Oxychloroaphine (BioDeep_00000354127)

   

PANOMIX_OTCML-2023 Cytotoxicity


代谢物信息卡片


phenazine-1-carboxamide

化学式: C13H9N3O (223.07455839999997)
中文名称: 吩嗪-1-甲酰胺
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 11.11%

分子结构信息

SMILES: C1=CC=C2C(=C1)N=C3C=CC=C(C3=N2)C(=O)N
InChI: InChI=1S/C13H9N3O/c14-13(17)8-4-3-7-11-12(8)16-10-6-2-1-5-9(10)15-11/h1-7H,(H2,14,17)

描述信息

Oxychloroaphine could be isolated from the bacterium Pantoea agglomerans naturally present in soil. Oxychloroaphine has broad-spectrum antifungal activity. Oxychloroaphine has cytotoxicity in a dose-dependent manner and induces apoptosis. Oxychloroaphine can be used in research of cancer[1][2].
Oxychloroaphine could be isolated from the bacterium Pantoea agglomerans naturally present in soil. Oxychloroaphine has broad-spectrum antifungal activity. Oxychloroaphine has cytotoxicity in a dose-dependent manner and induces apoptosis. Oxychloroaphine can be used in research of cancer[1][2].

同义名列表

3 个代谢物同义名

phenazine-1-carboxamide; Oxychloroaphine; Oxychlororaphine



数据库引用编号

6 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Tomohiro Morohoshi, Naoka Yabe, Naoya Yaguchi, Xiaonan Xie, Nobutaka Someya. Regulation of phenazine-1-carboxamide production by quorum sensing in type strains of Pseudomonas chlororaphis subsp. chlororaphis and Pseudomonas chlororaphis subsp. piscium. Journal of bioscience and bioengineering. 2022 Jun; 133(6):541-546. doi: 10.1016/j.jbiosc.2022.03.004. [PMID: 35365429]
  • Xiaowen Sun, Yin Xu, Ling Chen, Xinmeng Jin, Hong Ni. The salt-tolerant phenazine-1-carboxamide-producing bacterium Pseudomonas aeruginosa NF011 isolated from wheat rhizosphere soil in dry farmland with antagonism against Fusarium graminearum. Microbiological research. 2021 Apr; 245(?):126673. doi: 10.1016/j.micres.2020.126673. [PMID: 33429287]
  • Jiang Ou, Hui Li, Xiaoming Ou, Zhifu Yang, Mengxian Chen, Kailin Liu, Yuting Teng, Baoshan Xing. Degradation, adsorption and leaching of phenazine-1-carboxamide in agricultural soils. Ecotoxicology and environmental safety. 2020 Dec; 205(?):111374. doi: 10.1016/j.ecoenv.2020.111374. [PMID: 32977284]
  • Fabián Moreno-Avitia, José Utrilla, Francisco Bolívar, Juan Nogales, Adelfo Escalante. Metabolic reconstruction of Pseudomonas chlororaphis ATCC 9446 to understand its metabolic potential as a phenazine-1-carboxamide-producing strain. Applied microbiology and biotechnology. 2020 Dec; 104(23):10119-10132. doi: 10.1007/s00253-020-10913-4. [PMID: 32984920]
  • Run Huang, Zhibin Feng, Xiaoyan Chi, Xiaoqiang Sun, Yang Lu, Baoshen Zhang, Ruiyang Lu, Wangtai Luo, Yanhua Wang, Jing Miao, Yihe Ge. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiological research. 2018 Oct; 215(?):55-64. doi: 10.1016/j.micres.2018.06.008. [PMID: 30172309]
  • Huasong Peng, Jian Tan, Muhammad Bilal, Wei Wang, Hongbo Hu, Xuehong Zhang. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs. World journal of microbiology & biotechnology. 2018 Aug; 34(9):129. doi: 10.1007/s11274-018-2501-0. [PMID: 30094643]
  • Valeri V Mossine, Deborah L Chance, James K Waters, Thomas P Mawhinney. Interaction of Bacterial Phenazines with Colistimethate in Bronchial Epithelial Cells. Antimicrobial agents and chemotherapy. 2018 08; 62(8):. doi: 10.1128/aac.02349-17. [PMID: 29784845]
  • Huasong Peng, Pingyuan Zhang, Muhammad Bilal, Wei Wang, Hongbo Hu, Xuehong Zhang. Enhanced biosynthesis of phenazine-1-carboxamide by engineered Pseudomonas chlororaphis HT66. Microbial cell factories. 2018 Jul; 17(1):117. doi: 10.1186/s12934-018-0962-3. [PMID: 30045743]
  • Yaqin Xiang, Ya Zhang, Chong Wang, Shuangqing Liu, Xiaolan Liao. Effects and inhibition mechanism of phenazine-1-carboxamide on the mycelial morphology and ultrastructure of Rhizoctonia solani. Pesticide biochemistry and physiology. 2018 May; 147(?):32-39. doi: 10.1016/j.pestbp.2017.10.006. [PMID: 29933990]
