formate (BioDeep_00000229043)
Secondary id: BioDeep_00001872093
human metabolite
代谢物信息卡片
化学式: CHO2- (44.997654600000004)
中文名称: 草氨酸, 甲酸
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(=O)[O-]
InChI: InChI=1S/CH2O2/c2-1-3/h1H,(H,2,3)/p-1
描述信息
Formate, also known as formic acid or methanoic acid, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Formate is soluble (in water) and a weakly acidic compound (based on its pKa). Formate can be found in a number of food items such as mammee apple, chicory roots, malabar spinach, and grapefruit, which makes formate a potential biomarker for the consumption of these food products. Formate (IUPAC name: methanoate) is the anion derived from formic acid. Its formula is represented in various equivalent ways: CHOO‚àí or HCOO‚àí or HCO2‚àí. It is the product of deprotonation of formic acid. It is the simplest carboxylate anion. A formate (compound) is a salt or ester of formic acid .
Formate, also known as formic acid or methanoic acid, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Formate is soluble (in water) and a weakly acidic compound (based on its pKa). Formate can be found in a number of food items such as mammee apple, chicory roots, malabar spinach, and grapefruit, which makes formate a potential biomarker for the consumption of these food products. Formate (IUPAC name: methanoate) is the anion derived from formic acid. Its formula is represented in various equivalent ways: CHOO− or HCOO− or HCO2−. It is the product of deprotonation of formic acid. It is the simplest carboxylate anion. A formate (compound) is a salt or ester of formic acid .
同义名列表
61 个代谢物同义名
Formic acid, cromium (+3), sodium (4:1:1) salt; Formic acid, sodium salt, 14C-labeled; Formic acid, sodium salt, 13C-labeled; Formic acid, copper, ammonium salt; Formic acid, ammonium (2:1) salt; Formic acid, ammonium (4:1) salt; Formic acid, copper, nickel salt; Formic acid, thallium (+1) salt; Formic acid, cromium (+3) salt; Formic acid, cobalt (+2) salt; Formic acid, copper (+2) salt; Formic acid, nickel (+2) salt; Cobalt(II) formate dihydrate; Formic acid, lead (+2) salt; Formic acid, strontium salt; Formic acid, magnesium salt; Formic acid, potassium salt; Formic acid, aluminum salt; Formic acid, ammonium salt; Formic acid, rubidium salt; Formic acid, lithium salt; Formic acid, cadmium salt; Formic acid, calcium salt; Formic acid, 14C-labeled; Formic acid, nickel salt; Hydrogen carboxylic acid; Formic acid, sodium salt; Nickel formate dihydrate; Formic acid, copper salt; Formic acid, cesium salt; Formic acid, zinc salt; Formic acid, lead salt; Ammonium tetraformate; Formic acid, ion(1-); Hydrogen carboxylate; Potassium formate; Strontium formate; Magnesium formate; Cobaltous formate; Formate, ion(1-); Aluminum formate; Ammonium formate; Calcium formate; Chromic formate; Lithium formate; Cupric formate; sodium formate; Nickel formate; Methanoic acid; Formylic acid; Lead formate; Zinc formate; Formiic acid; Aminic acid; formic acid; HCO2 Anion; Methanoate; Formylate; Formiate; formate; Aminate
数据库引用编号
9 个数据库交叉引用编号
- ChEBI: CHEBI:15740
- ChEBI: CHEBI:35757
- PubChem: 283
- HMDB: HMDB0304356
- ChEMBL: CHEMBL183491
- Wikipedia: Formate
- MetaCyc: FORMATE
- foodb: FDB030863
- CAS: 71-47-6
分类词条
相关代谢途径
Reactome(23)
- Metabolism
- Biological oxidations
- Phase I - Functionalization of compounds
- Metabolism of vitamins and cofactors
- Phase II - Conjugation of compounds
- Amino acid and derivative metabolism
- Metabolism of lipids
- Metabolism of steroids
- Cholesterol biosynthesis
- Metabolism of cofactors
- Cytochrome P450 - arranged by substrate type
- Fatty acid metabolism
- Metabolism of water-soluble vitamins and cofactors
- Tryptophan catabolism
- Endogenous sterols
- Peroxisomal lipid metabolism
- Sulfur amino acid metabolism
- Glutathione conjugation
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation
- Alpha-oxidation of phytanate
- Metabolism of steroid hormones
- Estrogen biosynthesis
- Metabolism of folate and pterines
BioCyc(68)
- superpathway of N-acetylneuraminate degradation
- superpathway of chorismate metabolism
- plant sterol biosynthesis
- superpathway of tryptophan utilization
- superpathway of melatonin degradation
- melatonin degradation III
- base-degraded thiamine salvage
- base-degraded thiamin salvage
- formaldehyde oxidation
- methanol oxidation to carbon dioxide
- superpathway of C1 compounds oxidation to CO2
- formaldehyde oxidation III (mycothiol-dependent)
- formaldehyde oxidation II (glutathione-dependent)
- formaldehyde oxidation V (bacillithiol-dependent)
- formaldehyde oxidation IV (thiol-independent)
- formaldehyde oxidation VII (THF pathway)
- formaldehyde oxidation VI (H4MPT pathway)
- colchicine biosynthesis
- formaldehyde oxidation V (tetrahydrofolate pathway)
- formaldehyde oxidation V (H4MPT pathway)
- 6-hydroxymethyl-dihydropterin diphosphate biosynthesis IV (Plasmodium)
- formate to dimethyl sulfoxide electron transfer
- superpathway of nicotine biosynthesis
- L-tryptophan degradation I (via anthranilate)
- formate oxidation to CO2
- mixed acid fermentation
- nicotine degradation II (pyrrolidine pathway)
- nicotinate degradation I
- lolitrem B biosynthesis
- plant sterol biosynthesis II
- superpathway of tetrahydrofolate biosynthesis
- superpathway of tetrahydrofolate biosynthesis and salvage
- flavin biosynthesis II (archaea)
- tryptophan degradation III (eukaryotic)
- purine nucleotides degradation III (anaerobic)
- purine nucleotides degradation IV (anaerobic)
- folate transformations II (plants)
- glycine degradation I
- Methanobacterium thermoautotrophicum biosynthetic metabolism
- superpathway of ergosterol biosynthesis I
- superpathway of ergosterol biosynthesis
- superpathway of 5-aminoimidazole ribonucleotide biosynthesis
- 5-aminoimidazole ribonucleotide biosynthesis II
- grixazone biosynthesis
- hexitol fermentation to lactate, formate, ethanol and acetate
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- purine nucleobases degradation I (anaerobic)
- purine nucleobases degradation II (anaerobic)
- superpathway of aromatic compound degradation via 3-oxoadipate
- drosopterin and aurodrosopterin biosynthesis
- oxalate degradation V
- phosphinothricin tripeptide biosynthesis
- meta cleavage pathway of aromatic compounds
- catechol degradation I (meta-cleavage pathway)
- mandelate degradation to acetyl-CoA
- superpathway of L-threonine metabolism
- erythro-tetrahydrobiopterin biosynthesis I
- zymosterol biosynthesis
- cholesterol biosynthesis I
- cholesterol biosynthesis III (via desmosterol)
- superpathway of cholesterol biosynthesis
- nitrate reduction III (dissimilatory)
- pyruvate fermentation to ethanol I
- cyanide detoxification II
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
- L-methionine salvage cycle I (bacteria and plants)
- L-methionine salvage cycle II (plants)
- paxilline and diprenylpaxilline biosynthesis
PlantCyc(0)
代谢反应
510 个相关的代谢反应过程信息。
Reactome(234)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + Q0VCN9 ⟶ FOLR2:FOLA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + H+ + TPNH ⟶ DHF + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of folate and pterines:
A0A5F4C041 + FOLA ⟶ FOLR2:FOLA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + folr ⟶ FOLR2:FOLA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + H+ + TPNH ⟶ DHF + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + H+ + TPNH ⟶ DHF + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
F1N9X0 + FOLA ⟶ FOLR2:FOLA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + FOLR2_HUMAN ⟶ FOLR2:FOLA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + Folr2 ⟶ FOLR2:FOLA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of water-soluble vitamins and cofactors:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of folate and pterines:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
D4A4S5 + FOLA ⟶ FOLR2:FOLA
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of folate and pterines:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of folate and pterines:
FOLA + H+ + TPNH ⟶ DHF + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
A0A5G2QLX9 + FOLA ⟶ FOLR2:FOLA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + H+ + TPNH ⟶ DHF + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Endogenous sterols:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Estrogen biosynthesis:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Endogenous sterols:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Endogenous sterols:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
11-deoxycortisol ⟶ 11DCORT
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Estrogen biosynthesis:
EST17b + TPN ⟶ H+ + TPNH + estrone
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
