, (2R,5S)-rel-

C10H18O (154.1357578)


P-menthan-3-one is a p-menthane monoterpenoid that is p-menthane substituted by an oxo group at position 3. It has a role as a plant metabolite and a volatile oil component. p-Menthan-3-one is a natural product found in Citrus hystrix, Mentha aquatica, and other organisms with data available. The trans-stereoisomer of p-menthan-3-one. Flavouring compound [Flavornet] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\\% and 94.92\\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\% and 94.92\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\% and 94.92\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\% and 94.92\\\%. [2] Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2]. Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2].

   

Bruceantarin

methyl (1R,2S,3R,6R,8R,13S,14R,15R,16S,17S)-3-benzoyloxy-10,15,16-trihydroxy-9,13-dimethyl-4,11-dioxo-5,18-dioxapentacyclo[12.5.0.01,6.02,17.08,13]nonadec-9-ene-17-carboxylate

C28H30O11 (542.178803)


Bruceantarin is a natural product found in Brucea javanica with data available.

   

1,2,4,5-Tetrachloro-3,6-dimethoxybenzene

1,2,4,5-Tetrachloro-3,6-dimethoxybenzene

C8H6Cl4O2 (273.9121896)


   

Neritaloside

Strospeside, 16-acetate (6CI,7CI,8CI); (3,5,16)-16-(Acetyloxy)-3-[(6-deoxy-3-O-methyl--D-galactopyranosyl)oxy]-14-hydroxycard-20(22)-enolide

C32H48O10 (592.3247308)


Neritaloside is a natural product found in Mandevilla pentlandiana and Nerium oleander with data available.

   

Laurycolactone B

2,5-Methano-2H-indeno(4,5-d)oxepin-4,6,10(1H)-trione, 5,5a,10a,10b-tetrahydro-1-hydroxy-5a,8,10a,11-tetramethyl-, (1R-(1alpha,2alpha,5alpha,5aalpha,10aalpha,10bbeta,11R*))-

C18H20O5 (316.13106700000003)


Laurycolactone B is a natural product found in Eurycoma longifolia with data available.

   

Triptotriterpenic acid A

(4aR,6aR,6aS,6bR,12aR,14bR)-4,10-dihydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-2-carboxylic acid

C30H48O4 (472.3552408)


   

Digitolutein

2-hydroxy-1-methoxy-3-methyl-anthracene-9,10-dione;4-Ethylcyclohexanone

C16H12O4 (268.0735552)


Digitolutein is a natural product found in Digitalis isabelliana, Digitalis viridiflora, and other organisms with data available.

   

6,7-Dihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromone

6,7-Dihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromone

C17H18O4 (286.1205028)


   

Senkyunolide J

Senkyunolide J

C12H18O4 (226.1205028)


3alpha-Butyl-4,5,6,7-tetrahydro-6alpha,7beta-dihydroxy-1(3H)-isobenzofuranone is a natural product found in Apium graveolens with data available.

   

Braylin

2H-1-Benzopyran-6-acrylic acid, 5-hydroxy-8-methoxy-2,2-dimethyl-, delta-lactone

C15H14O4 (258.0892044)


Braylin is a natural product found in Geleznowia verrucosa, Pitavia punctata, and other organisms with data available.

   

3-PENTANONE

3-PENTANONE

C5H10O (86.07316100000001)


A natural product found in Triatoma brasiliensis and Triatoma infestans. 3-pentanone, also known as diethyl ketone or ethyl propionyl, is a member of the class of compounds known as ketones. Ketones are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, 3-pentanone is considered to be an oxygenated hydrocarbon lipid molecule. 3-pentanone is soluble (in water) and an extremely weak acidic compound (based on its pKa). 3-pentanone is an acetone and ethereal tasting compound and can be found in a number of food items such as strawberry guava, ceylon cinnamon, beech nut, and pak choy, which makes 3-pentanone a potential biomarker for the consumption of these food products.

   

Balanophonin

(2E)-3-[(2S,3R)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl] acrylaldehyde

C20H20O6 (356.125982)


(+)-Balanophonin is a natural product found in Balanophora japonica, Catunaregam spinosa, and other organisms with data available. Balanophonin is a natural product found in Lonicera insularis, Carya cathayensis, and other organisms with data available.

   

Oxychloroaphine

phenazine-1-carboxamide

C13H9N3O (223.07455839999997)


Oxychloroaphine could be isolated from the bacterium Pantoea agglomerans naturally present in soil. Oxychloroaphine has broad-spectrum antifungal activity. Oxychloroaphine has cytotoxicity in a dose-dependent manner and induces apoptosis. Oxychloroaphine can be used in research of cancer[1][2]. Oxychloroaphine could be isolated from the bacterium Pantoea agglomerans naturally present in soil. Oxychloroaphine has broad-spectrum antifungal activity. Oxychloroaphine has cytotoxicity in a dose-dependent manner and induces apoptosis. Oxychloroaphine can be used in research of cancer[1][2].

   

Senkyunolide G

3-Butyl-3-hydroxy-4,5-dihydroisobenzofuran-1(3H)-one

C12H16O3 (208.1099386)


   

Gymnoside III

bis[[4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]methyl] 2-[(2S,3R,4S,5S,6R)-6-(acetyloxymethyl)-3,4,5-trihydroxyoxan-2-yl]oxy-2-(2-methylpropyl)butanedioate

C42H58O23 (930.3368718)


   

Erythrocentaurin

5-Formyl-3,4-dihydroisocoumarin; 1-Oxo-3,4-dihydroisochromene-5-carbaldehyde

C10H8O3 (176.0473418)


Erythrocentaurin is a natural product found in Swertia decora, Gentiana pedicellata, and other organisms with data available.

   

Methylhydroquinone

2-Methylhydroquinone

C7H8O2 (124.05242679999999)


Methylhydroquinone is an active compound. Methylhydroquinone can be used for the research of various biochemical studies[1]. Methylhydroquinone is an active compound. Methylhydroquinone can be used for the research of various biochemical studies[1].

   

Ajoene

Disulfide, 2-propen-1-yl (1E)-3-(2-propen-1-ylsulfinyl)-1-propen-1-yl

C9H14OS3 (234.02067540000002)


(E)-Ajoene is a sulfoxide. Ajoene is a natural product found in Allium and Allium sativum with data available. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   
   

PbTx-3

(21Z)-12-hydroxy-14-[2-(hydroxymethyl)prop-2-enyl]-1,3,11,24,31,41,44-heptamethyl-2,6,10,15,19,25,29,34,38,43,47-undecaoxaundecacyclo[26.22.0.03,26.05,24.07,20.09,18.011,16.030,48.033,46.035,44.037,42]pentaconta-21,40-dien-39-one

C50H72O14 (896.4921812)


Brevetoxin 3 is a natural product found in Karenia brevis with data available.

   

Silvestrol

1H-Cyclopenta(b)benzofuran-2-carboxylic acid, 6-(((2S,3R,6R)-6-((1R)-1,2-dihydroxyethyl)-3-methoxy-1,4-dioxan-2-yl)oxy)-2,3,3a,8b-tetrahydro-1,8b-dihydroxy-8-methoxy-3a-(4-methoxyphenyl)-3-phenyl-, methyl ester, (1R,2R,3S,3aR,8bS)-

C34H38O13 (654.2312297999999)


Silvestrol is an organic heterotricyclic compound that consists of a 2,3,3a,8b-tetrahydro-H-benzo[b]cyclopenta[d]furan framework substituted by hydroxy groups at positions C-1 and C-8b, a methoxycarbonyl group at C-2, a phenyl group at C-3, a 4-methoxyphenyl group at C-3a, a methoxy group at C-8 and a 1,4-dioxan-2-yloxy group at position C-6 which in turn is substituted by a methoxy group at position 3 and a 1,2-dihydroxyethyl group at position 6. Isolated from Aglaia silvestris, it exhibits antineoplastic activity. It has a role as a metabolite and an antineoplastic agent. It is an organic heterotricyclic compound, a member of dioxanes, an ether and a methyl ester. Silvestrol is a natural product found in Aglaia foveolata and Aglaia silvestris with data available. An organic heterotricyclic compound that consists of a 2,3,3a,8b-tetrahydro-H-benzo[b]cyclopenta[d]furan framework substituted by hydroxy groups at positions C-1 and C-8b, a methoxycarbonyl group at C-2, a phenyl group at C-3, a 4-methoxyphenyl group at C-3a, a methoxy group at C-8 and a 1,4-dioxan-2-yloxy group at position C-6 which in turn is substituted by a methoxy group at position 3 and a 1,2-dihydroxyethyl group at position 6. Isolated from Aglaia silvestris, it exhibits antineoplastic activity.

   

D 16-834

Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphate (3:1)

C42H63O4P (662.4463728)


Tris(2,4-di-tert-butylphenyl) phosphate is an aryl phosphate. Tris(2,4-di-tert-butylphenyl)phosphate is an active compound from the leaves of Vitex negundo L. shows anti-inflammatory activity with evidence of inhibition for secretory Phospholipase A2 (sPLA2) through molecular docking[1]. Tris(2,4-di-tert-butylphenyl)phosphate is an active compound from the leaves of Vitex negundo L. shows anti-inflammatory activity with evidence of inhibition for secretory Phospholipase A2 (sPLA2) through molecular docking[1].

   

Phellophyll a

21H,23H-Porphine-2,20-dicarboxylic acid, 12-ethenyl-7-ethyl-17,18-dihydro-18-(3-methoxy-3-oxopropyl)-3,8,13,17-tetramethyl-, cyclic anhydride, (17S-trans)-

C34H34N4O5 (578.2529074)


   

Adetide

disodium hydrogen [({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl phosphonato)oxy]phosphonate

C10H14N5Na2O13P3 (550.9596384)


   

Artemotil

(1R,4S,5R,8S,9R,10S,12R,13R)-10-ethoxy-1,5,9-trimethyl-11,14,15,16-tetraoxatetracyclo[10.3.1.0^{4,13}.0^{8,13}]hexadecane

C17H28O5 (312.1936638)


Artemotil is an artemisinin derivative. Artemotil, also known as β-arteether, is a semi-synthetic derivative of artemisinin and a fast acting blood schizonticide specifically indicated for the treatment of chloroquine-resistant Plasmodium falciparum malaria and cerebral malaria cases. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BE - Artemisinin and derivatives, plain D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides Artemotil (β-Arteether) has antimalarial activity for the treatment of chloroquine-resistant Plasmodium falciparum malaria with an IC50 of 1.61 nM. Artemotil also has central nervous system (CNS) neurotoxicity and anorectic toxicity in rats, dogs and monkeys[1][2]. Artemotil (β-Arteether) has antimalarial activity for the treatment of chloroquine-resistant Plasmodium falciparum malaria with an IC50 of 1.61 nM. Artemotil also has central nervous system (CNS) neurotoxicity and anorectic toxicity in rats, dogs and monkeys[1][2].