  • Huasong Peng, Yi Ouyang, Muhammad Bilal, Wei Wang, Hongbo Hu, Xuehong Zhang. Identification, synthesis and regulatory function of the N-acylated homoserine lactone signals produced by Pseudomonas chlororaphis HT66. Microbial cell factories. 2018 Jan; 17(1):9. doi: 10.1186/s12934-017-0854-y. [PMID: 29357848]
  • Dharushana Thanabalasingam, N Savitri Kumar, Lalith Jayasinghe, Yoshinori Fujimoto. Endophytic Fungus Nigrospora oryzae from a Medicinal plant Coccinia grandis, a High Yielding New Source of Phenazine-1-carboxamide. Natural product communications. 2015 Oct; 10(10):1659-60. doi: ". [PMID: 26669097]
  • Lian Zhou, Haixia Jiang, Kaiming Jin, Shuang Sun, Wei Zhang, Xuehong Zhang, Ya-Wen He. [Isolation, identification and characterization of rice rhizobacterium Pseudomonas aeruginosa PA1201 producing high level of biopesticide 'Shenqinmycin' and phenazine-1-carboxamide]. Wei sheng wu xue bao = Acta microbiologica Sinica. 2015 Apr; 55(4):401-11. doi: ". [PMID: 26211314]
  • Ya Zhang, Chong Wang, Pin Su, Xiaolan Liao. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea. PloS one. 2015; 10(10):e0140380. doi: 10.1371/journal.pone.0140380. [PMID: 26460973]
  • Weiqun Hu, Qixun Gao, Mohamed Sobhy Hamada, Dawood Hosni Dawood, Jingwu Zheng, Yun Chen, Zhonghua Ma. Potential of Pseudomonas chlororaphis subsp. aurantiaca Strain Pcho10 as a Biocontrol Agent Against Fusarium graminearum. Phytopathology. 2014 Dec; 104(12):1289-97. doi: 10.1094/phyto-02-14-0049-r. [PMID: 24941327]
  • J N Gorantla, S Nishanth Kumar, G V Nisha, A S Sumandu, C Dileep, A Sudaresan, M M Sree Kumar, R S Lankalapalli, B S Dileep Kumar. Purification and characterization of antifungal phenazines from a fluorescent Pseudomonas strain FPO4 against medically important fungi. Journal de mycologie medicale. 2014 Sep; 24(3):185-92. doi: 10.1016/j.mycmed.2014.02.003. [PMID: 24746721]
  • Olga S Ovchinnikova, Kevin Kjoller, Gregory B Hurst, Dale A Pelletier, Gary J Van Berkel. Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging. Analytical chemistry. 2014 Jan; 86(2):1083-90. doi: 10.1021/ac4026576. [PMID: 24377265]
  • Guennaëlle Dieppois, Véréna Ducret, Olivier Caille, Karl Perron. The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa. PloS one. 2012; 7(5):e38148. doi: 10.1371/journal.pone.0038148. [PMID: 22666466]
  • Giordano Rampioni, Christian Pustelny, Matthew P Fletcher, Victoria J Wright, Mary Bruce, Kendra P Rumbaugh, Stephan Heeb, Miguel Cámara, Paul Williams. Transcriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts. Environmental microbiology. 2010 Jun; 12(6):1659-73. doi: 10.1111/j.1462-2920.2010.02214.x. [PMID: 20406282]
  • Leland S Pierson, Elizabeth A Pierson. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Applied microbiology and biotechnology. 2010 May; 86(6):1659-70. doi: 10.1007/s00253-010-2509-3. [PMID: 20352425]
  • Popavath Ravindra Naik, Gurusamy Raman, Kannan Badri Narayanan, Natarajan Sakthivel. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC microbiology. 2008 Dec; 8(?):230. doi: 10.1186/1471-2180-8-230. [PMID: 19099598]
  • Maaike Perneel, Liesbet D'hondt, Katrien De Maeyer, Amayana Adiobo, Korneel Rabaey, Monica Höfte. Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environmental microbiology. 2008 Mar; 10(3):778-88. doi: 10.1111/j.1462-2920.2007.01501.x. [PMID: 18237310]
  • Geneviève Girard, Sharief Barends, Sébastien Rigali, E Tjeerd van Rij, Ben J J Lugtenberg, Guido V Bloemberg. Pip, a novel activator of phenazine biosynthesis in Pseudomonas chlororaphis PCL1391. Journal of bacteriology. 2006 Dec; 188(23):8283-93. doi: 10.1128/jb.00893-06. [PMID: 16997957]