CysGly + H2O ⟶ Gly + L-Cys
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
PAPS + beta-estradiol ⟶ E2-SO4 + PAP
- Glutathione conjugation:
CysGly + H2O ⟶ Gly + L-Cys
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
GTP + H2O ⟶ DHNTP + HCOOH
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Cholesterol biosynthesis:
H+ + LAN + Oxygen + TPNH ⟶ 4,4DMCHtOL + H2O + HCOOH + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Endogenous sterols:
H+ + LAN + Oxygen + TPNH ⟶ 4,4DMCHtOL + H2O + HCOOH + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
H+ + LAN + Oxygen + TPNH ⟶ 4,4DMCHtOL + H2O + HCOOH + TPN
- Endogenous sterols:
H+ + LAN + Oxygen + TPNH ⟶ 4,4DMCHtOL + H2O + HCOOH + TPN
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
H+ + LAN + Oxygen + TPNH ⟶ 4,4DMCHtOL + H2O + HCOOH + TPN
- Endogenous sterols:
H+ + LAN + Oxygen + TPNH ⟶ 4,4DMCHtOL + H2O + HCOOH + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
BioCyc(205)
- NAD de novo biosynthesis:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- tryptophan degradation:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-kynurenine degradation:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- superpathway of tryptophan utilization:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation I (via anthranilate):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate:
O2 + catechol ⟶ H+ + HMS
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + catechol ⟶ H+ + HMS
- L-tryptophan degradation IX:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation III (eukaryotic):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation XII (Geobacillus):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation XI (mammalian, via kynurenine):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- 3-hydroxy-4-methyl-anthranilate biosynthesis I:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- 3-hydroxy-4-methyl-anthranilate biosynthesis II:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- NAD de novo biosynthesis II (from tryptophan):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- superpathway of NAD biosynthesis in eukaryotes:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- NAD de novo biosynthesis:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
O2 + trp ⟶ N-formylkynurenine
- L-tryptophan degradation I (via anthranilate):
O2 + trp ⟶ N-formylkynurenine
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + trp ⟶ N-formylkynurenine
- L-tryptophan degradation I (via anthranilate):
O2 + trp ⟶ N-formylkynurenine
- L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
O2 + trp ⟶ N-formylkynurenine
- L-tryptophan degradation XI (mammalian, via kynurenine):
O2 + trp ⟶ N-formylkynurenine
- L-tryptophan degradation III (eukaryotic):
O2 + trp ⟶ N-formylkynurenine
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylthio)pent-1-en-3-one + O2 ⟶ 3-(methylthio)propanoate + CO + H+ + formate
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
5-amino-1-(5-phospho-β-D-ribosyl)imidazole + SAM ⟶ 4-amino-2-methyl-5-phosphomethylpyrimidine + 5'-deoxyadenosine + H+ + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- methylthiopropionate biosynthesis:
1,2-dihydroxy-5-(methylthio)pent-1-en-3-one + O2 ⟶ 3-S-methylthiopropionate + H+ + carbon monoxide + formate
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
4-amino-2-methyl-5-phosphomethylpyrimidine + ATP ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
5-amino-1-(5-phospho-D-ribosyl)imidazole + SAM ⟶ 4-amino-2-methyl-5-phosphomethylpyrimidine + 5'-deoxyadenosine + H+ + carbon monoxide + formate + met
- methylthiopropionate biosynthesis:
1,2-dihydroxy-5-(methylthio)pent-1-en-3-one + O2 ⟶ 3-S-methylmercaptopropionate + H+ + carbon monoxide + formate
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
5-amino-1-(5-phospho-D-ribosyl)imidazole + SAM ⟶ 4-amino-2-methyl-5-phosphomethylpyrimidine + 5'-deoxyadenosine + H+ + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + H+ + HMP-P + carbon monoxide + formate + met
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of melatonin degradation:
hydrogen peroxide + melatonin ⟶ N1-acetyl-N2-formyl-5-methoxykynuramine + H2O
- melatonin degradation III:
hydrogen peroxide + melatonin ⟶ N1-acetyl-N2-formyl-5-methoxykynuramine + H2O
- superpathway of melatonin degradation:
N1-acetyl-N2-formyl-5-methoxykynuramine + H2O ⟶ N-acetyl-5-methoxykynurenamine + H+ + formate
- melatonin degradation III:
N1-acetyl-N2-formyl-5-methoxykynuramine + H2O ⟶ N-acetyl-5-methoxykynurenamine + H+ + formate
- reductive acetyl coenzyme A pathway I (homoacetogenic bacteria):
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- carbon tetrachloride degradation II:
A(H2) + carbon tetrachloride ⟶ A + H+ + chloride + trichloromethyl radical
- methanol oxidation to carbon dioxide:
MeOH + NAD+ ⟶ H+ + NADH + formaldehyde
- formaldehyde oxidation III (mycothiol-dependent):
S-formylmycothiol + H2O ⟶ H+ + formate + mycothiol
- formaldehyde oxidation III (mycothiol-dependent):
S-formylmycothiol + H2O ⟶ H+ + formate + mycothiol
- methanol oxidation to carbon dioxide:
H2O + NAD+ + formaldehyde ⟶ H+ + NADH + formate
- formaldehyde oxidation III (mycothiol-dependent):
S-formylmycothiol + H2O ⟶ H+ + formate + mycothiol
- 5,6-dimethylbenzimidazole biosynthesis II (anaerobic):
5-hydroxybenzimidazole + SAM ⟶ 5-methoxybenzimidazole + H+ + SAH
- superpathway of C1 compounds oxidation to CO2:
MeOH + an oxidized cytochrome cL ⟶ H+ + a reduced cytochrome cL + formaldehyde
- formaldehyde oxidation IV (thiol-independent):
H2O + NAD+ + formaldehyde ⟶ H+ + NADH + formate
- formaldehyde oxidation IV (thiol-independent):
H2O + NAD+ + formaldehyde ⟶ H+ + NADH + formate
- superpathway of C1 compounds oxidation to CO2:
S-formylglutathione + H2O ⟶ H+ + formate + glutathione
- formaldehyde oxidation IV (thiol-independent):
H2O + NAD+ + formaldehyde ⟶ H+ + NADH + formate
- formaldehyde oxidation IV (thiol-independent):
H2O + NAD+ + formaldehyde ⟶ H+ + NADH + formate
- formaldehyde oxidation IV (thiol-independent):
H2O + NAD+ + formaldehyde ⟶ H+ + NADH + formate
- superpathway of C1 compounds oxidation to CO2:
H2O + an oxidized amicyanin + methylamine ⟶ a reduced amicyanin + ammonia + formaldehyde
- preQ0 biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- flavin biosynthesis I (bacteria and plants):
GTP + H2O ⟶ 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + H+ + diphosphate + formate
- flavin biosynthesis III (fungi):
GTP + H2O ⟶ 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + H+ + diphosphate + formate
- 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- superpathway of tetrahydrofolate biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- superpathway of tetrahydrofolate biosynthesis and salvage:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- tetrahydromonapterin biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- superpathway of chorismate metabolism:
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- tetrahydromonapterin biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- preQ0 biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- superpathway of chorismate metabolism:
2-oxoglutarate + phe ⟶ 3-phenyl-2-oxopropanoate + glu
- flavin biosynthesis I (bacteria and plants):
GTP + H2O ⟶ 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + H+ + diphosphate + formate
- superpathway of tetrahydrofolate biosynthesis:
GTP + H2O ⟶ 7,8-dihydroneopterin 3'-triphosphate + H+ + formate
- flavin biosynthesis III (fungi):
GTP + H2O ⟶ 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + H+ + diphosphate + formate
- mixed acid fermentation:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- mixed acid fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
oxaloacetate + phosphate ⟶ hydrogencarbonate + phosphoenolpyruvate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
citrate ⟶ cis-aconitate + H2O
- respiration (anaerobic):
citrate ⟶ cis-aconitate + H2O
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- estradiol biosynthesis II:
19-oxo-testosterone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 17β-estradiol + H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + formate
- estradiol biosynthesis II:
19-oxo-testosterone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 17β-estradiol + H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + formate
- plant sterol biosynthesis:
4α-formyl-ergosta-7,24(241)-dien-3β-ol + H+ + O2 + a ferrocytochrome b5 ⟶ 4α-carboxy-ergosta-7,24(241)-dien-3β-ol + H2O + a ferricytochrome b5
- paxilline and diprenylpaxilline biosynthesis:
DMAPP + paxilline ⟶ 21,22-diprenylpaxilline + diphosphate
- cholesterol biosynthesis III (via desmosterol):
H+ + NADPH + desmosterol ⟶ NADP+ + cholesterol
