Cyanate (BioDeep_00000840373)
代谢物信息卡片
化学式: CNO- (41.997989)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(=[N-])=O
InChI: InChI=1S/CNO/c2-1-3/q-1
数据库引用编号
6 个数据库交叉引用编号
- ChEBI: CHEBI:29195
- PubChem: 105034
- MeSH: Cyanates
- CAS: 71000-82-3
- CAS: 661-20-1
- MetaboLights: MTBLC29195
分类词条
相关代谢途径
Reactome(0)
BioCyc(5)
PlantCyc(0)
代谢反应
346 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(12)
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonia
- cyanate degradation:
H+ + bicarbonate + cyanate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogen carbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonia
- cyanate degradation:
H+ + hydrogen carbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogen carbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogen carbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonia
- thiocyanate degradation I:
H2O + thiocyanate ⟶ cyanate + hydrogen sulfide
WikiPathways(0)
Plant Reactome(210)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Inorganic nutrients metabolism:
Nitrite ⟶ H2O + ammonia
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Cyanate catabolism:
H+ + HCO3- + cyanate ⟶ carbamate + carbon dioxide
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
INOH(0)
PlantCyc(120)
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonium
COVID-19 Disease Map(0)
PathBank(4)
- Nitrogen Metabolism:
Ammonia + Hydrogen + NADPH + Oxoglutaric acid ⟶ L-Glutamic acid + NADP + Water
- Cyanate Degradation:
Carbon dioxide + Water ⟶ Hydrogen Ion + Hydrogen carbonate
- Nitrogen Metabolism:
Carbamic acid + Hydrogen Ion ⟶ Ammonia + Carbon dioxide
- Cyanate Degradation:
Cyanate + Hydrogen Ion + Hydrogen carbonate ⟶ Carbamic acid + Carbon dioxide
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Tibor Renkecz, Sirma Scopchanova, Gábor Hirka, Ilona Pasics Szakonyiné. Development and Validation of an LC-MS-MS Method for the Quantification of Cyanate in Rat Plasma and Its Application to Toxicokinetic Bioanalysis.
Journal of analytical toxicology.
2021 Nov; 45(9):1028-1035. doi:
10.1093/jat/bkaa163
. [PMID: 33044525] - Manon Doué, Anaïs Okwieka, Alexandre Berquand, Laëtitia Gorisse, Pascal Maurice, Frédéric Velard, Christine Terryn, Michaël Molinari, Laurent Duca, Christine Piétrement, Philippe Gillery, Stéphane Jaisson. Carbamylation of elastic fibers is a molecular substratum of aortic stiffness.
Scientific reports.
2021 09; 11(1):17827. doi:
10.1038/s41598-021-97293-5
. [PMID: 34497312] - Aphinan Hongprasit, Yusuke Okamoto, Toshihiko Toida, Yasumitsu Ogra. Comparison of quantification of selenocyanate and thiocyanate in cultured mammalian cells between HPLC-fluorescence detector and HPLC-inductively coupled plasma mass spectrometer.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2021 Sep; 1181(?):122924. doi:
10.1016/j.jchromb.2021.122924
. [PMID: 34508979] - Mostafa M S Ismaiel, Yassin M El-Ayouty, Asmaa H Al-Badwy. Biosorption of cyanate by two strains of Chlamydomonas reinhardtii: evaluation of the removal efficiency and antioxidants activity.
International journal of phytoremediation.
2021; 23(10):1030-1040. doi:
10.1080/15226514.2021.1872486
. [PMID: 33474973] - Asim Badar, Zarina Arif, Faizan Abul Qais, Shireen Naaz Islam, Khursheed Alam. Carbamylation of human serum albumin generates high-molecular weight aggregates: fine characterization by multi-spectroscopic methods and electron microscopy.
International journal of biological macromolecules.
2020 Dec; 164(?):2380-2388. doi:
10.1016/j.ijbiomac.2020.08.083
. [PMID: 32795577] - Kazuaki Takahashi, Yasumitsu Ogra. Identification of the biliary selenium metabolite and the biological significance of selenium enterohepatic circulation.
Metallomics : integrated biometal science.
2020 02; 12(2):241-248. doi:
10.1039/c9mt00274j
. [PMID: 31808489] - Tiago E A Frizon, José H Cararo, Sumbal Saba, Gustavo C Dal-Pont, Monique Michels, Hugo C Braga, Tairine Pimentel, Felipe Dal-Pizzol, Samira S Valvassori, Jamal Rafique. Synthesis of Novel Selenocyanates and Evaluation of Their Effect in Cultured Mouse Neurons Submitted to Oxidative Stress.
Oxidative medicine and cellular longevity.
