Maltoheptaose (BioDeep_00000000801)

 

Secondary id: BioDeep_00001867553

human metabolite PANOMIX_OTCML-2023 Endogenous PANOMIX_OTCML-2025


代谢物信息卡片


(2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

  化学式: C42H72O36 (1152.3803)
中文名称: 麦芽七糖
  谱图信息: 最多检出来源 Viridiplantae(plant) 80%

Reviewed

Last reviewed on 2025-06-12.

Cite this Page

Maltoheptaose. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/maltoheptaose (retrieved 2025-12-05) (BioDeep RN: BioDeep_00000000801). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(C1C(C(C(C(O1)OC2C(OC(C(C2O)O)OC3C(OC(C(C3O)O)OC4C(OC(C(C4O)O)OC5C(OC(C(C5O)O)OC6C(OC(C(C6O)O)OC7C(OC(C(C7O)O)O)CO)CO)CO)CO)CO)CO)O)O)O)O
InChI: InChI=1S/C42H72O36/c43-1-8-15(50)16(51)24(59)37(67-8)74-31-10(3-45)69-39(26(61)18(31)53)76-33-12(5-47)71-41(28(63)20(33)55)78-35-14(7-49)72-42(29(64)22(35)57)77-34-13(6-48)70-40(27(62)21(34)56)75-32-11(4-46)68-38(25(60)19(32)54)73-30-9(2-44)66-36(65)23(58)17(30)52/h8-65H,1-7H2

描述信息

Maltoheptaose is a polysaccharide with 7 units of glucose and can be classified as a maltodextrin. Maltodextrin is a polysaccharide that is used as a food additive. It is produced from starch by partial hydrolysis and is usually found as a creamy-white hygroscopic spray-dried powder. Maltodextrin is easily digestible, being absorbed as rapidly as glucose, and might be either moderately sweet or almost flavourless. It is commonly used for the production of natural sodas and candy such as SweeTarts. Maltodextrin consists of D-glucose units connected in chains of variable length. The glucose units are primarily linked with α(1→4) glycosidic bonds. Maltodextrin is typically composed of a mixture of chains that vary from three to nineteen glucose units long. Maltodextrins are classified by DE (dextrose equivalent) and have a DE between 3 to 20. The higher the DE value, the shorter the glucose chains, and the higher the sweetness and solubility. Above DE 20, the European Unions CN code calls it glucose syrup, at DE 10 or lower the customs CN code nomenclature classifies maltodextrins as dextrins (Wikipedia).
Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers)
Celloheptaose is an oligosaccharide.

同义名列表

18 个代谢物同义名

(2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol; alpha-D-Glucosyl-(1->4)-alpha-D-glucosyl-(1->4)-alpha-D-glucosyl-(1->4)-alpha-D-glucosyl-(1->4)-alpha-D-glucosyl-(1->4)-alpha-D-glucosyl-(1->4)-alpha-D-glucose; alpha-D-GLCP-(1->4)-alpha-D-GLCP-(1->4)-alpha-D-GLCP-(1->4)-alpha-D-GLCP-(1->4)-alpha-D-GLCP-(1->4)-alpha-D-GLCP-(1->4)-alpha-D-GLCP; Α-D-glucosyl-(1->4)-α-D-glucosyl-(1->4)-α-D-glucosyl-(1->4)-α-D-glucosyl-(1->4)-α-D-glucosyl-(1->4)-α-D-glucosyl-(1->4)-α-D-glucose; a-D-Glucosyl-(1->4)-a-D-glucosyl-(1->4)-a-D-glucosyl-(1->4)-a-D-glucosyl-(1->4)-a-D-glucosyl-(1->4)-a-D-glucosyl-(1->4)-a-D-glucose; alpha-D-GLC-(1->4)-alpha-D-GLC-(1->4)-alpha-D-GLC-(1->4)-alpha-D-GLC-(1->4)-alpha-D-GLC-(1->4)-alpha-D-GLC-(1->4)-alpha-D-GLC; a-D-GLCP-(1->4)-a-D-GLCP-(1->4)-a-D-GLCP-(1->4)-a-D-GLCP-(1->4)-a-D-GLCP-(1->4)-a-D-GLCP-(1->4)-a-D-GLCP; Α-D-GLCP-(1->4)-α-D-GLCP-(1->4)-α-D-GLCP-(1->4)-α-D-GLCP-(1->4)-α-D-GLCP-(1->4)-α-D-GLCP-(1->4)-α-D-GLCP; Α-D-GLC-(1->4)-α-D-GLC-(1->4)-α-D-GLC-(1->4)-α-D-GLC-(1->4)-α-D-GLC-(1->4)-α-D-GLC-(1->4)-α-D-GLC; a-D-GLC-(1->4)-a-D-GLC-(1->4)-a-D-GLC-(1->4)-a-D-GLC-(1->4)-a-D-GLC-(1->4)-a-D-GLC-(1->4)-a-D-GLC; WURCS=2.0/1,7,6/[a2122h-1a_1-5]/1-1-1-1-1-1-1/a4-b1_b4-c1_c4-D1_d4-e1_e4-F1_f4-g1; Maltoheptaose, (D-glucose)-isomer; a-Maltoheptaose; Α-maltoheptaose; Celloheptaose; Maltoheptaose; Maltoheptose; AC1L9A91