- superpathway of cholesterol biosynthesis:
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- cholesterol biosynthesis I:
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- cholesterol biosynthesis I:
(3S)-2,3-epoxy-2,3-dihydrosqualene ⟶ lanosterol
- cholesterol biosynthesis III (via desmosterol):
(3S)-2,3-epoxy-2,3-dihydrosqualene ⟶ lanosterol
- superpathway of cholesterol biosynthesis:
24,25-dihydrolanosterol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 4,4-dimethyl-14α-hydroxymethyl-5α-cholesta-8-en-3β-ol + H2O + an oxidized [NADPH-hemoprotein reductase]
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
24,25-dihydrolanosterol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 4,4-dimethyl-14α-hydroxymethyl-5α-cholesta-8-en-3β-ol + H2O + an oxidized [NADPH-hemoprotein reductase]
- estradiol biosynthesis I:
17β-estradiol + NAD(P)+ ⟶ H+ + NAD(P)H + estrone
- estradiol biosynthesis I (via estrone):
O2 + a reduced [NADPH-hemoprotein reductase] + androst-4-ene-3,17-dione ⟶ 19-hydroxyandrostenedione + H2O + an oxidized [NADPH-hemoprotein reductase]
- zymosterol biosynthesis:
4α-carboxy-5α-cholesta-8,24-dien-3β-ol + NAD(P)+ ⟶ CO2 + NAD(P)H + zymosterone
- superpathway of ergosterol biosynthesis I:
(3S)-2,3-epoxy-2,3-dihydrosqualene ⟶ lanosterol
- zymosterol biosynthesis:
NADP+ + zymosterol ⟶ H+ + NADPH + zymosterone
- superpathway of ergosterol biosynthesis:
NADP+ + ergosterol ⟶ H+ + NADPH + ergosta-5,7,22,24(28)-tetraen-3-β-ol
- zymosterol biosynthesis:
4α-carboxy-5α-cholesta-8,24-dien-3β-ol + NAD(P)+ ⟶ CO2 + NAD(P)H + zymosterone
- zymosterol biosynthesis:
H+ + NADPH + O2 + lanosterol ⟶ 14-demethyllanosterol + H2O + NADP+ + formate
- base-degraded thiamine salvage:
H2O + aminomethylpyrimidine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + ammonium
- base-degraded thiamin salvage:
H2O + aminomethylpyrimidine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + ammonium
- base-degraded thiamine salvage:
H2O + aminomethylpyrimidine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + ammonium
- base-degraded thiamine salvage:
H2O + aminomethylpyrimidine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + ammonium
- base-degraded thiamine salvage:
H2O + aminomethylpyrimidine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + ammonium
- methyl tert-butyl ether degradation:
H+ + NADH + O2 + methyl tert-butyl ether ⟶ tert-butoxymethanol + H2O + NAD+
- plant sterol biosynthesis II:
4α-methyl-zymosterol ⟶ 4α-methyl-5α-cholesta-7,24-dien-3β-ol
- superpathway of 5-aminoimidazole ribonucleotide biosynthesis:
ATP + FGAM ⟶ ADP + AIR + H+ + phosphate
- 5-aminoimidazole ribonucleotide biosynthesis II:
ATP + FGAM ⟶ ADP + AIR + H+ + phosphate
- oxalate degradation V:
H+ + oxalate ⟶ CO2 + formate
- 5-aminoimidazole ribonucleotide biosynthesis II:
ATP + GAR + formate ⟶ ADP + FGAR + H+ + phosphate
- superpathway of 5-aminoimidazole ribonucleotide biosynthesis:
ATP + GAR + formate ⟶ ADP + FGAR + H+ + phosphate
- oxalate degradation V:
H+ + oxalate ⟶ CO2 + formate
- flavin biosynthesis I (bacteria and plants):
GTP + H2O ⟶ 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + H+ + diphosphate + formate
- L-histidine degradation II:
N-formyl-L-glutamate + H2O ⟶ formate + glu
- grixazone biosynthesis:
ATP + asp ⟶ ADP + L-aspartyl-4-phosphate
- indole degradation to anthranil and anthranilate:
O2 + indole ⟶ 2-formylaminobenzaldehyde
- cyanide detoxification II:
formamide ⟶ H2O + hydrogen cyanide
- L-histidine degradation VI:
4-imidazolone-5-propanoate + H2O + O2 ⟶ hydantoin-5-propanoate + hydrogen peroxide
- folate transformations II (plants):
NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + H+ + NADH + ammonia
- tetrahydrofolate biosynthesis II:
ADP + a 10-formyltetrahydrofolate + phosphate ⟶ ATP + a tetrahydrofolate + formate
- glycine degradation I:
a [glycine-cleavage complex H protein] N6-aminomethyldihydrolipoyl-L-lysine + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + a [glycine-cleavage complex H protein] N6-dihydrolipoyl-L-lysine + ammonia
- folate transformations I:
NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + H+ + NADH + ammonia
- formaldehyde oxidation V (tetrahydrofolate pathway):
ATP + formate + tetrahydrofolate ⟶ 10-formyl-tetrahydrofolate + ADP + phosphate
- reductive acetyl coenzyme A pathway:
H2O + an oxidized ferredoxin [iron-sulfur] cluster + carbon monoxide ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- folate polyglutamylation:
ATP + a 10-formyltetrahydrofolate + glt ⟶ ADP + a 10-formyltetrahydrofolate + phosphate
- 5-aminoimidazole ribonucleotide biosynthesis II:
5'-phosphoribosyl-N-formylglycineamide + ATP + H2O + gln ⟶ 5-phosphoribosyl-N-formylglycineamidine + ADP + H+ + glt + phosphate
- superpathway of 5-aminoimidazole ribonucleotide biosynthesis:
5-phosphoribosyl-N-formylglycineamidine + ATP ⟶ 5-aminoimidazole ribonucleotide + ADP + H+ + phosphate
- 5-aminoimidazole ribonucleotide biosynthesis II:
5-phosphoribosyl-N-formylglycineamidine + ATP ⟶ 5-aminoimidazole ribonucleotide + ADP + H+ + phosphate
- folate polyglutamylation:
ATP + a tetrahydrofolate + glt ⟶ ADP + a tetrahydrofolate + phosphate
- folate transformations I:
NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydropteroyl mono-L-glutamate + CO2 + H+ + NADH + ammonia
- folate transformations II (plants):
NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydropteroyl mono-L-glutamate + CO2 + H+ + NADH + ammonia
- formylTHF biosynthesis I:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- folate transformations:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- folate polyglutamylation I:
ATP + a 10-formyltetrahydrofolate + glt ⟶ ADP + a 10-formyltetrahydrofolate + phosphate
- folate polyglutamylation I:
ATP + a 5,10-methylenetetrahydrofolate + glt ⟶ ADP + a 5,10-methylenetetrahydrofolate + phosphate
- formylTHF biosynthesis II:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- formaldehyde oxidation V (tetrahydrofolate pathway):
ATP + H+ + formate + tetrahydrofolate ⟶ 10-formyl-tetrahydrofolate + ADP + phosphate
- formylTHF biosynthesis I:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- purine nucleotides degradation III (anaerobic):
4-aminoimidazole + H2O ⟶ 4-imidazolone + H+ + ammonia
- purine nucleotides degradation IV (anaerobic):
4-aminoimidazole + H2O ⟶ 4-imidazolone + H+ + ammonia
- tetrahydrofolate biosynthesis II:
ATP + glt + tetrahydrofolate ⟶ ADP + H+ + phosphate + tetrahydrofolate-L-glutamate
- folate transformations:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- formaldehyde oxidation V (bacillithiol-dependent):
bacillithiol + formaldehyde ⟶ S-(hydroxymethyl)bacillithiol
- formaldehyde oxidation V (bacillithiol-dependent):
S-formylbacillithiol + H2O ⟶ H+ + bacillithiol + formate
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
4,4-dimethyl-14α-formyl-5α-cholesta-8-en-3β-ol + NADPH + O2 ⟶ 4,4-dimethyl-5-α-cholesta-8,14-dien-3-β-ol + H2O + NADP+ + formate
- superpathway of cholesterol biosynthesis:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
4,4-dimethyl-14α-formyl-5α-cholesta-8-en-3β-ol + NADPH + O2 ⟶ 4,4-dimethyl-5-α-cholesta-8,14-dien-3-β-ol + H2O + NADP+ + formate
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
4,4-dimethyl-14α-formyl-5α-cholesta-8-en-3β-ol + NADPH + O2 ⟶ 4,4-dimethyl-5-α-cholesta-8,14-dien-3-β-ol + H2O + NADP+ + formate
- superpathway of cholesterol biosynthesis:
H+ + NADPH + desmosterol ⟶ NADP+ + cholesterol
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NADP+ + cholesterol ⟶ 7-dehydro-cholesterol + H+ + NADPH
- lolitrem B biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + paspaline ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + terpendole E
WikiPathways(1)
- RuMP cycle, oxidative branch of the pentose phosphate pathway and formaldehyde assimilation:
S-formylglutathione ⟶ formate
Plant Reactome(7)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Sterol biosynthesis:
delta24-25-sitosterol ⟶ sitosterol
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
INOH(0)
PlantCyc(63)
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis:
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- 3-methylthiopropanoate biosynthesis:
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 ⟶ 3-(methylsulfanyl)propanoate + CO + H+ + formate
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- indole degradation to anthranil and anthranilate:
O2 + indole ⟶ 2-formylaminobenzaldehyde
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Thamaraiselvi Kanagaraj, Velu Manikandan, Sivarasan Ganesan, Mohammed F Albeshr, R Mythili, Kwang Soup Song, Huang-Mu Lo. Employing Piper longum extract for eco-friendly fabrication of PtPd alloy nanoclusters: advancing electrolytic performance of formic acid and methanol oxidation.