2020; 2020(?):5417024. doi:
10.1155/2020/5417024
. [PMID: 33093936] - Ling Hu, Kuan Tian, Tao Zhang, Chun-Hua Fan, Peng Zhou, Di Zeng, Shuang Zhao, Li-Sha Li, Hendrea Shaniqua Smith, Jing Li, Jian-Hua Ran. Cyanate Induces Oxidative Stress Injury and Abnormal Lipid Metabolism in Liver through Nrf2/HO-1.
Molecules (Basel, Switzerland).
2019 Sep; 24(18):. doi:
10.3390/molecules24183231
. [PMID: 31491954] - Bahadir Simsek, Ufuk Çakatay. Could cyanogenic glycoside rich diet cause increased risk for carbamylation-induced protein damage in individuals with chronic inflammatory diseases?.
Medical hypotheses.
2019 Sep; 130(?):109275. doi:
10.1016/j.mehy.2019.109275
. [PMID: 31383327] - Elizabeth Harmon, Jacob Lebin, David Murphy, Bjorn Watsjold. Fatality from potassium gold cyanide poisoning.
BMJ case reports.
2019 Jul; 12(7):. doi:
10.1136/bcr-2019-229947
. [PMID: 31350229] - Kazuaki Takahashi, Noriyuki Suzuki, Yasumitsu Ogra. Effect of administration route and dose on metabolism of nine bioselenocompounds.
Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS).
2018 Sep; 49(?):113-118. doi:
10.1016/j.jtemb.2018.05.007
. [PMID: 29895359] - Emanuele De Simone, Lucia Di Micco, Gaetano La Manna, Biagio Di Iorio. [Protein carbamylation: what it is and why it concerns nephrologists].
Giornale italiano di nefrologia : organo ufficiale della Societa italiana di nefrologia.
2018 May; 35(3):. doi:
NULL
. [PMID: 29786184] - C Nicolas, S Jaisson, L Gorisse, F J Tessier, C Niquet-Léridon, P Jacolot, C Pietrement, P Gillery. Carbamylation is a competitor of glycation for protein modification in vivo.
Diabetes & metabolism.
2018 Mar; 44(2):160-167. doi:
10.1016/j.diabet.2017.05.006
. [PMID: 28690125] - Seong Sik Kang, Kyo-Cheol Mun, Ji Hae Seo, Misun Choe, Eunyoung Ha. Cyanate improves insulin sensitivity and hepatic steatosis in normal and high fat-fed mice: Anorexic and antioxidative effects.
Chemico-biological interactions.
2018 Jan; 279(?):121-128. doi:
10.1016/j.cbi.2017.10.026
. [PMID: 29113807] - Veronika Binder, Brith Bergum, Stéphane Jaisson, Philippe Gillery, Carsten Scavenius, Endy Spriet, Anne Karin Nyhaug, Helen M Roberts, Iain L C Chapple, Annelie Hellvard, Nicolas Delaleu, Piotr Mydel. Impact of fibrinogen carbamylation on fibrin clot formation and stability.
Thrombosis and haemostasis.
2017 05; 117(5):899-910. doi:
10.1160/th16-09-0704
. [PMID: 28382370] - Rashad Kebeish, Omar Al-Zoubi. Expression of the cyanobacterial enzyme cyanase increases cyanate metabolism and cyanate tolerance in Arabidopsis.
Environmental science and pollution research international.
2017 Apr; 24(12):11825-11835. doi:
10.1007/s11356-017-8866-z
. [PMID: 28343358] - Jia Teng Sun, Ke Yang, Jing Yan Mao, Wei Feng Shen, Lin Lu, Qi Hong Wu, Yan Ping Wang, Li Ping Wu, Rui Yan Zhang. Cyanate-Impaired Angiogenesis: Association With Poor Coronary Collateral Growth in Patients With Stable Angina and Chronic Total Occlusion.
Journal of the American Heart Association.
2016 12; 5(12):. doi:
10.1161/jaha.116.004700
. [PMID: 27986757] - Laetitia Koppe, Elsa Nyam, Kevin Vivot, Jocelyn E Manning Fox, Xiao-Qing Dai, Bich N Nguyen, Dominique Trudel, Camille Attané, Valentine S Moullé, Patrick E MacDonald, Julien Ghislain, Vincent Poitout. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease.
The Journal of clinical investigation.
2016 09; 126(9):3598-612. doi:
10.1172/jci86181
. [PMID: 27525435] - Anna Pieniazek, Krzysztof Gwozdzinski. Changes in lymphocyte properties after employment of the combination of carbamylation and oxidative stress, an in vitro study.
Toxicology in vitro : an international journal published in association with BIBRA.
2016 Aug; 34(?):105-112. doi:
10.1016/j.tiv.2016.03.017
. [PMID: 27049461] - Anna Pieniążek, Krzysztof Gwoździński. [Carbamylation of proteins--mechanism, causes and consequences].
