Gene Association: SMAD3
UniProt Search:
SMAD3 (PROTEIN_CODING)
Function Description: SMAD family member 3
found 192 associated metabolites with current gene based on the text mining result from the pubmed database.
Ginsenoside A2
Ginsenoside Rg1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as a neuroprotective agent and a pro-angiogenic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a tetracyclic triterpenoid, a ginsenoside and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rg1 Appears to be most abundant in Panax ginseng (Chinese/Korean Ginseng). It improves spatial learning and increase hippocampal synaptophysin level in mice, plus demonstrates estrogen-like activity. Ginsenoside RG1 is a natural product found in Panax vietnamensis, Panax ginseng, and Panax notoginseng with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside A2 is found in tea. Ginsenoside A2 is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside A2 is found in tea. D002491 - Central Nervous System Agents Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.
Danshensu
(2R)-3-(3,4-dihydroxyphenyl)lactic acid is a (2R)-2-hydroxy monocarboxylic acid that is (R)-lactic acid substituted at position 3 by a 3,4-dihydroxyphenyl group. It is a (2R)-2-hydroxy monocarboxylic acid and a 3-(3,4-dihydroxyphenyl)lactic acid. It is a conjugate acid of a (2R)-3-(3,4-dihydroxyphenyl)lactate. Danshensu is a natural product found in Salvia miltiorrhiza, Melissa officinalis, and other organisms with data available. Salvianic acid A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=76822-21-4 (retrieved 2024-06-29) (CAS RN: 76822-21-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Danshensu, an active ingredient of?Salvia miltiorrhiza, shows wide cardiovascular benefit by activating Nrf2 signaling pathway. Danshensu, an active ingredient of?Salvia miltiorrhiza, shows wide cardiovascular benefit by activating Nrf2 signaling pathway.
Naringenin
Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs. Naringenin has the skeleton structure of a flavanone with three hydroxy groups at the 4, 5, and 7 carbons. It may be found both in the aglycol form, naringenin, or in its glycosidic form, naringin, which has the addition of the disaccharide neohesperidose attached via a glycosidic linkage at carbon 7. Naringenin (not to be confused with naringin) is a flavanone that is considered to have a bioactive effect on human health as antioxidant, free radical scavenger, antiinflammatory, carbohydrate metabolism promoter, immunity system modulater. This substance has also been shown to repair DNA. Scientists exposed cells to 80 micomoles of naringenin per liter, for 24 hours, and found that the amount of hydroxyl damage to the DNA was reduced by 24 percent in that very short period of time. Unfortunately, this bioflavonoid is difficult to absorb on oral ingestion. Only 15\\\\\\\% of ingested naringenin will get absorbed, in the human gastrointestinal tract, in the best case scenario. A full glass of orange juice will supply about enough naringenin to achieve a concentration of about 0.5 micromoles per liter. Naringenin is a biomarker for the consumption of citrus fruits. (S)-naringenin is the (S)-enantiomer of naringenin. It has a role as an expectorant and a plant metabolite. It is a naringenin and a (2S)-flavan-4-one. It is a conjugate acid of a (S)-naringenin(1-). It is an enantiomer of a (R)-naringenin. Naringenin is a natural product found in Elaeodendron croceum, Garcinia multiflora, and other organisms with data available. See also: Naringin (related). Most widely distributed flavanone. Citrus fruits (grapefruit, oranges and pummelos) are especially good sources. Glycosides also widely distributed The (S)-enantiomer of naringenin. [Raw Data] CB070_Naringenin_pos_20eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_10eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_40eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_30eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_50eV_CB000030.txt [Raw Data] CB070_Naringenin_neg_10eV_000021.txt [Raw Data] CB070_Naringenin_neg_30eV_000021.txt [Raw Data] CB070_Naringenin_neg_50eV_000021.txt [Raw Data] CB070_Naringenin_neg_20eV_000021.txt [Raw Data] CB070_Naringenin_neg_40eV_000021.txt (±)-Naringenin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67604-48-2 (retrieved 2024-07-09) (CAS RN: 67604-48-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.
Adenosine
Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].
Marmesin galactoside
Nodakenin is a furanocoumarin. Nodakenin is a natural product found in Hansenia forbesii, Rhodiola rosea, and other organisms with data available. Marmesin galactoside is found in herbs and spices. Marmesin galactoside is a constituent of Murraya koenigii (curry leaf tree). Constituent of Murraya koenigii (curry leaf tree). Marmesin galactoside is found in herbs and spices. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2]. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2].
Evodiamine
Evodiamine is a member of beta-carbolines. Evodiamine is a natural product found in Vepris soyauxii, Cryptocarya, and other organisms with data available. Origin: Plant; Formula(Parent): C19H17N3O; Bottle Name:Evodiamine; PRIME Parent Name:Evodiamine; PRIME in-house No.:V0296; SubCategory_DNP: Monoterpenoid indole alkaloids, Indoloquinolizidine alkaloids, Indole alkaloids Formula(Parent): C19H17N3O; Bottle Name:Evodiamine; Origin: Plant; PRIME Parent Name:Evodiamine; PRIME in-house No.:V0296; SubCategory_DNP: Monoterpenoid indole alkaloids, Indoloquinolizidine alkaloids, Indole alkaloids Annotation level-1 (±)-Evodiamine, a quinazolinocarboline alkaloid, is a Top1 inhibitor. Evodiamine exhibits anti-inflammatory, antiobesity, and antitumor effects. (±)-Evodiamine inhibits the proliferation of a wide variety of tumor cells by inducing their apoptosis[1]. Evodiamine is an alkaloid isolated from the fruit of Evodia rutaecarpa Bentham with diverse biological activities including anti-inflammatory, anti-obesity, and antitumor. Evodiamine is an alkaloid isolated from the fruit of Evodia rutaecarpa Bentham with diverse biological activities including anti-inflammatory, anti-obesity, and antitumor.
Aristolochic acid
Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
Astragaloside IV
Astragaloside IV is a pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. It has a role as an EC 4.2.1.1 (carbonic anhydrase) inhibitor, an anti-inflammatory agent, a neuroprotective agent, an antioxidant, a pro-angiogenic agent and a plant metabolite. It is a triterpenoid saponin and a pentacyclic triterpenoid. It is functionally related to a cycloastragenol. Astragaloside IV is a natural product found in Euphorbia glareosa, Astragalus ernestii, and other organisms with data available. A pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.
Schizandrin
A polyphenol metabolite detected in biological fluids [PhenolExplorer] Schisandrin (Schizandrin), a dibenzocyclooctadiene lignan, is isolated from the fruit of Schisandra chinensis Baill. Schisandrin exhibits antioxidant, hepatoprotective, anti-cancer and anti-inflammatory activities. Schisandrin also can reverses memory impairment in rats[1][2][3]. Schisandrin (Schizandrin), a dibenzocyclooctadiene lignan, is isolated from the fruit of Schisandra chinensis Baill. Schisandrin exhibits antioxidant, hepatoprotective, anti-cancer and anti-inflammatory activities. Schisandrin also can reverses memory impairment in rats[1][2][3].
Osthol
Osthol, also known as 7-methoxy-8-(3-methylpent-2-enyl)coumarin, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Osthol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Osthol can be found in a number of food items such as wild celery, lemon, parsley, and wild carrot, which makes osthol a potential biomarker for the consumption of these food products. Osthol is an O-methylated coumarin. It is a calcium channel blocker, found in plants such as Cnidium monnieri, Angelica archangelica and Angelica pubescens . Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.
Paeoniflorin
Paeoniflorin is a terpene glycoside. Peoniflorin is under investigation in clinical trial NCT02878863 (Paeoniflorin Combination of Hepatoprotective Drugs Versus Hepatoprotective Drugs Only for Auto-immune Hepatitis). Paeoniflorin is a natural product found in Paeonia, Paeonia tenuifolia, and other organisms with data available. See also: Paeonia lactiflora root (part of); Paeonia veitchii root (part of); Paeonia X suffruticosa root bark (part of). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3]. Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3].
Linderalactone
Isolinderalactone is a member of benzofurans. It has a role as a metabolite. Isolinderalactone is a natural product found in Neolitsea villosa, Neolitsea hiiranensis, and other organisms with data available. A natural product found in Neolitsea daibuensis. Linderalactone is a natural product found in Neolitsea umbrosa, Neolitsea villosa, and other organisms with data available. Isolinderalactone suppresses human glioblastoma growth and angiogenic activity through the inhibition of VEGFR2 activation in endothelial cells[1]. Isolinderalactone suppresses the expression of B-cell lymphoma 2 (Bcl-2), survi Isolinderalactone suppresses human glioblastoma growth and angiogenic activity through the inhibition of VEGFR2 activation in endothelial cells[1]. Isolinderalactone suppresses the expression of B-cell lymphoma 2 (Bcl-2), survi Linderalactone is an important sesquiterpene lactone isolated from Lindera aggregata. Linderalactone inhibits cancer growth by modulating the expression of apoptosis-related proteins and inhibition of JAK/STAT signalling pathway. Linderalactone also inhibits the proliferation of the lung cancer A-549 cells with an IC50 of 15 μM[1][2]. Linderalactone is an important sesquiterpene lactone isolated from Lindera aggregata. Linderalactone inhibits cancer growth by modulating the expression of apoptosis-related proteins and inhibition of JAK/STAT signalling pathway. Linderalactone also inhibits the proliferation of the lung cancer A-549 cells with an IC50 of 15 μM[1][2].
Haematoxylin
An organic heterotetracyclic compound 7,11b-dihydroindeno[2,1-c]chromene carrying five hydroxy substituents at positions 3, 4, 6a, 9 and 10. The most important and most used dye in histology, histochemistry, histopathology and in cytology. Hematoxylin appears as white to yellowish crystals that redden on exposure to light. (NTP, 1992) (+)-haematoxylin is a haematoxylin. It is an enantiomer of a (-)-haematoxylin. Hematoxylin is a natural product found in Haematoxylum brasiletto and Haematoxylum campechianum with data available. A dye obtained from the heartwood of logwood (Haematoxylon campechianum Linn., Leguminosae) used as a stain in microscopy and in the manufacture of ink. D004396 - Coloring Agents
Amygdaloside
Amygdalin is found in almond. Bitter glycoside of the Rosaceae, found especially in kernels of cherries, peaches and apricots. Amygdalin is present in cold pressed bitter almond oil from the above sources prior to enzymic hydolysis and steam distillation for food use Amygdalin , C20H27NO11, is a glycoside initially isolated from the seeds of the tree Prunus dulcis, also known as bitter almonds, by Pierre-Jean Robiquet and A. F. Boutron-Charlard in 1803, and subsequently investigated by Liebig and Wohler in 1830, and others. Several other related species in the genus of Prunus, including apricot (Prunus armeniaca) and black cherry (Prunus serotina), also contain amygdalin. It was promoted as a cancer cure by Ernst T. Krebs under the name "Vitamin B17", but studies have found it to be ineffective. Amygdalin is sometimes confounded with laevomandelonitrile, also called laetrile for short; however, amygdalin and laetrile are different chemical compounds (R)-amygdalin is an amygdalin in which the stereocentre on the cyanohydrin function has R-configuration. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is functionally related to a (R)-mandelonitrile. D-Amygdalin is a natural product found in Prunus spinosa, Gerbera jamesonii, and other organisms with data available. Amygdalin is a cyanogenic glucoside isolated from almonds and seeds of other plants of the family Rosaceae. Amygdalin is converted by plant emulsin (a combination of a glucosidase and a nitrilase) or hydrochloric acid into benzaldehyde, D-glucose, and hydrocyanic acid. (NCI04) A cyanogenic glycoside found in the seeds of Rosaceae. Amygdalin is a bitter glycoside of the Rosaceae, found in sources such as kernels of cherries, peaches and apricots. Present in cold pressed bitter almond oil from the these sources prior to enzymic hydolysis and steam distillation for food use. Amygdalin can also be found in passion fruit. C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C29724 - Cyanoglycoside Agent D000970 - Antineoplastic Agents C1907 - Drug, Natural Product Amygdalin is a plant glucoside isolated from the stones of rosaceous fruits, such as apricots, peaches, almond, cherries, and plums. Amygdalin is a plant glucoside isolated from the stones of rosaceous fruits, such as apricots, peaches, almond, cherries, and plums.
Fisetin
Fisetin is a 7-hydroxyflavonol with additional hydroxy groups at positions 3, 3 and 4. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an antioxidant, an anti-inflammatory agent, a metabolite, a plant metabolite and a geroprotector. It is a 3-hydroxyflavonoid, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a fisetin(1-). Fisetin is a natural product found in Acacia carneorum, Acacia buxifolia, and other organisms with data available. Fisetin is an orally bioavailable naturally occurring polyphenol found in many fruits and vegetables, with potential antioxidant, neuroprotective, anti-inflammatory, antineoplastic, senolytic, and longevity promoting activities. Upon administration, fisetin, as an antioxidant, scavenges free radicals, protect cells from oxidative stress, and is able to upregulate glutathione. It inhibits pro-inflammatory mediators, such as tumor necrosis factor alpha (TNF-a), interleukin-6 (IL-6), and nuclear factor kappa B (NF-kB). Fisetin promotes cellular metabolism, reduces senescence, regulates sirtuin function and may promote longevity. Fisetin also exerts anti-cancer activity by inhibiting certain signaling pathways. It also inhibits certain anti-apoptotic proteins and induces apoptosis in susceptible cells. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials A 7-hydroxyflavonol with additional hydroxy groups at positions 3, 3 and 4. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor C26170 - Protective Agent > C1509 - Neuroprotective Agent C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3,7,3,4-tetrahydroxyflavone, also known as 5-desoxyquercetin or fisetinidin, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 3,7,3,4-tetrahydroxyflavone is considered to be a flavonoid lipid molecule. 3,7,3,4-tetrahydroxyflavone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3,7,3,4-tetrahydroxyflavone is a bitter tasting compound found in soy bean, which makes 3,7,3,4-tetrahydroxyflavone a potential biomarker for the consumption of this food product. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.847 [Raw Data] CB035_Fisetin_pos_20eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_30eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_40eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_10eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_50eV_CB000018.txt [Raw Data] CB035_Fisetin_neg_10eV_000011.txt [Raw Data] CB035_Fisetin_neg_30eV_000011.txt [Raw Data] CB035_Fisetin_neg_40eV_000011.txt [Raw Data] CB035_Fisetin_neg_20eV_000011.txt [Raw Data] CB035_Fisetin_neg_50eV_000011.txt Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects.