   

Octodrine

InChI=1/C8H19N/c1-7(2)5-4-6-8(3)9/h7-8H,4-6,9H2,1-3H3

C8H19N (129.1517414)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist Octodrine is an alkylamine.

   

Quinine 2HCl

(R)-[(2S,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol;dihydrochloride

C20H26Cl2N2O2 (396.1371236)


   

Griffonilide

2(6H)-Benzofuranone, 7,7a-dihydro-6,7-dihydroxy-, [6R-(6alpha,7beta,7abeta)]-

C8H8O4 (168.0422568)


Griffonilide is a natural product found in Semiaquilegia adoxoides and Piliostigma thonningii with data available. Griffonilide is a butenolide, isolated from the roots of Semiaquilegia adoxoides, and often occurs alongside lithospermoside[1][2]. Griffonilide is a butenolide, isolated from the roots of Semiaquilegia adoxoides, and often occurs alongside lithospermoside[1][2].

   

12-Acetoxyabietic acid

(12α)-12-Acetoxyabieta-7,13-dien-18-oic acid

C22H32O4 (360.2300472)


   

Vibsanin A

2-Butenoic acid, 3-methyl-, (1R,2R,3E,5S,7E,11R)-8-(hydroxymethyl)-1,5-dimethyl-5-(4-methyl-3-penten-1-yl)-12-oxabicyclo[9.1.0]dodeca-3,7-dien-2-yl ester

C25H38O4 (402.2769948)


   

Manool

(3R)-5-[(1S,4aS,8aS)-5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl]-3-methylpent-1-en-3-ol

C20H34O (290.2609514)


A labdane diterpenoid in which the labdane skeleton has double bonds at positions 8(17) and 14 and carries an S-hydroxy group at position 13. Manool is a labdane diterpenoid in which the labdane skeleton has double bonds at positions 8(17) and 14 and carries an R-hydroxy group at position 13. It has a role as an antineoplastic agent, a plant metabolite and an antibacterial agent. It is a labdane diterpenoid and a tertiary alcohol. Manool is a natural product found in Halocarpus biformis, Cedrus atlantica, and other organisms with data available. A labdane diterpenoid in which the labdane skeleton has double bonds at positions 8(17) and 14 and carries an R-hydroxy group at position 13. Manool is a diterpene from Salvia officinalis. Manool induces selective cytotoxicity in cancer cells. Manool arrests the cancer cells at the G(2)/M phase of the cell cycle[1][2]. Manool is a diterpene from Salvia officinalis. Manool induces selective cytotoxicity in cancer cells. Manool arrests the cancer cells at the G(2)/M phase of the cell cycle[1][2].

   

Chlorogenin

(1R,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S,18S,19S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-16,19-diol

C27H44O4 (432.3239424)


Chlorogenin is a triterpenoid. Chlorogenin is a natural product found in Yucca gloriosa, Solanum torvum, and other organisms with data available.

   

Ipomoeassin F

(1S,3R,4S,5R,6R,8R,10S,23R,24R,25R,26R)-5-(acetyloxy)-4,26-dihydroxy-6-methyl-17,20-dioxo-10-pentyl-24-{[(2E)-3-phenylprop-2-enoyl]oxy}-2,7,9,21,27-pentaoxatricyclo[21.3.1.0~3,8~]heptacosan-25-yl (2E)-2-methylbut-2-enoate (non-preferred name)

C44H62O15 (830.4088502)


   

Zuihonin A

5-[(2R,3R,4S,5R)-5-(1,3-benzodioxol-5-yl)-3,4-dimethyloxolan-2-yl]-1,3-benzodioxole

C20H20O5 (340.13106700000003)


Zuihonin A is a natural product found in Saururus cernuus, Chamaecyparis obtusa, and other organisms with data available.

   

Maytenfolic acid

(2S,4S,4aR,6aR,6aS,6bR,8aR,10S,12aR,14bS)-4,10-dihydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-2-carboxylic acid

C30H48O4 (472.3552408)


Triptotriterpenic acid A is a pentacyclic triterpenoid with formula C30H48O4, originally isolated from Tripterygium hypoglaucum. It has a role as a plant metabolite. It is a pentacyclic triterpenoid, a hydroxy monocarboxylic acid and a diol. It derives from a hydride of an oleanane. Triptotriterpenic acid A is a natural product found in Euonymus laxiflorus, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid with formula C30H48O4, originally isolated from Tripterygium hypoglaucum.

   
   
   

5,7-Dihydroxycoumarin 7-O-β-D-glucopyranoside

5,7-Dihydroxycoumarin 7-O-|A-D-glucopyranoside

C15H16O9 (340.0794286)


5-hydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-2-one is a natural product found in Morus alba var. multicaulis, Morus alba, and Morus nigra with data available.

   

9-O-Acetyl-fargesol

[(2S,3R,4S)-2-(3,4-dimethoxyphenyl)-4-[(S)-(3,4-dimethoxyphenyl)-hydroxymethyl]oxolan-3-yl]methyl acetate

C24H30O8 (446.194058)


9-O-Acetyl-fargesol is a natural product found in Magnolia kobus and Magnolia praecocissima with data available.

   

Sculponeatin B

Sculponeatin B

C20H24O6 (360.1572804)


Sculponeatin B is a natural product found in Isodon phyllostachys with data available.

   

Acegastrodine

(2R,3R,4S,5R,6S)-2-(Acetoxymethyl)-6-(4-(hydroxymethyl)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

C21H26O11 (454.14750460000005)


   

Andropanolide

(3Z,4S)-3-[2-[(1R,4aS,5R,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl]ethylidene]-4-hydroxyoxolan-2-one

C20H30O5 (350.209313)


Andropanolide is a natural product found in Andrographis paniculata with data available.

   

Acetylastragaloside I

[(3R,4S,5R,6S)-4,5-Diacetyloxy-6-[[(3R,9R,12S,14R,15R,16R)-14-hydroxy-15-[(2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-pentacyclo[9.7.0.01,3.03,8.012,16]octadecanyl]oxy]oxan-3-yl] acetate

C47H74O17 (910.4925754000001)


   

8J0G2X46R7

InChI=1/C5H4O3/c6-4-1-2-8-3-5(4)7/h1-3,7H

C5H4O3 (112.0160434)


3-Hydroxy-4H-pyran-4-one is a natural product found in Parthenium integrifolium, Erigeron breviscapus, and Erigeron annuus with data available. Pyromeconic acid is an antifungal substance[1]. Pyromeconic acid is an antifungal substance[1].

   

Zeylenol

5-Cyclohexene-1,2,3,4-tetrol, 2-[(benzoyloxy)methyl]-, 4-benzoate, [1S-(1alpha,2beta,3beta,4alpha)]-

C21H20O7 (384.120897)


Zeylenol is a natural product found in Uvaria grandiflora, Uvaria rufa, and other organisms with data available.

   

EriocalyxinB

(1S,2S,5R,8S,9S,10S,11R)-9,10-dihydroxy-12,12-dimethyl-6-methylidene-17-oxapentacyclo[7.6.2.15,8.01,11.02,8]octadec-13-ene-7,15-dione

C20H24O5 (344.1623654)


Eriocalyxin B is a natural product found in Isodon eriocalyx with data available.

   

NA 24:4;O

N-(1,1-dimethy-2-hydroxy-ethyl)-5Z,8Z,11Z,14Z-eicosatetraenoyl amine

C24H41NO2 (375.31371260000003)


N-(3-Methoxybenzyl)palmitamide is a natural product found in Lepidium meyenii with data available. N-(3-Methoxybenzyl)Palmitamide is a promising inhibitor of FAAH for the treatment of pain, inflammation and CNS degenerative disorders[1]. N-(3-Methoxybenzyl)Palmitamide is a promising inhibitor of FAAH for the treatment of pain, inflammation and CNS degenerative disorders[1].

   

Fitone

(+/-)-Phytone; 6,10,14-Trimethylpentadecan-2-one; Hexahydrofarnesyl acetone

C18H36O (268.2766006)


Hexahydrofarnesyl acetone is a ketone. 6,10,14-Trimethylpentadecan-2-one is a natural product found in Thymus zygioides, Tilia tomentosa, and other organisms with data available. Hexahydrofarnesyl acetone (6,10,14-Trimethyl-2-pentadecanone), a sesquiterpene isolated from Impatiens parviflora, is the major constituents of the essential oil. Hexahydrofarnesyl acetone has antibacterial, anti-nociceptive and anti-inflammation activities[1][2]. Hexahydrofarnesyl acetone (6,10,14-Trimethyl-2-pentadecanone), a sesquiterpene isolated from Impatiens parviflora, is the major constituents of the essential oil. Hexahydrofarnesyl acetone has antibacterial, anti-nociceptive and anti-inflammation activities[1][2].

   

odorine

Butanamide, 2-hydroxy-2-methyl-N-[1-(1-oxo-3-phenyl-2-propenyl)-2-pyrrolidinyl]-, [S-[R*,S*-(E)]]-; (2S)-2-Hydroxy-2-methyl-N-[(2R)-1-[(2E)-1-oxo-3-phenyl-2-propen-1-yl]-2-pyrrolidinyl]butanamide

C18H24N2O3 (316.17868339999995)


Odorinol is a natural product found in Aglaia laxiflora, Aglaia elaeagnoidea, and Aglaia odorata with data available.

   

Kongensin A

[(2R,4R,8R,9S,13R)-2-hydroxy-5,5,9-trimethyl-14-methylidene-10,15-dioxo-8-tricyclo[11.2.1.0^{4,9]hexadec-1(16)-enyl] acetate

C22H30O5 (374.209313)


   

Goniodiol

2H-Pyran-2-one, 6-[(1R,2R)-1,2-dihydroxy-2-phenylethyl]-5,6-dihydro-,(6R)-

C13H14O4 (234.0892044)


Goniodiol is a natural product found in Goniothalamus amuyon, Goniothalamus cardiopetalus, and other organisms with data available.

   

6α-Chloro-5β-hydroxywithaferin A

(2R)-2-[(1S)-1-[(4S,5R,6S,8S,9S,10R,13S,14S,17R)-6-chloro-4,5-dihydroxy-10,13-dimethyl-1-oxo-6,7,8,9,11,12,14,15,16,17-decahydro-4H-cyclopenta[a]phenanthren-17-yl]ethyl]-5-(hydroxymethyl)-4-methyl-2,3-dihydropyran-6-one

C28H39ClO6 (506.2435024)


6alpha-Chloro-5beta-hydroxywithaferin A is a natural product found in Vassobia breviflora, Withania somnifera, and Withania aristata with data available.