Postepy higieny i medycyny doswiadczalnej (Online).
2016 May; 70(?):514-21. doi:
10.5604/17322693.1202189
. [PMID: 27180968] - Jia Teng Sun, Ke Yang, Lin Lu, Zheng Bin Zhu, Jin Zhou Zhu, Jing Wei Ni, Hui Han, Nan Chen, Rui Yan Zhang. Increased carbamylation level of HDL in end-stage renal disease: carbamylated-HDL attenuated endothelial cell function.
American journal of physiology. Renal physiology.
2016 Mar; 310(6):F511-7. doi:
10.1152/ajprenal.00508.2015
. [PMID: 26764205] - Yasumi Anan, Momoko Kimura, Marina Hayashi, Ren Koike, Yasumitsu Ogra. Detoxification of selenite to form selenocyanate in mammalian cells.
Chemical research in toxicology.
2015 Sep; 28(9):1803-14. doi:
10.1021/acs.chemrestox.5b00254
. [PMID: 26243445] - Shruthi K Bharadwaj, Nivedita Mondal, Bharathi Balachander, B Vishnu Bhat. Negative Urine Benedict's Test in a Child with Galactosemia: A Diagnostic Challenge.
Indian journal of pediatrics.
2015 Aug; 82(8):765-6. doi:
10.1007/s12098-015-1703-9
. [PMID: 25680784] - Saad Shaaban, Amr Negm, Mohamed A Sobh, Ludger A Wessjohann. Organoselenocyanates and symmetrical diselenides redox modulators: Design, synthesis and biological evaluation.
European journal of medicinal chemistry.
2015 Jun; 97(?):190-201. doi:
10.1016/j.ejmech.2015.05.002
. [PMID: 25969171] - Philippe Gillery, Stéphane Jaisson, Laëtitia Gorisse, Christine Pietrement. [Role of protein carbamylation in chronic kidney disease complications].
Nephrologie & therapeutique.
2015 Jun; 11(3):129-34. doi:
10.1016/j.nephro.2014.12.004
. [PMID: 25794932] - Dalia El-Gamal, Saša Frank, Seth Hallström, Gunther Marsche. The authors reply.
Kidney international.
2015 Apr; 87(4):861-2. doi:
10.1038/ki.2015.42
. [PMID: 25826551] - Dimitrios Tsikas. Pitfalls with nitric oxide synthase activity assays and their avoidance by gas chromatography-mass spectrometry.
Kidney international.
2015 Apr; 87(4):860-1. doi:
10.1038/ki.2015.46
. [PMID: 25826550] - M Holly Elmore, Kriston L McGary, Jennifer H Wisecaver, Jason C Slot, David M Geiser, Stacy Sink, Kerry O'Donnell, Antonis Rokas. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages.
Genome biology and evolution.
2015 Feb; 7(3):789-800. doi:
10.1093/gbe/evv025
. [PMID: 25663439] - Sarah Unser, Ian Campbell, Debrina Jana, Laura Sagle. Direct glucose sensing in the physiological range through plasmonic nanoparticle formation.
The Analyst.
2015 Jan; 140(2):590-9. doi:
10.1039/c4an01496k
. [PMID: 25426496] - Dalia El-Gamal, Shailaja P Rao, Michael Holzer, Seth Hallström, Johannes Haybaeck, Martin Gauster, Christian Wadsack, Andrijana Kozina, Saša Frank, Rudolf Schicho, Rufina Schuligoi, Akos Heinemann, Gunther Marsche. The urea decomposition product cyanate promotes endothelial dysfunction.
Kidney international.
2014 Nov; 86(5):923-31. doi:
10.1038/ki.2014.218
. [PMID: 24940796] - Clare L Hawkins. Role of cyanate in the induction of vascular dysfunction during uremia: more than protein carbamylation?.
Kidney international.
2014 Nov; 86(5):875-7. doi:
10.1038/ki.2014.256
. [PMID: 25360490] - Somnath Singha Roy, Pramita Chakraborty, Sudin Bhattacharya. Intervention in cyclophosphamide induced oxidative stress and DNA damage by a flavonyl-thiazolidinedione based organoselenocyanate and evaluation of its efficacy during adjuvant therapy in tumor bearing mice.
European journal of medicinal chemistry.
2014 Feb; 73(?):195-209. doi:
10.1016/j.ejmech.2013.12.015
. [PMID: 24412495] - Monika Praschberger, Marcela Hermann, Christian Laggner, Leopold Jirovetz, Markus Exner, Stylianos Kapiotis, Bernhard M K Gmeiner, Hilde Laggner. Carbamoylation abrogates the antioxidant potential of hydrogen sulfide.
Biochimie.