Trans-4-hydroxyproline
Trans-4-hydroxy-L-proline is an optically active form of 4-hydroxyproline having L-trans-configuration. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is a tautomer of a trans-4-hydroxy-L-proline zwitterion. Hydroxyproline is a neutral heterocyclic protein amino acid. It is found in collagen and as such it is common in many gelatin products. Hydroxyproline is mostly used as a diagnostic marker of bone turnover and liver fibrosis. Therapeutically, hydroxyproline is being studied as an an experimental medicine but is approved in France as a combination topical gel product called Cicactive for small, superficial wounds. Hydroxyproline is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Hydroxyproline is a nonessential amino acid derivative formed during post-translational protein modification through hydroxylation of the amino acid proline by the enzyme prolyl hydroxylase which requires vitamin C as a co-factor. Hydroxyproline is a major component of the protein collagen and plays a key role in the stability of the collagen triple helix. It can be used as an indicator to determine the amount of collagen. Increased hydroxyproline levels in the urine and/or serum are normally associated with degradation of connective tissue. Vitamin C deficiency decreases the conversion of proline to hydroxyproline, which leads to reduced collagen stability. 4-Hydroxyproline (or hydroxyproline or Hyp) is a major component of the protein collagen. Hydroxyproline is produced by hydroxylation of the amino acid proline and is, therefore, a post-translationally modified amino acid. Hydroxyproline and proline play key roles for collagen stability. In particular, they permit the sharp twisting of the collagen helix. Hydroxyproline is found in few proteins other than collagen. The only other mammalian protein which includes hydroxyproline is elastin. For this reason, hydroxyproline content has been used as an indicator to determine collagen and/or gelatin amount in tissue or biological samples. Increased serum and urine levels of hydroxyproline have been found in Pagets disease Hydroxyproline (Hyp) content in biological fluids is used as a parameter of collagen catabolism, especially bone resorption or tissue degradation. Bedridden and elderly individuals show significantly elevated serum levels of hydroxyproline in comparison to normal, active individuals Elevated levels of urinary hydroxyproline are also indicative of muscle damage Increased reactive oxygen species (ROS) are also known to accelerate collagen degradation. Hydroxyproline levels increase in cases of depression and stress (A3486, A3487, A3488, A3489). See also: Hydroxyproline; niacinamide (component of); Hydroxyproline; octinoxate (component of) ... View More ... 4-Hydroxyproline (hydroxyproline or Hyp) is a major component of the protein collagen. Hydroxyproline is produced by hydroxylation of the amino acid proline and is, therefore, a post-translationally modified, non-essential amino acid. Hydroxyproline and proline play key roles in collagen stability. In particular, they permit the sharp twisting of the collagen helix. Hydroxyproline is found in few proteins other than collagen. The only other mammalian protein which includes hydroxyproline is elastin. For this reason, hydroxyproline content has been used as an indicator to determine collagen and/or gelatin amount in tissue or biological samples. Increased serum and urine levels of hydroxyproline have been found in Pagets disease (PMID: 436278). Hydroxyproline (Hyp) content in biological fluids is used as a parameter of collagen catabolism, especially bone resorption or tissue degradation. Bedridden and elderly individuals show significantly elevated serum levels of hydroxyproline in comparison to normal, active individuals (PMID: 10706420). Elevated levels of urinary hydroxyproline are also indicative of muscle damage (PMID: 21988268). Increased reactive oxygen species (ROS) are also known to accelerate collagen degradation. Hydroxyproline levels increase in cases of depression and stress (PMID: 21483218). 4-Hydroxyproline is found to be associated with Alzheimers disease, and also hydroxyprolinemia and iminoglycinuria which are both inborn errors of metabolism. 4-Hydroxyproline is also involved in metabolic disorders such as hyperprolinemia type I, hyperornithinemia with gyrate atrophy (HOGA), L-arginine:glycine amidinotransferase deficiency, creatine deficiency, and guanidinoacetate methyltransferase deficiency. A deficiency in ascorbic acid can result in impaired hydroxyproline formation (PubChem). trans-4-Hydroxy-L-proline is a biomarker for the consumption of processed meat. Constituent of proteins [DFC]. 4-hydroxyproline is a biomarker for the consumption of processed meat An optically active form of 4-hydroxyproline having L-trans-configuration. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.
Pectolinarigenin
Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].
Mecheliolide
Micheliolide is a sesquiterpene lactone. Micheliolide is a natural product found in Costus and Magnolia champaca with data available. Micheliolide can attenuate high glucose-stimulated NF-κB activation, IκBα degradation, and the expression of MCP-1, TGF-β1, and FN in mouse mesangial cells. Micheliolide can attenuate high glucose-stimulated NF-κB activation, IκBα degradation, and the expression of MCP-1, TGF-β1, and FN in mouse mesangial cells.
trans-3,3',4',5,5',7-Hexahydroxyflavanone
(+)-dihydromyricetin is an optically active form of dihydromyricetin having (2R,3R)-configuration. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a secondary alpha-hydroxy ketone and a dihydromyricetin. It is an enantiomer of a (-)-dihydromyricetin. Dihydromyricetin is under investigation in clinical trial NCT03606694 (Effect of Dihydromirycetin on Glycemic Control, Insulin Sensitivity and Insulin Secretion in Type 2 Diabetes Mellitus). Dihydromyricetin is a naturally occurring flavonoid found in the many plant species and is thought to be the active ingredient of several traditional Japanese, Chinese, and Korean medicines that are used to treat fever, parasite infections, liver diseases, and hangovers. Dihydromyricetin preparations have not been linked to instances of serum enzyme elevations or clinically apparent liver injury with jaundice. Dihydromyricetin is a natural product found in Vitis rotundifolia, Catha edulis, and other organisms with data available. (±)-trans-3,3,4,5,5,7-Hexahydroxyflavanone is found in tea. (±)-trans-3,3,4,5,5,7-Hexahydroxyflavanone is a constituent of Camellia sinensis (Chinese green tea). Constituent of Camellia sinensis (Chinese green tea). (±)-Dihydromyricetin is found in tea. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.
Ligusticide
Ligusticide, also known as ligustilide, (E)-isomer or (Z)-ligustilide, is a member of the class of compounds known as isobenzofurans. Isobenzofurans are organic aromatic compounds containing an isobenzofuran moiety. Ligusticide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ligusticide can be found in lovage, which makes ligusticide a potential biomarker for the consumption of this food product. (Z)-ligustilide is a butenolide. It has a role as a metabolite. Ligustilide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available.
Curdione
Curdione is a germacrane sesquiterpenoid. Germacr-1(10)-ene-5,8-dione is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. Curdione is found in turmeric. Curdione is a constituent of Curcuma zedoaria (zedoary) Constituent of Curcuma zedoaria (zedoary). Curdione is found in turmeric. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2]. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2].
Asperuloside
Asperuloside is a iridoid monoterpenoid glycoside isolated from Galium verum. It has a role as a metabolite. It is an iridoid monoterpenoid, a beta-D-glucoside, a monosaccharide derivative, an acetate ester and a gamma-lactone. Asperuloside is a natural product found in Lasianthus curtisii, Galium spurium, and other organisms with data available. See also: Galium aparine whole (part of). A iridoid monoterpenoid glycoside isolated from Galium verum. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1]. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].
Esculentic acid (Diplazium)
Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). Esculentic acid (Diplazium) is found in green vegetables. Esculentic acid (Diplazium) is a constituent of the edible fern Diplazium esculentum C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].
Formononetin
Formononetin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by a methoxy group at position 4. It has a role as a phytoestrogen and a plant metabolite. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to a daidzein. It is a conjugate acid of a formononetin(1-). Formononetin is under investigation in clinical trial NCT02174666 (Isoflavone Treatment for Postmenopausal Osteopenia.). Formononetin is a natural product found in Pterocarpus indicus, Ardisia paniculata, and other organisms with data available. See also: Astragalus propinquus root (part of); Trifolium pratense flower (part of). Formononetin are abundant in vegetables. It is a phyto-oestrogen that is a polyphenolic non-steroidal plant compound with oestrogen-like biological activity (PMID: 16108819). It can be the source of considerable estrogenic activity (http://www.herbalchem.net/Intermediate.htm). Widespread isoflavone found in soy beans (Glycine max), red clover (Trifolium pratense and chick peas (Cicer arietinum). Potential nutriceutical A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by a methoxy group at position 4. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8803; ORIGINAL_PRECURSOR_SCAN_NO 8802 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8826; ORIGINAL_PRECURSOR_SCAN_NO 8825 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4484; ORIGINAL_PRECURSOR_SCAN_NO 4480 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4474; ORIGINAL_PRECURSOR_SCAN_NO 4471 DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4474; ORIGINAL_PRECURSOR_SCAN_NO 4470 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8863; ORIGINAL_PRECURSOR_SCAN_NO 8861 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4474; ORIGINAL_PRECURSOR_SCAN_NO 4470 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8847; ORIGINAL_PRECURSOR_SCAN_NO 8844 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8852; ORIGINAL_PRECURSOR_SCAN_NO 8851 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8822; ORIGINAL_PRECURSOR_SCAN_NO 8821 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4569; ORIGINAL_PRECURSOR_SCAN_NO 4566 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4507; ORIGINAL_PRECURSOR_SCAN_NO 4504 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2291; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2291 IPB_RECORD: 481; CONFIDENCE confident structure Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1]. Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1].
Syringin
Syringin is a monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. It has a role as a hepatoprotective agent and a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a primary alcohol and a dimethoxybenzene. It is functionally related to a trans-sinapyl alcohol. Syringin is a natural product found in Salacia chinensis, Codonopsis lanceolata, and other organisms with data available. See also: Codonopsis pilosula root (part of). A monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2]. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2].
Salidroside
Salidroside is a glycoside. Salidroside is a natural product found in Plantago australis, Plantago coronopus, and other organisms with data available. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy.
Cinobufagin
Cinobufagin is a steroid lactone. It is functionally related to a bufanolide. Cinobufagin is a natural product found in Bufo gargarizans, Phrynoidis asper, and other organisms with data available. Cinobufagin is a bufadienolide compound extracted from the dried venom secreted by the parotid glands of toads and one of the glycosides in the traditional Chinese medicine ChanSu, with potential antineoplastic activity. Although the mechanism of action of cinobufagin is still under investigation, it has been found to suppress cancer cell proliferation and cause apoptosis in cancer cells via a sequence of apoptotic modulators that include mitochondrial Bax and cytosolic chromosome c, and caspases 3, 8, and 9. Possible upstream mediators of cinobufagin-induced apoptosis include Fas and p53. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Annotation level-1 Cinobufagin is an anticancer agent that can be secreted by the Asiatic toad Bufo gargarizans. Cinobufagin induces the cell cycle arrests in the G1 phase or G2/M phase, leading to apoptosis in cancer cells. Cinobufagin inhibits tumor growth in melanoma and glioblastoma multiforme xenograft mouse models[1][2][3]. Cinobufagin is an anticancer agent that can be secreted by the Asiatic toad Bufo gargarizans. Cinobufagin induces the cell cycle arrests in the G1 phase or G2/M phase, leading to apoptosis in cancer cells. Cinobufagin inhibits tumor growth in melanoma and glioblastoma multiforme xenograft mouse models[1][2][3].
Kurarinone
(2S)-(-)-kurarinone is a trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2 and 4, a lavandulyl group at position 8 and a methoxy group at position 5. Isolated from the roots of Sophora flavescens, it exhibits cytotoxicity against human myeloid leukemia HL-60 cells. It has a role as a metabolite and an antineoplastic agent. It is a trihydroxyflavanone, a monomethoxyflavanone and a member of 4-hydroxyflavanones. It is functionally related to a (2S)-flavanone. 7,2,4-Trihydroxy-8-lavandulyl-5-methoxyflavanone is a natural product found in Albizia julibrissin, Cunila, and other organisms with data available. A trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2 and 4, a lavandulyl group at position 8 and a methoxy group at position 5. Isolated from the roots of Sophora flavescens, it exhibits cytotoxicity against human myeloid leukemia HL-60 cells. Kurarinone, a flavanoid derived from shrub Sophora flavescens, inhibits the process of experimental autoimmune encephalomyelitis via blocking Th1 and Th17 cell differentiation[1]. Kurarinone, a flavanoid derived from shrub Sophora flavescens, inhibits the process of experimental autoimmune encephalomyelitis via blocking Th1 and Th17 cell differentiation[1].