   

Angelicide

(3Z)-3-butylidene-6-propylspiro[4,5-dihydro-2-benzofuran-3,7-5,5a,6,7a-tetrahydro-4H-cyclobuta[g][2]benzofuran]-1,1-dione

C24H28O4 (380.19874880000003)


Angelicide is a natural product found in Ligusticum striatum and Ligusticum chuanxiong with data available.

   

Macamide Impurity 2

(E)-N-[(3-methoxyphenyl)methyl]octadec-9-enamide

C26H43NO2 (401.3293618)


N-(3-Methoxybenzyl)oleamide (MAC 18:1) is an individual macamide. N-(3-Methoxybenzyl)oleamide can be isolated from Lepidium meyenii (maca)[1].

   

Sodium Houttuyfonate

1-Dodecanesulfonic acid, 1-hydroxy-3-oxo-, monosodium salt

C12H23NaO5S (302.1163828)


   

AI3-08897

Benzenamine, N-phenyl-, hydrochloride (1:1)

C12H12ClN (205.06582219999999)


Diphenylamine hydrochloride, an organic compound isolated from coriander, is used mainly for its antioxidant properties. Diphenylamine is used as an industrial antioxidant, dye mordant and is also applied in agriculture as a fungicide and antihelmintic[1].

   

Pallasone

2,5-CYCLOHEXADIENE-1,4-DIONE, 2-(10Z)-10-HEPTADECEN-1-YL-6-METHOXY-

C24H38O3 (374.2820798)


Irisquinone is a natural product found in Iris pallasii, Iris sibirica, and other organisms with data available.

   

Di-O-methyldemethoxycurcumin

Di-O-methyldemethoxycurcumin

C22H22O5 (366.1467162)


Di-O-methyldemethoxycurcumin, a curcuminoid analog, inhibits IL-6 production with an EC50 of 16.20 μg/mL. Anti-inflammatory and antioxidant properties[1].

   

Icariside D2

(2S,3R,4S,5S,6R)-2-[4-(2-hydroxyethyl)phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C14H20O7 (300.120897)


Icariside D2 is a glycoside. Icariside D2 is a natural product found in Schisandra propinqua, Cyclopia subternata, and other organisms with data available.

   

Praeroside II

(9R,10R)-10-hydroxy-8,8-dimethyl-9-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-9,10-dihydropyrano[2,3-f]chromen-2-one

C20H24O10 (424.13694039999996)


Praeroside II is a natural product found in Peucedanum japonicum with data available.

   

Paeoniflorgenin

[(2S,3S,5R,6R,8S)-3,6-dihydroxy-8-methyl-9,10-dioxatetracyclo[4.3.1.02,5.03,8]decan-2-yl]methyl benzoate

C17H18O6 (318.11033280000004)


   

FZ9FWW7N2Q

9,12,15-Octadecatrienamide, N-((3-methoxyphenyl)methyl)-, (9Z,12Z,15Z)-

C26H39NO2 (397.2980634)


N-(3-Methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide is a natural product found in Lepidium meyenii with data available. See also: Lepidium meyenii root (part of). N-(3-Methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide is a macamide isolated from Maca (Lepidium meyenii?Walp.) N-(3-Methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide induces mesenchymal stem cells osteogenic differentiation and consequent bone formation through activating the canonical Wnt/β‐catenin signaling pathway. N-(3-Methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide can be used for the research of osteoporosis[1].

   

Pennogenin

(1R,2S,4S,5R,6R,7S,8S,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-8,16-diol

C27H42O4 (430.30829320000004)


Pennogenin is an oxaspiro compound that is spirost-5-en substituted by hydroxy groups at positions 3 and 17 (3beta,25R stereoisomer). It has a role as a metabolite. It is a 17alpha-hydroxy steroid, an oxaspiro compound, an organic heterohexacyclic compound, a sapogenin and a 3beta-hydroxy-Delta(5)-steroid. It derives from a hydride of a spirostan. Pennogenin is a natural product found in Paris polyphylla var. chinensis, Polygonatum stenophyllum, and other organisms with data available. An oxaspiro compound that is spirost-5-en substituted by hydroxy groups at positions 3 and 17 (3beta,25R stereoisomer).

   

Benzyladenosine

(2R,3R,4S,5R)-2-(6-(benzylamino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol

C17H19N5O4 (357.1436974)


N6-Benzyladenosine is an adenosine receptor agonist, has a cytoactive activity. N6-Benzyladenosine arrests cell cycle at G0/G1 phase and induces cell apoptosis. N6-Benzyladenosine also exerts inhibitory effect on T. gondii adenosine kinase and glioma[1]-[5]. N6-Benzyladenosine is an adenosine receptor agonist, has a cytoactive activity. N6-Benzyladenosine arrests cell cycle at G0/G1 phase and induces cell apoptosis. N6-Benzyladenosine also exerts inhibitory effect on T. gondii adenosine kinase and glioma[1]-[5]. N6-Benzyladenosine is an adenosine receptor agonist, has a cytoactive activity. N6-Benzyladenosine arrests cell cycle at G0/G1 phase and induces cell apoptosis. N6-Benzyladenosine also exerts inhibitory effect on T. gondii adenosine kinase and glioma[1]-[5].

   

Glyceryl montanate

Montanic acid .alpha.-monoglyceride

C31H62O4 (498.4647852)


   

Methyl 1,4-bisglucosyloxy-3-prenyl-2-naphthoate

Methyl 3-(3-methylbut-2-en-1-yl)-1,4-bis(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-2-naphthoate

C29H38O14 (610.2261447999999)


Methyl 1,4-bisglucosyloxy-3-prenyl-2-naphthoate is a natural product found in Wollastonia biflora, Indocypraea montana, and Galium mollugo with data available.

   

7,15-Dihydroxy-4,4,14-trimethyl-3,11-dioxochol-8-en-24-oic acid

(4R)-4-[(5R,10S,13R,14R,17R)-7,15-dihydroxy-4,4,10,13,14-pentamethyl-3,11-dioxo-2,5,6,7,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid

C27H40O6 (460.28247400000004)


   
   

(+)-Medioresinol Di-O-β-D-glucopyranoside

(2S,3R,4S,5S,6R)-2-[4-[(3R,3aS,6R,6aS)-6-[3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C33H44O17 (712.2578374)


   

6-O-Methacrylate

[(3aR,4R,4aS,5R,8R,8aR,9S,9aR)-8,9-diacetyloxy-5-hydroxy-5,8a-dimethyl-3-methylidene-2-oxo-3a,4,4a,6,7,8,9,9a-octahydrobenzo[f][1]benzofuran-4-yl] 2-methylprop-2-enoate

C23H30O9 (450.18897300000003)


6-O-Methacryloyltrilobolide is a natural product found in Sphagneticola trilobata with data available.

   

4-methyl-6-phenylpyran-2-one

2H-Pyran-2-one, 4-methyl-6-phenyl-

C12H10O2 (186.06807600000002)


   

Nicotine 1-N-oxide

(1 inverted exclamation mark S,2 inverted exclamation mark S)-Nicotine 1 inverted exclamation mark -Oxide

C10H14N2O (178.1106074)


Trans-(S)-nicotine N(1)-oxide is an (S)-nicotine N(1)-oxide in which the N(1)-methyl group is on the opposite side of the pyrrolidine ring to the pyridine substituent. The major species at pH 7.3. (1′S,2′S)-Nicotine-1'-oxide is an alkaloid N-oxide from the leaves, stems and roots of Nicotiana tabacum[1].

   

Carasiphenol C

(1R,4S,11R,12R,19R)-4-(3,5-dihydroxyphenyl)-5,11,19-tris(4-hydroxyphenyl)-6-oxapentacyclo[10.7.0.02,10.03,7.013,18]nonadeca-2(10),3(7),8,13(18),14,16-hexaene-9,15,17-triol

C42H32O9 (680.2046222)


   

1,7-Diphenyl-5-hydroxy-4,6-hepten-3-one

(4Z,6E)-5-Hydroxy-1,7-diphenylhepta-4,6-dien-3-one

C19H18O2 (278.1306728)


1,7-Diphenyl-5-hydroxy-4,6-hepten-3-one is a natural product found in Alpinia hainanensis with data available.

   

CID 129316722

(5R)-2-(1,3-benzodioxol-5-yl)-5-methoxy-3-methyl-5-prop-2-enyl-2,3-dihydro-1-benzofuran-6-one

C20H20O5 (340.13106700000003)


   

3β,6α,12β-Dammar-E-20(22)-ene-3,6,12,25-tetraol

Dammar-20(22)-ene-3,6,12,25-tetrol, (3beta,6alpha,12beta,20E)-

C30H52O4 (476.3865392)


   

Prosaikogenin H

(2R,3R,4S,5R,6R)-2-[[(3S,4R,4aR,6aS,6bR,8S,8aS,12aS,14bS)-8-hydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a-dodecahydropicen-3-yl]oxy]-6-methyloxane-3,4,5-triol

C36H58O8 (618.4131468)


   

DPPTN

1,5-Diphenyl-2-penten-1-one

C17H18O (238.1357578)


   

effusanin E

(1S,2S,3R,5S,8S,10S,11R,15S)-3,9,10,15-tetrahydroxy-12,12-dimethyl-6-methylidene-17-oxapentacyclo[7.6.2.15,8.01,11.02,8]octadecan-7-one

C20H28O6 (364.1885788)


   

Linoleyl_alcohol

(Z,Z)-octadeca-9,12-dien-1-ol;9-cis,12-cis-octadecadien-1-ol;cis,cis-9,12-octadecadien-1-ol;cis,cis-octadeca-9,12-dien-1-ol;linoleyl alcohol

C18H34O (266.2609514)


(9Z,12Z)-octadecadien-1-ol is a long chain fatty alcohol that is octadecanol containing two double bonds located at positions 9 and 12 (the 9Z,12Z-geoisomer). It is a long-chain primary fatty alcohol and a fatty alcohol 18:2. (9Z,12Z)-Octadeca-9,12-dien-1-ol is a natural product found in Bidens aurea with data available. A long chain fatty alcohol that is octadecanol containing two double bonds located at positions 9 and 12 (the 9Z,12Z-geoisomer). Linoleyl alcohol, a structural analog of Linoleic acid with no a-carboxyl group, is a fatty alcohol[1]. Linoleyl alcohol, a structural analog of Linoleic acid with no a-carboxyl group, is a fatty alcohol[1].