2013 Nov; 95(11):2069-75. doi:
10.1016/j.biochi.2013.07.018
. [PMID: 23896375] - Yajun Chang, Nobuyuki Takatani, Makiko Aichi, Shin-Ichi Maeda, Tatsuo Omata. Evaluation of the effects of P(II) deficiency and the toxicity of PipX on growth characteristics of the P(II)-Less mutant of the cyanobacterium Synechococcus elongatus.
Plant & cell physiology.
2013 Sep; 54(9):1504-14. doi:
10.1093/pcp/pct092
. [PMID: 23811238] - Kyubok Jin. Effects of amino acids and albumin on erythropoietin carbamoylation.
Clinical and experimental nephrology.
2013 Aug; 17(4):575-81. doi:
10.1007/s10157-012-0751-y
. [PMID: 23229652] - Kate Jones, John Cocker, Mark Piney. Isocyanate exposure control in motor vehicle paint spraying: evidence from biological monitoring.
The Annals of occupational hygiene.
2013 Mar; 57(2):200-9. doi:
10.1093/annhyg/mes056
. [PMID: 22986425] - Adam V Wisnewski, Morgen Mhike, Justin M Hettick, Jian Liu, Paul D Siegel. Hexamethylene diisocyanate (HDI) vapor reactivity with glutathione and subsequent transfer to human albumin.
Toxicology in vitro : an international journal published in association with BIBRA.
2013 Mar; 27(2):662-71. doi:
10.1016/j.tiv.2012.11.013
. [PMID: 23178851] - Adam V Wisnewski, Meredith H Stowe, Abby Nerlinger, Paul Opare-Addo, David Decamp, Christopher R Kleinsmith, Carrie A Redlich. Biomonitoring Hexamethylene diisocyanate (HDI) exposure based on serum levels of HDI-specific IgG.
The Annals of occupational hygiene.
2012 Oct; 56(8):901-10. doi:
10.1093/annhyg/mes024
. [PMID: 22449630] - Daniel G Beach, Wojciech Gabryelski. Revisiting the reactivity of uracil during collision induced dissociation: tautomerism and charge-directed processes.
Journal of the American Society for Mass Spectrometry.
2012 May; 23(5):858-68. doi:
10.1007/s13361-012-0343-9
. [PMID: 22351291] - Panayot K Petrov, Jeffrey W Charters, Dirk Wallschläger. Identification and determination of selenosulfate and selenocyanate in flue gas desulfurization waters.
Environmental science & technology.
2012 Feb; 46(3):1716-23. doi:
10.1021/es202529w
. [PMID: 22206507] - Dalia El-Gamal, Michael Holzer, Martin Gauster, Rudolf Schicho, Veronika Binder, Viktoria Konya, Christian Wadsack, Rufina Schuligoi, Akos Heinemann, Gunther Marsche. Cyanate is a novel inducer of endothelial icam-1 expression.
Antioxidants & redox signaling.
2012 Jan; 16(2):129-37. doi:
10.1089/ars.2011.4090
. [PMID: 21838543] - Stéphane Jaisson, Christine Pietrement, Philippe Gillery. Carbamylation-derived products: bioactive compounds and potential biomarkers in chronic renal failure and atherosclerosis.
Clinical chemistry.
2011 Nov; 57(11):1499-505. doi:
10.1373/clinchem.2011.163188
. [PMID: 21768218] - Małgorzata Iciek, Anna Bilska, Elzbieta Lorenc-Koci, Lidia B Wlodek, Maria M Sokołowska. The effect of uremic toxin cyanate (OCN–) on anaerobic sulfur metabolism and prooxidative processes in the rat kidney: a protective role of lipoate.
Human & experimental toxicology.
2011 Oct; 30(10):1601-8. doi:
10.1177/0960327110394225
. [PMID: 21177730] - Maria Sokołowska, Ewa Niedzielska, Małgorzata Iciek, Anna Bilska, Elżbieta Lorenc-Koci, Lidia Włodek. The effect of the uremic toxin cyanate (CNO⁻) on anaerobic cysteine metabolism and oxidative processes in the rat liver: a protective effect of lipoate.
Toxicology mechanisms and methods.
2011 Jul; 21(6):473-8. doi:
10.3109/15376516.2011.556155
. [PMID: 21417628] - Michael Holzer, Martin Gauster, Thomas Pfeifer, Christian Wadsack, Guenter Fauler, Philipp Stiegler, Harald Koefeler, Eckhard Beubler, Rufina Schuligoi, Akos Heinemann, Gunther Marsche. Protein carbamylation renders high-density lipoprotein dysfunctional.
Antioxidants & redox signaling.
2011 Jun; 14(12):2337-46. doi:
10.1089/ars.2010.3640
. [PMID: 21235354] - Ram Malal, Maya Malal, Daniel Cohn. Surface grafting thermoresponsive PEO-PPO-PEO chains.
Journal of tissue engineering and regenerative medicine.