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome()

BioCyc()

PlantCyc(2)

代谢反应

13 个相关的代谢反应过程信息。

Reactome()

BioCyc()

WikiPathways()

Plant Reactome()

INOH()

PlantCyc(7)

COVID-19 Disease Map()

PathBank()

PharmGKB()

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 DPP8, HOPX, PYGB, SBDS
Peripheral membrane protein 1 GBA1
Endosome membrane 1 CD63
Nucleus 4 HOPX, MYBL1, SBDS, VSX1
cytosol 4 DPP8, LIPE, SBDS, SHARPIN
dendrite 1 SHARPIN
trans-Golgi network 1 GBA1
nucleoplasm 3 CD63, MYBL1, SBDS
Cell membrane 4 CD63, ENPP3, LIPE, PTGDR2
Multi-pass membrane protein 2 CD63, PTGDR2
Synapse 1 SHARPIN
cell surface 1 CD63
glutamatergic synapse 1 SHARPIN
Golgi apparatus 2 GBA1, SI
lysosomal membrane 2 CD63, GBA1
Cytoplasm, cytosol 2 LIPE, SHARPIN
Lysosome 1 GBA1
plasma membrane 4 CD63, ENPP3, PTGDR2, SI
Membrane 5 CD63, HRK, LIPE, PYGB, SI
apical plasma membrane 2 ENPP3, SI
brush border 1 SI
caveola 1 LIPE
extracellular exosome 7 AMY2A, CD63, ENPP3, GBA1, PYGB, SERPINA4, SI
Lysosome membrane 2 CD63, GBA1
Lumenal side 1 GBA1
endoplasmic reticulum 1 GBA1
extracellular space 4 AMY2A, CD63, CXCL8, SERPINA4
lysosomal lumen 1 GBA1
perinuclear region of cytoplasm 1 ENPP3
mitochondrion 1 HRK
intracellular membrane-bounded organelle 1 CD63
postsynaptic density 1 SHARPIN
Secreted 2 CXCL8, ENPP3
extracellular region 5 AMY2A, CD63, CXCL8, PYGB, SERPINA4
external side of plasma membrane 1 ENPP3
Endosome, multivesicular body 1 CD63
multivesicular body 1 CD63
nucleolus 1 SBDS
Single-pass type II membrane protein 1 ENPP3
Apical cell membrane 1 ENPP3
neuron projection 1 PTGDR2
chromatin 2 HOPX, VSX1
Late endosome membrane 1 CD63
spindle pole 1 SBDS
endosome lumen 1 CD63
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
Melanosome 1 CD63
multivesicular body membrane 1 CD63
platelet dense granule membrane 1 CD63
azurophil granule membrane 1 CD63
Secreted, extracellular exosome 1 CD63
azurophil granule lumen 1 PYGB
multivesicular body, internal vesicle 1 CD63
platelet dense granule lumen 1 SERPINA4
LUBAC complex 1 SHARPIN