Nookatone
Nootkatone is a natural organic compound and is the most important and expensive aromatic of grapefruit. It is a sesquiterpene and a ketone. Nootkatone was previously thought to be one of the main chemical components of the smell and flavour of grapefruits. In its solid form it is usually found as crystals. As a liquid, it is viscous and yellow. Nootkatone is typically extracted from grapefruit, but can also be manufactured with genetically modified organisms, or through the chemical or biochemical oxidation of valencene. It is also found in Alaska yellow cedar trees and vetiver grass. (+)-nootkatone is a sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). It has a role as a plant metabolite, a fragrance and an insect repellent. It is a sesquiterpenoid, an enone and a carbobicyclic compound. Nootkatone is a natural product found in Teucrium asiaticum, Teucrium oxylepis, and other organisms with data available. Constituent of grapefruit oil and juice. Flavouring ingredient. Nootkatone is found in many foods, some of which are citrus, sweet orange, lime, and lemon. Nootkatone is an organic compound, a sesquiterpenoid, which means that it is a C15 derivative that also contains an oxygen-containing functional group (a ketone). It is the most valuable aroma compound of grapefruit.[2] Nootkatone was originally isolated from the wood of the Alaskan yellow cedar, Cupressus nootkatensis. The species name, nootkatensis, is derived from the language of the Nuu-Chah-Nulth people of Canada (formerly referred to as the Nootka people).[3] Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2]. Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2].
Procyanidin B2
Procyanidin B2 is a proanthocyanidin consisting of two molecules of (-)-epicatechin joined by a bond between positions 4 and 8 in a beta-configuration. Procyanidin B2 can be found in Cinchona pubescens (Chinchona, in the rind, bark and cortex), in Cinnamomum verum (Ceylon cinnamon, in the rind, bark and cortex), in Crataegus monogyna (Common hawthorn, in the flower and blossom), in Uncaria guianensis (Cats claw, in the root), in Vitis vinifera (Common grape vine, in the leaf), in Litchi chinensis (litchi, in the pericarp), in the apple, in Ecdysanthera utilis and in red wine. It has a role as a metabolite and an antioxidant. It is a hydroxyflavan, a proanthocyanidin, a biflavonoid and a polyphenol. It is functionally related to a (-)-epicatechin. Procyanidin B2 is a natural product found in Begonia fagifolia, Saraca asoca, and other organisms with data available. See also: Cocoa (part of); Primula veris flower (part of). A proanthocyanidin consisting of two molecules of (-)-epicatechin joined by a bond between positions 4 and 8 in a beta-configuration. Procyanidin B2 can be found in Cinchona pubescens (Chinchona, in the rind, bark and cortex), in Cinnamomum verum (Ceylon cinnamon, in the rind, bark and cortex), in Crataegus monogyna (Common hawthorn, in the flower and blossom), in Uncaria guianensis (Cats claw, in the root), in Vitis vinifera (Common grape vine, in the leaf), in Litchi chinensis (litchi, in the pericarp), in the apple, in Ecdysanthera utilis and in red wine. Present in red wine. Procyanidin B2 is found in many foods, some of which are alcoholic beverages, sherry, bilberry, and yellow zucchini. Procyanidin B2 is found in alcoholic beverages. Procyanidin B2 is present in red wine. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities.
Alantolactone
Alantolactone is a sesquiterpene lactone that is 3a,5,6,7,8,8a,9,9a-octahydronaphtho[2,3-b]furan-2-one bearing two methyl substituents at positions 5 and 8a as well as a methylidene substituent at position 3. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a sesquiterpene lactone, a naphthofuran and an olefinic compound. Alantolactone is a natural product found in Eupatorium cannabinum, Pentanema britannicum, and other organisms with data available. Alantolactone is found in herbs and spices. Alantolactone is a constituent of Inula helenium (elecampane) Constituent of Inula helenium (elecampane). Alantolactone is found in herbs and spices. Alantolactone is a selective STAT3 inhibitor, with potent anticancer activity. Alantolactone induces apoptosis in cancer[1][2][3]. Alantolactone is a selective STAT3 inhibitor, with potent anticancer activity. Alantolactone induces apoptosis in cancer[1][2][3].
L-Tryptophan betaine
Hypaphorine is an amino acid betaine obtaine by exhaustive methylation of the alpha-amino group of L-tryptophan with concomitant deprotonation of the carboxy group. It has a role as a plant metabolite, a xenobiotic and a fungal metabolite. It is an amino-acid betaine, a L-tryptophan derivative and an indole alkaloid. Hypaphorine is a natural product found in Erythrina suberosa, Erythrina subumbrans, and other organisms with data available. Lenticin or hypaphorine is a compound found in lentil extracts. It can also be detected in blood after an individual has consumed lentils and may therefore serve as a food biomarker. Lenticin is an indole alkaloid that is essentially an N-methylated form of tryptophan. It is known to be a sleep-inducing compound (PMID: 18571406). In plants it is an agonist of the plant hormone indole acetic acid. An amino acid betaine obtaine by exhaustive methylation of the alpha-amino group of L-tryptophan with concomitant deprotonation of the carboxy group. (+)-Hypaphorine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-58-1 (retrieved 2024-07-01) (CAS RN: 487-58-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Hypaphorine is an indole alkaloid isolated from Caragana korshinskii, and with neurological and glucose-lowering effects in rodents[1]. Hypaphorine is an indole alkaloid isolated from Caragana korshinskii, and with neurological and glucose-lowering effects in rodents[1].
Bellidifolin
Bellidifolin is a member of the xanthone family that is bellidin substituted with a methyl group at O-3. A natural product found particularly in Swertia chirata and Gentianella campestris. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a hypoglycemic agent and a metabolite. It is a member of xanthones and a polyphenol. It is functionally related to a bellidin. Bellidifolin is a natural product found in Gentiana orbicularis, Gentianella amarella, and other organisms with data available. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4]. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4].
febrifugine
Isofebrifugine is a member of quinazolines. Isofebrifugine is a natural product found in Hydrangea febrifuga and Hydrangea macrophylla with data available. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1]. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1].
Triptolide
Triptolide is an organic heteroheptacyclic compound, an epoxide, a gamma-lactam and a diterpenoid. It has a role as an antispermatogenic agent and a plant metabolite. Triptolide has been used in trials studying the treatment of HIV, Crohns Disease, Intestinal Diseases, Gastrointestinal Diseases, and Digestive System Diseases, among others. Triptolide is a natural product found in Tripterygium hypoglaucum, Celastraceae, and other organisms with data available. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000988 - Antispermatogenic Agents D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents Triptolide is a diterpenoid triepoxide extracted from the root of Tripterygium wilfordii with immunosuppressive, anti-inflammatory, antiproliferative and antitumour effects. Triptolide is a NF-κB activation inhibitor[1][2][3][4][5][6]. Triptolide is a diterpenoid triepoxide extracted from the root of Tripterygium wilfordii with immunosuppressive, anti-inflammatory, antiproliferative and antitumour effects. Triptolide is a NF-κB activation inhibitor[1][2][3][4][5][6].
Lutein
Lutein is a common carotenoid xanthophyll found in nature. Carotenoids are among the most common pigments in nature and are natural lipid-soluble antioxidants. Lutein is one of the two carotenoids (the other is zeaxanthin) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli, and eggs, are associated with a significant reduction in the risk for cataracts (up to 20\\\\\%) and age-related macular degeneration (up to 40\\\\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations (PMID: 11023002). Lutein is a carotenol. It has a role as a food colouring and a plant metabolite. It derives from a hydride of a (6R)-beta,epsilon-carotene. Lutein is an xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis. Lutein is a natural product found in Eupatorium cannabinum, Hibiscus syriacus, and other organisms with data available. Lutein is lutein (LOO-teen) is a oxygenated carotenoid found in vegetables and fruits. lutein is found in the macula of the eye, where it is believed to act as a yellow filter. Lutein acts as an antioxidant, protecting cells against the damaging effects of free radicals. A xanthophyll found in the major LIGHT-HARVESTING PROTEIN COMPLEXES of plants. Dietary lutein accumulates in the MACULA LUTEA. See also: Calendula Officinalis Flower (part of); Corn (part of); Chicken; lutein (component of) ... View More ... Pigment from egg yolk and leaves. Found in all higher plants. Nutriceutical with anticancer and antioxidation props. Potentially useful for the treatment of age-related macular degeneration (AMD) of the eye Lutein A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-40-2 (retrieved 2024-07-12) (CAS RN: 127-40-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4]. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].
3-(3,4-Dihydroxyphenyl)lactic acid
3-(3,4-dihydroxyphenyl)lactic acid is a 2-hydroxy monocarboxylic acid and a member of catechols. It is functionally related to a rac-lactic acid. It is a conjugate acid of a 3-(3,4-dihydroxyphenyl)lactate. 3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid is a natural product found in Salvia miltiorrhiza, Salvia sonchifolia, and other organisms with data available. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271) [HMDB]. 3-(3,4-Dihydroxyphenyl)lactic acid is found in rosemary. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271).
Rhamnocitrin
Rhamnocitrin, also known as 3,4,5-trihydroxy-7-methoxyflavone or 7-methylkaempferol, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, rhamnocitrin is considered to be a flavonoid lipid molecule. Rhamnocitrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Rhamnocitrin can be found in cloves and lemon balm, which makes rhamnocitrin a potential biomarker for the consumption of these food products. Rhamnocitrin is a monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. It has a role as a plant metabolite. It is a trihydroxyflavone, a member of flavonols and a monomethoxyflavone. It is functionally related to a kaempferol. Rhamnocitrin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2].
Verbinone
Verbenone, also known as verbenone, (1r)-isomer, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Verbenone is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Verbenone is a camphor, celery, and menthol tasting compound and can be found in a number of food items such as spearmint, cabbage, white cabbage, and rosemary, which makes verbenone a potential biomarker for the consumption of these food products. Verbenone is a natural organic compound classified as a terpene that is found naturally in a variety of plants. The chemical has a pleasant characteristic odor. Besides being a natural constituent of plants, it and its analogs are insect pheromones. In particular, verbenone when formulated in a long-lasting matrix has an important role in the control of bark beetles such as the mountain pine beetle and the Southern pine bark beetle . 4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one is a carbobicyclic compound that is bicyclo[3.1.1]heptane which is substituted by an oxo group at position 2 and by methyl groups at positions 4, 6 and 6, and which contains a double bond between positions 3 and 4. It is a carbobicyclic compound, a cyclic ketone and an enone. Verbenone is a natural product found in Eucalyptus fasciculosa, Eucalyptus intertexta, and other organisms with data available. Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2]. Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2].
Captopril
Captopril is a potent, competitive inhibitor of angiotensin-converting enzyme (ACE), the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Captopril may be used in the treatment of hypertension. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Emodin
Emodin appears as orange needles or powder. (NTP, 1992) Emodin is a trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8 and by a methyl group at position 6. It is present in the roots and barks of numerous plants (particularly rhubarb and buckthorn), moulds, and lichens. It is an active ingredient of various Chinese herbs. It has a role as a tyrosine kinase inhibitor, an antineoplastic agent, a laxative and a plant metabolite. It is functionally related to an emodin anthrone. It is a conjugate acid of an emodin(1-). Emodin has been investigated for the treatment of Polycystic Kidney. Emodin is a natural product found in Rumex dentatus, Rhamnus davurica, and other organisms with data available. Emodin is found in dock. Emodin is present in Cascara sagrada.Emodin is a purgative resin from rhubarb, Polygonum cuspidatum, the buckthorn and Japanese Knotweed (Fallopia japonica). The term may also refer to any one of a series of principles isomeric with the emodin of rhubarb. (Wikipedia) Emodin has been shown to exhibit anti-inflammatory, signalling, antibiotic, muscle building and anti-angiogenic functions (A3049, A7853, A7854, A7855, A7857). Purgative anthraquinone found in several plants, especially RHAMNUS PURSHIANA. It was formerly used as a laxative, but is now used mainly as a tool in toxicity studies. See also: Reynoutria multiflora root (part of); Frangula purshiana Bark (part of). A trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8 and by a methyl group at position 6. It is present in the roots and barks of numerous plants (particularly rhubarb and buckthorn), moulds, and lichens. It is an active ingredient of various Chinese herbs. Emodin is found in dock. Emodin is present in Cascara sagrada.Emodin is a purgative resin from rhubarb, Polygonum cuspidatum, the buckthorn and Japanese Knotweed (Fallopia japonica). The term may also refer to any one of a series of principles isomeric with the emodin of rhubarb. (Wikipedia C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics Present in Cascara sagrada CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 ORIGINAL_PRECURSOR_SCAN_NO 5094; CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 [Raw Data] CB029_Emodin_pos_50eV_CB000015.txt [Raw Data] CB029_Emodin_pos_10eV_CB000015.txt [Raw Data] CB029_Emodin_pos_20eV_CB000015.txt [Raw Data] CB029_Emodin_pos_30eV_CB000015.txt [Raw Data] CB029_Emodin_pos_40eV_CB000015.txt [Raw Data] CB029_Emodin_neg_50eV_000008.txt [Raw Data] CB029_Emodin_neg_20eV_000008.txt [Raw Data] CB029_Emodin_neg_40eV_000008.txt [Raw Data] CB029_Emodin_neg_30eV_000008.txt [Raw Data] CB029_Emodin_neg_10eV_000008.txt CONFIDENCE standard compound; ML_ID 38 Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3]. Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3].