Environmental geochemistry and health.
2024 Apr; 46(5):172. doi:
10.1007/s10653-024-01953-0
. [PMID: 38592578] - Dongjie Chen, Guoliang Zhang, Jihong Yang, Huanhuan Yu, Jin Xue, Lu Zhang, Zhenhao Li. Comparative pharmacokinetic analysis of sporoderm-broken and sporoderm-removed Ganoderma lucidum spore in rat by using a sensitive plasma UPLC-QqQ-MS method.
Biomedical chromatography : BMC.
2024 Feb; 38(2):e5787. doi:
10.1002/bmc.5787
. [PMID: 38038157] - Yunsen Zhao, Qianyu Zhang, Hong Lei, Xiaojian Zhou, Guanben Du, Antonio Pizzi, Xuedong Xi. Preparation and fire resistance modification on tannin-based non-isocyanate polyurethane (NIPU) rigid foams.
International journal of biological macromolecules.
2024 Feb; 258(Pt 2):128994. doi:
10.1016/j.ijbiomac.2023.128994
. [PMID: 38157632] - Javad Radmard, Ali Mohamadi Sani, Akram Arianfar, Behrooz Mahmoodzadeh Vaziri. Efficient extraction of oleoresin from Ferula gummosa roots by natural deep eutectic solvent and its structure and chemical characterizations.
Scientific reports.
2024 01; 14(1):148. doi:
10.1038/s41598-023-46198-6
. [PMID: 38167968] - Miriam Maiellaro, Grazia Bottillo, Alessia Cavallo, Emanuela Camera. Comparison between ammonium formate and ammonium fluoride in the analysis of stratum corneum lipids by reversed phase chromatography coupled with high resolution mass spectrometry.
Scientific reports.
2024 01; 14(1):40. doi:
10.1038/s41598-023-50051-1
. [PMID: 38167931] - Viswanada R Bysani, Ayesha S Alam, Arren Bar-Even, Fabian Machens. Engineering and evolution of the complete Reductive Glycine Pathway in Saccharomyces cerevisiae for formate and CO2 assimilation.
Metabolic engineering.
2024 Jan; 81(?):167-181. doi:
10.1016/j.ymben.2023.11.007
. [PMID: 38040111] - Wenhao Cheng, Zheng Yuan, Siyang Wu, Xin Yu, Kexin Xia, Lifeng Zhao, Yuyan Wang, Chen Kang, Wei Yang, Luyang Liu, Yingfei Li. Simultaneous determination of five compounds of fried Radix Paeoniae Alba extract in beagle dogs plasma by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry and its application in a pharmacokinetic study.
Biomedical chromatography : BMC.
2023 Dec; ?(?):e5803. doi:
10.1002/bmc.5803
. [PMID: 38098275] - Fang Deng, Xue-Min Li, Qian-Qian Gong, Zhen-Xing Zheng, Li Zeng, Meng-Jiao Zhang, Ting-Yin Duan, Xin Liu, Ming-Zhi Zhang, Da-Le Guo. Identification of in vivo metabolites of Citri Sarcodactylis Fructus by UHPLC-Q/Orbitrap HRMS.
Phytochemical analysis : PCA.
2023 Dec; 34(8):938-949. doi:
10.1002/pca.3262
. [PMID: 37483127] - Jinzhong Tian, Wangshuying Deng, Ziwen Zhang, Jiaqi Xu, Guiling Yang, Guoping Zhao, Sheng Yang, Weihong Jiang, Yang Gu. Discovery and remodeling of Vibrio natriegens as a microbial platform for efficient formic acid biorefinery.
Nature communications.
2023 Nov; 14(1):7758. doi:
10.1038/s41467-023-43631-2
. [PMID: 38012202] - Lei-Qi Liu, Jing-Ze Chen, Wu-Sheng Fu, Cui-Ying Tang. [Determination of amanita peptide and tryptamine toxins in wild mushrooms by high performance liquid chromatography-tandem mass spectrometry].
Se pu = Chinese journal of chromatography.
2023 Nov; 41(11):976-985. doi:
10.3724/sp.j.1123.2023.07013
. [PMID: 37968816] - Cheng Yang, Yan-Mei Shi, Tian-Tian Pang, Xiao-Bing Liu, Zhi-Yu Zhang, Kai Hu, Shu-Sheng Zhang. [Preparation of sulfonic acid functionalized covalent organic framework solid phase microextraction fibers and their application in the analysis of neurotransmitters in the mouse brain].
Se pu = Chinese journal of chromatography.
2023 Oct; 41(10):911-920. doi:
10.3724/sp.j.1123.2023.03006
. [PMID: 37875413] - Zhaomei Lu, Sheng He, Muhammad Kashif, Zufan Zhang, Shuming Mo, Guijiao Su, Linfang Du, Chengjian Jiang. Effect of ammonium stress on phosphorus solubilization of a novel marine mangrove microorganism Bacillus aryabhattai NM1-A2 as revealed by integrated omics analysis.
BMC genomics.
2023 Sep; 24(1):550. doi:
10.1186/s12864-023-09559-z
. [PMID: 37723472] - Jinxia Wu, Jing Chen, Rong Huang, Hongwei Zhu, Lin Che, Yanyan Lin, Yajie Chang, Guiping Shen, Jianghua Feng. Metabolic characteristics and pathogenesis of precocious puberty in girls: the role of perfluorinated compounds.
BMC medicine.
2023 08; 21(1):323. doi:
10.1186/s12916-023-03032-0
. [PMID: 37626398] - Ke Jiang, Ruoxuan Bai, Ting Gao, Ping Lu, Jingya Zhang, Shuting Zhang, Fangxu Xu, Shenghou Wang, Hongxin Zhao. Optimization of hydrogen production in Enterobacter aerogenes by Complex I peripheral fragments destruction and maeA overexpression.
Microbial cell factories.
2023 Jul; 22(1):137. doi:
10.1186/s12934-023-02155-6
. [PMID: 37496040] - Florent Collas, Beau B Dronsella, Armin Kubis, Karin Schann, Sebastian Binder, Nils Arto, Nico J Claassens, Frank Kensy, Enrico Orsi. Engineering the biological conversion of formate into crotonate in Cupriavidus necator.
Metabolic engineering.
2023 Jul; ?(?):. doi:
10.1016/j.ymben.2023.06.015
. [PMID: 37414134] - Bruna Dias, Helena Fernandes, Marlene Lopes, Isabel Belo. Yarrowia lipolytica produces lipid-rich biomass in medium mimicking lignocellulosic biomass hydrolysate.
Applied microbiology and biotechnology.
2023 May; ?(?):. doi:
10.1007/s00253-023-12565-6
. [PMID: 37191683] - Maren Nattermann, Sebastian Wenk, Pascal Pfister, Hai He, Seung Hwan Lee, Witold Szymanski, Nils Guntermann, Fayin Zhu, Lennart Nickel, Charlotte Wallner, Jan Zarzycki, Nicole Paczia, Nina Gaißert, Giancarlo Franciò, Walter Leitner, Ramon Gonzalez, Tobias J Erb. Engineering a new-to-nature cascade for phosphate-dependent formate to formaldehyde conversion in vitro and in vivo.
Nature communications.