2011 May; 5(5):394-401. doi:
10.1002/term.330
. [PMID: 20936602] - Sabine M Schreier, Hannes Steinkellner, Leopold Jirovetz, Marcela Hermann, Markus Exner, Bernhard M K Gmeiner, Stylianos Kapiotis, Hilde Laggner. S-carbamoylation impairs the oxidant scavenging activity of cysteine: its possible impact on increased LDL modification in uraemia.
Biochimie.
2011 Apr; 93(4):772-7. doi:
10.1016/j.biochi.2011.01.007
. [PMID: 21277933] - Roman M Kassa, Nyamabo L Kasensa, Victor H Monterroso, Robert J Kayton, John E Klimek, Larry L David, Kalala R Lunganza, Kazadi T Kayembe, Marina Bentivoglio, Sharon L Juliano, Desire D Tshala-Katumbay. On the biomarkers and mechanisms of konzo, a distinct upper motor neuron disease associated with food (cassava) cyanogenic exposure.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2011 Mar; 49(3):571-8. doi:
10.1016/j.fct.2010.05.080
. [PMID: 20538033] - Linda G T Gaines, Kenneth W Fent, Sheila L Flack, Jennifer M Thomasen, Stephen G Whittaker, Leena A Nylander-French. Factors affecting variability in the urinary biomarker 1,6-hexamethylene diamine in workers exposed to 1,6-hexamethylene diisocyanate.
Journal of environmental monitoring : JEM.
2011 Jan; 13(1):119-27. doi:
10.1039/c0em00122h
. [PMID: 20978689] - Nina A Kamennaya, Anton F Post. Characterization of cyanate metabolism in marine Synechococcus and Prochlorococcus spp.
Applied and environmental microbiology.
2011 Jan; 77(1):291-301. doi:
10.1128/aem.01272-10
. [PMID: 21057026] - Sheila L Flack, Louise M Ball, Leena A Nylander-French. Occupational exposure to HDI: progress and challenges in biomarker analysis.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2010 Oct; 878(27):2635-42. doi:
10.1016/j.jchromb.2010.01.012
. [PMID: 20176515] - Linda G T Gaines, Kenneth W Fent, Sheila L Flack, Jennifer M Thomasen, Louise M Ball, David B Richardson, Kai Ding, Stephen G Whittaker, Leena A Nylander-French. Urine 1,6-hexamethylene diamine (HDA) levels among workers exposed to 1,6-hexamethylene diisocyanate (HDI).
The Annals of occupational hygiene.
2010 Aug; 54(6):678-91. doi:
10.1093/annhyg/meq041
. [PMID: 20530123] - Ugir Hossain Sk, Arun K Sharma, Sulekha Ghosh, Sudin Bhattacharya. Synthesis and biological evaluation of novel spiro 6-methoxytetralin-1,3'-pyrrolidine based organoselenocyanates against cadmium-induced oxidative and hepatic damage in mice.
European journal of medicinal chemistry.
2010 Aug; 45(8):3265-73. doi:
10.1016/j.ejmech.2010.04.001
. [PMID: 20457475] - Ataru Higa, Yuko Mori, Yoshie Kitamura. Iron deficiency induces changes in riboflavin secretion and the mitochondrial electron transport chain in hairy roots of Hyoscyamus albus.
Journal of plant physiology.
2010 Jul; 167(11):870-8. doi:
10.1016/j.jplph.2010.01.011
. [PMID: 20181408] - Mirtaghi Mirmohammadi, M Hakimi Ibrahim, Anees Ahmad, Mohd Omar Abdul Kadir, M Mohammadyan, S B Mirashrafi. Indoor air pollution evaluation with emphasize on HDI and biological assessment of HDA in the polyurethane factories.
Environmental monitoring and assessment.
2010 Jun; 165(1-4):341-7. doi:
10.1007/s10661-009-0950-5
. [PMID: 19444630] - Niloufar Choubdar, Shuliu Li, Richard A Holley. Supercritical fluid chromatography of myrosinase reaction products in ground yellow mustard seed oil.
Journal of food science.
2010 May; 75(4):C341-5. doi:
10.1111/j.1750-3841.2010.01584.x
. [PMID: 20546392] - Leila Hojabri, Xiaohua Kong, Suresh S Narine. Functional thermoplastics from linear diols and diisocyanates produced entirely from renewable lipid sources.
Biomacromolecules.
2010 Apr; 11(4):911-8. doi:
10.1021/bm901308c
. [PMID: 20232886] - Mohammad Ali Ghaffari, Mehrnoosh Shanaki. In vitro inhibition of low density lipoprotein carbamylation by vitamins, as an ameliorating atherosclerotic risk in uremic patients.
Scandinavian journal of clinical and laboratory investigation.