Carvedilol
Carvedilol is only found in individuals that have used or taken this drug. It is a non-selective beta blocker indicated in the treatment of mild to moderate congestive heart failure (CHF).Carvedilol is a racemic mixture in which nonselective beta-adrenoreceptor blocking activity is present in the S(-) enantiomer and alpha-adrenergic blocking activity is present in both R(+) and S(-) enantiomers at equal potency. Carvedilols beta-adrenergic receptor blocking ability decreases the heart rate, myocardial contractility, and myocardial oxygen demand. Carvedilol also decreases systemic vascular resistance via its alpha adrenergic receptor blocking properties. Carvedilol and its metabolite BM-910228 (a less potent beta blocker, but more potent antioxidant) have been shown to restore the inotropic responsiveness to Ca2+ in OH- free radical-treated myocardium. Carvedilol and its metabolites also prevent OH- radical-induced decrease in sarcoplasmic reticulum Ca2+-ATPase activity. Therefore, carvedilol and its metabolites may be beneficial in chronic heart failure by preventing free radical damage. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AG - Alpha and beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D020011 - Protective Agents > D000975 - Antioxidants D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Carvedilol (BM 14190) is a non-selective β/α-1 blocker[1]. Carvedilol inhibits lipid peroxidation in a dose-dependent manner with an IC50 of 5 μM. Carvedilol is a multiple action antihypertensive agent with potential use in angina and congestive heart failure[2]. Carvedilol is an autophagy inducer that inhibits the NLRP3 inflammasome[3].
Monocrotaline
Hepatotoxin. Causative agent of much seneciosis, e.g. accidental poisoning by S. by weed residues in bread, and characterised by venoocculosive disease Hepatotoxin. Causative agent of much seneciosis, e.g. accidental poisoning by S. by weed residues in bread, and characterised by venoocculosive diseas CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2249 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 131 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 121 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 151 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 141 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 111 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 161 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 171 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 101 Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8]. Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8].
Losartan
Losartan is an angiotensin-receptor blocker (ARB) that may be used alone or with other agents to treat hypertension. Losartan and its longer acting metabolite, E-3174, lower blood pressure by antagonizing the renin-angiotensin-aldosterone system (RAAS); they compete with angiotensin II for binding to the type-1 angiotensin II receptor (AT1) subtype and prevents the blood pressure increasing effects of angiotensin II. Unlike angiotensin-converting enzyme (ACE) inhibitors, ARBs do not have the adverse effect of dry cough. Losartan may be used to treat hypertension, isolated systolic hypertension, left ventricular hypertrophy and diabetic nephropathy. It may also be used as an alternative agent for the treatment of systolic dysfunction, myocardial infarction, coronary artery disease, and heart failure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2794 CONFIDENCE standard compound; INTERNAL_ID 8189 CONFIDENCE standard compound; INTERNAL_ID 8607 CONFIDENCE standard compound; INTERNAL_ID 2280 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Losartan is an angiotensin II receptor antagonist, competing with the binding of angiotensin II to AT1 receptors with IC50 of 20 nM.
Perindopril
Perindopril is a nonsulfhydryl prodrug that belongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is rapidly metabolized in the liver to perindoprilat, its active metabolite, following oral administration. Perindoprilat is a potent, competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Perindopril may be used to treat mild to moderate essential hypertension, mild to moderate congestive heart failure, and to reduce the cardiovascular risk of individuals with hypertension or post-myocardial infarction and stable coronary disease. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Perindopril (S-9490) is an orally available, long-acting angiotensin-converting enzyme (ACE) inhibitor. Perindopril inhibits inflammatory cell influx and intimal thickening, preserving elastin on the inside of the aorta. Perindopril effectively inhibits experimental abdominal aortic aneurysm (AAA) formation in a rat model and reduces pulmonary vasoconstriction in rats with pulmonary hypertension[1][2][3][4].
Kaempferol 3-O-beta-robinoside 7-O-alpha-L-rhamnopyranoside
Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside, also known as kaempherol-3-O-robinoside-7-O-rhamnoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside can be found in common bean, which makes kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1]. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1].
Rhamnetin
Acquisition and generation of the data is financially supported in part by CREST/JST. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].
Xanthohumol
Xanthohumol is a member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 4, 2 and 4, a methoxy group at position 6 and a prenyl group at position 3. Isolated from Humulus lupulus, it induces apoptosis in human malignant glioblastoma cells. It has a role as a metabolite, an apoptosis inducer, an antineoplastic agent, an antiviral agent, an EC 2.3.1.20 (diacylglycerol O-acyltransferase) inhibitor and an anti-HIV-1 agent. It is a member of chalcones, a polyphenol and an aromatic ether. It is a conjugate acid of a xanthohumol(1-). Xanthohumol is under investigation in clinical trial NCT01367431 (Xanthohumol and Metabolic Syndrome). Xanthohumol is a natural product found in Humulus lupulus and Capsicum annuum with data available. Xanthohumol is a prenylated flavonoid derived from the female flowers of the hops plant (Humulus lupulus L), with potential chemopreventive and antineoplastic activities. Upon administration, xanthohumol scavenges reactive oxygen species (ROS), thereby preventing DNA damage due to oxidative stress. In addition, xanthohumol is able to increase the expression of phase II cytoprotective enzymes, thereby inactivating carcinogens. This agent exerts anti-inflammatory activity, through the inhibition of inflammation-inducing enzymes, inhibits DNA synthesis, and induces apoptosis of susceptible cancer cells. Xanthohumol also decreases the expression of C-X-C chemokine receptor 4 (CXCR4), thereby preventing cancer cell invasion. A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 4, 2 and 4, a methoxy group at position 6 and a prenyl group at position 3. Isolated from Humulus lupulus, it induces apoptosis in human malignant glioblastoma cells. C308 - Immunotherapeutic Agent > C63817 - Chemokine Receptor Antagonist > C107589 - CXCR4 Inhibitor Xanthohumol is found in alcoholic beverages. Xanthohumol is isolated from Humulus lupulus (hops Isolated from Humulus lupulus (hops). Xanthohumol is found in beer and alcoholic beverages. D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D006133 - Growth Substances > D006131 - Growth Inhibitors C1892 - Chemopreventive Agent [Raw Data] CBA95_Xanthohumol_pos_50eV.txt [Raw Data] CBA95_Xanthohumol_neg_40eV.txt [Raw Data] CBA95_Xanthohumol_neg_20eV.txt [Raw Data] CBA95_Xanthohumol_neg_30eV.txt [Raw Data] CBA95_Xanthohumol_neg_50eV.txt [Raw Data] CBA95_Xanthohumol_pos_30eV.txt [Raw Data] CBA95_Xanthohumol_pos_10eV.txt [Raw Data] CBA95_Xanthohumol_neg_10eV.txt [Raw Data] CBA95_Xanthohumol_pos_20eV.txt [Raw Data] CBA95_Xanthohumol_pos_40eV.txt Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV). Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV). Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV).
Arecoline
Arecoline is a tetrahydropyridine that is 1,2,5,6-tetrahydropyridine with a methyl group at position 1, and a methoxycarbonyl group at position 3. An alkaloid found in the areca nut, it acts as an agonist of muscarinic acetylcholine. It has a role as a muscarinic agonist and a metabolite. It is a tetrahydropyridine, an enoate ester, a pyridine alkaloid and a methyl ester. An alkaloid obtained from the betel nut (Areca catechu), fruit of a palm tree. It is an agonist at both muscarinic and nicotinic acetylcholine receptors. It is used in the form of various salts as a ganglionic stimulant, a parasympathomimetic, and a vermifuge, especially in veterinary practice. It has been used as a euphoriant in the Pacific Islands. Arecoline is a natural product found in Piper betle and Areca catechu with data available. Arecoline is found in nuts. Arecoline is isolated from betel nuts Arecoline is an alkaloid natural product found in the areca nut, the fruit of the areca palm (Areca catechu). It is an oily liquid that is soluble in water, alcohols, and ether. Owing to its muscarinic and nicotinic agonist properties, arecoline has shown improvement in the learning ability of healthy volunteers. Since one of the hallmarks of Alzheimers disease is a cognitive decline, arecoline was suggested as a treatment to slow down this process and arecoline administered via i.v. route did indeed show modest verbal and spatial memory improvement in Alzheimers patients, though due to arecolines possible carcinogenic properties, it is not the first drug of choice for this degenerative disease. Arecoline has been shown to exhibit apoptotic, excitant and steroidogenic functions (A7876, A7878, A7879). Arecoline belongs to the family of Alkaloids and Derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. An alkaloid obtained from the betel nut (Areca catechu), fruit of a palm tree. It is an agonist at both muscarinic and nicotinic acetylcholine receptors. It is used in the form of various salts as a ganglionic stimulant, a parasympathomimetic, and a vermifuge, especially in veterinary practice. It has been used as a euphoriant in the Pacific Islands. Arecoline is found in nuts. Arecoline is isolated from betel nuts Arecoline is an alkaloid natural product found in the areca nut, the fruit of the areca palm (Areca catechu). It is an oily liquid that is soluble in water, alcohols, and ether. Owing to its muscarinic and nicotinic agonist properties, arecoline has shown improvement in the learning ability of healthy volunteers. Since one of the hallmarks of Alzheimers disease is a cognitive decline, arecoline was suggested as a treatment to slow down this process and arecoline administered via i.v. route did indeed show modest verbal and spatial memory improvement in Alzheimers patients, though due to arecolines possible carcinogenic properties, it is not the first drug of choice for this degenerative disease A tetrahydropyridine that is 1,2,5,6-tetrahydropyridine with a methyl group at position 1, and a methoxycarbonyl group at position 3. An alkaloid found in the areca nut, it acts as an agonist of muscarinic acetylcholine. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist
Asiaticoside
Constituent of Centella asiatica (Asiatic pennywort). Asiaticoside is found in herbs and spices and green vegetables. Asiaticoside is found in green vegetables. Asiaticoside is a constituent of Centella asiatica (Asiatic pennywort) D000890 - Anti-Infective Agents Same as: D07576 Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties. Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties.
Gambogic acid
Isolated from Gamboge resin (exudate of Garcinia morella). Gambogic acid is found in herbs and spices and fruits. Gambogic acid is found in fruits. Gambogic acid is isolated from Gamboge resin (exudate of Garcinia morella). Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM. Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM.
Oxymatrine
Ammothamnine is an alkaloid and a tertiary amine oxide. Oxymatrine is a natural product found in Sophora pachycarpa, Sophora chrysophylla, and other organisms with data available. D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents Origin: Plant; SubCategory_DNP: Alkaloids derived from lysine, Quinolizidine alkaloids, Sophora alkaloid Oxymatrine is under investigation in clinical trial NCT02202473 (Oxymatrine Plus Lamivudine Combination Therapy Versus Lamivudine Monotherapy for Chronic Hepatitis B Infected Subjects). Matrine oxide is a natural product found in Daphniphyllum oldhamii, Sophora viciifolia, and other organisms with data available. Oxymatrine, an alkaloid from Sophora flavescens Alt. with anti-inflammatory, antifibrosis, and antitumor effects, inhibits the iNOS expression and TGF-β/Smad pathway. Oxymatrine inhibits bocavirus minute virus of canines (MVC) replication, reduces viral gene expression and decreases apoptosis induced by viral infection. Oxymatrine, an alkaloid from Sophora flavescens Alt. with anti-inflammatory, antifibrosis, and antitumor effects, inhibits the iNOS expression and TGF-β/Smad pathway. Oxymatrine inhibits bocavirus minute virus of canines (MVC) replication, reduces viral gene expression and decreases apoptosis induced by viral infection. Oxysophoridine (Sophoridine N-oxide) is a bioactive alkaloid extracted from the Sophora alopecuroides Linn. Oxysophoridine (Sophoridine N-oxide) shows anti inflammatory, anti oxidative stress and anti apoptosis effects[1][2]. Oxysophoridine (Sophoridine N-oxide) is a bioactive alkaloid extracted from the Sophora alopecuroides Linn. Oxysophoridine (Sophoridine N-oxide) shows anti inflammatory, anti oxidative stress and anti apoptosis effects[1][2].
Glycitin
Glycitin is an isoflavone glycoside present in human diets containing soy. The transformation of glycitin by intestinal microflora produces glycitein, a compound found to scavenge intracellular reactive oxygen species. Diverse bacteria strains from human origin have specific activity (beta-glucosidase activity) in the metabolism of dietary flavonoids. Soy isoflavones are popular supplements based on their potential protection against cancer and their use as alternative hormone replacement therapy. Is one of the isoflavones present in ready-to-feed soy-based infant formula. (PMID: 17516245, 17157426, 17439230, 12607743). Present in soya foods; potential nutriceutical. Glycitin is found in many foods, some of which are soy milk, tofu, miso, and soy sauce. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic. Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic.
T2 Toxin
T2 Toxin is isolated from Fusarium species and Trichoderma lignorum. T2 Toxin is an important mycotoxin occurring naturally in various agricultural products. Isolated from Fusarium subspecies and Trichoderma lignorum. Important mycotoxin occurring naturally in various agricultural products D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins T-2 Toxin (T-2 Mycotoxin) is a toxic trichothecene mycotoxin produced by various Fusarium species in feedstuffs and cereal grains, LD50 values of T-2 Toxin in mice and rats are 5.2 and 1.5 mg/kg BWa,respectively [1]. T-2 Toxin (T-2 Mycotoxin) can be transformed into a variety of metabolite, the typical metabolites of T-2 toxin in animals are HT-2 toxin and T-2-triol, which are hydrolysates[1]. T-2 Toxin (T-2 Mycotoxin) is an inhibitor of protein synthesis resulting from binding peptidyltransferase, which is an integral part of the 60s ribosomal subunit. T-2 Toxin (T-2 Mycotoxin) inhibits the synthesis of DNA and RNA, interferes with the metabolism of membrane phospholipids, and increases the level of liver lipid peroxides[1]. T-2 Toxin (T-2 Mycotoxin) induces apoptosis in the immune system, gastrointestinal tissues, and fetal tissues[2].