   

3-Furylcarbinol

InChI=1/C5H6O2/c6-3-5-1-2-7-4-5/h1-2,4,6H,3H

C5H6O2 (98.0367776)


3-Furanmethanol is a natural product found in Panax ginseng with data available. 3-Furanmethanol belongs to the compound class of furan with a wide range of sensory properties. 2-cyanonaphthalenes undergo photocycloaddition reactions with 3-Furanmethanol efficiently and with high degrees of regioselectivity[1][2]. 3-Furanmethanol belongs to the compound class of furan with a wide range of sensory properties. 2-cyanonaphthalenes undergo photocycloaddition reactions with 3-Furanmethanol efficiently and with high degrees of regioselectivity[1][2].

   

7M-744

InChI=1/C8H10N2O/c9-8(11)10-6-7-4-2-1-3-5-7/h1-5H,6H2,(H3,9,10,11)

C8H10N2O (150.079309)


Benzylurea is a benzylamide. Benzylurea can be isolated from Salvadora persica stems. Benzylurea has antimicrobial activity. Benzylurea can be used for the research of various biochemical studies[1].

   

Mandenol

Ethyl linoleate, United States Pharmacopeia (USP) Reference Standard

C20H36O2 (308.2715156)


Ethyl linoleate is a long-chain fatty acid ethyl ester resulting from the formal condensation of the carboxy group of linoleic acid with the hydroxy group of ethanol. It has a role as a plant metabolite and an anti-inflammatory agent. It is functionally related to a linoleic acid. Ethyl linoleate is a natural product found in Desmos cochinchinensis, Achillea millefolium, and other organisms with data available. A long-chain fatty acid ethyl ester resulting from the formal condensation of the carboxy group of linoleic acid with the hydroxy group of ethanol. Ethyl linoleate (Linoleic Acid ethyl ester) inhibit the development of atherosclerotic lesions and the expression of inflammatory mediators[1]. Ethyl linoleate (Linoleic Acid ethyl ester) inhibit the development of atherosclerotic lesions and the expression of inflammatory mediators[1].

   

1-Hydroxymethylnaphthalene

InChI=1/C11H10O/c12-8-10-6-3-5-9-4-1-2-7-11(9)10/h1-7,12H,8H

C11H10O (158.073161)


(1-naphthyl)methanol is a naphthylmethanol that is methanol in which one of the hydrogens of the methyl group is replaced by a naphthalen-1-yl group. It has a role as a mouse metabolite. 1-Hydroxymethylnaphthalene is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). 1-Naphthalenemethanol is a natural product found in Zingiber officinale with data available. This compound belongs to the family of Naphthalenes. These are compounds containing a naphthalene moiety, which consists of two fused benzene rings. 1-Naphthalenemethanol is a natural compound the root bark extracts of Annona senegalensis with antibacterial activity[1]. 1-Naphthalenemethanol is a natural compound the root bark extracts of Annona senegalensis with antibacterial activity[1].

   

dimethylthiourea

InChI=1/C3H8N2S/c1-4-3(6)5-2/h1-2H3,(H2,4,5,6

C3H8N2S (104.0408168)


D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants N,N'-Dimethylthiourea (DMTU), isolated from Allium sativum, is an orally active scavenger of hydroxyl radical (?OH) and blocks ?OH production by activated neutrophils in vitro. N,N'-Dimethylthiourea protects against water-immersion restraint stress (WIRS)-induced gastric mucosal lesions in rats by exerting its antioxidant action including ?OH scavenging and anti-inflammatory action[1][2]. N,N'-Dimethylthiourea (DMTU), isolated from Allium sativum, is an orally active scavenger of hydroxyl radical (?OH) and blocks ?OH production by activated neutrophils in vitro. N,N'-Dimethylthiourea protects against water-immersion restraint stress (WIRS)-induced gastric mucosal lesions in rats by exerting its antioxidant action including ?OH scavenging and anti-inflammatory action[1][2].

   

3-Pinanol

Bicyclo[3.1.1]heptan-3-ol, 2,6,6-trimethyl-, [1S-(1.alpha.,2.beta.,3.alpha.,5.alpha.)]-

C10H18O (154.1357578)


2,6,6-Trimethylbicyclo[3.1.1]heptan-3-ol is a natural product found in Zingiber officinale with data available.

   

5-Methylfurfuryl alcohol

(5-Methyl-2-furyl)methanol, AldrichCPR

C6H8O2 (112.05242679999999)


5-Methylfurfuryl alcohol is a natural product found in Nicotiana tabacum with data available. 5-Methyl-2-furanmethanol is a natural product that can be isolated from the essential oil of D. rupicola Biv.. 5-Methyl-2-furanmethanol also acts as a oxidative product of 2,5 dimethylfuran (DMF) by cytochrome P450 (CYP)[1][2]. 5-Methyl-2-furanmethanol is a natural product that can be isolated from the essential oil of D. rupicola Biv.. 5-Methyl-2-furanmethanol also acts as a oxidative product of 2,5 dimethylfuran (DMF) by cytochrome P450 (CYP)[1][2].

   

Guar gum

Guar gumSterebin A(-)ClausenamideFlazinIsopimarol acetate5-Hydroxy-8-methoxypsoralen4-Methoxy-β-carboline-1-carboxylic acid methylesterThalrugosamininePhainanoid AEuphorbetinCallistephin chloride(Rac)-ShikoninMogroside VI A5,7,2,6-Tetrahydroxyflavone

C10H14N5Na2O12P3 (534.9647234)


   

Panthenol

DL-Panthenol

C9H19NO4 (205.1314014)


CONFIDENCE standard compound; INTERNAL_ID 851; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2048; ORIGINAL_PRECURSOR_SCAN_NO 2046 CONFIDENCE standard compound; INTERNAL_ID 851; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2044; ORIGINAL_PRECURSOR_SCAN_NO 2041 CONFIDENCE standard compound; INTERNAL_ID 851; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2041; ORIGINAL_PRECURSOR_SCAN_NO 2039 CONFIDENCE standard compound; INTERNAL_ID 851; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2031; ORIGINAL_PRECURSOR_SCAN_NO 2029 CONFIDENCE standard compound; INTERNAL_ID 851; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2045; ORIGINAL_PRECURSOR_SCAN_NO 2044 CONFIDENCE standard compound; INTERNAL_ID 851; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2044; ORIGINAL_PRECURSOR_SCAN_NO 2042 CONFIDENCE standard compound; INTERNAL_ID 851; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5226; ORIGINAL_PRECURSOR_SCAN_NO 5225 CONFIDENCE standard compound; INTERNAL_ID 851; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5228; ORIGINAL_PRECURSOR_SCAN_NO 5227 CONFIDENCE standard compound; INTERNAL_ID 851; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5267; ORIGINAL_PRECURSOR_SCAN_NO 5265 CONFIDENCE standard compound; INTERNAL_ID 851; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5263; ORIGINAL_PRECURSOR_SCAN_NO 5262 CONFIDENCE standard compound; INTERNAL_ID 851; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5259; ORIGINAL_PRECURSOR_SCAN_NO 5258 CONFIDENCE standard compound; INTERNAL_ID 851; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5264; ORIGINAL_PRECURSOR_SCAN_NO 5262 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.228 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.226 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.221 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.222 D-Panthenol is the biologically-active alcohol of pantothenic acid, which leads to an elevation in the amount of coenzyme A in the cell.

   

Mevastatin

Compactin_120180

C23H34O5 (390.24061140000003)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor D009676 - Noxae > D000963 - Antimetabolites CONFIDENCE Penicillium corvianum Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment[1][2][3]. Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment[1][2][3].

   

Adenine

Adenine

C5H5N5 (135.054493)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2357 INTERNAL_ID 2357; CONFIDENCE Reference Standard (Level 1) MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GFFGJBXGBJISGV_STSL_0142_Adenine_0125fmol_180430_S2_LC02_MS02_16; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].

   

paraxanthine

1,7-Dimethylxanthine

C7H8N4O2 (180.0647228)


A dimethylxanthine having the two methyl groups located at positions 1 and 7. It is a metabolite of caffeine and theobromine in animals. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QUNWUDVFRNGTCO-UHFFFAOYSA-N_STSL_0243_Paraxanthine_1000fmol_190413_S2_LC02MS02_060; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Paraxanthine, a caffeine metabolite, provides protection against Dopaminergic cell death via stimulation of Ryanodine Receptor Channels.

   

4-Hydroxy-4-methoxydalbergione

4-Hydroxy-4-methoxydalbergione

C16H14O4 (270.0892044)


   

Aurantiamide acetate

NCGC00169629-02_C27H28N2O4_Benzenepropanamide, N-[2-(acetyloxy)-1-(phenylmethyl)ethyl]-alpha-(benzoylamino)-

C27H28N2O4 (444.20489680000003)


CONFIDENCE Culture of Penicillium eurotium strain Aurantiamide acetate (TMC-58A) is a selective and orally active cathepsin inhibitor isolated from?Portulaca oleracea L. Aurantiamide acetate has anti-inflammatory activities and can be used for the study of ?inflammatory?diseases[1][2]. Aurantiamide acetate (TMC-58A) is a selective and orally active cathepsin inhibitor isolated from?Portulaca oleracea L. Aurantiamide acetate has anti-inflammatory activities and can be used for the study of ?inflammatory?diseases[1][2].

   

phenylethanolamine

2-Amino-1-phenylethanol

C8H11NO (137.0840596)


The simplest member of the class of phenylethanolamines that is 2-aminoethanol bearing a phenyl substituent at the 1-position. The parent of the phenylethanolamine class. 2-Amino-1-phenylethanol is an analogue of noradrenaline.

   

Diacetyl

4-01-00-03644 (Beilstein Handbook Reference)

C4H6O2 (86.0367776)


   

6-Aminopenicillanic acid

6-Aminopenicillanic acid

C8H12N2O3S (216.0568602)


A penicillanic acid compound having a (6R)-amino substituent. The active nucleus common to all penicillins; it may be substituted at the 6-amino position to form the semisynthetic penicillins, resulting in a variety of antibacterial and pharmacologic characteristics. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Docosanol

1-Docosanol

C22H46O (326.3548466)


D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent 1-Docosanol is a saturated fatty alcohol with reported inhibitory activity against lipid-enveloped viruses, including herpes simplex virus. 1-Docosanol is a saturated fatty alcohol with reported inhibitory activity against lipid-enveloped viruses, including herpes simplex virus.