2010 Apr; 70(2):122-7. doi:
10.3109/00365511003624137
. [PMID: 20156036] - Linda G T Gaines, Kenneth W Fent, Sheila L Flack, Jennifer M Thomasen, Louise M Ball, Haibo Zhou, Stephen G Whittaker, Leena A Nylander-French. Effect of creatinine and specific gravity normalization on urinary biomarker 1,6-hexamethylene diamine.
Journal of environmental monitoring : JEM.
2010 Mar; 12(3):591-9. doi:
10.1039/b921073c
. [PMID: 20445846] - Sheila L Flack, Kenneth W Fent, Linda G Trelles Gaines, Jennifer M Thomasen, Steve Whittaker, Louise M Ball, Leena A Nylander-French. Quantitative plasma biomarker analysis in HDI exposure assessment.
The Annals of occupational hygiene.
2010 Jan; 54(1):41-54. doi:
10.1093/annhyg/mep069
. [PMID: 19805392] - James Claffey, Anthony Deally, Brendan Gleeson, Megan Hogan, Luis Miguel Menéndez Méndez, Helge Müller-Bunz, Siddappa Patil, Denise Wallis, Matthias Tacke. Pseudo-halide derivatives of titanocene: synthesis and cytotoxicity studies.
Metallomics : integrated biometal science.
2009 Nov; 1(6):511-7. doi:
10.1039/b911753a
. [PMID: 21305159] - Kayoko Minakata, Hideki Nozawa, Kunio Gonmori, Masako Suzuki, Osamu Suzuki. Determination of cyanide, in urine and gastric content, by electrospray ionization tandem mass spectrometry after direct flow injection of dicyanogold.
Analytica chimica acta.
2009 Sep; 651(1):81-4. doi:
10.1016/j.aca.2009.08.001
. [PMID: 19733739] - Shin-ichi Maeda, Tatsuo Omata. Nitrite transport activity of the ABC-type cyanate transporter of the cyanobacterium Synechococcus elongatus.
Journal of bacteriology.
2009 May; 191(10):3265-72. doi:
10.1128/jb.00013-09
. [PMID: 19286804] - Pradyumna Kumar Mishra, Venkata Raghuram Gorantla, Nabila Akhtar, Priyanka Tamrakar, Subodh Kumar Jain, Kewal Krishan Maudar. Analysis of cellular response to isocyanate using N-succinimidyl N-methylcarbamate exposure in cultured mammalian cells.
Environmental and molecular mutagenesis.
2009 May; 50(4):328-36. doi:
10.1002/em.20469
. [PMID: 19197993] - Leila Hojabri, Xiaohua Kong, Suresh S Narine. Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization.
Biomacromolecules.
2009 Apr; 10(4):884-91. doi:
10.1021/bm801411w
. [PMID: 19281152] - Bret F Bessac, Michael Sivula, Christian A von Hehn, Ana I Caceres, Jasmine Escalera, Sven-Eric Jordt. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2009 Apr; 23(4):1102-14. doi:
10.1096/fj.08-117812
. [PMID: 19036859] - Sven Rustler, Hassan Motejadded, Josef Altenbuchner, Andreas Stolz. Simultaneous expression of an arylacetonitrilase from Pseudomonas fluorescens and a (S)-oxynitrilase from Manihot esculenta in Pichia pastoris for the synthesis of (S)-mandelic acid.
Applied microbiology and biotechnology.
2008 Aug; 80(1):87-97. doi:
10.1007/s00253-008-1531-1
. [PMID: 18523765] - Nanna Bjarnholt, Birger Lindberg Møller. Hydroxynitrile glucosides.
Phytochemistry.
2008 Jul; 69(10):1947-61. doi:
10.1016/j.phytochem.2008.04.018
. [PMID: 18539303] - S Ulland, E Ian, M Stranden, A-K Borg-Karlson, H Mustaparta. Plant volatiles activating specific olfactory receptor neurons of the cabbage moth Mamestra brassicae L. (Lepidoptera, Noctuidae).
Chemical senses.
2008 Jul; 33(6):509-22. doi:
10.1093/chemse/bjn018
. [PMID: 18480074] - A V Wisnewski, Q Liu, J Liu, C A Redlich. Human innate immune responses to hexamethylene diisocyanate (HDI) and HDI-albumin conjugates.
Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.
2008 Jun; 38(6):957-67. doi:
10.1111/j.1365-2222.2008.02982.x
. [PMID: 18498542] - Yael Elbaz, Tal Salomon, Shimon Schuldiner. Identification of a glycine motif required for packing in EmrE, a multidrug transporter from Escherichia coli.
The Journal of biological chemistry.
2008 May; 283(18):12276-83. doi:
10.1074/jbc.m710338200
. [PMID: 18321856] - Stéphane Jaisson, Roselyne Garnotel, Philippe Gillery. New evidence to support the clinical and biological relevance of the protein carbamylation process in human pathophysiology.