2023 May; 14(1):2682. doi:
10.1038/s41467-023-38072-w
. [PMID: 37160875] - Aparna Annamraju, Kalavathy Rajan, Xiaobing Zuo, Brian K Long, Sai Venkatesh Pingali, Thomas J Elder, Nicole Labbé. Atomic Level Interactions and Suprastructural Configuration of Plant Cell Wall Polymers in Dialkylimidazolium Ionic Liquids.
Biomacromolecules.
2023 05; 24(5):2164-2172. doi:
10.1021/acs.biomac.3c00047
. [PMID: 36977326] - Bingying Chen, Guojun Kuang, Ying Wang, Yingyin Zhang, Yurong Wu, Yu Li, Juan Zhang, Lei Zhang. Pharmacokinetic and tissue distribution study of six saponins in the rat after oral administration of Ilex pubescens extract using a validated simultaneous UPLC-qTOF-MS/MS assay.
Journal of pharmaceutical and biomedical analysis.
2023 Apr; 233(?):115431. doi:
10.1016/j.jpba.2023.115431
. [PMID: 37148697] - Tomas Cajka, Jiri Hricko, Lucie Rudl Kulhava, Michaela Paucova, Michaela Novakova, Ondrej Kuda. Optimization of Mobile Phase Modifiers for Fast LC-MS-Based Untargeted Metabolomics and Lipidomics.
International journal of molecular sciences.
2023 Jan; 24(3):. doi:
10.3390/ijms24031987
. [PMID: 36768308] - Josephine S Lübeck, Jan H Christensen, Giorgio Tomasi. Ultra-high-performance supercritical fluid chromatography-mass spectrometry for the analysis of organic contaminants in sediments.
Journal of separation science.
2023 Jan; 46(1):e2200668. doi:
10.1002/jssc.202200668
. [PMID: 36308040] - Mehran Amini, Elham Zadeh-Hashem, Manoochehr Allymehr. Assessment of the effect of kinetin against formic acid toxicity in chicken embryo model.
Journal of animal physiology and animal nutrition.
2023 Jan; 107(1):238-247. doi:
10.1111/jpn.13701
. [PMID: 35288998] - Steven McOrist, Peter C Scott, Joshua Jendza, David Paynter, Andrea Certoma, Leonard Izzard, David T Williams. Analysis of acidified feed components containing African swine fever virus.
Research in veterinary science.
2022 Dec; 152(?):248-260. doi:
10.1016/j.rvsc.2022.08.014
. [PMID: 36055134] - Leslie A Day, Elisa L Kelsey, Dallas R Fonseca, Kyle C Costa. Interspecies Formate Exchange Drives Syntrophic Growth of Syntrophotalea carbinolica and Methanococcus maripaludis.
Applied and environmental microbiology.
2022 12; 88(23):e0115922. doi:
10.1128/aem.01159-22
. [PMID: 36374033] - Xin Yu, Kexin Xia, Siyang Wu, Qiutao Wang, Wenhao Cheng, Chun Ji, Wei Yang, Chen Kang, Zheng Yuan, Yingfei Li. Simultaneous determination and pharmacokinetic study of six components in beagle dog plasma by UPLC-MS/MS after oral administration of Astragalus Membranaceus aqueous extract.
Biomedical chromatography : BMC.
2022 Dec; 36(12):e5488. doi:
10.1002/bmc.5488
. [PMID: 36001467] - Justine Turlin, Beau Dronsella, Alberto De Maria, Steffen N Lindner, Pablo I Nikel. Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation.
Metabolic engineering.
2022 11; 74(?):191-205. doi:
10.1016/j.ymben.2022.10.008
. [PMID: 36328297] - Yang Li, Na Zhao, Tingting Zhang, Xinchi Feng. A Rapid and Sensitive LC-MS/MS Method for the Quantitation of Physalin A with Special Consideration to Chemical Stability in Rat Plasma: Application to a Pharmacokinetic Study.
Molecules (Basel, Switzerland).
2022 Oct; 27(21):. doi:
10.3390/molecules27217272
. [PMID: 36364097] - Wei Zheng, Ruxi Gao, Fanyi Wang, Guoshun Shan, Hui Gao. Identification of Chemical Constituents in Zhizhu Pills Based on UPLC-QTOF-MSE.
Journal of AOAC International.
2022 Oct; 105(6):1555-1575. doi:
10.1093/jaoacint/qsac078
. [PMID: 35723595] - Julia J Vieira, Casey L Johnson, Elizabeth M Varkonyi, Howard S Ginsberg, Kassie L Picard, Matthew K Kiesewetter, Steven R Alm. Using Surrogate Insects in Acid Bioassays for Development of New Controls for Varroa destructor (Arachnida: Varroidae).
Journal of economic entomology.
2022 10; 115(5):1417-1422. doi:
10.1093/jee/toac120
. [PMID: 35980393] - Jian Sun, Jinquan Wan, Yan Wang, Zhicheng Yan, Yongwen Ma, Su Ding, Min Tang, Yongchang Xie. Modulated construction of Fe-based MOF via formic acid modulator for enhanced degradation of sulfamethoxazole:Design, degradation pathways, and mechanism.
Journal of hazardous materials.
2022 05; 429(?):128299. doi:
10.1016/j.jhazmat.2022.128299
. [PMID: 35077971] - Henning Kirst, Bryan H Ferlez, Steffen N Lindner, Charles A R Cotton, Arren Bar-Even, Cheryl A Kerfeld. Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate.
Proceedings of the National Academy of Sciences of the United States of America.
2022 02; 119(8):. doi:
10.1073/pnas.2116871119
. [PMID: 35193962] - Andrea Fantuzzi, Friederike Allgöwer, Holly Baker, Gemma McGuire, Wee Kii Teh, Ana P Gamiz-Hernandez, Ville R I Kaila, A William Rutherford. Bicarbonate-controlled reduction of oxygen by the QA semiquinone in Photosystem II in membranes.
Proceedings of the National Academy of Sciences of the United States of America.
2022 02; 119(6):. doi:
10.1073/pnas.2116063119
. [PMID: 35115403] - Kairuo Zhu, Lili Chen, Njud S Alharbi, Changlun Chen. Interconnected hierarchical nickel-carbon hybrids assembled by porous nanosheets for Cr(VI) reduction with formic acid.
Journal of colloid and interface science.
2022 Jan; 606(Pt 1):213-222. doi:
10.1016/j.jcis.2021.08.024
. [PMID: 34390989] - Junxian Xie, Junjun Chen, Zheng Cheng, Shiyun Zhu, Jun Xu. Pretreatment of pine lignocelluloses by recyclable deep eutectic solvent for elevated enzymatic saccharification and lignin nanoparticles extraction.
Carbohydrate polymers.
2021 Oct; 269(?):118321. doi:
10.1016/j.carbpol.2021.118321
. [PMID: 34294333] - Hiromasa Tanaka, Yugo Hosoi, Kenji Ishikawa, Jun Yoshitake, Takahiro Shibata, Koji Uchida, Hiroshi Hashizume, Masaaki Mizuno, Yasumasa Okazaki, Shinya Toyokuni, Kae Nakamura, Hiroaki Kajiyama, Fumitaka Kikkawa, Masaru Hori. Low temperature plasma irradiation products of sodium lactate solution that induce cell death on U251SP glioblastoma cells were identified.
Scientific reports.
2021 09; 11(1):18488. doi:
10.1038/s41598-021-98020-w
. [PMID: 34531507] - Line Friis Bakmann Christensen, Saeid Hadi Alijanvand, Michał Burdukiewicz, Florian-Alexander Herbst, Henrik Kjeldal, Morten Simonsen Dueholm, Daniel E Otzen. Identification of amyloidogenic proteins in the microbiomes of a rat Parkinson's disease model and wild-type rats.
Protein science : a publication of the Protein Society.
2021 09; 30(9):1854-1870. doi:
10.1002/pro.4137
. [PMID: 34075639] - Romana Urinovska, Ivana Kacirova, Jiri Sagan. Determination of acyclovir and its metabolite 9-carboxymethoxymethylguanide in human serum by ultra-high-performance liquid chromatography-tandem mass spectrometry.
Journal of separation science.
2021 Aug; 44(16):3080-3088. doi:
10.1002/jssc.202100241
. [PMID: 34165890] - Terézia Horváthová, Vladimír Šustr, Alica Chroňáková, Stanislava Semanová, Kristina Lang, Carsten Dietrich, Tomáš Hubáček, Masoud M Ardestani, Ana C Lara, Andreas Brune, Miloslav Šimek. Methanogenesis in the Digestive Tracts of the Tropical Millipedes Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae).
Applied and environmental microbiology.
2021 07; 87(15):e0061421. doi:
10.1128/aem.00614-21
. [PMID: 34020937] - Mohammad Shahrousvand, Vahid Haddadi-Asl, Mohsen Shahrousvand. Step-by-step design of poly (ε-caprolactone) /chitosan/Melilotus officinalis extract electrospun nanofibers for wound dressing applications.