   

falcarindiol

1,9-Heptadecadiene-4,6-diyne-3,8-diol, (3R,8S,9Z)-

C17H24O2 (260.17762039999997)


(+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

quebrachitol

(-)-Quebrachitol

C7H14O6 (194.0790344)


L-Quebrachitol is a natural product isolated from many plants, promotes osteoblastogenesis by uppregulation of BMP-2, runt-related transcription factor-2 (Runx2), MAPK (ERK, JNK, p38α), and Wnt/β-catenin signaling pathway[1]. L-Quebrachitol is a natural product isolated from many plants, promotes osteoblastogenesis by uppregulation of BMP-2, runt-related transcription factor-2 (Runx2), MAPK (ERK, JNK, p38α), and Wnt/β-catenin signaling pathway[1].

   

Ligustilide

(1E)-2-(4-Chlorophenyl)-3-(4-morpholinyl)-N-[(Z)-4-pyridinylmethylidene]-3-thioxo-1-propen-1-amine

C12H14O2 (190.09937440000002)


   

FA 18:3

(-)-lamenallenic acid;(-)-octadeca-5,6-trans-16-trienoic acid

C18H30O2 (278.224568)


CONFIDENCE standard compound; INTERNAL_ID 143 COVID info from WikiPathways D - Dermatologicals Same as: D07213 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Octinoxate

Octyl 4-methoxycinnamate

C18H26O3 (290.1881846)


D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BA - Protectives against uv-radiation for topical use D020011 - Protective Agents > D011837 - Radiation-Protective Agents > D013473 - Sunscreening Agents C1892 - Chemopreventive Agent > C851 - Sunscreen D003879 - Dermatologic Agents D003358 - Cosmetics CONFIDENCE standard compound; INTERNAL_ID 2502 Octinoxate is an organic compound that is a component of sunscreen and lipstick. It is mainly used in cosmetics such as sunscreen to absorb UV-B rays from the sun and protect the skin from damage. It can also be used to reduce the appearance of scars.

   

1,3-Dimethyluracil

1, 3-Dimethyl-2,4(1H,3H)-pyrimidinedione

C6H8N2O2 (140.0585748)


A pyrimidone that is uracil with methyl group substituents at positions 1 and 3. 1,3-Dimethyluracil is a pyrimidone derives from a uracil. 1,3-Dimethyluracil found occasionally in human urine. 1,3-Dimethyluracil shows inhibition activity against hCA I and hCA II (human carbonic anhydrase) with Ki of 316.2 μM and 166.4 μM, respectively[1][2].

   

C17 Sphingosine

2S-amino-4E-heptadecene-1,3R-diol

C17H35NO2 (285.266765)


Sphingosine (d17:1) is a 17-carbon sphingosine found in human skin. Sphingosine (d17:1) can be phosphorylated by sphingosine kinases to produce C-17 sphingosine-1-phosphate. Sphingosine C-17 was used as an internal standard for spectral analysis of sphingoid compounds[1][2][3].

   

Lecithin

1-Eicosadienoyl-2-myristoyl-sn-glycero-3-phosphocholine

C42H80NO8P (757.562125)


Lecithin (/ˈlɛsɪθɪn/ LESS-ith-in; from the Ancient Greek λέκιθος lékithos "yolk") is a generic term to designate any group of yellow-brownish fatty substances occurring in animal and plant tissues which are amphiphilic – they attract both water and fatty substances (and so are both hydrophilic and lipophilic), and are used for smoothing food textures, emulsifying, homogenizing liquid mixtures, and repelling sticking materials.[1][2] Lecithins are mixtures of glycerophospholipids including phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and phosphatidic acid.[3] Lecithin was first isolated in 1845 by the French chemist and pharmacist Théodore Gobley.[4] In 1850, he named the phosphatidylcholine lécithine.[5] Gobley originally isolated lecithin from egg yolk and established the complete chemical formula of phosphatidylcholine in 1874;[6] in between, he demonstrated the presence of lecithin in a variety of biological materials, including venous blood, human lungs, bile, roe, and brains of humans, sheep and chicken. Lecithin can easily be extracted chemically using solvents such as hexane, ethanol, acetone, petroleum ether or benzene; or extraction can be done mechanically. Common sources include egg yolk,[7] marine foods, soybeans,[7] milk, rapeseed, cottonseed, and sunflower oil. It has low solubility in water, but is an excellent emulsifier. In aqueous solution, its phospholipids can form either liposomes, bilayer sheets, micelles, or lamellar structures, depending on hydration and temperature. This results in a type of surfactant that usually is classified as amphipathic. Lecithin is sold as a food additive and dietary supplement. In cooking, it is sometimes used as an emulsifier and to prevent sticking, for example in non-stick cooking spray. D013501 - Surface-Active Agents > D054709 - Lecithins Lecithin is regarded as a safe, conventional phospholipid source. Phospholipids are reported to alter the fatty acid composition and microstructure of the membranes in animal cells. Lecithin is regarded as a safe, conventional phospholipid source. Phospholipids are reported to alter the fatty acid composition and microstructure of the membranes in animal cells.

   

3-hexenal

3-Hexenal (trans\cis mix)

C6H10O (98.07316100000001)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides The cis-isomer of 3-hexenal. D016573 - Agrochemicals

   

FA 18:2

(S)-13-(cyclopent-2-en-1-yl)tridecanoic acid

C18H32O2 (280.2402172)


Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].

   

FOH 16:0

3S,7S-dimethyl-tetradecan-2S-ol

C16H34O (242.26095139999998)


1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

FOH 5:1

3-METHYL-3-BUTEN-1-OL

C5H10O (86.07316100000001)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

SFE 16:0

Methyl 2,6,10-trimethyl-dodecanoate

C16H32O2 (256.2402172)


Tetradecyl acetate is a sex pheromone produced by Ctenopseustis obliquana females. Tetradecyl acetate can be used to disrupt the mating of pest species[1][2]. Tetradecyl acetate is a sex pheromone produced by Ctenopseustis obliquana females. Tetradecyl acetate can be used to disrupt the mating of pest species[1][2].

   

SFE 7:0;O

(+/-)-Ethyl 2-hydroxy-2-methylbutyrate

C7H14O3 (146.0942894)


Methyl 2-hydroxy-4-methylvalerate is one of dominant volatile compounds in Zhenjiang aromatic vinegar. Methyl 2-hydroxy-4-methylvalerate is used for charting flavour biosynthesis networks of vinegar microbiota[1].

   

ascr#2

(-)-5R-(3R,5R-dihydroxy-6S-methyl-(2H)-tetrahydropyran-2???-yloxy)-2-hexanone

C12H22O5 (246.14671620000001)


A hydroxy ketone ascaroside obtained by formal condensation of the hydroxy group of (5R)-5-hydroxyhexan-2-one with ascarylopyranose (the alpha anomer). It is a major component of the dauer pheromone, used by the nematode Caenorhabditis elegans as a population-density signal to promote entry into an alternate larval stage, the nonfeeding and highly persistent dauer diapause, and also synergises with ascr#3, ascr#4, and ascr#8 in male attraction. Ascr#2 is an ascaroside isolated from Caenorhabditis elegans, potently promotes dauer formation, and also acts as a potent male attractant combined with ascr#3 at low concentration[1].

   

ST 23:1;O4

3alpha,7alpha,12alpha-Trihydroxy-24-nor-5beta-cholan-23-al

C23H38O4 (378.2769948)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Nordeoxycholic acid is a 23-carbon bile acid. Nordeoxycholic acid is a norcholic acid metabolite and a steroid human metabolite[1].

   

Sodium thiocyanate

Sodium thiocyanate

CNNaS (80.964916)


Sodium thiocyanate reduces plasma levels of the pro-inflammatory cytokine IL-6, and increases the anti-inflammatory cytokine IL-10 levels. Sodium thiocyanate also?significantly reduces of ROS formation[1].

   

Trimethylamine hydrochloride

Trimethylammonium monohydrochloride

C3H10ClN (95.050173)


Trimethylammonium chloride is an endogenous metabolite. Trimethylammonium chloride is an endogenous metabolite.

   

Disodium 2-deoxy-5-O-phosphonatouridine

Disodium 2-deoxy-5-O-phosphonatouridine

C9H11N2Na2O8P (352.0048416)


2'-Deoxyuridine 5'-monophosphate disodium is reductively methylated to dTMP (2'-deoxythymidine 5'-monophosphate) by bisubstrate enzyme thymidylate synthase (TS). dTMP is a nucleotide required for DNA synthesis[1]. 2'-Deoxyuridine 5'-monophosphate disodium is reductively methylated to dTMP (2'-deoxythymidine 5'-monophosphate) by bisubstrate enzyme thymidylate synthase (TS). dTMP is a nucleotide required for DNA synthesis[1].

   
   

6-Methyluracil

6-Methyluracil

C5H6N2O2 (126.04292559999999)


D020011 - Protective Agents > D011837 - Radiation-Protective Agents D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents A pyrimidone that is uracil with a methyl group at position 6. D007155 - Immunologic Factors 6-Methyluracil (Pseudothymine), a metabolite of Uracil, can be used as an indicator of acetoacetyl-CoA (AACoA) accumulation. 6-Methyluracil exhibits antiradiation effect in vivo[1][2]. 6-Methyluracil (Pseudothymine), a metabolite of Uracil, can be used as an indicator of acetoacetyl-CoA (AACoA) accumulation. 6-Methyluracil exhibits antiradiation effect in vivo[1][2]. 6-Methyluracil (Pseudothymine), a metabolite of Uracil, can be used as an indicator of acetoacetyl-CoA (AACoA) accumulation. 6-Methyluracil exhibits antiradiation effect in vivo[1][2].

   

4-Nitrobenzyl alcohol

(4-Nitrophenyl)methanol

C7H7NO3 (153.0425912)


A member of the class of benzyl alcohols that is benzyl alcohol substituted at the para-position by a nitro group.

   

Zinc Phytate

Zinc Phytate

C6H6O24P6Zn6 (1031.3423556)


Zinc Phytate is found in food and is significant for human nutrition[1]. Zinc Phytate is found in food and is significant for human nutrition[1].

   

NADH disodium salt

NADH disodium salt

C21H27N7Na2O14P2 (709.0886582)


NADH disodium salt (Disodium NADH) is an orally active reduced coenzyme. NADH disodium salt is a donor of ADP-ribose units in ADP-ribosylaton reactions and a precursor of cyclic ADP-ribose. NADH disodium salt plays a role as a regenerative electron donor in cellular energy metabolism, including glycolysis, β-oxidation and the tricarboxylic acid (TCA) cycle[1]. NADH disodium salt (Disodium NADH) is an orally active reduced coenzyme. NADH disodium salt is a donor of ADP-ribose units in ADP-ribosylaton reactions and a precursor of cyclic ADP-ribose. NADH disodium salt plays a role as a regenerative electron donor in cellular energy metabolism, including glycolysis, β-oxidation and the tricarboxylic acid (TCA) cycle[1].