Medical hypotheses.
2008; 70(5):1070-1. doi:
10.1016/j.mehy.2007.11.010
. [PMID: 18179875] - G Mistrello, H Harfi, D Roncarolo, A Kwaasi, D Zanoni, P Falagiani, R Panzani. Date palm pollen allergoid: characterization of its chemical-physical and immunological properties.
International archives of allergy and immunology.
2008; 145(3):224-30. doi:
10.1159/000109291
. [PMID: 17914274] - Anjoeka Pronk, Liesbeth Preller, Monika Raulf-Heimsoth, Irene C L Jonkers, Jan-Willem Lammers, Inge M Wouters, Gert Doekes, Adam V Wisnewski, Dick Heederik. Respiratory symptoms, sensitization, and exposure response relationships in spray painters exposed to isocyanates.
American journal of respiratory and critical care medicine.
2007 Dec; 176(11):1090-7. doi:
10.1164/rccm.200702-215oc
. [PMID: 17656675] - Zeneng Wang, Stephen J Nicholls, E Rene Rodriguez, Outi Kummu, Sohvi Hörkkö, John Barnard, Wanda F Reynolds, Eric J Topol, Joseph A DiDonato, Stanley L Hazen. Protein carbamylation links inflammation, smoking, uremia and atherogenesis.
Nature medicine.
2007 Oct; 13(10):1176-84. doi:
10.1038/nm1637
. [PMID: 17828273] - P Campo, A V Wisnewski, Z Lummus, A Cartier, J-L Malo, L P Boulet, D I Bernstein. Diisocyanate conjugate and immunoassay characteristics influence detection of specific antibodies in HDI-exposed workers.
Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.
2007 Jul; 37(7):1095-102. doi:
10.1111/j.1365-2222.2007.02745.x
. [PMID: 17581205] - A Pronk, F Yu, J Vlaanderen, E Tielemans, L Preller, I Bobeldijk, J A Deddens, U Latza, X Baur, D Heederik. Dermal, inhalation, and internal exposure to 1,6-HDI and its oligomers in car body repair shop workers and industrial spray painters.
Occupational and environmental medicine.
2006 Sep; 63(9):624-31. doi:
10.1136/oem.2005.023226
. [PMID: 16728504] - David I Bernstein, M Gerald Ott, Michael Woolhiser, Zana Lummus, Cynthia Graham. Evaluation of antibody binding to diisocyanate protein conjugates in a general population.
Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.
2006 Sep; 97(3):357-64. doi:
10.1016/s1081-1206(10)60801-0
. [PMID: 17042142] - Jihan Talib, Jennifer L Beck, Stephen F Ralph. A mass spectrometric investigation of the binding of gold antiarthritic agents and the metabolite [Au(CN)2]- to human serum albumin.
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry.
2006 Jul; 11(5):559-70. doi:
10.1007/s00775-006-0103-z
. [PMID: 16791640] - Ilona Zemlyak, Vitaliy Nimon, Sheila Brooke, Tejaswini Moore, John McLaughlin, Robert Sapolsky. Gene therapy in the nervous system with superoxide dismutase.
Brain research.
2006 May; 1088(1):12-8. doi:
10.1016/j.brainres.2006.02.109
. [PMID: 16630587] - Keren Mevorat-Kaplan, Vlad Brumfeld, Martin Engelhard, Mordechai Sheves. Effect of anions on the photocycle of halorhodopsin. Substitution of chloride with formate anion.
Biochemistry.
2005 Nov; 44(43):14231-7. doi:
10.1021/bi051323g
. [PMID: 16245939] - G Mistrello. LAIS Allergoid.
International journal of immunopathology and pharmacology.
2005 Oct; 18(4 Suppl):21-4. doi:
"
. [PMID: 17761102] - Rajat Kumar Das, Sudin Bhattacharya. Anti-tumour promoting activity of diphenylmethyl selenocyanate against two-stage mouse skin carcinogenesis.
Asian Pacific journal of cancer prevention : APJCP.
2005 Apr; 6(2):181-8. doi:
"
. [PMID: 16101330] - R Ariano, R C Panzani, G Mistrello. Efficacy of sublingual coseasonal immunotherapy with a monomeric allergoid in Cupressaceae pollen allergy--preliminary data.
European annals of allergy and clinical immunology.
2005 Mar; 37(3):103-8. doi:
"
. [PMID: 15918297] - A Gledhill, A Wake, P Hext, E Leibold, R Shiotsuka. Absorption, distribution, metabolism and excretion of an inhalation dose of [14C] 4,4'-methylenediphenyl diisocyanate in the male rat.
Xenobiotica; the fate of foreign compounds in biological systems.