Puerarin
Puerarin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 7 and 4 and a beta-D-glucopyranosyl residue at position 8 via a C-glycosidic linkage. It has a role as a plant metabolite. It is a C-glycosyl compound and a hydroxyisoflavone. It is functionally related to an isoflavone. Puerarin has been investigated for the treatment of Alcohol Abuse. Puerarin is a natural product found in Neustanthus phaseoloides, Clematis hexapetala, and other organisms with data available. Puerarin, also known as Kakonein, is a member of the class of compounds known as isoflavonoid C-glycosides. These compounds are C-glycosylated derivatives of isoflavonoids, which are natural products derived from 3-phenylchromen-4-one. Puerarin is considered a slightly soluble (in water), acidic compound. Puerarin can be synthesized into puerarin xyloside. Puerarin is found in a number of plants and herbs, such as the root of the kudzu plant. A hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 7 and 4 and a beta-D-glucopyranosyl residue at position 8 via a C-glycosidic linkage. A polyphenol metabolite detected in biological fluids [PhenolExplorer] D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist.
Vindoline
Vindoline is a vinca alkaloid, an alkaloid ester, an organic heteropentacyclic compound, a methyl ester, an acetate ester, a tertiary amino compound and a tertiary alcohol. It is a conjugate base of a vindolinium(1+). Vindoline is a natural product found in Catharanthus ovalis, Catharanthus trichophyllus, and other organisms with data available. Vindoline is an indole alkaloid that exhibits antimitotic activity by inhibiting microtubule assembly. (NCI) D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids C1744 - Multidrug Resistance Modulator Vindoline, a vinca alkaloid extracted from the leaves of Catharanthus roseus, weakly inhibits tubulin self-assembly[1]. Vindoline, a vinca alkaloid extracted from the leaves of Catharanthus roseus, weakly inhibits tubulin self-assembly[1].
(+)-Sesamin
(+)-Sesamin, also known as fagarol or sezamin, belongs to the class of organic compounds known as furanoid lignans. These are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units. (+)-Sesamin is an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-Sesamin is found, on average, in the highest concentration within sesames. (+)-Sesamin has also been detected, but not quantified in, several different foods, such as fats and oils, flaxseeds, ginkgo nuts, and ucuhuba. This could make (+)-sesamin a potential biomarker for the consumption of these foods. (+)-sesamin is a lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. It has a role as an antineoplastic agent, a neuroprotective agent and a plant metabolite. It is a lignan, a member of benzodioxoles and a furofuran. Sesamin is a natural product found in Pandanus boninensis, Podolepis rugata, and other organisms with data available. See also: Sesame Oil (part of). A lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].
Phenazopyridine
Phenazopyridine is only found in individuals that have used or taken this drug. It is a local anesthetic that has been used in urinary tract disorders. Its use is limited by problems with toxicity (primarily blood disorders) and potential carcinogenicity. [PubChem]Phenazopyridines mechanism of action is not well known, and only basic information on its interaction with the body is available. It is known that the chemical has a direct topical analgesic effect on the mucosa lining of the urinary tract. C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals KEIO_ID P036; [MS2] KO009187 KEIO_ID P036
Norwogonin
Norwogonin, isolated from Scutellaria baicalensis Georgi, possesses antiviral activity against Enterovirus 71 (EV71) with an IC50 of 31.83 μg/ml[1] Norwogonin, isolated from Scutellaria baicalensis Georgi, possesses antiviral activity against Enterovirus 71 (EV71) with an IC50 of 31.83 μg/ml[1]
Norizalpinin
Galangin is a 7-hydroxyflavonol with additional hydroxy groups at positions 3 and 5 respectively; a growth inhibitor of breast tumor cells. It has a role as an antimicrobial agent, an EC 3.1.1.3 (triacylglycerol lipase) inhibitor and a plant metabolite. It is a trihydroxyflavone and a 7-hydroxyflavonol. Galangin is a natural product found in Alpinia conchigera, Populus koreana, and other organisms with data available. Constituent of Galanga root (Alpinia officinarum). Galangin is found in many foods, some of which are apple, garden onion (variety), sweet orange, and grape wine. A 7-hydroxyflavonol with additional hydroxy groups at positions 3 and 5 respectively; a growth inhibitor of breast tumor cells. Norizalpinin is found in apple. Norizalpinin is a constituent of Galanga root (Alpinia officinarum) D009676 - Noxae > D009153 - Mutagens Galangin (Norizalpinin) is?an?agonist/antagonist?of the?arylhydrocarbon?receptor. Galangin (Norizalpinin) also shows inhibition of CYP1A1 activity. Galangin (Norizalpinin) is?an?agonist/antagonist?of the?arylhydrocarbon?receptor. Galangin (Norizalpinin) also shows inhibition of CYP1A1 activity.
N-Nitrosodimethylamine
N-Nitrosodimethylamine is found in pepper (Capsicum annuum). N-Nitrosodimethylamine is a food contaminant especially in cured meat products. N-Nitrosodimethylamine (NDMA), also known as dimethylnitrosamine (DMN), is a semi-volatile organic chemical that is highly toxic and is a suspected human carcinogen. The US Environmental Protection Agency has determined that the maximum admissible concentration of NDMA in drinking water is 7 ng L 1. The EPA has not yet set a regulatory maximum contaminant level (MCL) for drinking water. At high doses, it is a "potent hepatotoxin that can cause fibrosis of the liver" in rats. The induction of liver tumors in rats after chronic exposure to low doses is well-documented. Its toxic effects on humans are inferred from animal experiments but not well-established experimentally. NDMA is an industrial by-product or waste product of several industrial processes. It first came to attention as a groundwater contaminant in California in 1998 and 1999 at several sites that produced rocket fuel. Manufacturing of unsymmetrical dimethylhydrazine (UDMH), which is a component of rocket fuel that requires NDMA for its synthesis, proved to be the culprit in these cases. Of more general concern, water treatment via chlorination or chloramination of organic nitrogen-containing wastewater can lead to the production of NDMA at potentially harmful levels. Further, NDMA can form or be leached during treatment of water by anion exchange resins. Finally, NDMA is found at low levels in numerous items of human consumption including cured meat, fish, beer, and tobacco smoke, it is, however, unlikely to bioaccumulate CONFIDENCE standard compound; EAWAG_UCHEM_ID 3447 Food contaminant especies in cured meat products
Trimethylamine N-oxide
Trimethylamine N-oxide (TMAO) is an oxidation product of trimethylamine and a common metabolite in animals and humans. In particular, trimethylamine-N-oxide is biosynthesized endogenously from trimethylamine, which is derived from choline, which can be derived from dietary lecithin (phosphatidylcholines) or dietary carnitine. TMAO decomposes to trimethylamine (TMA), which is the main odorant that is characteristic of degrading seafood. TMAO is an osmolyte that the body will use to counteract the effects of increased concentrations of urea (due to kidney failure) and high levels can be used as a biomarker for kidney problems. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Fish odor syndrome or trimethylaminuria is a defect in the production of the enzyme flavin containing monooxygenase 3 (FMO3) causing incomplete breakdown of trimethylamine from choline-containing food into trimethylamine oxide. Trimethylamine then builds up and is released in the persons sweat, urine, and breath, giving off a strong fishy odor. The concentration of TMAO in the blood increases after consuming foods containing carnitine or lecithin (phosphatidylcholines), if the bacteria that convert those substances to TMAO are present in the gut (PMID:23614584). High concentrations of carnitine are found in red meat, some energy drinks, and certain dietary supplements; lecithin is found in eggs and is commonly used as an ingredient in processed food. High levels of TMAO are found in many seafoods. Some types of normal gut bacteria (e.g. species of Acinetobacter) in the human gut convert dietary carnitine and dietary lecithin to TMAO (PMID:21475195). TMAO alters cholesterol metabolism in the intestines, in the liver and in arterial wall. When TMAO is present, cholesterol metabolism is altered and there is an increased deposition of cholesterol within, and decreased removal of cholesterol from, peripheral cells such as those in the artery wall (PMID:23563705). Urinary TMAO is a biomarker for the consumption of fish, especially cold-water fish. Trimethylamine N-oxide is found to be associated with maple syrup urine disease and propionic acidemia, which are inborn errors of metabolism. TMAO can also be found in Bacteroidetes, Ruminococcus (PMID:26687352). Trimethylamine N-oxide (TMAO) is an oxidation product of trimethylamine and a common metabolite in animals and humans. TMAO decomposes to trimethylamine (TMA), which is the main odorant that is characteristic of degrading seafood. TMAO is an osmolyte that the body will use to counter-act the effects of increased concentrations of urea (due to kidney failure) and can be used as a biomarker for kidney problems. Fish odor syndrome or trimethylaminuria is a defect in the production of the enzyme flavin containing monooxygenase 3 (FMO3) causing incomplete breakdown of trimethylamine from choline-containing food into trimethylamine oxide. Trimethylamine then builds up and is released in the persons sweat, urine, and breath, giving off a strong fishy odor.; Trimethylamine N-oxide, also known by several other names and acronyms, is the organic compound with the formula (CH3)3NO. This colorless solid is usually encountered as the dihydrate. It is an oxidation product of trimethylamine and a common metabolite in animals. It is an osmolyte found in saltwater fish, sharks and rays, molluscs, and crustaceans. Along with free amino acids, it reduces the 3\\\% salinity of seawater to about 1\\\% of dissolved solids inside cells. TMAO decomposes to trimethylamine (TMA), which is the main odorant that is characteristic of degrading seafood.; Trimethylaminuria is a defect in the production of the enzyme flavin containing monooxygenase 3 (FMO3),, causing incomplete breakdown of trimethylamine from choline-containing food into trimethylamine oxide. Trimethylamine then builds up and is released in the persons sweat, urine, and breath, giving off a strong fishy odor. Urinary TMAO is a biomarker for the consumption of fish, especially cold-water fish. Acquisition and generation of the data is financially supported in part by CREST/JST. D009676 - Noxae > D016877 - Oxidants KEIO_ID T051 Trimethylamine N-oxide is a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients. Trimethylamine N-oxide induces inflammation by activating the ROS/NLRP3 inflammasome. Trimethylamine N-oxide also accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis by activating the TGF-β/smad2 signaling pathway[1][2][3].
2-Phenylacetamide
2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. [HMDB] 2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. 2-Phenylacetamide is an endogenous metabolite.
Glycyrrhizin
Licoricesaponin H2 is found in herbs and spices. Licoricesaponin H2 is a constituent of Glycyrrhiza uralensis (Chinese licorice). A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05B - Liver therapy, lipotropics > A05BA - Liver therapy C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound Acquisition and generation of the data is financially supported in part by CREST/JST. Isolated from Glycyrrhiza glabra (liquorice). Nutriceutical with anticancer props. C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product D000893 - Anti-Inflammatory Agents KEIO_ID G057 Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities. Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities.
Baicalin
Baicalin is a flavone, a type of flavonoid. It is found in several species in the genus Scutellaria, including Scutellaria lateriflora (blue skullcap). There are 10 mg/g baicalin in Scutellaria galericulata (common skullcap) leaves. Baicalin is the glucuronide of baicalein. It is a component of Chinese medicinal herb Huang-chin (Scutellaria baicalensis) and one of the chemical ingredients of Sho-Saiko-To, an herbal supplement. Acquisition and generation of the data is financially supported in part by CREST/JST. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3]. Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3].
procyanidin B2
Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities.
Chrysophanol
Chrysophanic acid appears as golden yellow plates or brown powder. Melting point 196 °C. Slightly soluble in water. Pale yellow aqueous solutions turn red on addition of alkali. Solutions in concentrated sulfuric acid are red. (NTP, 1992) Chrysophanol is a trihydroxyanthraquinone that is chrysazin with a methyl substituent at C-3. It has been isolated from Aloe vera and exhibits antiviral and anti-inflammatory activity. It has a role as an antiviral agent, an anti-inflammatory agent and a plant metabolite. It is functionally related to a chrysazin. Chrysophanol is a natural product found in Rumex dentatus, Ageratina altissima, and other organisms with data available. See also: Frangula purshiana Bark (part of). A trihydroxyanthraquinone that is chrysazin with a methyl substituent at C-3. It has been isolated from Aloe vera and exhibits antiviral and anti-inflammatory activity. Constituent of Rumex, Rheum subspecies Chrysophanol is found in dock, garden rhubarb, and sorrel. Chrysophanol is found in dock. Chrysophanol is a constituent of Rumex, Rheum species D009676 - Noxae > D009153 - Mutagens Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.
Eupatilin
Eupatilin is a trimethoxyflavone that is flavone substituted by hydroxy groups at C-5 and C-7 and methoxy groups at C-6, C-3 and C-4 respectively. Isolated from Citrus reticulata and Salvia tomentosa, it exhibits anti-inflammatory, anti-ulcer and antineoplastic activities. It has a role as an anti-ulcer drug, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antineoplastic agent, an anti-inflammatory agent and a metabolite. It is a trimethoxyflavone and a dihydroxyflavone. Eupatilin is a natural product found in Eupatorium capillifolium, Chromolaena odorata, and other organisms with data available. A trimethoxyflavone that is flavone substituted by hydroxy groups at C-5 and C-7 and methoxy groups at C-6, C-3 and C-4 respectively. Isolated from Citrus reticulata and Salvia tomentosa, it exhibits anti-inflammatory, anti-ulcer and antineoplastic activities. Eupatilin is found in herbs and spices. Eupatilin is isolated from Tanacetum vulgare (tansy Isolated from Tanacetum vulgare (tansy). Eupatilin is found in herbs and spices. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.
Paeonol
A polyphenol metabolite detected in biological fluids [PhenolExplorer] Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.