   

Desmeninol calcium

Desmeninol calcium

C10H18CaO6S2 (338.0170678)


Calcium 2-hydroxy-4-(methylthio)butanoate is an endogenous metabolite.

   

(4-Methylumbelliferone)-β-D-xylopyranoside

(4-Methylumbelliferone)-β-D-xylopyranoside

C15H16O7 (308.0895986)


4-Methylumbelliferyl-β-D-xylopyranoside (MuX) can be used as substrate for the research of β-Xylosidase activity. 4-Methylumbelliferyl-β-D-xylopyranoside shows burst, steady-state kinetics, which supports the conclusion that hydrolysis of the glycosidic bonds for the substrate 4-Methylumbelliferyl-β-D-xylopyranoside is rapid[1][2].

   

guanosine 3:5-cyclic monophosphate sodium salt

guanosine 3:5-cyclic monophosphate sodium salt

C10H11N5NaO7P (367.02937860000003)


Cyclic GMP sodium (cGMP) is an important regulator of short-term changes in smooth muscle tone and longer-term responses to chronic drug research or proliferative signals, it is in response to atrial natriuretic peptide (ANP) or nitric oxide (NO). Cyclic GMP sodium interacts with cation channels to regulate ion transport or activate the cyclic GMP-dependent protein kinase to result in protein phosphorylation[1][2]. Cyclic GMP sodium (cGMP) is an important regulator of short-term changes in smooth muscle tone and longer-term responses to chronic drug research or proliferative signals, it is in response to atrial natriuretic peptide (ANP) or nitric oxide (NO). Cyclic GMP sodium interacts with cation channels to regulate ion transport or activate the cyclic GMP-dependent protein kinase to result in protein phosphorylation[1][2]. Cyclic GMP sodium (cGMP) is an important regulator of short-term changes in smooth muscle tone and longer-term responses to chronic drug research or proliferative signals, it is in response to atrial natriuretic peptide (ANP) or nitric oxide (NO). Cyclic GMP sodium interacts with cation channels to regulate ion transport or activate the cyclic GMP-dependent protein kinase to result in protein phosphorylation[1][2].

   

styrene glycol

(S)-(+)-1-Phenyl-1,2-ethanediol

C8H10O2 (138.06807600000002)


1-Phenylethane-1,2-diol is a typical benzyl diol compound. 1-Phenylethane-1,2-diol can be oxidized to hydroxyl ketone (2-hydroxy-1-phenylethan-1-one) selectively with variety of catalysts, including organocatalysts, metal complexes, non-noble metal oxides, bimetallics[1]. 1-Phenylethane-1,2-diol is a typical benzyl diol compound. 1-Phenylethane-1,2-diol can be oxidized to hydroxyl ketone (2-hydroxy-1-phenylethan-1-one) selectively with variety of catalysts, including organocatalysts, metal complexes, non-noble metal oxides, bimetallics[1].

   

Trimethylamine oxide dihydrate

Trimethylamine oxide dihydrate

C3H13NO3 (111.0895388)


Trimethylamine N-oxide dihydrate is a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients. Trimethylamine N-oxide dihydrate induces inflammation by activating the ROS/NLRP3 inflammasome. Trimethylamine N-oxide dihydrate also accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis by activating the TGF-β/smad2 signaling pathway[1][2][3].

   

Adenine hydrochloride

Adenine hydrochloride

C5H8ClN5O (189.04173479999997)


Adenine monohydrochloride hemihydrate is an endogenous metabolite.

   

Val2-Cyclosporine

Val2-Cyclosporine

C63H113N11O12 (1215.8569738)


Cyclosporin D, a metabolite of Cyclosporin A, is a weak immunosuppressant. Cyclosporin D is used as internal standard for quantification of Cyclosporin A[1][2]. Cyclosporin A is a potent immunosuppressant agent, suppress T cell activation by inhibiting calcineurin and the calcineurin-dependent transcription factors nuclear factor of activated T cells (NFAc)[3]. Cyclosporin D, a metabolite of Cyclosporin A, is a weak immunosuppressant. Cyclosporin D is used as internal standard for quantification of Cyclosporin A[1][2]. Cyclosporin A is a potent immunosuppressant agent, suppress T cell activation by inhibiting calcineurin and the calcineurin-dependent transcription factors nuclear factor of activated T cells (NFAc)[3].

   

5-[[(3S)-3-Amino-3-carboxypropyl]methylsulfonio]-5-deoxy-Adenosine tosylate

5-[[(3S)-3-Amino-3-carboxypropyl]methylsulfonio]-5-deoxy-Adenosine tosylate

C22H30N6O8S2 (570.156646)


S-Adenosyl-L-methionine tosylate is produced endogenously from methionine and ATP by action of the enzyme methionine adenosyltransferase and is an important orally active methyl group donor. S-Adenosyl-L-methionine tosylate is a dietary supplement with potent antidepressant and analgesic effects, and has the potential for liver disease and osteoarthritis research[1][2][3].

   

Homobrassinolide

22S,23S-Homobrassinolide

C29H50O6 (494.36072)


28-Homobrassinolide is a phytosteroid. 28-Homobrassinolide can be used for the research of cholesterol and glucose homeostasis[1].

   

1-Methylhistamine dihydrochloride

1-Methylhistamine dihydrochloride

C6H13Cl2N3 (197.0486478)


1-Methylhistamine dihydrochloride is a histamine metabolite[1].

   

Mating Factor α acetate salt

Mating Factor α acetate salt

C82H114N20O17S (1682.8391114)


α-Factor Mating Pheromone, yeast is a tridecapeptide secreted by S. cerevisiae α cells via Ste2p receptor. α-Factor Mating Pheromone, yeast is a tridecapeptide secreted by S. cerevisiae α cells via Ste2p receptor.

   

Allitol

InChI=1\C6H14O6\c7-1-3(9)5(11)6(12)4(10)2-8\h3-12H,1-2H

C6H14O6 (182.0790344)


Allitol is a rare natural polyol that can be used as a sweetener. Allitol is an important intermediate for the preparation of the agents which against diabetes, cancer, and viral infections, including AIDS[1]. Allitol is a rare natural polyol that can be used as a sweetener. Allitol is an important intermediate for the preparation of the agents which against diabetes, cancer, and viral infections, including AIDS[1].

   

Flavin adenine dinucleotide disodium

Flavin adenine dinucleotide disodium salt

C27H31N9Na2O15P2 (829.1210196000001)


Flavin adenine dinucleotide (FAD) disodium salt is a redox cofactor, more specifically a prosthetic group of a protein, involved in several important enzymatic reactions in metabolism. Flavin adenine dinucleotide (FAD) disodium salt is a redox cofactor, more specifically a prosthetic group of a protein, involved in several important enzymatic reactions in metabolism.

   

Zinc

Zinc

Zn (63.929145)


D018977 - Micronutrients > D014131 - Trace Elements Although zinc is an essential requirement for good health, excess zinc can be harmful. Excessive absorption of zinc suppresses copper and iron absorption. The free zinc ion in solution is highly toxic to plants, invertebrates, and even vertebrate fish. The Free Ion Activity Model is well-established in the literature, and shows that just micromolar amounts of the free ion kills some organisms. A recent example showed 6 micromolar killing 93\\% of all Daphnia in water.; Binary compounds of zinc are known for most of the metalloids and all the nonmetals except the noble gases. The oxide ZnO is a white powder that is nearly insoluble in neutral aqueous solutions, but is amphoteric, dissolving in both strong basic and acidic solutions. The other chalcogenides (ZnS, ZnSe, and ZnTe) have varied applications in electronics and optics. Pnictogenides (Zn3N2, Zn3P2, Zn3As2 and Zn3Sb2), the peroxide (ZnO2), the hydride (ZnH2), and the carbide (ZnC2) are also known. Of the four halides, ZnF2 has the most ionic character, whereas the others (ZnCl2, ZnBr2, and ZnI2) have relatively low melting points and are considered to have more covalent character.; Brass, which is an alloy of copper and zinc, has been used since at least the 10th century BC. Impure zinc metal was not produced in large scale until the 13th century in India, while the metal was unknown to Europe until the end of the 16th century. Alchemists burned zinc in air to form what they called "philosophers wool" or "white snow". The element was probably named by the alchemist Paracelsus after the German word Zinke. German chemist Andreas Sigismund Marggraf is normally given credit for discovering pure metallic zinc in 1746. Work by Luigi Galvani and Alessandro Volta uncovered the electrochemical properties of zinc by 1800. Corrosion-resistant zinc plating of steel (hot-dip galvanizing) is the major application for zinc. Other applications are in batteries and alloys, such as brass. A variety of zinc compounds are commonly used, such as zinc carbonate and zinc gluconate (as dietary supplements), zinc chloride (in deodorants), zinc pyrithione (anti-dandruff shampoos), zinc sulfide (in luminescent paints), and zinc methyl or zinc diethyl in the organic laboratory.; Cadmium zinc telluride (CZT) is a semiconductive alloy that can be divided into an array of small sensing devices. These devices are similar to an integrated circuit and can detect the energy of incoming gamma ray photons. When placed behind an absorbing mask, the CZT sensor array can also be used to determine the direction of the rays. Zinc is used as the anode or fuel of the zinc-air battery/fuel cell providing the basis of the theorized zinc economy.; Groups at risk for zinc deficiency include the elderly, vegetarians, and those with renal insufficiency. The zinc chelator phytate, found in seeds and cereal bran, can contribute to zinc malabsorption in those with heavily vegetarian diets. There is a paucity of adequate zinc biomarkers, and the most widely used indicator, plasma zinc, has poor sensitivity and specificity. Diagnosing zinc deficiency is a persistent challenge.; In weak basic solutions containing Zn2+ ions, the hydroxide Zn(OH)2 forms as a white precipitate. In stronger alkaline solutions, this hydroxide is dissolved to form zincates ([Zn(OH)4]2?). The nitrate Zn(NO3)2, chlorate Zn(ClO3)2, sulfate ZnSO4, phosphate Zn3(PO4)2, molybdate ZnMoO4, cyanide Zn(CN)2, arsenite Zn(AsO2)2, arsenate Zn(AsO4)2?8H2O and the chromate ZnCrO4 (one of the few colored zinc compounds) are a few examples of other common inorganic compounds of zinc. One of the simplest examples of an organic compound of zinc is the acetate (Zn(O2CCH3)2).; Organozinc compounds are those that contain zinc?carbon covalent bonds. Diethylzinc ((C2H5)2Zn) is a reagent in synthetic chemistry. It was first reported in 1848 from the reaction of zinc and ethyl iodide, and was the first compound known to contain a metal?carbon sigma bond. Decamethyldizincocen...

