Chemical Formula: H3N

Chemical Formula H3N

Found 5 metabolite its formula value is H3N

ammonia

N-acetyl-α-D-glucosamine 1-phosphate

H3N (17.0265478)


An azane that consists of a single nitrogen atom covelently bonded to three hydrogen atoms. Ammonia, also known as nh3 or ammonia solution, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Ammonia can be found in a number of food items such as rose hip, yardlong bean, cereals and cereal products, and ceylon cinnamon, which makes ammonia a potential biomarker for the consumption of these food products. Ammonia can be found primarily in blood, cellular cytoplasm, cerebrospinal fluid (CSF), and urine, as well as throughout all human tissues. Ammonia exists in all eukaryotes, ranging from yeast to humans. In humans, ammonia is involved in several metabolic pathways, some of which include glucose-alanine cycle, phenylalanine and tyrosine metabolism, homocysteine degradation, and d-arginine and d-ornithine metabolism. Ammonia is also involved in several metabolic disorders, some of which include ureidopropionase deficiency, hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], non ketotic hyperglycinemia, and beta-mercaptolactate-cysteine disulfiduria. Moreover, ammonia is found to be associated with 3-Hydroxy-3-methylglutaryl-CoA lyase deficiency, 3-Methyl-crotonyl-glycinuria, citrullinemia type I, and short bowel syndrome. Ammonia is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ammonia or azane is a compound of nitrogen and hydrogen with the formula NH3. The simplest pnictogen hydride, ammonia is a colourless gas with a characteristic pungent smell. It is a common nitrogenous waste, particularly among aquatic organisms, and it contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizers. Ammonia, either directly or indirectly, is also a building block for the synthesis of many pharmaceutical products and is used in many commercial cleaning products . Acute Exposure: EYES: irrigate opened eyes for several minutes under running water. INGESTION: do not induce vomiting. Rinse mouth with water (never give anything by mouth to an unconscious person). Seek immediate medical advice. SKIN: should be treated immediately by rinsing the affected parts in cold running water for at least 15 minutes, followed by thorough washing with soap and water. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. INHALATION: supply fresh air. If required provide artificial respiration. (z)-n-coumaroyl-5-hydroxyanthranilic acid is a member of the class of compounds known as avenanthramides. Avenanthramides are a group of phenolic alkaloids consisting of conjugate of three phenylpropanoids (ferulic, caffeic, or p-coumaric acid) and anthranilic acid (z)-n-coumaroyl-5-hydroxyanthranilic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). (z)-n-coumaroyl-5-hydroxyanthranilic acid can be found in cereals and cereal products and oat, which makes (z)-n-coumaroyl-5-hydroxyanthranilic acid a potential biomarker for the consumption of these food products.

   

Ammonia

Ammonia (CONC 20\\% or greater)

H3N (17.0265478)


Ammonia is a colourless alkaline gas and is one of the most abundant nitrogen-containing compounds in the atmosphere. It is an irritant with a characteristic pungent odor that is widely used in industry. Inasmuch as ammonia is highly soluble in water and, upon inhalation, is deposited in the upper airways, occupational exposures to ammonia have commonly been associated with sinusitis, upper airway irritation, and eye irritation. Acute exposures to high levels of ammonia have also been associated with diseases of the lower airways and interstitial lung. Small amounts of ammonia are naturally formed in nearly all tissues and organs of the vertebrate organism. Ammonia is both a neurotoxin and a metabotoxin. In fact, it is the most common endogenous neurotoxin. A neurotoxin is a compound that causes damage to neural tissue and neural cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Ammonia is recognized to be central in the pathogenesis of a brain condition known as hepatic encephalopathy, which arises from various liver diseases and leads to a build up ammonia in the blood (hyperammonemia). More than 40\\% of people with cirrhosis develop hepatic encephalopathy. Part of the neurotoxicity of ammonia arises from the fact that it easily crosses the blood-brain barrier and is absorbed and metabolized by the astrocytes, a population of cells in the brain that constitutes 30\\% of the cerebral cortex. Astrocytes use ammonia when synthesizing glutamine from glutamate. The increased levels of glutamine lead to an increase in osmotic pressure in the astrocytes, which become swollen. There is increased activity of the inhibitory gamma-aminobutyric acid (GABA) system, and the energy supply to other brain cells is decreased. This can be thought of as an example of brain edema. The source of the ammonia leading to hepatic encaphlopahy is not entirely clear. The gut produces ammonia, which is metabolized in the liver, and almost all organ systems are involved in ammonia metabolism. Colonic bacteria produce ammonia by splitting urea and other amino acids, however this does not fully explain hyperammonemia and hepatic encephalopathy. The alternative explanation is that hyperammonemia is the result of intestinal breakdown of amino acids, especially glutamine. The intestines have significant glutaminase activity, predominantly located in the enterocytes. On the other hand, intestinal tissues only have a little glutamine synthetase activity, making it a major glutamine-consuming organ. In addition to the intestine, the kidney is an important source of blood ammonia in patients with liver disease. Ammonia is also taken up by the muscle and brain in hepatic coma, and there is confirmation that ammonia is metabolized in muscle. Excessive formation of ammonia in the brains of Alzheimers disease patients has also been demonstrated, and it has been shown that some Alzheimers disease patients exhibit elevated blood ammonia concentrations. Ammonia is the most important natural modulator of lysosomal protein processing. Indeed, there is strong evidence for the involvement of aberrant lysosomal processing of beta-amyloid precursor protein (beta-APP) in the formation of amyloid deposits. Inflammatory processes and activation of microglia are widely believed to be implicated in the pathology of Alzheimers disease. Ammonia is able to affect the characteristic functions of microglia, such as endocytosis, and cytokine production. Based on these facts, an ammonia-based hypothesis for Alzheimers disease has been suggested (PMID: 17006913, 16167195, 15377862, 15369278). Chronically high levels of ammonia in the blood are associated with nearly twenty different inborn errors of metabolism including: 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, 3-methyl-crotonylglycinuria, argininemia, argininosuccinic aciduria, beta-ketothiolase deficiency, biotinidase deficiency, carbamoyl phosphate synthetase... Ammonia is a colourless gas with a characteristic pungent odour. Ammonia contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizers. Ammonia, either directly or indirectly, is also a building block for the synthesis of many pharmaceuticals. Although in wide use, ammonia is both caustic and hazardous. Ammonia is found in many foods, some of which are spinach, common beet, ucuhuba, and oriental wheat.

   

Ammonia water-15N

Ammonia water-15N

H3N (17.0265478)


   

Amine modified polyether acrylate

Amine modified polyether acrylate

H3N (17.0265478)


   

Ammonia N-13

Ammonia N-13

H3N (17.0265478)


V - Various > V09 - Diagnostic radiopharmaceuticals > V09G - Cardiovascular system C1446 - Radiopharmaceutical Compound