Multinoside A
Multinoside A, also known as quercetin 3-(4-glucosylrhamnoside), is a member of the class of compounds known as flavonoid-3-O-glycosides. Flavonoid-3-O-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Multinoside A is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Multinoside A can be found in fruits such as peach (Prunus persica), which makes multinoside A a potential biomarker for the consumption of these food products. Isolated from Prunus persica. Quercetin 3-(4-glucosylrhamnoside) is found in fruits and peach.
Chebulagic acid
D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23094-71-5 (retrieved 2024-09-27) (CAS RN: 23094-71-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Chebulinic acid
Chebulinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=18942-26-2 (retrieved 2024-09-27) (CAS RN: 18942-26-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Dehydroabietic acid
Dehydroabietic acid belongs to the class of organic compounds known as diterpenoids. These are terpene compounds formed by four isoprene units. Dehydroabietic acid possesses antiviral activity[1]. Dehydroabietic acid possesses antiviral activity[1].
(-)-Kaur-16-en-19-oic acid
(-)-kaur-16-en-19-oic acid, also known as ent-kaurenoic acid or ent-kaur-16-en-19-oate, is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D (-)-kaur-16-en-19-oic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). (-)-kaur-16-en-19-oic acid can be found in sugar apple and sunflower, which makes (-)-kaur-16-en-19-oic acid a potential biomarker for the consumption of these food products. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].
alpha-Bixin
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Principal colouring matter of Bixa orellana (annatto) seeds [DFC] Principal colouring matter of Bixa orellana (annatto) seeds. Bixin (BX), isolated from the seeds of Bixa orellana, is a carotenoid, possessing anti-inflammatory, anti-tumor and anti-oxidant activities. Bixin treatment ameliorated cardiac dysfunction through inhibiting fibrosis, inflammation and reactive oxygen species (ROS) generation[1].
Phyllanthin
Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].
N1-Methyl-4-pyridone-3-carboxamide
N1-Methyl-4-pyridone-3-carboxamide is a normal human metabolite (one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation). Its concentration in serum is elevated in non-dialyzed chronic renal failure (CRF) patients when compared with controls. (PMID 12694300). N1-Methyl-4-pyridone-3-carboxamide has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). N1-Methyl-4-pyridone-5-carboxamide (4PY ) is a normal human metabolite (one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation). 4PY concentration in serum is elevated in non-dialyzed chronic renal failure (CRF) patients when compared with controls. (PMID 12694300) [HMDB]
All-trans-13,14-dihydroretinol
All-trans-13,14-dihydroretinol is involved in the retinol metabolism pathway. In this pathway, all-trans-13,14-dihydroretinol and an acceptor molecule is reversibly converted to retinol (vitamin A) plus reduced acceptor via the enzyme all-trans-retinol 13,14-reductase (EC 1.3.99.23). (KEGG) [HMDB] All-trans-13,14-dihydroretinol is involved in the retinol metabolism pathway. In this pathway, all-trans-13,14-dihydroretinol and an acceptor molecule is reversibly converted to retinol (vitamin A) plus reduced acceptor via the enzyme all-trans-retinol 13,14-reductase (EC 1.3.99.23). (KEGG). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Proanthocyanidin A2
Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
3-Hydroxy-3-methylglutaryl-CoA
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) (CAS: 1553-55-5) is formed when acetyl-CoA condenses with acetoacetyl-CoA in a reaction that is catalyzed by the enzyme HMG-CoA synthase in the mevalonate pathway or mevalonate-dependent (MAD) route, an important cellular metabolic pathway present in virtually all organisms. HMG-CoA reductase (EC 1.1.1.34) inhibitors, more commonly known as statins, are cholesterol-lowering drugs that have been widely used for many years to reduce the incidence of adverse cardiovascular events. HMG-CoA reductase catalyzes the rate-limiting step in the mevalonate pathway and these agents lower cholesterol by inhibiting its synthesis in the liver and in peripheral tissues. Androgen also stimulates lipogenesis in human prostate cancer cells directly by increasing transcription of the fatty acid synthase and HMG-CoA-reductase genes (PMID: 14689582). (s)-3-hydroxy-3-methylglutaryl-coa, also known as hmg-coa or hydroxymethylglutaroyl coenzyme a, is a member of the class of compounds known as (s)-3-hydroxy-3-alkylglutaryl coas (s)-3-hydroxy-3-alkylglutaryl coas are 3-hydroxy-3-alkylglutaryl-CoAs where the 3-hydroxy-3-alkylglutaryl component has (S)-configuration. Thus, (s)-3-hydroxy-3-methylglutaryl-coa is considered to be a fatty ester lipid molecule (s)-3-hydroxy-3-methylglutaryl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). (s)-3-hydroxy-3-methylglutaryl-coa can be found in a number of food items such as watercress, burdock, spirulina, and chicory, which makes (s)-3-hydroxy-3-methylglutaryl-coa a potential biomarker for the consumption of these food products (s)-3-hydroxy-3-methylglutaryl-coa may be a unique S.cerevisiae (yeast) metabolite.
Dihydropteridine
Dihydropteridine is a generic compound; the product of the reduction of 5,6,7,8-Tetrahydropteridine, which is catalyzed by 6,7-dihydropteridine reductase (EC 1.5.1.34). (KEGG) This compound is recognised as a cause of tetrahydrobiopterin (BH(4)) deficiency, leading to hyperphenylalaninemia (HPA) and impaired biogenic amine deficiency. (PMID: 14705166). A generic compound; the product of the reduction of 5,6,7,8-Tetrahydropteridine, which is catalyzed by 6,7-dihydropteridine reductase (EC 1.5.1.34). (KEGG) This compound is recognised as a cause of tetrahydrobiopterin (BH(4)) deficiency, leading to hyperphenylalaninemia (HPA) and impaired biogenic amine deficiency. (PMID: 14705166) [HMDB]
Nudifloramide
N-methyl-2-pyridone-5-carboxamide (2PY) is one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation. Increased serum 2PY concentrations are observed in chronic renal failure (CRF) patients, which along with the deterioration of kidney function and its toxic properties (significant inhibition of PARP-1), suggests that 2PY is an uremic toxin. (PMID 12694300). 2PY has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). N-methyl-2-pyridone-5-carboxamide (2PY) is one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation. Increased serum 2PY concentrations are observed in chronic renal failure (CRF) patients, which along with the deterioration of kidney function and its toxic properties (significant inhibition of PARP-1), suggests that 2PY is an uremic toxin. (PMID 12694300) [HMDB] Nudifloramide (2PY) is one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation. Nudifloramide significantly inhibits poly(ADP-ribose) polymerase (PARP-1) activity in vitro[1].
Nystatin
Nystatin is a polyene antifungal drug to which many molds and yeasts are sensitive, including Candida spp. Nystatin has some toxicity associated with it when given intravenously, but it is not absorbed across intact skin or mucous membranes. It is considered a relatively safe drug for treating oral or gastrointestinal fungal infections. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent D049990 - Membrane Transport Modulators D007476 - Ionophores
Bleomycin
A complex of related glycopeptide antibiotics from Streptomyces verticillus consisting of bleomycin A2 and B2 (B2 CAS # 9060-10-0). It inhibits DNA metabolism and is used as an antineoplastic, especially for solid tumors. Bleomycin A2 is used as the representative structure for Bleomycin. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents
Daphnetoxin
A daphnane-type orthoester diterpene with potential cholesterol-lowering activity, found exclusively in plants of the family Thymelaeaceae.
Eupatolide
A germacranolide with formula C15H20O3, isolated from several Inula species. It exhibits anti-cancer properties.
Dalbergioidin
Isolated from Dolichos biflorus (papadi), Lablab niger (hyacinth bean) and Phaseolus vulgaris (kidney bean). Dalbergioidin is found in many foods, some of which are hyacinth bean, yellow wax bean, adzuki bean, and fruits. Dalbergioidin is found in adzuki bean. Dalbergioidin is isolated from Dolichos biflorus (papadi), Lablab niger (hyacinth bean) and Phaseolus vulgaris (kidney bean
Plicamycin
Plicamycin is only found in individuals that have used or taken this drug. It is an antineoplastic antibiotic produced by Streptomyces plicatus. It has been used in the treatment of testicular cancer, Pagets disease of bone, and, rarely, the management of hypercalcemia. The manufacturer discontinued plicamycin in 2000. Plicamycin is presumed to inhibit cellular and enzymic RNA synthesis by forming a complex with DNA. Plicamycin may also lower calcium serum levels by inhibiting the effect of parathyroid hormone upon osteoclasts or by blocking the hypercalcemic action of pharmacologic doses of vitamin D. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes D000077264 - Calcium-Regulating Hormones and Agents D000970 - Antineoplastic Agents Same as: D00468
N-phenylanthranilic acid
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
Benzo[ghi]perylene
Dibenz[a,h]anthracene
D009676 - Noxae > D002273 - Carcinogens Dibenz[a,h]anthracene (DBA) is a polycyclic aromatic hydrocarbon (PAH) of considerable tumorigenicity. Dibenz[a,h]anthracene results in DNA adduct formation leading to the activation of a DNA damage response. Dibenz[a,h]anthracene induces cell cycle arrest and apoptosis via both Tp53-dependent and Tp53-independent mechanisms[1][2].
2-Chloro-5-nitro-N-phenylbenzamide
CONFIDENCE standard compound; INTERNAL_ID 929; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4257; ORIGINAL_PRECURSOR_SCAN_NO 4255 CONFIDENCE standard compound; INTERNAL_ID 929; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3923; ORIGINAL_PRECURSOR_SCAN_NO 3921 CONFIDENCE standard compound; INTERNAL_ID 929; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4307; ORIGINAL_PRECURSOR_SCAN_NO 4305 CONFIDENCE standard compound; INTERNAL_ID 929; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3920; ORIGINAL_PRECURSOR_SCAN_NO 3918 GW9662 is a potent and selective PPARγ antagonist with an IC50 of 3.3 nM, showing 10 and 1000-fold selectivity over PPARα and PPARδ, respectively.
Wuweizisu A
Schizandrin is a tannin. Schisandrin is a natural product found in Schisandra rubriflora, Schisandra sphenanthera, and Schisandra chinensis with data available. Schisandrin (Schizandrin), a dibenzocyclooctadiene lignan, is isolated from the fruit of Schisandra chinensis Baill. Schisandrin exhibits antioxidant, hepatoprotective, anti-cancer and anti-inflammatory activities. Schisandrin also can reverses memory impairment in rats[1][2][3]. Schisandrin (Schizandrin), a dibenzocyclooctadiene lignan, is isolated from the fruit of Schisandra chinensis Baill. Schisandrin exhibits antioxidant, hepatoprotective, anti-cancer and anti-inflammatory activities. Schisandrin also can reverses memory impairment in rats[1][2][3].
Paeonol
Paeonol is a member of phenols and a member of methoxybenzenes. It has a role as a metabolite. Paeonol is a natural product found in Vincetoxicum paniculatum, Vincetoxicum glaucescens, and other organisms with data available. See also: Paeonia lactiflora root (part of); Paeonia X suffruticosa root (part of). A natural product found in Paeonia rockii subspeciesrockii. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.
Robinin
Robinin is a glycosyloxyflavone that is kaempherol substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-galactopyranosyl residue at position 3 and a 6-deoxy-alpha-L-mannopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone and a dihydroxyflavone. It is functionally related to a kaempferol. Robinin is a natural product found in Aconitum anthora, Astragalus aegobromus, and other organisms with data available. A glycosyloxyflavone that is kaempherol substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-galactopyranosyl residue at position 3 and a 6-deoxy-alpha-L-mannopyranosyl residue at position 7 via a glycosidic linkage. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1]. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1].
beta-Bixin
beta-Bixin is a constituent of the pigment annatto found in Bixa orellana (achiote). Annatto has been linked with many cases of food-related allergies, and is the only natural food coloring believed to cause as many allergic-type reactions as artificial food coloring. Because it is a natural colorant, companies using annatto may label their products "all natural" or "no artificial colors". Annatto, sometimes called Roucou, is a derivative of the achiote trees of tropical regions of the Americas, used to produce a red food coloring and also as a flavoring. Its scent is described as "slightly peppery with a hint of nutmeg" and flavor as "slightly sweet and peppery". It is a major ingredient in the popular spice blend "Sazn" made by Goya Foods D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Constituent of Bixa orellana (annatto) Beta-Bixin is a diterpenoid. Bixin (BX), isolated from the seeds of Bixa orellana, is a carotenoid, possessing anti-inflammatory, anti-tumor and anti-oxidant activities. Bixin treatment ameliorated cardiac dysfunction through inhibiting fibrosis, inflammation and reactive oxygen species (ROS) generation[1].
Naringenin
Naringenin is a trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. 5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one is a natural product found in Prunus mume, Helichrysum cephaloideum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists A trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.
(3R,3'R,6'R,9-cis)-beta,epsilon-Carotene-3,3'-diol
(3R,3R,6R,9-cis)-beta,epsilon-Carotene-3,3-diol is a carotenoid found in human fluids such as serum and breast milk (PMID: 9164160). Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds and crustacea. Animals are unable to synthesise carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids (3R,3R,6R,9-cis)-Carotene-3,3-diol is a carotenoid found in human fluids. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4]. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].
Ligustilide
Constituent of Angelica subspecies Ligustilide is found in wild celery, lovage, and herbs and spices. Ligustilide is found in herbs and spices. Ligustilide is a constituent of Angelica specie
(-)-Haematoxylin
D004396 - Coloring Agents
Astragaloside A
Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.
(1R,4R,5S,9R,10S,13R)-5,9-Dimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadecane-5-carboxylic acid
Kaurenoic acid, also known as kaur-16-en-18-oic acid or kaurenoate, is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D. Kaurenoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Kaurenoic acid can be found in sunflower, which makes kaurenoic acid a potential biomarker for the consumption of this food product. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].