International journal of biological macromolecules.
2021 Jun; 180(?):36-50. doi:
10.1016/j.ijbiomac.2021.03.046
. [PMID: 33727184] - Sandra Glasmacher, Jürg Gertsch. Characterization of pepcan-23 as pro-peptide of RVD-hemopressin (pepcan-12) and stability of hemopressins in mice.
Advances in biological regulation.
2021 05; 80(?):100808. doi:
10.1016/j.jbior.2021.100808
. [PMID: 33799079] - Andrew McCaddon, Björn Regland. COVID-19: A methyl-group assault?.
Medical hypotheses.
2021 Apr; 149(?):110543. doi:
10.1016/j.mehy.2021.110543
. [PMID: 33657459] - Shella Permatasari Santoso, Shin-Ping Lin, Tan-Ying Wang, Yuwen Ting, Chang-Wei Hsieh, Roch-Chui Yu, Artik Elisa Angkawijaya, Felycia Edi Soetaredjo, Hsien-Yi Hsu, Kuan-Chen Cheng. Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose.
International journal of biological macromolecules.
2021 Apr; 175(?):526-534. doi:
10.1016/j.ijbiomac.2021.01.169
. [PMID: 33524483] - Shuo Liu, Xuemei Yuan, Chang Ma, Jing Zhao, Zhili Xiong. 1H-NMR-based urinary metabolomic analysis for the preventive effects of gushudan on glucocorticoid-induced osteoporosis rats.
Analytical biochemistry.
2020 12; 610(?):113992. doi:
10.1016/j.ab.2020.113992
. [PMID: 33075315] - Juliana Girón Bastidas, Natasha Maurmann, Mauro Ricardo da Silveira, Carlos Arthur Ferreira, Patricia Pranke. Development of fibrous PLGA/fibrin scaffolds as a potential skin substitute.
Biomedical materials (Bristol, England).
2020 07; 15(5):055014. doi:
10.1088/1748-605x/aba086
. [PMID: 32590367] - Masaru K Nobu, Takashi Narihiro, Ran Mei, Yoichi Kamagata, Patrick K H Lee, Po-Heng Lee, Michael J McInerney, Wen-Tso Liu. Catabolism and interactions of uncultured organisms shaped by eco-thermodynamics in methanogenic bioprocesses.
Microbiome.
2020 07; 8(1):111. doi:
10.1186/s40168-020-00885-y
. [PMID: 32709258] - Sandeep Dhayade, Matthias Pietzke, Robert Wiesheu, Jacqueline Tait-Mulder, Dimitris Athineos, David Sumpton, Seth Coffelt, Karen Blyth, Alexei Vazquez. Impact of Formate Supplementation on Body Weight and Plasma Amino Acids.
Nutrients.
2020 Jul; 12(8):. doi:
10.3390/nu12082181
. [PMID: 32708052] - Antonio Rubio-Del-Campo, Cristina Alcántara, María Carmen Collado, Jesús Rodríguez-Díaz, María J Yebra. Human milk and mucosa-associated disaccharides impact on cultured infant fecal microbiota.
Scientific reports.
2020 07; 10(1):11845. doi:
10.1038/s41598-020-68718-4
. [PMID: 32678209] - Rong Xu, Wangshuying Deng, Weihong Jiang, Yang Gu. [Progress in biological utilization of formic acid].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2020 Jun; 36(6):1031-1040. doi:
10.13345/j.cjb.190420
. [PMID: 32597054] - Bora Kim, Jeongwoo Yang, Minji Kim, Jae W Lee. One-pot selective production of levulinic acid and formic acid from spent coffee grounds in a catalyst-free biphasic system.
Bioresource technology.
2020 May; 303(?):122898. doi:
10.1016/j.biortech.2020.122898
. [PMID: 32032939] - Margaret E Brosnan, Garrett Tingley, Luke MacMillan, Brian Harnett, Theerawat Pongnopparat, Jenika D Marshall, John T Brosnan. Plasma Formate Is Greater in Fetal and Neonatal Rats Compared with Their Mothers.
The Journal of nutrition.
2020 05; 150(5):1068-1075. doi:
10.1093/jn/nxz329
. [PMID: 31912134] - Xiao-Meng Lv, Min Yang, Li-Rong Dai, Bo Tu, Chen Chang, Yan Huang, Yu Deng, Paul A Lawson, Hui Zhang, Lei Cheng, Yue-Qin Tang. Zhaonella formicivorans gen. nov., sp. nov., an anaerobic formate-utilizing bacterium isolated from Shengli oilfield, and proposal of four novel families and Moorellales ord. nov. in the phylum Firmicutes.
International journal of systematic and evolutionary microbiology.
2020 May; 70(5):3361-3373. doi:
10.1099/ijsem.0.004178
. [PMID: 32375973] - Nae-Won Kang, Jae-Young Lee, Kwangho Song, Min-Hwan Kim, Soyeon Yoon, Duy-Thuc Nguyen, Sungho Kim, Yeong Shik Kim, Dae-Duk Kim. Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Method for Pharmacokinetic Evaluation of 7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranon in Rats.
Molecules (Basel, Switzerland).
2020 Apr; 25(8):. doi:
10.3390/molecules25081774
. [PMID: 32294941] - Chunxiao Ren, Yijiang Wang, Xiaofeng Lin, Hanqing Song, Qiqi Zhou, Wan Xu, Kui Shi, Jun Chen, Junshuai Song, Fang Chen, Shihai Zhang, Wutai Guan. A Combination of Formic Acid and Monolaurin Attenuates Enterotoxigenic Escherichia coli Induced Intestinal Inflammation in Piglets by Inhibiting the NF-κB/MAPK Pathways with Modulation of Gut Microbiota.
Journal of agricultural and food chemistry.
2020 Apr; 68(14):4155-4165. doi:
10.1021/acs.jafc.0c01414
. [PMID: 32202779] - Tara L Maser, Elahe Honarvar, Andre R Venter. Delayed Desorption Improves Protein Analysis by Desorption Electrospray Ionization Mass Spectrometry.
Journal of the American Society for Mass Spectrometry.
2020 Apr; 31(4):803-811. doi:
10.1021/jasms.9b00047
. [PMID: 32157888] - Zhongquan Jiang, Liu Jiang, Lin Zhang, Mu Su, Da Tian, Tong Wang, Yalin Sun, Ying Nong, Shuijin Hu, Shimei Wang, Zhen Li. Contrasting the Pb (II) and Cd (II) tolerance of Enterobacter sp. via its cellular stress responses.
Environmental microbiology.
2020 04; 22(4):1507-1516. doi:
10.1111/1462-2920.14719
. [PMID: 31215728] - Deqing Xiao, Kah Hiing John Ling, Thomas Tarnowski, Sophia R Majeed, Polina German, Brian P Kearney, Yuwen Zhao, Yuan-Shek Chen, Lili Ma, Tianyi Zhang. An LC-MS/MS method for determination of tenofovir (TFV) in human plasma following tenofovir alafenamide (TAF) administration: Development, validation, cross-validation, and use of formic acid as plasma TFV stabilizer.
Analytical biochemistry.
2020 03; 593(?):113611. doi:
10.1016/j.ab.2020.113611
. [PMID: 32035040] - In-Cheng Chao, Ying Chen, Mei-Hua Gao, Li-Gen Lin, Xiao-Qi Zhang, Wen-Cai Ye, Qing-Wen Zhang. Simultaneous Determination of α-Glucosidase Inhibitory Triterpenoids in Psidium guajava Using HPLC-DAD-ELSD and Pressurized Liquid Extraction.
Molecules (Basel, Switzerland).
2020 Mar; 25(6):. doi:
10.3390/molecules25061278
. [PMID: 32168948] - Murali K Matta, Suresh Narayanasamy, Jose Vicente, Robbert Zusterzeel, Vikram Patel, David G Strauss. Novel High-Throughput Quantitation of Potent hERG Blocker Dofetilide in Human Plasma by Liquid Chromatography Tandem Mass Spectrometry: Application in a Phase 1 ECG Biomarker Validation Study.
Journal of analytical toxicology.
2020 Mar; 44(2):180-187. doi:
10.1093/jat/bkz047
. [PMID: 31355881] - David J F Walker, Kelly P Nevin, Dawn E Holmes, Amelia-Elena Rotaru, Joy E Ward, Trevor L Woodard, Jiaxin Zhu, Toshiyuki Ueki, Stephen S Nonnenmann, Michael J McInerney, Derek R Lovley. Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option.
The ISME journal.