  • Popavath Ravindra Naik, Natarajan Sakthivel. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Research in microbiology. 2006 Jul; 157(6):538-46. doi: 10.1016/j.resmic.2005.11.009. [PMID: 16797931]
  • Francisco M Cazorla, Simon B Duckett, Ed T Bergström, Sadaf Noreen, Roeland Odijk, Ben J J Lugtenberg, Jane E Thomas-Oates, Guido V Bloemberg. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Molecular plant-microbe interactions : MPMI. 2006 Apr; 19(4):418-28. doi: 10.1094/mpmi-19-0418. [PMID: 16610745]
  • E Tjeerd van Rij, Geneviève Girard, Ben J J Lugtenberg, Guido V Bloemberg. Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology (Reading, England). 2005 Aug; 151(Pt 8):2805-2814. doi: 10.1099/mic.0.28063-0. [PMID: 16079356]
  • Thomas F C Chin-A-Woeng, Daan van den Broek, Ben J J Lugtenberg, Guido V Bloemberg. The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Molecular plant-microbe interactions : MPMI. 2005 Mar; 18(3):244-53. doi: 10.1094/mpmi-18-0244. [PMID: 15782638]
  • R Sunish Kumar, N Ayyadurai, P Pandiaraja, A V Reddy, Y Venkateswarlu, O Prakash, N Sakthivel. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. Journal of applied microbiology. 2005; 98(1):145-54. doi: 10.1111/j.1365-2672.2004.02435.x. [PMID: 15610427]
  • E Tjeerd van Rij, Monique Wesselink, Thomas F C Chin-A-Woeng, Guido V Bloemberg, Ben J J Lugtenberg. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Molecular plant-microbe interactions : MPMI. 2004 May; 17(5):557-66. doi: 10.1094/mpmi.2004.17.5.557. [PMID: 15141960]
  • Maria E Hernandez, Andreas Kappler, Dianne K Newman. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Applied and environmental microbiology. 2004 Feb; 70(2):921-8. doi: 10.1128/aem.70.2.921-928.2004. [PMID: 14766572]
  • Annouschka Bolwerk, Anastasia L Lagopodi, André H M Wijfjes, Gerda E M Lamers, Thomas F C Chin-A-Woeng, Ben J J Lugtenberg, Guido V Bloemberg. Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Molecular plant-microbe interactions : MPMI. 2003 Nov; 16(11):983-93. doi: 10.1094/mpmi.2003.16.11.983. [PMID: 14601666]
  • Heike Schmidt-Eisenlohr, Astrid Gast, Christian Baron. Inactivation of gacS does not affect the competitiveness of Pseudomonas chlororaphis in the Arabidopsis thaliana rhizosphere. Applied and environmental microbiology. 2003 Mar; 69(3):1817-26. doi: 10.1128/aem.69.3.1817-1826.2003. [PMID: 12620875]
  • Henk-jan Schoonbeek, Jos M Raaijmakers, Maarten A De Waard. Fungal ABC transporters and microbial interactions in natural environments. Molecular plant-microbe interactions : MPMI. 2002 Nov; 15(11):1165-72. doi: 10.1094/mpmi.2002.15.11.1165. [PMID: 12423022]
  • D V Mavrodi, R F Bonsall, S M Delaney, M J Soule, G Phillips, L S Thomashow. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. Journal of bacteriology. 2001 Nov; 183(21):6454-65. doi: 10.1128/jb.183.21.6454-6465.2001. [PMID: 11591691]
  • T F Chin-A-Woeng, J E Thomas-Oates, B J Lugtenberg, G V Bloemberg. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Molecular plant-microbe interactions : MPMI. 2001 Aug; 14(8):1006-15. doi: 10.1094/mpmi.2001.14.8.1006. [PMID: 11497461]
  • T F Chin-A-Woeng, D van den Broek, G de Voer, K M van der Drift, S Tuinman, J E Thomas-Oates, B J Lugtenberg, G V Bloemberg. Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Molecular plant-microbe interactions : MPMI. 2001 Aug; 14(8):969-79. doi: 10.1094/mpmi.2001.14.8.969. [PMID: 11497469]
  • T F Chin-A-Woeng, G V Bloemberg, I H Mulders, L C Dekkers, B J Lugtenberg. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Molecular plant-microbe interactions : MPMI. 2000 Dec; 13(12):1340-5. doi: 10.1094/mpmi.2000.13.12.1340. [PMID: 11106026]