Chebulagic acid
D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM.
Paeoniflorin
Hydroxyproline
L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.
Curdione
Curdione is a germacrane sesquiterpenoid. Germacr-1(10)-ene-5,8-dione is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. (3R,6E,10S)-6,10-Dimethyl-3-propan-2-ylcyclodec-6-ene-1,4-dione is a natural product found in Curcuma aromatica and Curcuma wenyujin with data available. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2]. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2].
Dehydroabietic acid
Dehydroabietic acid is an abietane diterpenoid that is abieta-8,11,13-triene substituted at position 18 by a carboxy group. It has a role as a metabolite and an allergen. It is an abietane diterpenoid, a monocarboxylic acid and a carbotricyclic compound. It is functionally related to an abietic acid. It is a conjugate acid of a dehydroabietate. Dehydroabietic acid is a natural product found in Nostoc, Relhania corymbosa, and other organisms with data available. Dehydroabietic acid belongs to the class of organic compounds known as diterpenoids. These are terpene compounds formed by four isoprene units. An abietane diterpenoid that is abieta-8,11,13-triene substituted at position 18 by a carboxy group. Dehydroabietic acid possesses antiviral activity[1]. Dehydroabietic acid possesses antiviral activity[1].
Febrifugine
Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1]. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1].
Kaurenoic_acid
Ent-kaur-16-en-19-oic acid is an ent-kaurane diterpenoid that is ent-kauran-19-oic acid in which a double bond is present at position 16(17); exhibits anticancer and anti-HIV 1 activity. It has a role as an anti-HIV-1 agent, an antineoplastic agent and a plant metabolite. It is a conjugate acid of an ent-kaur-16-en-19-oate. Kaurenoic acid is a natural product found in Xylopia aromatica, Xylopia emarginata, and other organisms with data available. An ent-kaurane diterpenoid that is ent-kauran-19-oic acid in which a double bond is present at position 16(17); exhibits anticancer and anti-HIV 1 activity. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].
Monocrotaline
Monocrotaline is a pyrrolizidine alkaloid. Monocrotaline is a natural product found in Crotalaria novae-hollandiae, Crotalaria recta, and other organisms with data available. A pyrrolizidine alkaloid and a toxic plant constituent that poisons livestock and humans through the ingestion of contaminated grains and other foods. The alkaloid causes pulmonary artery hypertension, right ventricular hypertrophy, and pathological changes in the pulmonary vasculature. Significant attenuation of the cardiopulmonary changes are noted after oral magnesium treatment. Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.154 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.142 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.145 Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8]. Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8].
sesamin
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.233 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.236 Asarinin is a natural product found in Piper mullesua, Machilus thunbergii, and other organisms with data available. (-)-Asarinin is a natural product found in Zanthoxylum austrosinense, Horsfieldia irya, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].
Baicalin
Baicalin is the glycosyloxyflavone which is the 7-O-glucuronide of baicalein. It is an active ingredient of Chinese herbal medicine Scutellaria baicalensis. It has a role as a non-steroidal anti-inflammatory drug, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, a prodrug, a plant metabolite, a ferroptosis inhibitor, a neuroprotective agent, an antineoplastic agent, a cardioprotective agent, an antiatherosclerotic agent, an antioxidant, an EC 2.7.7.48 (RNA-directed RNA polymerase) inhibitor, an anticoronaviral agent and an antibacterial agent. It is a glucosiduronic acid, a glycosyloxyflavone, a dihydroxyflavone and a monosaccharide derivative. It is functionally related to a baicalein. It is a conjugate acid of a baicalin(1-). Baicalin is a natural product found in Scutellaria amoena, Thalictrum baicalense, and other organisms with data available. See also: Scutellaria baicalensis Root (part of). The glycosyloxyflavone which is the 7-O-glucuronide of baicalein. It is an active ingredient of Chinese herbal medicine Scutellaria baicalensis. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3]. Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3].
Glycitin
Glycitin is a glycosyloxyisoflavone that is isoflavone substituted by a methoxy group at position 6, a hydroxy group at position 4 and a beta-D-glucopyranosyloxy group at position 7. It has a role as a plant metabolite. It is a methoxyisoflavone, a hydroxyisoflavone, a monosaccharide derivative and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. Glycitin is a natural product found in Sorbus cuspidata, Ziziphus spina-christi, and other organisms with data available. A glycosyloxyisoflavone that is isoflavone substituted by a methoxy group at position 6, a hydroxy group at position 4 and a beta-D-glucopyranosyloxy group at position 7. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic. Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic.
Proanthocyanidin A2
Proanthocyanidin A2 is a proanthocyanidin obtained by the condensation of (-)-epicatechin units. It has a role as an antioxidant, an anti-HIV agent, a metabolite and an angiogenesis modulating agent. It is a hydroxyflavan and a proanthocyanidin. It is functionally related to a (-)-epicatechin. Proanthocyanidin A2 is a natural product found in Cinnamomum iners, Cinnamomum aromaticum, and other organisms with data available. See also: Litchi fruit (part of). Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
Glycyrrhizin
Glycyrrhizinic acid is a triterpenoid saponin that is the glucosiduronide derivative of 3beta-hydroxy-11-oxoolean-12-en-30-oic acid. It has a role as an EC 3.4.21.5 (thrombin) inhibitor and a plant metabolite. It is a glucosiduronic acid, a tricarboxylic acid, a pentacyclic triterpenoid, an enone and a triterpenoid saponin. It is a conjugate acid of a glycyrrhizinate(3-). Glycyrrhizic acid is extracted from the root of the licorice plant; Glycyrrhiza glabra. It is a triterpene glycoside with glycyrrhetinic acid that possesses a wide range of pharmacological and biological activities. When extracted from the plant, it can be obtained in the form of ammonium glycyrrhizin and mono-ammonium glycyrrhizin. Glycyrrhizic acid has been developed in Japan and China as a hepatoprotective drug in cases of chronic hepatitis. From January 2014, glycyrrhizic acid as part of the licorice extract was approved by the FDA as an existing food sweetener. It was approved by Health Canada to be used in over-the-counter products but all the products are currently on the status canceled post marketed. Glycyrrhizic acid is a natural product found in Hypomontagnella monticulosa, Abrus precatorius, and other organisms with data available. Glycyrrhizin is a saponin-like compound that provides the main sweet flavor for Glycyrrhiza glabra (licorice), with potential immunomodulating, anti-inflammatory, hepato- and neuro-protective, and antineoplastic activities. Glycyrrhizin modulates certain enzymes involved in inflammation and oxidative stress, and downregulates certain pro-inflammatory mediators, thereby protecting against inflammation- and reactive oxygen species (ROS)-induced damage. Glycerrhizin may also suppress the growth of susceptible tumor cells. Glycyrrhyzin is a metabolite found in or produced by Saccharomyces cerevisiae. A widely used anti-inflammatory agent isolated from the licorice root. It is metabolized to GLYCYRRHETINIC ACID, which inhibits 11-BETA-HYDROXYSTEROID DEHYDROGENASES and other enzymes involved in the metabolism of CORTICOSTEROIDS. Therefore, glycyrrhizic acid, which is the main and sweet component of licorice, has been investigated for its ability to cause hypermineralocorticoidism with sodium retention and potassium loss, edema, increased blood pressure, as well as depression of the renin-angiotensin-aldosterone system. See also: Enoxolone (has active moiety); Glycyrrhizinate Dipotassium (active moiety of); Glycyrrhiza uralensis Root (part of) ... View More ... A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05B - Liver therapy, lipotropics > A05BA - Liver therapy A triterpenoid saponin that is the glucosiduronide derivative of 3beta-hydroxy-11-oxoolean-12-en-30-oic acid. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product D000893 - Anti-Inflammatory Agents Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities. Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities.
Chebulinic_acid
2-[(4R,5S,7R,8R,11S,12S,13R,21S)-13,17,18-trihydroxy-2,10,14-trioxo-5,21-bis[(3,4,5-trihydroxybenzoyl)oxy]-7-[(3,4,5-trihydroxybenzoyl)oxymethyl]-3,6,9,15-tetraoxatetracyclo[10.7.1.14,8.016,20]henicosa-1(19),16(20),17-trien-11-yl]acetic acid is a natural product found in Terminalia chebula with data available. See also: Terminalia chebula fruit (part of).
Proanthocyanidin A2
Proanthocyanidin A2 is a proanthocyanidin obtained by the condensation of (-)-epicatechin units. It has a role as an antioxidant, an anti-HIV agent, a metabolite and an angiogenesis modulating agent. It is a hydroxyflavan and a proanthocyanidin. It is functionally related to a (-)-epicatechin. Proanthocyanidin A2 is a natural product found in Cinnamomum iners, Cinnamomum aromaticum, and other organisms with data available. See also: Litchi fruit (part of). Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). A proanthocyanidin obtained by the condensation of (-)-epicatechin units. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
Asiatic Acid
Esculentic acid (diplazium) is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Esculentic acid (diplazium) is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Esculentic acid (diplazium) can be found in green vegetables, which makes esculentic acid (diplazium) a potential biomarker for the consumption of this food product. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product relative retention time with respect to 9-anthracene Carboxylic Acid is 1.377 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.378 Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].
Pectolinarigenin
Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available. A dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. Pectolinarigenin, also known as 5,7-dihydroxy-4,6-dimethoxyflavone or 4-methylcapillarisin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, pectolinarigenin is considered to be a flavonoid lipid molecule. Pectolinarigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pectolinarigenin can be found in sunflower and tarragon, which makes pectolinarigenin a potential biomarker for the consumption of these food products. Pectolinarigenin is a Cirsium isolate with anti-inflammatory activity and belongs to the flavones . Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].
Xanthohumol
C308 - Immunotherapeutic Agent > C63817 - Chemokine Receptor Antagonist > C107589 - CXCR4 Inhibitor Acquisition and generation of the data is financially supported by the Max-Planck-Society D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D006133 - Growth Substances > D006131 - Growth Inhibitors C1892 - Chemopreventive Agent IPB_RECORD: 2221; CONFIDENCE confident structure IPB_RECORD: 4121; CONFIDENCE confident structure IPB_RECORD: 4101; CONFIDENCE confident structure Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV). Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV). Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV).
Hematoxylin
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.308 D004396 - Coloring Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.309
Galangin
D009676 - Noxae > D009153 - Mutagens Galangin (Norizalpinin) is?an?agonist/antagonist?of the?arylhydrocarbon?receptor. Galangin (Norizalpinin) also shows inhibition of CYP1A1 activity. Galangin (Norizalpinin) is?an?agonist/antagonist?of the?arylhydrocarbon?receptor. Galangin (Norizalpinin) also shows inhibition of CYP1A1 activity.
ampelopsin
Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.
Biochanin B
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1]. Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1].
Rhamnocitrin
Rhamnocitrin is a monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. It has a role as a plant metabolite. It is a trihydroxyflavone, a member of flavonols and a monomethoxyflavone. It is functionally related to a kaempferol. Rhamnocitrin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. A monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2].
Norwogonin
Norwogonin is a trihydroxyflavone with the hydroxy groups at positions C-5, -7 and -8. It has a role as an antioxidant and a metabolite. Norwogonin is a natural product found in Scutellaria discolor, Scutellaria strigillosa, and other organisms with data available. A trihydroxyflavone with the hydroxy groups at positions C-5, -7 and -8. Norwogonin, isolated from Scutellaria baicalensis Georgi, possesses antiviral activity against Enterovirus 71 (EV71) with an IC50 of 31.83 μg/ml[1] Norwogonin, isolated from Scutellaria baicalensis Georgi, possesses antiviral activity against Enterovirus 71 (EV71) with an IC50 of 31.83 μg/ml[1]
Multinoside A
A glycosyloxyflavone that is quercetin attached to a 6-deoxy-4-O-beta-D-glucopyranosyl-alpha-L-mannopyranosyl residue at position 3 via a glycosidic linkage.
Osthol
Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). A natural product found in Peucedanum ostruthium and Angelica pubescens. D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Origin: Plant, Coumarins Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.
Amygdalin
D000970 - Antineoplastic Agents (R)-amygdalin is an amygdalin in which the stereocentre on the cyanohydrin function has R-configuration. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is functionally related to a (R)-mandelonitrile. D-Amygdalin is a natural product found in Prunus spinosa, Gerbera jamesonii, and other organisms with data available. Amygdalin is a cyanogenic glucoside isolated from almonds and seeds of other plants of the family Rosaceae. Amygdalin is converted by plant emulsin (a combination of a glucosidase and a nitrilase) or hydrochloric acid into benzaldehyde, D-glucose, and hydrocyanic acid. (NCI04) A cyanogenic glycoside found in the seeds of Rosaceae. C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C29724 - Cyanoglycoside Agent An amygdalin in which the stereocentre on the cyanohydrin function has R-configuration. C1907 - Drug, Natural Product Origin: Plant; Formula(Parent): C20H27NO11; Bottle Name:Amygdalin; PRIME Parent Name:Amygdalin; PRIME in-house No.:V0293, Glycosides, Nitriles Annotation level-1 Neoamygdalin is a natural product found in Prunus virginiana, Prunus serotina, and other organisms with data available. Amygdalin is a cyanogenic glucoside isolated from almonds and seeds of other plants of the family Rosaceae. Amygdalin is converted by plant emulsin (a combination of a glucosidase and a nitrilase) or hydrochloric acid into benzaldehyde, D-glucose, and hydrocyanic acid. (NCI04) A cyanogenic glycoside found in the seeds of Rosaceae. Amygdalin is a plant glucoside isolated from the stones of rosaceous fruits, such as apricots, peaches, almond, cherries, and plums. Amygdalin is a plant glucoside isolated from the stones of rosaceous fruits, such as apricots, peaches, almond, cherries, and plums. Neoamygdalin is a compound identified in the different processed bitter almonds. Neoamygdalin has the potential for the research of cough and asthma[1].