2020 03; 14(3):837-846. doi:
10.1038/s41396-019-0575-9
. [PMID: 31896792] - Vineeta Singh, Vijaya Nath Mishra, Guru Dayal Prajapati, Ravi Shankar Ampapathi, M K Thakur. Quantitative metabolic biomarker analysis of mild cognitive impairment in eastern U.P. and Bihar population.
Journal of pharmaceutical and biomedical analysis.
2020 Feb; 180(?):113033. doi:
10.1016/j.jpba.2019.113033
. [PMID: 31841796] - Hanan A Gashout, Ernesto Guzman-Novoa, Paul H Goodwin, Adriana Correa-Benítez. Impact of sublethal exposure to synthetic and natural acaricides on honey bee (Apis mellifera) memory and expression of genes related to memory.
Journal of insect physiology.
2020 Feb; 121(?):104014. doi:
10.1016/j.jinsphys.2020.104014
. [PMID: 31923391] - Danil I Falev, Dmitry S Kosyakov, Nikolay V Ul'yanovskii, Denis V Ovchinnikov. Rapid simultaneous determination of pentacyclic triterpenoids by mixed-mode liquid chromatography-tandem mass spectrometry.
Journal of chromatography. A.
2020 Jan; 1609(?):460458. doi:
10.1016/j.chroma.2019.460458
. [PMID: 31443969] - Dmitry L Maslov, Oxana P Trifonova, Elena E Balashova, Petr G Lokhov. n-Butylamine for Improving the Efficiency of Untargeted Mass Spectrometry Analysis of Plasma Metabolite Composition.
International journal of molecular sciences.
2019 Nov; 20(23):. doi:
10.3390/ijms20235957
. [PMID: 31783473] - John T Brosnan, Lesley Plumptre, Margaret E Brosnan, Theerawat Pongnopparat, Shannon P Masih, Carly E Visentin, Howard Berger, Yvonne Lamers, Marie A Caudill, Olga V Malysheva, Deborah L O'Connor, Young-In Kim. Formate concentrations in maternal plasma during pregnancy and in cord blood in a cohort of pregnant Canadian women: relations to genetic polymorphisms and plasma metabolites.
The American journal of clinical nutrition.
2019 11; 110(5):1131-1137. doi:
10.1093/ajcn/nqz152
. [PMID: 31350902] - Alexander J Finney, Rebecca Lowden, Michal Fleszar, Marta Albareda, Sarah J Coulthurst, Frank Sargent. The plant pathogen Pectobacterium atrosepticum contains a functional formate hydrogenlyase-2 complex.
Molecular microbiology.
2019 11; 112(5):1440-1452. doi:
10.1111/mmi.14370
. [PMID: 31420965] - Helena D F Q Barros, Andressa M Baseggio, Célio F F Angolini, Gláucia M Pastore, Cinthia B B Cazarin, Mario R Marostica-Junior. Influence of different types of acids and pH in the recovery of bioactive compounds in Jabuticaba peel (Plinia cauliflora).
Food research international (Ottawa, Ont.).
2019 10; 124(?):16-26. doi:
10.1016/j.foodres.2019.01.010
. [PMID: 31466635] - Julien Camperi, Valerie Pichon, Thierry Fournier, Nathalie Delaunay. First profiling in hydrophilic interaction liquid chromatography of intact human chorionic gonadotropin isoforms.
Journal of pharmaceutical and biomedical analysis.
2019 Sep; 174(?):495-499. doi:
10.1016/j.jpba.2019.06.014
. [PMID: 31234040] - Anisha Wijeyesekera, Josef Wagner, Marcus De Goffau, Sarah Thurston, Adilson Rodrigues Sabino, Sara Zaher, Deborah White, Jenna Ridout, Mark J Peters, Padmanabhan Ramnarayan, Ricardo G Branco, M Estee Torok, Frederic Valla, Rosan Meyer, Nigel Klein, Gary Frost, Julian Parkhill, Elaine Holmes, Nazima Pathan. Multi-Compartment Profiling of Bacterial and Host Metabolites Identifies Intestinal Dysbiosis and Its Functional Consequences in the Critically Ill Child.
Critical care medicine.
2019 09; 47(9):e727-e734. doi:
10.1097/ccm.0000000000003841
. [PMID: 31169619] - Sachie Shibayama, Shin-Ichiro Fujii, Kazumi Inagaki, Taichi Yamazaki, Mariko Yoshioka, Satoko Matsukura, Akira Sasaki, Tetsushi Suyama, Naohiro Noda, Yuji Sekiguchi, Akiko Takatsu. Development of certified reference material NMIJ CRM 6205-a for the validation of DNA quantification methods: accurate mass concentrations of 600-bp DNA solutions having artificial sequences.
Analytical and bioanalytical chemistry.
2019 Sep; 411(23):6091-6100. doi:
10.1007/s00216-019-01992-y
. [PMID: 31289897] - Shaoxing Guan, Xi Chen, Fei Wang, Shuang Xin, Wei Feng, Xia Zhu, Shu Liu, Wei Zhuang, Shan Zhou, Min Huang, Xueding Wang, Li Zhang. Development and validation of a sensitive LC-MS/MS method for determination of gefitinib and its major metabolites in human plasma and its application in non-small cell lung cancer patients.
Journal of pharmaceutical and biomedical analysis.
2019 Aug; 172(?):364-371. doi:
10.1016/j.jpba.2019.03.060
. [PMID: 31096095] - Santosh Kumar Puttrevu, Tulsankar Sachin Laxman, Amit Kumar Tripathi, Anand Kumar Yadav, Sarvesh Kumar Verma, Anjali Mishra, Rajesh Pradhan, Neeraj Kumar Verma, Jimut Kanti Ghosh, Rabi S Bhatta. Liquid chromatography-tandem mass spectrometry based method development and validation of S016-1271 (LR8P), a novel cationic antimicrobial peptide for its application to pharmacokinetic studies.
Journal of pharmaceutical and biomedical analysis.
2019 May; 169(?):116-126. doi:
10.1016/j.jpba.2019.01.046
. [PMID: 30851514] - Jorge Gonzalez de la Cruz, Fabian Machens, Katrin Messerschmidt, Arren Bar-Even. Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast.
ACS synthetic biology.
2019 05; 8(5):911-917. doi:
10.1021/acssynbio.8b00464
. [PMID: 31002757] - Nam Yeun Kim, Chung Min Lee, So Young Kim, Ok Bin Kim. Formate-removing inoculum dominated by Methanobacterium congolense supports succinate production from crude glycerol fermentation.
Journal of industrial microbiology & biotechnology.
2019 May; 46(5):625-634. doi:
10.1007/s10295-019-02154-w
. [PMID: 30783892] - S A Suphoronski, R T Chideroli, C T Facimoto, R M Mainardi, F P Souza, N M Lopera-Barrero, G F A Jesus, M L Martins, G W Di Santis, A de Oliveira, G S Gonçalves, R Dari, S Frouel, U P Pereira. Effects of a phytogenic, alone and associated with potassium diformate, on tilapia growth, immunity, gut microbiome and resistance against francisellosis.
Scientific reports.
2019 04; 9(1):6045. doi:
10.1038/s41598-019-42480-8
. [PMID: 30988331] - David E Dussourd, Madalyn Van Valkenburg, Kalavathy Rajan, David L Wagner. A notodontid novelty: Theroa zethus caterpillars use behavior and anti-predator weaponry to disarm host plants.
PloS one.
2019; 14(7):e0218994. doi:
10.1371/journal.pone.0218994
. [PMID: 31291279] - Nico J Claassens, Hai He, Arren Bar-Even. Synthetic Methanol and Formate Assimilation Via Modular Engineering and Selection Strategies.
Current issues in molecular biology.
2019; 33(?):237-248. doi:
10.21775/cimb.033.237
. [PMID: 31166196] - Hanan A Gashout, Paul H Goodwin, Ernesto Guzman-Novoa. Lethality of synthetic and natural acaricides to worker honey bees (Apis mellifera) and their impact on the expression of health and detoxification-related genes.
Environmental science and pollution research international.
2018 Dec; 25(34):34730-34739. doi:
10.1007/s11356-018-3205-6
. [PMID: 30324372] - Elise Drangsholt, Marie Vangstad, Sergey Zakharov, Knut Erik Hovda, Dag Jacobsen. The Hypothesis of Circulus Hypoxicus and Its Clinical Relevance in Patients With Methanol Poisoning - An Observational Study of 35 Patients.
Basic & clinical pharmacology & toxicology.
2018 Dec; 123(6):749-755. doi:
10.1111/bcpt.13074
. [PMID: 29923671] - Xian-Mei Yu, Jin-Zheng Wang, Pei-Xian Nie, Xiao-Min Xue, Gui-Ping Wang, Miao An. Control efficacy of Ca-containing foliar fertilizers on bitter pit in bagged 'Fuji' apple and effects on the Ca and N contents of apple fruits and leaves.