2005 Mar; 35(3):273-92. doi:
10.1080/00498250500057591
. [PMID: 16019951] - Jiang Yuan, Li Chen, Xuefeng Jiang, Jian Shen, Sicong Lin. Chemical graft polymerization of sulfobetaine monomer on polyurethane surface for reduction in platelet adhesion.
Colloids and surfaces. B, Biointerfaces.
2004 Nov; 39(1-2):87-94. doi:
10.1016/j.colsurfb.2004.08.019
. [PMID: 15542345] - Yuan Jiang, Hou Qingfeng, Liu Baolei, Shen Jian, Lin Sicong. Platelet adhesive resistance of polyurethane surface grafted with zwitterions of sulfobetaine.
Colloids and surfaces. B, Biointerfaces.
2004 Jul; 36(1):19-26. doi:
10.1016/j.colsurfb.2004.03.016
. [PMID: 15261019] - Youcheng Liu, Michele Berode, Meredith H Stowe, Carole T Holm, Frank X Walsh, Martin D Slade, Mark F Boeniger, Carrie A Redlich. Urinary hexane diamine to assess respiratory exposure to hexamethylene diisocyanate aerosol: a human inhalation study.
International journal of occupational and environmental health.
2004 Jul; 10(3):262-71. doi:
10.1179/oeh.2004.10.3.262
. [PMID: 15473079] - Victor J Johnson, Joanna M Matheson, Michael I Luster. Animal models for diisocyanate asthma: answers for lingering questions.
Current opinion in allergy and clinical immunology.
2004 Apr; 4(2):105-10. doi:
10.1097/00130832-200404000-00006
. [PMID: 15021062] - Rajat Kumar Das, Sudin Bhattacharya. Inhibition of DMBA-croton oil two-stage mouse skin carcinogenesis by diphenylmethyl selenocyanate through modulation of cutaneous oxidative stress and inhibition of nitric oxide production.
Asian Pacific journal of cancer prevention : APJCP.
2004 Apr; 5(2):151-8. doi:
"
. [PMID: 15244517] - Kyung-Dae Park, Kyo-Cheol Mun, Eun-Ju Chang, Sung-Bae Park, Hyun-Chul Kim. Inhibition of erythropoietin activity by cyanate.
Scandinavian journal of urology and nephrology.
2004; 38(1):69-72. doi:
10.1080/00365590310006291
. [PMID: 15204430] - Karin Bousová, Irena Krcmová. [Diisocyanate exposure as a cause of occupational asthma].
Acta medica (Hradec Kralove). Supplementum.
2004; 47(1):35-40. doi:
NULL
. [PMID: 15745057] - Z H Ye, Z-Q Lin, S N Whiting, M P de Souza, N Terry. Possible use of constructed wetland to remove selenocyanate, arsenic, and boron from electric utility wastewater.
Chemosphere.
2003 Sep; 52(9):1571-9. doi:
10.1016/s0045-6535(03)00497-1
. [PMID: 12867190] - R J Dearman, R A Skinner, N E Humphreys, I Kimber. Methods for the identification of chemical respiratory allergens in rodents: comparisons of cytokine profiling with induced changes in serum IgE.
Journal of applied toxicology : JAT.
2003 Jul; 23(4):199-207. doi:
10.1002/jat.907
. [PMID: 12884401] - Christina A Herrick, Jyoti Das, Lan Xu, Adam V Wisnewski, Carrie A Redlich, Kim Bottomly. Differential roles for CD4 and CD8 T cells after diisocyanate sensitization: genetic control of TH2-induced lung inflammation.
The Journal of allergy and clinical immunology.
2003 May; 111(5):1087-94. doi:
10.1067/mai.2003.1413
. [PMID: 12743574] - Anna Pieniazek, Krzysztof Gwoździński. Carbamylation of proteins leads to alterations in the membrane structure of erythrocytes.
Cellular & molecular biology letters.
2003; 8(1):127-31. doi:
"
. [PMID: 12655366] - Jukka Tuominen, Janne Kylmä, Anu Kapanen, Olli Venelampi, Merja Itävaara, Jukka Seppälä. Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact.
Biomacromolecules.
2002 May; 3(3):445-55. doi:
10.1021/bm0101522
. [PMID: 12005513] - L E L Rasmussen, George Wittemyer. Chemosignalling of musth by individual wild African elephants (Loxodonta africana): implications for conservation and management.
Proceedings. Biological sciences.
2002 Apr; 269(1493):853-60. doi:
10.1098/rspb.2001.1933
. [PMID: 11958718] - Paul Linsdell, Xiandi Gong. Multiple inhibitory effects of Au(CN)(2-) ions on cystic fibrosis transmembrane conductance regulator Cl(-) channel currents.
The Journal of physiology.
2002 Apr; 540(Pt 1):29-38. doi:
10.1113/jphysiol.2001.013234
. [PMID: 11927666]