Dalbergioidin
Isolated from Dolichos biflorus (papadi), Lablab niger (hyacinth bean) and Phaseolus vulgaris (kidney bean). Dalbergioidin is found in many foods, some of which are hyacinth bean, yellow wax bean, adzuki bean, and fruits. (+-)-dalbergioidin is a hydroxyisoflavanone. Dalbergioidin is a natural product found in Vigna subterranea, Vigna radiata, and other organisms with data available. Dalbergioidin is found in adzuki bean. Dalbergioidin is isolated from Dolichos biflorus (papadi), Lablab niger (hyacinth bean) and Phaseolus vulgaris (kidney bean
75O1TFF47Z
Phyllanthin is a lignan. Phyllanthin is a natural product found in Phyllanthus debilis, Phyllanthus amarus, and other organisms with data available. See also: Phyllanthus amarus top (part of). Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].
Rhamnetin
Rhamnetin is a monomethoxyflavone that is quercetin methylated at position 7. It has a role as a metabolite, an antioxidant and an anti-inflammatory agent. It is a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a rhamnetin-3-olate. Rhamnetin is a natural product found in Ageratina altissima, Ammannia auriculata, and other organisms with data available. A monomethoxyflavone that is quercetin methylated at position 7. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one, also known as 7-methoxyquercetin or quercetin 7-methyl ether, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one can be found in a number of food items such as tea, apple, sweet orange, and parsley, which makes 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one a potential biomarker for the consumption of these food products. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].
Perindopril
C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3026 Perindopril (S-9490) is an orally available, long-acting angiotensin-converting enzyme (ACE) inhibitor. Perindopril inhibits inflammatory cell influx and intimal thickening, preserving elastin on the inside of the aorta. Perindopril effectively inhibits experimental abdominal aortic aneurysm (AAA) formation in a rat model and reduces pulmonary vasoconstriction in rats with pulmonary hypertension[1][2][3][4].
Puerarin
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist.
Schizandrin
Annotation level-1 Schisandrin (Schizandrin), a dibenzocyclooctadiene lignan, is isolated from the fruit of Schisandra chinensis Baill. Schisandrin exhibits antioxidant, hepatoprotective, anti-cancer and anti-inflammatory activities. Schisandrin also can reverses memory impairment in rats[1][2][3]. Schisandrin (Schizandrin), a dibenzocyclooctadiene lignan, is isolated from the fruit of Schisandra chinensis Baill. Schisandrin exhibits antioxidant, hepatoprotective, anti-cancer and anti-inflammatory activities. Schisandrin also can reverses memory impairment in rats[1][2][3].
Nodakenin
Nodakenin is a furanocoumarin. Nodakenin is a natural product found in Hansenia forbesii, Rhodiola rosea, and other organisms with data available. Marmesin galactoside is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Marmesin galactoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Marmesin galactoside can be found in herbs and spices, which makes marmesin galactoside a potential biomarker for the consumption of this food product. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2]. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2].
syringin
Syringin, also known as eleutheroside b or beta-terpineol, is a member of the class of compounds known as phenolic glycosides. Phenolic glycosides are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Syringin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Syringin can be found in caraway, fennel, and lemon, which makes syringin a potential biomarker for the consumption of these food products. Syringin is a natural chemical compound first isolated from the bark of lilac (Syringa vulgaris) by Meillet in 1841. It has since been found to be distributed widely throughout many types of plants. It is also called eleutheroside B, and is found in Eleutherococcus senticosus (Siberian ginseng). It is also found in dandelion coffee . Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2]. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2].
Peoniflorin
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Annotation level-1 Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3]. Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3].
Formononetin
Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 1.059 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.061 Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1]. Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1].
Chrysophanic acid
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.321 D009676 - Noxae > D009153 - Mutagens relative retention time with respect to 9-anthracene Carboxylic Acid is 1.322 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.318 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.324 Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.
Emodin
C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics CONFIDENCE isolated standard relative retention time with respect to 9-anthracene Carboxylic Acid is 1.288 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.291 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.286 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.293 Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3]. Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3].
Verbenone
R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants 4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one is a carbobicyclic compound that is bicyclo[3.1.1]heptane which is substituted by an oxo group at position 2 and by methyl groups at positions 4, 6 and 6, and which contains a double bond between positions 3 and 4. It is a carbobicyclic compound, a cyclic ketone and an enone. Verbenone is a natural product found in Eucalyptus fasciculosa, Eucalyptus intertexta, and other organisms with data available. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.872 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.873 Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2]. Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2].
triptolide
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.848 D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000988 - Antispermatogenic Agents D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.842 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.835 Triptolide is a diterpenoid triepoxide extracted from the root of Tripterygium wilfordii with immunosuppressive, anti-inflammatory, antiproliferative and antitumour effects. Triptolide is a NF-κB activation inhibitor[1][2][3][4][5][6]. Triptolide is a diterpenoid triepoxide extracted from the root of Tripterygium wilfordii with immunosuppressive, anti-inflammatory, antiproliferative and antitumour effects. Triptolide is a NF-κB activation inhibitor[1][2][3][4][5][6].
Captopril
C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Annotation level-1 CONFIDENCE standard compound; INTERNAL_ID 2721 CONFIDENCE standard compound; INTERNAL_ID 8619
carvedilol
C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AG - Alpha and beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D020011 - Protective Agents > D000975 - Antioxidants D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Carvedilol (BM 14190) is a non-selective β/α-1 blocker[1]. Carvedilol inhibits lipid peroxidation in a dose-dependent manner with an IC50 of 5 μM. Carvedilol is a multiple action antihypertensive agent with potential use in angina and congestive heart failure[2]. Carvedilol is an autophagy inducer that inhibits the NLRP3 inflammasome[3].
Lutein
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4]. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].
4β,15-Diacetoxy-8α-(3-methylbutyryloxy)-12,13-epoxytrichothec-9-en-3α-ol
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins T-2 Toxin (T-2 Mycotoxin) is a toxic trichothecene mycotoxin produced by various Fusarium species in feedstuffs and cereal grains, LD50 values of T-2 Toxin in mice and rats are 5.2 and 1.5 mg/kg BWa,respectively [1]. T-2 Toxin (T-2 Mycotoxin) can be transformed into a variety of metabolite, the typical metabolites of T-2 toxin in animals are HT-2 toxin and T-2-triol, which are hydrolysates[1]. T-2 Toxin (T-2 Mycotoxin) is an inhibitor of protein synthesis resulting from binding peptidyltransferase, which is an integral part of the 60s ribosomal subunit. T-2 Toxin (T-2 Mycotoxin) inhibits the synthesis of DNA and RNA, interferes with the metabolism of membrane phospholipids, and increases the level of liver lipid peroxides[1]. T-2 Toxin (T-2 Mycotoxin) induces apoptosis in the immune system, gastrointestinal tissues, and fetal tissues[2]. T 2 Toxin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=21259-20-1 (retrieved 2024-09-06) (CAS RN: 21259-20-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
losartan
C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Losartan is an angiotensin II receptor antagonist, competing with the binding of angiotensin II to AT1 receptors with IC50 of 20 nM.
2-PHENYLACETAMIDE
A monocarboxylic acid amide that is acetamide substituted by a phenyl group at position 2. 2-Phenylacetamide is an endogenous metabolite.
Bixin
A carotenoic acid that is the 6-monomethyl ester of 9-cis-6,6-diapocarotene-6,6-dioic acid. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Bixin (BX), isolated from the seeds of Bixa orellana, is a carotenoid, possessing anti-inflammatory, anti-tumor and anti-oxidant activities. Bixin treatment ameliorated cardiac dysfunction through inhibiting fibrosis, inflammation and reactive oxygen species (ROS) generation[1].
Ligustilide
phenazopyridine
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals CONFIDENCE standard compound; INTERNAL_ID 801; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7480; ORIGINAL_PRECURSOR_SCAN_NO 7478 CONFIDENCE standard compound; INTERNAL_ID 801; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7493; ORIGINAL_PRECURSOR_SCAN_NO 7491 CONFIDENCE standard compound; INTERNAL_ID 801; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7521; ORIGINAL_PRECURSOR_SCAN_NO 7518 CONFIDENCE standard compound; INTERNAL_ID 801; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7529; ORIGINAL_PRECURSOR_SCAN_NO 7525 CONFIDENCE standard compound; INTERNAL_ID 801; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7547; ORIGINAL_PRECURSOR_SCAN_NO 7544 CONFIDENCE standard compound; INTERNAL_ID 801; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7531; ORIGINAL_PRECURSOR_SCAN_NO 7528
Plicamycin
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes D000077264 - Calcium-Regulating Hormones and Agents D000970 - Antineoplastic Agents Same as: D00468
Asahina
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.
2-(6-Aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol
N-phenylanthranilic acid
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
Ostol
D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.
peonol
Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.
Crysophanol
D009676 - Noxae > D009153 - Mutagens Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.
8-methoxy-6-nitronaphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid
D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
rhodosin
Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy.
Euptailin
Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.
520-12-7
Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].
Bellidofolin
Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4]. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4].
Viset
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor C26170 - Protective Agent > C1509 - Neuroprotective Agent C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects.
Aristolochic_acid
Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). An aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
Ampelopsin
(+)-dihydromyricetin is an optically active form of dihydromyricetin having (2R,3R)-configuration. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a secondary alpha-hydroxy ketone and a dihydromyricetin. It is an enantiomer of a (-)-dihydromyricetin. Dihydromyricetin is under investigation in clinical trial NCT03606694 (Effect of Dihydromirycetin on Glycemic Control, Insulin Sensitivity and Insulin Secretion in Type 2 Diabetes Mellitus). Dihydromyricetin is a naturally occurring flavonoid found in the many plant species and is thought to be the active ingredient of several traditional Japanese, Chinese, and Korean medicines that are used to treat fever, parasite infections, liver diseases, and hangovers. Dihydromyricetin preparations have not been linked to instances of serum enzyme elevations or clinically apparent liver injury with jaundice. Dihydromyricetin is a natural product found in Vitis rotundifolia, Catha edulis, and other organisms with data available. An optically active form of dihydromyricetin having (2R,3R)-configuration. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.
Ligusticide
(Z)-ligustilide is a butenolide. It has a role as a metabolite. Ligustilide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. A natural product found in Ligusticum porteri.
Asiatic
Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). A pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].
Nootkatone
(+)-nootkatone is a sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). It has a role as a plant metabolite, a fragrance and an insect repellent. It is a sesquiterpenoid, an enone and a carbobicyclic compound. Nootkatone is a natural product found in Teucrium asiaticum, Teucrium oxylepis, and other organisms with data available. A sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2]. Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2].
Helenin
Alantolactone is a sesquiterpene lactone that is 3a,5,6,7,8,8a,9,9a-octahydronaphtho[2,3-b]furan-2-one bearing two methyl substituents at positions 5 and 8a as well as a methylidene substituent at position 3. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a sesquiterpene lactone, a naphthofuran and an olefinic compound. Alantolactone is a natural product found in Eupatorium cannabinum, Pentanema britannicum, and other organisms with data available. A sesquiterpene lactone that is 3a,5,6,7,8,8a,9,9a-octahydronaphtho[2,3-b]furan-2-one bearing two methyl substituents at positions 5 and 8a as well as a methylidene substituent at position 3. Alantolactone is a selective STAT3 inhibitor, with potent anticancer activity. Alantolactone induces apoptosis in cancer[1][2][3]. Alantolactone is a selective STAT3 inhibitor, with potent anticancer activity. Alantolactone induces apoptosis in cancer[1][2][3].
Bellidifolin
Bellidifolin is a member of the xanthone family that is bellidin substituted with a methyl group at O-3. A natural product found particularly in Swertia chirata and Gentianella campestris. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a hypoglycemic agent and a metabolite. It is a member of xanthones and a polyphenol. It is functionally related to a bellidin. Bellidifolin is a natural product found in Gentiana orbicularis, Gentianella amarella, and other organisms with data available. A member of the xanthone family that is bellidin substituted with a methyl group at O-3. A natural product found particularly in Swertia chirata and Gentianella campestris. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4]. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4].
Trimethylamine oxide
A tertiary amine oxide resulting from the oxidation of the amino group of trimethylamine. D009676 - Noxae > D016877 - Oxidants Trimethylamine N-oxide is a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients. Trimethylamine N-oxide induces inflammation by activating the ROS/NLRP3 inflammasome. Trimethylamine N-oxide also accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis by activating the TGF-β/smad2 signaling pathway[1][2][3].
1-Methyl-6-oxo-1,6-dihydropyridine-3-carboxamide
Nudifloramide (2PY) is one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation. Nudifloramide significantly inhibits poly(ADP-ribose) polymerase (PARP-1) activity in vitro[1].
Bleomycin A2
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances D000970 - Antineoplastic Agents
GW 9662
GW9662 is a potent and selective PPARγ antagonist with an IC50 of 3.3 nM, showing 10 and 1000-fold selectivity over PPARα and PPARδ, respectively.
Fenamic acid
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
13,14-dihydroretinol
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Benzo[k]tetraphene
D009676 - Noxae > D002273 - Carcinogens Dibenz[a,h]anthracene (DBA) is a polycyclic aromatic hydrocarbon (PAH) of considerable tumorigenicity. Dibenz[a,h]anthracene results in DNA adduct formation leading to the activation of a DNA damage response. Dibenz[a,h]anthracene induces cell cycle arrest and apoptosis via both Tp53-dependent and Tp53-independent mechanisms[1][2].