文献列表

  • Bai Mingxue, Bai Chaolumen, Daisuke Asai, Hiromu Takemura, Kensuke Miyazaki, Takashi Yoshida. Role of a long-chain alkyl group in sulfated alkyl oligosaccharides with high anti-HIV activity revealed by SPR and DLS. Carbohydrate polymers. 2020 Oct; 245(?):116518. doi: 10.1016/j.carbpol.2020.116518. [PMID: 32718624]
  • Joana Gangoiti, Lisa Lamothe, Sander Sebastiaan van Leeuwen, Christina Vafiadi, Lubbert Dijkhuizen. Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes. PloS one. 2017; 12(4):e0172622. doi: 10.1371/journal.pone.0172622. [PMID: 28399167]
  • Lyann Sim, Sophie R Beeren, Justin Findinier, David Dauvillée, Steven G Ball, Anette Henriksen, Monica M Palcic. Crystal structure of the Chlamydomonas starch debranching enzyme isoamylase ISA1 reveals insights into the mechanism of branch trimming and complex assembly. The Journal of biological chemistry. 2014 Aug; 289(33):22991-23003. doi: 10.1074/jbc.m114.565044. [PMID: 24993830]
  • David A Meekins, Madushi Raththagala, Satrio Husodo, Cory J White, Hou-Fu Guo, Oliver Kötting, Craig W Vander Kooi, Matthew S Gentry. Phosphoglucan-bound structure of starch phosphatase Starch Excess4 reveals the mechanism for C6 specificity. Proceedings of the National Academy of Sciences of the United States of America. 2014 May; 111(20):7272-7. doi: 10.1073/pnas.1400757111. [PMID: 24799671]
  • Chia-Che Tsai, Chih-Ru Lin, Hsien-Yu Tsai, Chia-Jung Chen, Wen-Tai Li, Hui-Ming Yu, Yi-Yu Ke, Wei-Ying Hsieh, Cheng-Yen Chang, Ying-Ta Wu, Chung-Yi Wu, Shui-Tein Chen, Chi-Huey Wong. The immunologically active oligosaccharides isolated from wheatgrass modulate monocytes via Toll-like receptor-2 signaling. The Journal of biological chemistry. 2013 Jun; 288(24):17689-97. doi: 10.1074/jbc.m112.448381. [PMID: 23629653]
  • Jelena Ciric, Katja Loos. Synthesis of branched polysaccharides with tunable degree of branching. Carbohydrate polymers. 2013 Mar; 93(1):31-7. doi: 10.1016/j.carbpol.2012.04.008. [PMID: 23465898]
  • Nicole M Koropatkin, Eric C Martens, Jeffrey I Gordon, Thomas J Smith. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure (London, England : 1993). 2008 Jul; 16(7):1105-15. doi: 10.1016/j.str.2008.03.017. [PMID: 18611383]
  • Elvia García-López, Andrzej Werynski, Olof Heimbürger, José C Divino Filho, Bengt Lindholm, Björn Anderstam. Rate of synthetic oligosaccharide degradation as a novel measure of amylase activity in peritoneal dialysis patients. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis. 2008 May; 28(3):296-304. doi: . [PMID: 18474923]
  • Nicole S Bresolin, Zhongyi Li, Behjat Kosar-Hashemi, Ian J Tetlow, Manash Chatterjee, Sadequr Rahman, Matthew K Morell, Crispin A Howitt. Characterisation of disproportionating enzyme from wheat endosperm. Planta. 2006 Jun; 224(1):20-31. doi: 10.1007/s00425-005-0187-7. [PMID: 16333636]
  • Birte Kramhøft, Kristian Sass Bak-Jensen, Haruhide Mori, Nathalie Juge, Jane Nøhr, Birte Svensson. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase. Biochemistry. 2005 Feb; 44(6):1824-32. doi: 10.1021/bi048100v. [PMID: 15697208]
  • Christophe Danelon, Thérèse Brando, Mathias Winterhalter. Probing the orientation of reconstituted maltoporin channels at the single-protein level. The Journal of biological chemistry. 2003 Sep; 278(37):35542-51. doi: 10.1074/jbc.m305434200. [PMID: 12835320]
  • Olivier Gonçalves, Thierry Dintinger, Dominique Blanchard, Charles Tellier. Functional mimicry between anti-Tendamistat antibodies and alpha-amylase. Journal of immunological methods. 2002 Nov; 269(1-2):29-37. doi: 10.1016/s0022-1759(02)00238-7. [PMID: 12379350]
  • Frank Orlik, Christian Andersen, Roland Benz. Site-directed mutagenesis of tyrosine 118 within the central constriction site of the LamB (maltoporin) channel of Escherichia coli. II. Effect on maltose and maltooligosaccharide binding kinetics. Biophysical journal. 2002 Jul; 83(1):309-21. doi: 10.1016/s0006-3495(02)75171-0. [PMID: 12080122]
  • J L Rosenblum, G L Hortin, C H Smith, G E Pashos, M Landt. Macroamylases: differences in activity against various-sized substrates. Clinical chemistry. 1992 Sep; 38(9):1725-9. doi: . [PMID: 1381999]
  • J L Rosenblum, G L Hortin, C H Smith, G E Pashos, M Landt. Macroamylases: differences in activity against various-size substrates. Clinical chemistry. 1992 Aug; 38(8 Pt 1):1454-8. doi: . [PMID: 1379525]
  • H Ohmori. Development of a serum-free medium for in vitro immune responses by using beta-cyclodextrin. Demonstration of the requirements for polyamines. Journal of immunological methods. 1988 Sep; 112(2):227-33. doi: 10.1016/0022-1759(88)90362-6. [PMID: 3418128]
  • E O Haegele, E Schaich, E Rauscher, P Lehmann, M Grassl. Action pattern of human pancreatic alpha-amylase on maltoheptaose, a substrate for determining alpha-amylase in serum. Journal of chromatography. 1981 Apr; 223(1):69-84. doi: 10.1016/s0378-4347(00)80069-9. [PMID: 6166629]


Loading...