   

Acetate

Acetate

C2H3O2- (59.0133038)


A monocarboxylic acid anion resulting from the removal of a proton from the carboxy group of acetic acid. Acetate, also known as acetic acid or ethanoate, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Acetate is soluble (in water) and a weakly acidic compound (based on its pKa). Acetate can be found in a number of food items such as pitanga, soursop, green bean, and beech nut, which makes acetate a potential biomarker for the consumption of these food products. Acetate is a non-carcinogenic (not listed by IARC) potentially toxic compound. An acetate is a salt formed by the combination of acetic acid with an alkaline, earthy, or metallic base. "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called an anion) typically found in aqueous solution and written with the chemical formula C2H3O2−. The neutral molecules formed by the combination of the acetate ion and a positive ion (called a cation) are also commonly called "acetates" (hence, acetate of lead, acetate of aluminum, etc.). The simplest of these is hydrogen acetate (called acetic acid) with corresponding salts, esters, and the polyatomic anion CH3CO2−, or CH3COO− . In cases of skin or eye exposure, the area should be flushed with water and burns covered with dry, sterile dressings after decontamination. If ingested, rinse mouth and administer 5 mL/kg up to 200 mL of water for dilution. Watch for signs of respiratory insufficiency and assist respiration if necessary (A569) (T3DB).

   

Prodlure

Prodlure

C16H28O2 (252.20891880000002)


(9Z,?11E)?-?Prodlure ((9Z,11E)-Tetradecadien-1-yl acetate) is the main component of the sex pheromone of female Spodoptera littoralis[1].

   

Cyanate

Cyanate

CNO- (41.997989)


   

Methanesulfonate

Methanesulfonate

CH3O3S- (94.9802908)


A 1,1-diunsubstituted alkanesulfonate that is the conjugate base of methanesulfonic acid.

   

Methylammonium

Methylammonium

CH6N+ (32.0500216)


The conjugate acid of methylamine; major species at pH 7.3.

   

2,4-Dinitrophenolate

2,4-Dinitrophenolate

C6H3N2O5- (183.0041968)


   

2-Methylpropanoate

2-Methylpropanoate

C4H7O2- (87.0446022)


   

(5S)-5-ammonio-3-oxohexanoate

(5S)-5-ammonio-3-oxohexanoate

C6H11NO3 (145.0738896)


   
   

ADENOSINE 2,3-CYCLIC MONOPHOSPHATE

ADENOSINE 2,3-CYCLIC MONOPHOSPHATE

C10H11N5O6P- (328.0446936)


   

tungstate

tungstate

O4W-2 (247.930613)


   

Glucosyl salicylate

Glucosyl salicylate

C13H16O8 (300.0845136)


   
   

4-Amino-4-deoxychorismate(1-)

4-Amino-4-deoxychorismate(1-)

C10H10NO5- (224.05589500000002)


A dicarboxylic acid monoanion that is the conjugate base of 4-amino-4-deoxychorismic acid.

   

24-Epicastasterone

24-Epicastasterone

C28H48O5 (464.3501558)


24-Epicastasterone (24-epi-Castasterone), a brassinosteroid, is a nature product that could be isolated from Hydrodictyon reticulatwn[1].

   

N-(3-Oxotetradecanoyl)-DL-homoserine lactone

N-(3-Oxotetradecanoyl)-DL-homoserine lactone

C18H31NO4 (325.22529660000004)


N-(3-Oxotetradecanoyl)-DL-homoserine lactone, a member of N-Acyl homoserine lactone (AHL) from gram-negative bacteria, is a quorum sensing (QS) signaling molecule[1][2].

   
   
   

L-histidinol(1+)

L-histidinol(1+)

C6H12N3O+ (142.09803219999998)


An ammonium ion that is the conjugate acid of L-histidinol arising from protonation of the primary amino function; major species at pH 7.3.

   

Guanidine hydrochloride

Guanidine hydrochloride

CH6ClN3 (95.0250226)


Guanidine hydrochloride (Guanidinium chloride) a strong chaotrope, is also a strong denaturant of proteins[1][2].

   

Thiocyanate

Thiocyanogen ((SCN)2(1-))

CNS- (57.975145999999995)


Thiocyanate is analogous to the cyanate ion, [OCN]-, wherein oxygen is replaced by sulfur. [SCN]- is one of the pseudohalogens, due to the similarity of its reactions to that of halide ions. Thiocyanate was formerly known as rhodanide (from a Greek word for rose) because of the red color of its complexes with iron. Thiocyanates are typically colorless. Cyanide ions can react with cystine to yield thicocyanate. This reaction occurs to a slight extent even in neutral solution, but is more pronounced in alkaline solutions of cystine. In addition to this non-enzymatic route, cyanide produced in vivo can be converted in part to thiocyanate by sulfur transferase systems. The thiocyanate ion can be oxidized at acid pH by hydrogen peroxide to generate sulfate and cyanide. The reaction is catalyzed by hemoglobin acting as a peroxidase. Thiocyanate is analogous to the cyanate ion, [OCN]-, wherein oxygen is replaced by sulfur. [SCN]- is one of the pseudohalogens, due to the similarity of its reactions to that of halide ions. Thiocyanate was formerly known as rhodanide (from a Greek word for rose) because of the red color of its complexes with iron. Thiocyanates are typically colorless. Cyanide ions can react with cystine to yield thicocyanate. This reaction occurs to a slight extent even in neutral solution, but is more pronounced in alkaline solutions of cystine. In addition to this non-enzymatic route, cyanide produced in vivo can be converted in part to thiocyanate by sulfur transferase systems. The thiocyanate ion can be oxidized at acid pH by hydrogen peroxide to generate sulfate and cyanide. The reaction is catalyzed by hemoglobin acting as a peroxidase. A study shows that thiocyanate has a protective effect in lung in cystic fibrosis, and an anti-inflammatory effect in arterial endothelial cells, a neuronal cell line, and a pancreatic beta cell line (PMID: 19918082). Thiocyanate has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821).

   

Phenol, 4-[2-(3-hydroxy-5-methoxyphenyl)ethyl]-2-methoxy-

Phenol, 4-[2-(3-hydroxy-5-methoxyphenyl)ethyl]-2-methoxy-

C16H18O4 (274.1205028)


Gigantol is a natural product that could be isolated from Cymbidium giganteum. Gigantol is a potent inhibitor of the spontaneous contractions of the guinea-pig ileum[1].

   

2-Phenylethanaminium

2-Phenylethanaminium

C8H12N+ (122.09696919999999)


The cation obtained by protonation of the amino group of 2-phenylethylamine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

D-Glycerate

D-Glycerate

C3H5O4- (105.01878300000001)


A glycerate that is the conjugate base of D-glyceric acid, obtained by deprotonation of the carboxy group.

   

Trimethylammonium

Trimethylammonium

C3H10N+ (60.08132)


An ammonium ion that is the conjugate acid of trimethylamine, obtained via protonation of the nitrogen; major species at pH 7.3.

   

3-Hydroxypropionate

3-Hydroxypropionate

C3H5O3- (89.02386800000001)


A hydroxy monocarboxylic acid anion that is the conjugate base of 3-hydroxypropionic acid.

   
   

4-Ammoniobutanal

4-Ammoniobutanal

C4H10NO+ (88.07623500000001)


An ammonium ion that is the conjugate acid of 4-aminobutanal; major species at pH 7.3.

   

Porphobilinogen(1-)

Porphobilinogen(1-)

C10H13N2O4- (225.0875278)


Conjugate base of porphobilinogen arising from deprotonation of the two carboxy groups and protonation of the amino group; major species at pH 7.3. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

leukotriene B4(1-)

leukotriene B4(1-)

C20H31O4- (335.2222226)


The leukotriene anion that is the conjugate base of leukotriene B4 arising from deprotonation of the carboxylic acid function.

   

prostaglandin D2(1-)

prostaglandin D2(1-)

C20H31O5- (351.2171376)


A prostaglandin carboxylic acid anion that is the conjugate base of prostaglandin D2., obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(Z)-But-2-ene-1,2,3-tricarboxylate

(Z)-But-2-ene-1,2,3-tricarboxylate

C7H5O6 (185.008613)


Tricarboxylate anion of (2Z)-but-2-ene-1,2,3-tricarboxylic acid; major species at pH 7.3.

   

prostaglandin H2(1-)

prostaglandin H2(1-)

C20H31O5- (351.2171376)


Conjugate base of prostaglandin H2.

   

4-Amino-2-methyl-5-(diphosphooxymethyl)pyrimidine

4-Amino-2-methyl-5-(diphosphooxymethyl)pyrimidine

C6H8N3O7P2-3 (295.9837498)


   

Oxalurate

Oxalurate

C3H3N2O4- (131.0092818)


The conjugate base of oxaluric acid; major species at pH 7.3.

   
   
   

(R)-Lipoate

(R)-Lipoate

C8H13O2S2- (205.0356938)


A lipoate that is the conjugate base of (R)-lipoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(R)-Rosmarinate

(R)-Rosmarinate

C18H15O8- (359.076689)


A stereoisomer of rosmarinate having (R)-configuration.

   

N-Benzoylanthranilate

N-Benzoylanthranilate

C14H10NO3- (240.066065)


   
   

D-lysinium(1+)

D-lysinium(1+)

C6H15N2O2+ (147.113347)


An optically active form of lysinium having D-configuration.

   

Pyridoxamine 5-phosphate(1-)

Pyridoxamine 5-phosphate(1-)

C8H12N2O5P- (247.04838119999997)


An organophosphate oxoanion that is the conjugate base of pyridoxamine 5-phosphate. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(2R)-2-ammoniopentanedioate

(2R)-2-ammoniopentanedioate

C5H8NO4- (146.0453308)


   
   

Succinamate

Succinamate

C4H6NO3- (116.0347666)


A monocarboxylic acid anion resulting from the deprotonation of the carboxy group of succinamic acid; major species at pH 7.3.

   
   

(R)-10-Hydroxystearate

(R)-10-Hydroxystearate

C18H35O3- (299.258606)


   

(R)-reticulinium(1+)

(R)-reticulinium(1+)

C19H24NO4+ (330.17052440000003)


The conjugate acid of (R)-reticuline; major species at pH 7.3.