Journal of the science of food and agriculture.
2018 Nov; 98(14):5435-5443. doi:
10.1002/jsfa.9087
. [PMID: 29675868] - Hang Xu, Yang Li, Mingmei Ding, Wei Chen, Kang Wang, Chunhui Lu. Simultaneous removal of dissolved organic matter and nitrate from sewage treatment plant effluents using photocatalytic membranes.
Water research.
2018 10; 143(?):250-259. doi:
10.1016/j.watres.2018.06.044
. [PMID: 29960179] - Wei Ye, Weimin Zhang, Taomei Liu, Muzhi Zhu, Saini Li, Haohua Li, Zilei Huang, Xiaoxia Gao. iTRAQ-Based Quantitative Proteomic Analysis of Chemically Induced Aquilaria sinensis Provides Insights into Agarwood Formation Mechanism.
Proteomics.
2018 10; 18(20):e1800023. doi:
10.1002/pmic.201800023
. [PMID: 30035352] - Lynne Dawkins, Sharon Cox, Maciej Goniewicz, Hayden McRobbie, Catherine Kimber, Mira Doig, Leon Kośmider. 'Real-world' compensatory behaviour with low nicotine concentration e-liquid: subjective effects and nicotine, acrolein and formaldehyde exposure.
Addiction (Abingdon, England).
2018 10; 113(10):1874-1882. doi:
10.1111/add.14271
. [PMID: 29882257] - Volker Döring, Ekaterina Darii, Oren Yishai, Arren Bar-Even, Madeleine Bouzon. Implementation of a Reductive Route of One-Carbon Assimilation in Escherichia coli through Directed Evolution.
ACS synthetic biology.
2018 09; 7(9):2029-2036. doi:
10.1021/acssynbio.8b00167
. [PMID: 30106273] - Oren Yishai, Madeleine Bouzon, Volker Döring, Arren Bar-Even. In Vivo Assimilation of One-Carbon via a Synthetic Reductive Glycine Pathway in Escherichia coli.
ACS synthetic biology.
2018 09; 7(9):2023-2028. doi:
10.1021/acssynbio.8b00131
. [PMID: 29763299] - Cunying Huang, Huihui Wan, Jing Zhang, Hongmin Zhong, Juan Li, YuMing Sun, Qing Wang, Hua Zhang. Quantification of ondansetron, granisetron and tropisetron in goat plasma using hydrophilic interaction liquid chromatography-solid phase extraction coupled with hydrophilic interaction liquid chromatography-triple quadrupole tandem mass spectrometry.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2018 Sep; 1095(?):50-58. doi:
10.1016/j.jchromb.2018.07.009
. [PMID: 30053687] - Vincent Desfontaine, Gioacchino Luca Losacco, Yoric Gagnebin, Julian Pezzatti, William P Farrell, Víctor González-Ruiz, Serge Rudaz, Jean-Luc Veuthey, Davy Guillarme. Applicability of supercritical fluid chromatography - mass spectrometry to metabolomics. I - Optimization of separation conditions for the simultaneous analysis of hydrophilic and lipophilic substances.
Journal of chromatography. A.
2018 Aug; 1562(?):96-107. doi:
10.1016/j.chroma.2018.05.055
. [PMID: 29861304] - Amr Fadel, Mahmoud Mabrok, Salah Aly. Epizootics of Pseudomonas anguilliseptica among cultured seabream (Sparus aurata) populations: Control and treatment strategies.
Microbial pathogenesis.
2018 Aug; 121(?):1-8. doi:
10.1016/j.micpath.2018.04.021
. [PMID: 29673977] - Arren Bar-Even. Daring metabolic designs for enhanced plant carbon fixation.
Plant science : an international journal of experimental plant biology.
2018 Aug; 273(?):71-83. doi:
10.1016/j.plantsci.2017.12.007
. [PMID: 29907311] - Brian Waters, Kenji Hara, Natsuki Ikematsu, Mio Takayama, Aya Matsusue, Masayuki Kashiwagi, Shin-Ichi Kubo. An unusual case of suicide by methanol ingestion.
Forensic science international.
2018 Aug; 289(?):e9-e14. doi:
10.1016/j.forsciint.2018.05.049
. [PMID: 29908646] - Mari Hashimoto, Enrico Girardi, Ruth Eichner, Giulio Superti-Furga. Detection of Chemical Engagement of Solute Carrier Proteins by a Cellular Thermal Shift Assay.
ACS chemical biology.
2018 06; 13(6):1480-1486. doi:
10.1021/acschembio.8b00270
. [PMID: 29851333] - Pavol Ďurč, František Foret, Petr Kubáň. Fast blood plasma separation device for point-of-care applications.
Talanta.
2018 Jun; 183(?):55-60. doi:
10.1016/j.talanta.2018.02.004
. [PMID: 29567189] - Nilanjal Misra, Virendra Kumar, Swarnima Rawat, Narender Kumar Goel, Shubhangi A Shelkar, Jagannath, Rakesh Kumar Singhal, Lalit Varshney. Mitigation of Cr(VI) toxicity using Pd-nanoparticles immobilized catalytic reactor (Pd-NICaR) fabricated via plasma and gamma radiation.
Environmental science and pollution research international.
2018 Jun; 25(16):16101-16110. doi:
10.1007/s11356-018-1709-8
. [PMID: 29594904] - Zhenhua Li, Chunfang Xie, Jing Lv, Ruiguo Zhai. Effect of calcium formate as an additive on desulfurization in power plants.
Journal of environmental sciences (China).
2018 May; 67(?):89-95. doi:
10.1016/j.jes.2017.06.023
. [PMID: 29778177] - Huilin Wang, Yan Jiang, Mingya Ding, Jin Li, Jia Hao, Jun He, Hui Wang, Xiu-Mei Gao, Yan-Xu Chang. Simultaneous determination and qualitative analysis of six types of components in Naoxintong capsule by miniaturized matrix solid-phase dispersion extraction coupled with ultra high-performance liquid chromatography with photodiode array detection and quadrupole time-of-flight mass spectrometry.
Journal of separation science.
2018 May; 41(9):2064-2084. doi:
10.1002/jssc.201701411
. [PMID: 29396922] - Santosh Lamichhane, Christian C Yde, Henrik Max Jensen, Wesley Morovic, Ashley A Hibberd, Arthur C Ouwehand, Markku T Saarinen, Sofia D Forssten, Lars Wiebe, Jørn Marcussen, Kresten Bertelsen, Sebastian Meier, Jette F Young, Hanne Christine Bertram. Metabolic Fate of 13C-Labeled Polydextrose and Impact on the Gut Microbiome: A Triple-Phase Study in a Colon Simulator.
Journal of proteome research.
2018 03; 17(3):1041-1053. doi:
10.1021/acs.jproteome.7b00683
. [PMID: 29359944] - Luke MacMillan, Garrett Tingley, Sara K Young, Kathy A Clow, Edward W Randell, Margaret E Brosnan, John T Brosnan. Cobalamin Deficiency Results in Increased Production of Formate Secondary to Decreased Mitochondrial Oxidation of One-Carbon Units in Rats.
The Journal of nutrition.
2018 03; 148(3):358-363. doi:
10.1093/jn/nxx057
. [PMID: 29546303] - Gauri Luthra, Ivan Vuckovic, A Bangdiwala, H Gray, J B Redmon, E S Barrett, S Sathyanarayana, R H N Nguyen, S H Swan, S Zhang, P Dzeja, S I Macura, K S Nair. First and second trimester urinary metabolic profiles and fetal growth restriction: an exploratory nested case-control study within the infant development and environment study.
BMC pregnancy and childbirth.
2018 02; 18(1):48. doi:
10.1186/s12884-018-1674-8
. [PMID: 29422013] - Sudarsan Mukhopadhyay, Kimberly Sokorai, Dike O Ukuku, Tony Jin, Xuetong Fan, Modesto Olanya, Vijay Juneja. Inactivation of Salmonella in grape tomato stem scars by organic acid wash and chitosan-allyl isothiocyanate coating.
International journal of food microbiology.
2018 Feb; 266(?):234-240. doi:
10.1016/j.ijfoodmicro.2017.12.018
. [PMID: 29272723] - Daryl McNeilly, Andrew Schofield, Sophia L Stone. Degradation of the stress-responsive enzyme formate dehydrogenase by the RING-type E3 ligase Keep on Going and the ubiquitin 26S proteasome system.
Plant molecular biology.
2018 Feb; 96(3):265-278. doi:
10.1007/s11103-017-0691-8
. [PMID: 29270890]