   

1D-myo-inositol 1,2-cyclic phosphate(1-)

1D-myo-inositol 1,2-cyclic phosphate(1-)

C6H10O8P- (241.01132900000002)


   

(Z)-3-hydroxy-3-oxo-1-phenylprop-1-en-2-olate

(Z)-3-hydroxy-3-oxo-1-phenylprop-1-en-2-olate

C9H7O3- (163.0395172)


   

asperphenamate

asperphenamate

C32H30N2O4 (506.220546)


Asperphenamate, a fungal metabolite of Aspergillus flatiipes with anti-cancer effect, exhibits IC50 values of 92.3 μM, 96.5 μM and 97.9 μM in T47D, MDA-MB-231 and HL-60 cells, respectively[1][2].

   

leukotriene A4(1-)

leukotriene A4(1-)

C20H29O3- (317.21165840000003)


The leukotriene anion that is the conjugate base of leukotriene A4 arising from deprotonation of the carboxylic acid group. Major microspecies at pH 7.3.

   

hydroxymalonate(2-)

hydroxymalonate(2-)

C3H2O5 (117.9902242)


   

beta-D-fructofuranose 1,6-bisphosphate(4-)

beta-D-fructofuranose 1,6-bisphosphate(4-)

C6H10O12P2 (335.96475200000003)


A D-fructofuranose 1,6-bisphosphate(4-) that is the conjugate base of beta-D-fructofuranose 1,6-bisphosphate.

   

Precorrin-2(7-)

Precorrin-2(7-)

C42H41N4O16 (857.2517445999999)


Heptaanionic form of precorrin-2.

   

Protoporphyrinogen(2-)

Protoporphyrinogen(2-)

C34H38N4O4 (566.2892908)


Dicarboxylate anion of protoporphyrinogen.

   

(R)-5-phosphonatomevalonate(3-)

(R)-5-phosphonatomevalonate(3-)

C6H10O7P (225.016414)


Trianion of (R)-5-phosphomevalonic acid arising from deprotonation of the carboxy and phosphate OH groups; major species at pH 7.3.

   

UDP-alpha-D-xylose(2-)

UDP-alpha-D-xylose(2-)

C14H20N2O16P2 (534.028806)


Dianion of UDP-alpha-D-xylose arising from deprotonation of both free diphosphate OH groups.

   

D-xylulose 5-phosphate(2-)

D-xylulose 5-phosphate(2-)

C5H9O8P (228.0035044)


An organophosphate oxoanion that is the dianion of D-xylulose 5-phosphate arising from deprotonation of the phosphate OH groups; major species at pH 7.3.

   

isovaleryl-CoA(4-)

isovaleryl-CoA(4-)

C26H40N7O17P3S (847.141418)


A short chain fatty acyl-CoA(4-) that is the tetraanion of isovaleryl-CoA arising from deprotonation of phosphate and diphosphate functions.

   

D-glyceraldehyde 3-phosphate(2-)

D-glyceraldehyde 3-phosphate(2-)

C3H5O6P (167.98237600000002)


Dianion of D-glyceraldehyde 3-phosphate arising from deprotonation of both OH groups of the phosphate.

   

3-(Imidazol-4-yl)-2-oxopropyl phosphate(2-)

3-(Imidazol-4-yl)-2-oxopropyl phosphate(2-)

C6H7N2O5P (218.0092582)


Dianion of 3-(imidazol-4-yl)-2-oxopropyl dihydrogen phosphate arising from deprotonation of both phosphate OH groups; major species at pH 7.3.

   

D-ribulose 5-phosphate(2-)

D-ribulose 5-phosphate(2-)

C5H9O8P (228.0035044)


An organophosphate oxoanion that is the dianion resulting from the removal of two protons from the phosphate group of D-ribulose 5-phosphate.

   

2-methylacetoacetyl-CoA(4-)

2-methylacetoacetyl-CoA(4-)

C26H38N7O18P3S (861.1206838)


An acyl-CoA(4-) that is the tetraanion of 2-methylacetoacetyl-CoA, arising from deprotonation of phosphate and diphosphate functions.

   

FMNH2(2-)

FMNH2(2-)

C17H21N4O9P (456.10461060000006)


Dianion of reduced flavin mononucleotide arising from deprotonation of both phosphate OH groups.

   

alpha-D-glucose 1-phosphate(2-)

alpha-D-glucose 1-phosphate(2-)

C6H11O9P (258.01406860000003)


An organophosphate oxoanion that is the dianion of alpha-D-glucose 1-phosphate, obtained by deprotonation of the phosphate OH groups.

   

alpha,alpha-Trehalose 6-phosphate(2-)

alpha,alpha-Trehalose 6-phosphate(2-)

C12H21O14P (420.0668896)


Dianion of alpha,alpha-trehalose 6-phosphate.

   

arsenate(2-)

arsenate(2-)

AsHO4 (139.9090806)


An arsenate ion resulting from the removal of two protons from arsenic acid.

   

D-erythrose 4-phosphate(2-)

D-erythrose 4-phosphate(2-)

C4H7O7P (197.9929402)


   

stearoyl-CoA(4-)

stearoyl-CoA(4-)

C39H66N7O17P3S (1029.3448576)


An acyl-CoA(4-) arising from deprotonation of phosphate and diphosphate functions of stearoyl-CoA.

   

trans-4-carboxybut-2-enoyl-CoA(5-)

trans-4-carboxybut-2-enoyl-CoA(5-)

C26H35N7O19P3S (874.092125)


Pentaanion of trans-4-carboxybut-2-enoyl-CoA arising from deprotonation of phosphate, diphosphate and carboxylic acid functions.

   

methacrylyl-CoA(4-)

methacrylyl-CoA(4-)

C25H36N7O17P3S (831.1101196000001)


Tetraanion of methacrylyl-CoA arising from deprotonation of the phosphate and diphosphate functions; principal microspecies at pH 7.3.

   

dTDP-6-deoxy-beta-L-mannose(2-)

dTDP-6-deoxy-beta-L-mannose(2-)

C16H24N2O15P2 (546.0651894)


Dianion of dTDP-6-deoxy-beta-L-mannose arising from deprotonation of both free OH groups of the diphosphate.

   

1D-myo-inositol 4-phosphate(2-)

1D-myo-inositol 4-phosphate(2-)

C6H11O9P (258.01406860000003)


Dianion of 1D-myo-inositol 4-phosphate.

   
   

UTP(4-)

UTP(4-)

C9H11N2O15P3 (479.9372326)


A nucleoside triphosphate(4-) obtained by global deprotonation of the triphosphate OH groups of UTP; major species present at pH 7.3.

   

acryloyl-CoA(4-)

acryloyl-CoA(4-)

C24H34N7O17P3S (817.0944704000001)


Tetraanion of acryloyl-CoA arising from deprotonation of phosphate and diphosphate functions.

   

lauroyl-CoA(4-)

lauroyl-CoA(4-)

C33H54N7O17P3S (945.2509624)


An acyl-CoA(4-) arising from deprotonation of phosphate and diphosphate functions of lauroyl-CoA; major species at pH 7.3.

   

Preuroporphyrinogen(8-)

Preuroporphyrinogen(8-)

C40H38N4O17 (846.2231858)


Octaanion of preuroporphyrinogen arising from global deprotonation of the eight carboxy groups; major species at pH 7.3.

   

Carbamoyl phosphate(2-)

Carbamoyl phosphate(2-)

CH2NO5P (138.9670612)


A doubly-charged organophosphate oxoanion arising from deprotonation of the phosphate OH groups of carbamoyl phosphate; major species at pH 7.3.

   

1D-myo-inositol 1,4-bisphosphate(4-)

1D-myo-inositol 1,4-bisphosphate(4-)

C6H10O12P2 (335.96475200000003)


An organophosphate oxoanion arising from deprotonation of the phosphate OH groups of 1D-myo-inositol 1,4-bisphosphate; major species at pH 7.3.

   

1D-myo-inositol 1,4,5-trisphosphate(6-)

1D-myo-inositol 1,4,5-trisphosphate(6-)

C6H9O15P3 (413.91543540000004)


Hexaanion of 1D-myo-inositol 1,4,5-trisphosphate arising from glabal deprotonation of the phosphate OH groups; major species at pH 7.3.

   

D-glucarate(2-)

D-glucarate(2-)

C6H8O8 (208.02191679999999)


Dicarboxylate anion of D-glucaric acid; major species at pH 7.3.

   

D-citramalate(2-)

D-citramalate(2-)

C5H6O5 (146.0215226)


A citramalate(2-) that is the conjugate base of D-citramalic acid.

   

(R)-5-diphosphonatomevalonate(4-)

(R)-5-diphosphonatomevalonate(4-)

C6H10O10P2 (303.974922)


An organophosphate oxoanion arising from deprotonation of carboxylic acid and phosphate functions of (R)-5-diphosphomevalonic acid.

   

hexanoyl-CoA(4-)

hexanoyl-CoA(4-)

C27H42N7O17P3S (861.1570672000001)


An acyl-CoA(4-) oxoanion arising from deprotonation of the phosphate and diphosphate OH groups of hexanoyl-CoA; major species at pH 7.3.

   

succinyl-CoA(5-)

succinyl-CoA(5-)

C25H35N7O19P3S (862.092125)


An acyl-CoA oxoanion that is the pentaanion of succinyl-CoA, arising from deprotonation of the phosphate, diphosphate and carboxylic acid OH groups.

   

pyridoxine 5-phosphate(2-)

pyridoxine 5-phosphate(2-)

C8H10NO6P (247.024573)


Dianion of pyridoxine 5-phosphate.

   

L-rhamnulose 1-phosphate(2-)

L-rhamnulose 1-phosphate(2-)

C6H11O8P (242.0191536)


An organophosphate oxoanion arising from deprotonation of the phosphate OH groups of L-rhamnulose 1-phosphate; major species at pH 7.3.

   

3-phosphonato-5-adenylyl Sulfate(4-)

3-phosphonato-5-adenylyl Sulfate(4-)

C10H11N5O13P2S (502.9549336)


A quadruply-charged organophosphate oxoanion arising from deprotonation of the phosphate and sufate groups of 3-phosphonato-5-adenylyl sulfate; major species at pH 7.3.

   

Sirohydrochlorin(8-)

Sirohydrochlorin(8-)

C42H38N4O16 (854.2282708)


An octuply-charged cyclic tetrapyrrole anion arising from global deprotonation of the carboxy groups of sirohydrochlorin; major species at pH 7.3.

   

3-phosphonatooxypyruvate(3-)

3-phosphonatooxypyruvate(3-)

C3H2O7P (180.95381719999997)


A carboxyalkyl phosphate oxoanion resuting from deprotonation of the carboxy and phosphate groups of 3-phosphooxypyruvic acid.